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OBJECT REPRESENTATIONS AS EQUILIBRIA:
TRAINING ITERATIVE INFERENCE ALGORITHMS
WITH IMPLICIT DIFFERENTIATION

Michael Chang, Sergey Levine & Thomas L. Griffiths ∗

ABSTRACT

Deep generative models, particularly those that aim to factorize the observations
into discrete entities (such as objects), must often use iterative inference procedures
that break symmetries among equally plausible explanations for the data. Such in-
ference procedures include variants of the expectation-maximization algorithm and
structurally resemble clustering algorithms in a latent space. However, combining
such methods with deep neural networks necessitates differentiating through the
inference process, which can make optimization exceptionally challenging. In this
work, we observe that such iterative inference methods can be made differentiable
by means of the implicit function theorem, and develop an implicit differentiation
approach that improves the stability and tractability of training such models by
decoupling the forward and backward passes. This connection enables us to apply
recent advances in optimizing implicit layers to not only improve the stability and
optimization of the slot attention module in SLATE, a state-of-the-art method for
learning entity representations, but do so with constant space and time complexity
in backpropagation and only one additional line of code.

1 INTRODUCTION

…
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Figure 1: Overview. We propose to train the slot atten-
tion model (1a), whose figure is adapted from Locatello
et al. (2020), with implicit differentiation. Our approach
leads to more stable training (1b) and substantially lower
validation loss (1c) compared to vanilla slot attention.

Many generative models assume each observed
datapoint x is generated from a set λ of latent
variables and parameters, where the ordering
of these variables does not matter. In mixture
models, for example, a single datapoint would
have the same probability if the indices of the
latent components were simply relabeled with a
different permutation. However, this symmetry
results in many equally valid explanations of the
same datapoint, making the inference problem
ill-posed. This phenomenon is especially rele-
vant when learning representations of objects
in visual scenes, where treating latent variables
symmetrically enables the object representations
to be composed in novel ways.

In these models, inference is typically done by
breaking symmetry via a random initial guess
λ0 and then iteratively updating the value of λ,
with variants of the classical expectation maxi-
mization (EM) algorithm (Dempster et al., 1977)
being prominent examples. Recent works have
replaced the analytical updates of EM with a
neural network f that directly computes the up-
date as λ = f(λ, x). These iterative amortized
inference algorithms (Marino et al., 2018a)
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have predominantly been applied to learning
object-centric representations of visual scenes (Greff et al., 2017; Van Steenkiste et al., 2018; Greff
et al., 2019; 2020; Veerapaneni et al., 2020; Locatello et al., 2020; Kipf et al., 2021; Zoran et al.,
2021; Singh et al., 2021). All are trained by differentiating through the unrolled iterations of f .

Despite their conceptual elegance, it has been difficult to scale iterative amortized inference methods
beyond modeling simple static scenes or short video sequences because differentiating through the
unrolled forward iteration makes training unstable. Fig. 5 shows that the spectral norm of the Jacobian
of f gradually increases over the course of training, which has empirically been observed to cause
training instabilities (Bai et al., 2021). Such instabilities result in sensitivity to hyperparameter
choices (e.g., number of inference iterations) and have motivated adding optimization tricks such as
gradient clipping, learning rate warm-up, and learning rate decay, all of which make such models
more complex and harder to use, restrict the model from optimizing its learning objective fully, and
only temporarily delay instabilities that still emerge in later stages of training.

To approach this problem, we observe that previous methods have not taken advantage of the fact
that f can be viewed as a fixed point operation. Thus, f can be trained with implicit differentiation
applied at the fixed point, without backpropagating gradients through the unrolled iterations. We
then leverage tools developed for implicit differentiation in neural models for improving the training
of these methods. Our primary contribution is to propose implicit differentiation for training the
iterative amortized inference procedures of symmetric generative models, such as those used for
learning object representations. Namely:

1. We show that prior iterative amortized inference methods, including those on object-centric
learning, can be cast as fixed point procedures that can be trained with implicit differentiation.
We call the resulting class of methods implicit iterative inference algorithms.

2. We show on the latest state-of-the-art of these methods, SLATE (Singh et al., 2021), that
using the first-order Neumann approximation of the implicit gradient for the slot attention
module (Locatello et al., 2020) yields substantial improvement in optimization.

We show across three datasets that, compared to SLATE, our method for training achieves much
lower validation loss in training, as well as lower Fréchet inception distance (FID) (Heusel et al.,
2017) and mean squared error (MSE) in image reconstruction. Our method also removes the need for
gradient clipping, learning rate decay, learning rate warmup, or tuning the number of iterations, while
achieving lower space and time complexity in the backward pass, all with one additional line of code.

2 RELATED WORK

The equivalence of maximizing the evidence lower bound (ELBO) (Neal & Hinton, 1998; Bottou &
Bengio, 1995) and minimizing variational free energy (Dayan et al., 1995; Friston, 2010) signifies
that any method for minimizing an energy function (LeCun et al., 2006) can be cast as a fixed point
procedure. Thus, iterative inference procedures can naturally be described as specifying the attractor
dynamics of a dynamical system whose stable states correspond to the posterior or model parameters
produced as a result of the inference, making these procedures especially useful for dynamically
inferring representations of objects (Greff et al., 2020). Thus far, however, the methods that instantiate
these iterative inference updates with neural networks (see §3) are difficult to train because they all
differentiate through the unrolled dynamics of the fixed point procedure. Implicit differentiation
can offer a solution to this difficulty. In deep learning (Duvenaud et al., 2020), it has been applied
to embedded optimization layers (Amos & Kolter, 2017; Agrawal et al., 2019), neural ordinary
differential equations (Chen et al., 2018), meta-learning (Rajeswaran et al., 2019), implicit neural
representations (Huang et al., 2021), declarative layers (Gould et al., 2019), and entire networks (Bai
et al., 2019). We focus on the novel application of implicit differentiation to iterative inference
algorithms that approximate the optimization of the ELBO.

3 BACKGROUND

Our work builds on prior works on iterative amortized inference and implicit differentiation with
deep neural networks. This section reviews recent advances in these two areas and introduces the
formalism we use in the rest of the paper.
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3.1 ITERATIVE AMORTIZED INFERENCE

Consider a generative model with observed variables X , local (per-observation) latent variables
Z, and global (across-observations) parameters θ, defining the joint distribution for a particular
sample (z, x) as p(z, x; θ) = p(z; θz)p(x | z; θx | z). Given a datapoint x, the goals of statistical
inference often involve estimating the parameters θ or inferring the posterior p(z | x). Both can be
achieved via variational techniques (Neal & Hinton, 1998; Dayan et al., 1995) that frame inference
as a maximization of the evidence lower bound (ELBO) L with respect to θ and an approximate
posterior q(z | ·):

L (q, θ, x) := E
z∼q(z|·)

[log p (x, z; θ)− log q (z | ·)] . (1)

Classical and amortized inference Classical approaches for maximizing L include variants of
the expectation maximization (EM) algorithm (Dempster et al., 1977), which alternates between
optimizing maxq L(q, θ, x) and maxθ L(q, θ, x), using incremental (e.g., gradient descent) or analytic
approaches. Given a dataset {xn}Nn=1, and assuming that q can be parameterized by variational
parameters ϕ, classical iterative methods employ a fixed learning rule (Hoffman et al., 2013), for
improving ϕ or θ, e.g.

ϕn
t+1 ← ϕn

t + α∇ϕnL (ϕn
t , x

n) , ∀n (2)

θt+1 ← θt + β
∑

n
∇θL (θt, xn) (3)

which is costly to scale to high-dimensional datasets. Thus, techniques related to the variational
autoencoder (Kingma & Welling, 2013; Rezende et al., 2014, VAE) amortize (Gershman & Goodman,
2014) the optimization of ϕn for each xn via an encoder network that directly maps x to ϕ. However,
estimating ϕ without feedback from an iterative procedure results in decreased modeling perfor-
mance (Krishnan et al., 2018; Cremer et al., 2018) and cannot break symmetry among exchangeable
unobserved variables.

Iterative amortized inference Several works have proposed to combine the paradigms of iterative
optimization and neural networks by replacing the fixed update rule with a update network f that is
trained to optimize the unrolled iterative procedure (Kirsch & Schmidhuber, 2020; Andrychowicz
et al., 2016) for improving ELBO. All proposals so far have trained f by backpropagating gradients
through the unrolled updates. These can be categorized as performing posterior inference or parameter
estimation via a meta-learning algorithm (Thrun & Pratt, 2012; Schmidhuber, 1987), with the former
conducted across a single dataset (like Andrychowicz et al. (2016)) and the latter conducted across a
dataset of mini-datasets (like Finn et al. (2017)).

For methods that meta-learn posterior inference (Marino et al., 2018b;a; 2020; Greff et al., 2019;
Veerapaneni et al., 2020), instead of an encoder network that directly maps xn to ϕn, an update
network f improves a (initially random) previous estimate ϕn

t as ϕn
t+1 ← f(ϕn

t ,∇ϕn
t
Lt) for each

datapoint xn. While ϕn is updated per-datapoint, the model parameters θ and weights of f are
updated across datapoints.

In contrast, methods that meta-learn parameter estimation (Greff et al., 2017; Van Steenkiste
et al., 2018; Zoran et al., 2021; Locatello et al., 2020; Singh et al., 2021) treats each datapoint xn as
itself a mini-dataset of M measurements xn,m (e.g. xn is an image and xn,m is a pixel or feature of
xn). Each datapoint xn is generated from per-datapoint model parameters θn with per-measurement
latents zn,m, thus defining a per-datapoint ELBO Ln. The role of the update network f in this setting
is to improve the (initially random) model parameters θn as θnt+1 ← f(θnt ,∇θn

t
Ln
t ), which generally

also involves improving the per-measurement variational parameters ϕn,m.

Object-centric learning A concrete application of iterative amortized inference has been in so-
called object-centric learning, a research area that seeks to decompose observations x into a set of
independent representations of entities without supervision on how to decompose. Each datapoint xn

(e.g. image or sensorimotor sequence) is a set of independent sensor measurements xn,m (e.g. pixels)
which are generally posited as having been generated from a mixture model whose components
represent the entities. Under a clustering lens, the problem reduces to finding the K groups of
cluster parameters θn := {θn,k}Kk=1 and cluster assignments ϕn,m := {ϕn,m,k}Kk=1 that were
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responsible for the measurements xn,m of the datapoint xn. Modeling entities as cluster components
encodes the assumption that entities are a priori independent and symmetric, thereby requiring a
symmetry-breaking mechanism during inference.

To solve this problem, an update network f breaks symmetry among components by alternately
updating θn and ϕn,m starting from independent randomly initialized θn,k’s. The state-of-the-art slot
attention module (Locatello et al., 2020), e.g., computes θn

t+1 ← f (θn
t , x

n), where ϕn,m is updated
as an intermediate step inside f . The θn, called slots, serve as input to a downstream objective, e.g.
image reconstruction, whose gradients are backpropagated through the unrolling of f . Earlier works
applied this meta-learned parameter estimation approach to binary images (Greff et al., 2017) and
videos (Van Steenkiste et al., 2018). Methods via meta-learned posterior inference have also been
developed for images (Greff et al., 2017) and model-based planning (Veerapaneni et al., 2020) using
mixture-density networks (Bishop, 1994) for the generative model.

3.2 IMPLICIT DIFFERENTIATION

Implicit differentiation is a technique for computing the gradients of a function defined in terms
of satisfying a joint condition of the input and output. For example, a fixed point operation f is
defined to satisfy “find λ such that λ = f(x, λ),” rather than through an explicit parameterization of
f . This fixed point λ∗ can be computed by simply repeatedly applying f or by using a black-box
root-finding solver. Letting fw be parameterized by weights w, with input x and fixed point λ∗, the
implicit function theorem (Cauchy, 1831) enables us to directly compute the gradient of the loss ℓ
with respect to w, using only the output λ∗:

∂ℓ

∂w
=

∂ℓ

∂λ∗
(I − Jfw (λ∗))

−1 ∂fw (λ∗, x)

∂w
, (4)

where Jfw (λ∗) is the Jacobian matrix of fw evaluated at λ∗. Compared to backpropagating through
the unrolled iteration of f , which is just one of many choices of the solver, implicit differentiation via
Eq. 4 removes the memory cost of storing any intermediate results from the unrolled iteration.

Much effort has been put into approximating the inverse-Jacobian term (I − Jfw (λ∗))
−1 which has

O(n3) complexity to compute. Geng et al. (2021); Fung et al. (2021); Huang et al. (2021); Shaban
et al. (2019) propose instead to approximate (I − Jfw (λ∗))

−1 with its Neumann series expansion:

(I − Jfw (λ∗))
−1

= lim
T→∞

T∑
i=0

Jfw (λ∗)
i
. (5)

The first-order approximation (T = 1) amounts to applying f once to the fixed point λ∗ and
differentiating through the resulting computation graph. This is not only cheap to compute and easy
to implement, but has also been shown empirically (Geng et al., 2021) to have a regularizing effect
on the spectral norm of Jfw without sacrificing performance.

4 INFERENCE AS A FIXED POINT ITERATION

To explain why it makes sense to train iterative amortized inference algorithms with implicit differen-
tiation, we explicitly unify iterative amortized inference methods (§ 3.1) as solving a particular nested
optimization problem whose inner optimization is that of maximizing the ELBO, thereby allowing
them to be understood as fixed point procedures. We describe the abstracted bi-level optimization
problem (one-level of nesting), then show that meta-learned posterior inference and meta-learned
parameter estimation instantiate this problem with one and two levels of nesting respectively.

4.1 THE NESTED OPTIMIZATION PROBLEM

Consider the following bi-level optimization problem over a generic dataset {xn}Nn=1 with datapoints
xn. Define the parameters λn as optimized per-datapoint, and the parameters w as optimized across
datapoints. With the ELBO L as the inner objective and a task objective J as the outer objective, we
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express the bi-level optimization problem as

min
w

∑
n

J (xn,w, λn
∗ )

s.t. λn
∗ = argmax

λn

L (x̃n, λn) .
(6)

When the inner optimization is conducted via a fixed update rule, the solution of the inner problem
can be embedded as a differentiable optimization layer (Amos & Kolter, 2017) within a neural
network with weights w. Here, we partition w as w = [we,wd], where we are weights of an encoder
that processes xn into x̃n, and wd are weights of a decoder that computes the outer objective J
with the fixed point λn

∗ as an input. Special cases include the case where we is the identity (i.e., no
pre-processing of xn) and the case where wd is the identity (i.e. no post-processing of λn

∗ ).

Using a trainable network fw as the update rule instead, e.g. λn
t+1 ← fw(λn

t , x
n), implicitly param-

eterizes a constraint set Cw (xn). The weights w from Eq. 6 now include the weights wu of the
learnable update rule fw, yielding:

min
w

∑
n

J (xn,w, λn
∗ )

s.t. λn
∗ = argmax

λn∈Cw(xn)

L (x̃n, λn) .
(7)

The constraint set Cw (xn) implicitly depends on we, which pre-processes xn, and wu, which updates
λn. Any update rule that monotonically improves upon L is thus a fixed point operation whose
fixed point locally maximizes L (Neal & Hinton, 1998; Wu, 1983). It is in this sense that we can
understand fw as trained to perform a fixed point operation.

4.2 POSTERIOR INFERENCE AND PARAMETER ESTIMATION

Now we show that iterative amortized inference for posterior inference and parameter estimation
implement fixed point procedures that solve the aforementioned nested optimization problem. This is
to our knowledge the first unification of both approaches under the same problem statement.

Meta-learned posterior inference Methods for meta-learned posterior inference (§3.1) train a
VAE decoder as the generative model with parameters θ and an update network fw that updates
ϕn
t+1 ← fw(ϕn

t ,∇ϕn
t
Lt) for each datapoint xn. We recover the problem formulation in Eq. 7 by

substituting the negative ELBO for the outer objective J , the per-datapoint variational parameters
ϕn for λn, and the model parameters θ for the subset of wd that compute the p(x | z) term of the
negative ELBO. Then the update network implements the fixed point operation ϕn

t+1 ← fw(ϕn
t , x

n)
that computes∇ϕn

t
Lt from ϕn

t and xn as an initial pre-processing step.

Meta-learned parameter estimation Methods for meta-learned parameter estimation (§3.1)
treat each datapoint xn as a mini-dataset of measurements xn,m. We recover the problem for-
mulation in Eq. 7 by substituting a per-datapoint ELBO Ln for the inner objective and let
λn :=

(
θn, {ϕn,m}Mm=1

)
, meaning that the inner optimization jointly optimizes the per-datapoint

model parameters θn and all per-measurement variational parameters ϕn,m. Existing approaches
implement this by using fw to compute an EM (Greff et al., 2017; Van Steenkiste et al., 2018) or
modified soft K-means (Locatello et al., 2020; Zoran et al., 2021; Singh et al., 2021) step. Since
the variational inference problem (Eq. 1) is itself a bi-level optimization over θ and ϕ, meta-learned
parameter estimation is actually a tri-level optimization, optimizing w across datapoints xn at the
outer level, θ across measurements xn,m but per-datapoint at the middle level, and ϕ per-measurement
at the inner level. The inner two objectives are the ELBO Ln defined for each datapoint and the outer
objective J is a task objective specified for the dataset, such as image reconstruction or attribute
classification (Locatello et al., 2020).

4.3 ENTITIES AS INDEPENDENTLY INITIALIZED FIXED POINTS

Having established the above formalism, the object-centric learning problem as studied so far
represents a subset of instances of the nested optimization problem described in §4.1, where the
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inner optimization is of a set of independently initialized parameters λn := {λn,k}Kk=1 that are
symmetrically updated by fw. What this paper contributes is the explicit formulation of these entity
representations λn as fast weights that converge towards a set of fixed points during execution. This
gives us a unifying tangible problem statement for focusing object-centric learning research and
enables us to improve the training of such methods with implicit differentiation, as we discuss in the
next section.

5 IMPLICIT ITERATIVE INFERENCE

def step(slots, k, v):
# compute assignments given slots
q = project_q(norm_slots(slots))
k = k * (slot_size ** (-0.5))
attn = F.softmax(torch.einsum('bkd,bqd->bkq’, k, q), dim=-1)
attn = attn / torch.sum(attn + epsilon, dim=-2, keepdim=True)
# update slots given assignments
updates = torch.einsum('bvq,bvd->bqd’, attn, v)
slots = gru(updates, slots)
slots = slots + mlp(norm_mlp(slots))
return slots

def iterate(f, x, num_iters):
for _ in range(num_iters):

x = f(x)
return x

def forward(inputs, slots):
inputs = norm_inputs(inputs)
k, v  = project_k(inputs), project_v(inputs)   
slots = iterate(lambda z: step(z, k, v), slots, num_iterations)
slots = step(slots.detach(), k, v)
return slots

Figure 2: Code. The first order Neumann approxima-
tion to the implicit gradient adds only one additional
line of Pytorch code (Paszke et al., 2019) to the original
forward function of slot attention, but yields substantial
improvement of optimization. attn and slots corre-
spond to ϕ and θ in the text respectively.

Having shown how iterative amortized infer-
ence methods can be expressed as implement-
ing learnable fixed point operations of the form
λn ← fw (λn, xn), it is simple to just substitute
J for ℓ in Eq. 4 to get the implicit gradient of J
with respect to the weights w. Because implicit
differentiation decouples the forward and back-
ward passes, any black box solver for computing
the fixed point and black box gradient estimator
for computing the implicit gradient can be used.
We refer to this family of algorithms for solving
Eq. 7 with implicit differentiation as implicit
iterative inference algorithms.

Implicit object-centric learning To illustrate
an example of such implicit inference algo-
rithms, we propose implicit slot attention: a
method for training the state-of-the-art slot atten-
tion module (Locatello et al., 2020), which per-
forms meta-learned parameter estimation, with
the simplest and most effective method that we have empirically found for approximating the implicit
gradient, which is its first-order Neumann approximation (Eq. 5). It can be implemented by simply
differentiating the computation graph of applying the slot attention update once to the fixed point θn

∗ ,
where θn

∗ is computed by simply iterating the slot attention module forward as usual, but without
the gradient tape. The time and space complexity of backpropagation for our method compared to
vanilla slot attention as a function of the number of slot attention iterations n, is shown below:

vanilla slot attention ours
time (forward) O(n) O(n)
space (forward) O(n) O(n)
time (backward) O(n) O(1)
space (backward) O(n) O(1).

Our method is not only more efficient but also requires only one additional line of code (Fig. 2).

6 EXPERIMENTS

The main hypothesis behind this paper is that implicit differentiation can improve the training of
iterative amortized inference methods for object-centric learning. We test this hypothesis by replacing
the backward pass of the slot attention module in SLATE (Singh et al., 2021) with the first-order
Neumann approximation of the implicit gradient, and measuring optimization performance.

For the task of image reconstruction, SLATE uses a discrete VAE (Ramesh et al., 2021) to compress an
input image into a grid of discrete tokens. These tokens index into a codebook of latent code-vectors,
which, after applying a learned position encoding, serve as the input to the slot attention module.
An Image GPT decoder (Chen et al., 2020) is trained with a cross-entropy loss to autoregressively
reconstruct the latent code-vectors, using the outputted slots from slot attention as queries and the
latent code-vectors as keys/values. Gradients are blocked from flowing in and out of the discrete VAE
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CLEVR-Mirrors ShapeStacks

COCO-2017

Figure 3: Qualitative results. Across three datasets, optimizing SLATE with implicit differentiation leads to
improved image reconstructions through the slot bottleneck. Black borders indicate the ground truth image, blue
border indicate our method, and red borders indicate vanilla SLATE. Other panels visualize attention masks.

to the rest of the network (i.e. the slot attention module and the Image GPT decoder), but the entire
system is trained simultaneously.

We consider three datasets: CLEVR-Mirror (Singh et al., 2021), Shapestacks (Groth et al., 2018),
and COCO-2017 (Lin et al., 2014). We obtained CLEVR-Mirror directly from the SLATE authors
and used a 70-15-15 split for training, validation, and testing. We pooled all the data variants of
Shapestacks together as Singh et al. (2021) did and used the original train-validation-test splits. The
COCO-2017 dataset was downloaded from FiftyOne and used the original train-validation-test splits.

6.1 DOES IMPLICIT DIFFERENTIATION STABILIZE THE TRAINING OF SLOT ATTENTION?

Table 1: Quantitative metrics for image re-
construction through the slot bottleneck.

Data Ours Vanilla
CLEVR (FID) 22.19 25.89
CLEVR (MSE) 10.66 67.04
COCO (FID) 127.79 147.48
COCO (MSE) 1659.15 1821.75

ShapeStacks (FID) 34.2 34.76
ShapeStacks (MSE) 108.67 312.14

Using the two primary metrics used in Singh
et al. (2021), images generated by SLATE
trained with implicit differentiation achieve both
lower pixel-wise mean-squared error and FID
score (Heusel et al., 2017). The FID score was
computed with the PyTorch-Ignite (Fomin et al.,
2020) library using the inception network from
the PyTorch port of the FID official implemen-
tation. All methods were trained for 250k gra-
dient steps. Table 1 compares the FID and MSE
scores of the images that result from compress-
ing the SLATE encoder’s set of discrete tokens
through the slot attention bottleneck, using Image-GPT to autoregressively re-generate these image
tokens one by one, and using the discrete VAE decoder to render the generated image tokens. Implicit
differentiation significantly improves the quantitative image reconstruction metrics of SLATE across
the test sets of CLEVR-Mirrors, Shapestacks, and COCO. In the case of MSE for CLEVR, this is
almost a 7x improvement.

The higher quantitiatve metrics also translate into better quality reconstructions on the test set, as
shown in Figure 3. For CLEVR-Mirrors, vanilla SLATE sometimes drops or changes the appearance
of objects, even simple scenes with three objects. In contrast, the reconstructions produced from
training with implicit differentiation match the ground truth very closely. For Shapestacks, our
method consistently segements the scene into constituent objects. This is sometimes the case with
vanilla SLATE on the training and validation set as well, but we observed for both of the seeds
we ran that vanilla SLATE produced degenerated attention maps where one slot captures the entire
foreground, and the background is divided among the other slots. The visual complexity of the
COCO dataset is much higher than either CLEVR-Mirrors and Shapestacks, and the reconstructions
on the COCO dataset are quite poor, for both SLATE’s discrete VAE and consequently for the
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Figure 4: Implicit differentiation removes the need for many optimization tricks. We ablate three
heuristically-motivated optimization tricks from both vanilla SLATE and our method. Whereas removing
gradient clipping and learning rate warmup causes vanilla SLATE’s training to become unstable, as indicated by
the growth of the Jacobian norm of the slot attention cell, our method trains significantly more stably and can
take advantage of the larger gradient steps.

reconstruction through the slot bottleneck. This may be expected because we did not attempt to tune
SLATE’s hyperparameters to COCO, but it does highlight the gap that still exists between using the
state-of-the-art in object-centric learning out-of-the-box and what the community may want these
methods to do. The attention masks for both the vanilla SLATE and our method furthermore do not
appear to correspond consistently to coherent objects in COCO but rather patches on the image that
do not immediately seem to match with our human intuition of what constitutes a visual entity.

6.2 CAN WE SIMPLIFY THE NEED FOR OPTIMIZATION TRICKS?

To further understand the benefits of implicit differentiation, we then ask whether it stabilizes the
training of slot attention without the need for optimization tricks like learning rate decay, gradient
clipping, and learning warmup. Fig. 4 shows that these tricks generally help regularize spectral norm
of the Jacobian of vanilla slot attention but are not required by our method. Decaying the learning
rate regularizes the Jacobian norm from exploding, but it also hurts optimization performance for
both our method and vanilla SLATE, as expected. When we remove gradient clipping, the Jacobian
norm of vanilla SLATE explodes, whereas it stays stable for our method. Lastly, removing learning
rate warmup also consistently makes vanilla SLATE’s training unstable, whereas it only affects the
stability of our method for one out of three seeds.

7 DISCUSSION AND LIMITATIONS

Our results show clear signal that implicit differentiation can offer a significant optimization im-
provement over backpropagating through the unrolled iteration of slot attention, and potentially
any iterative inference algorithm, with lower space and time complexity and only one additional
line of code. Despite our work pushing the optimization performance for a state-of-the-art model
in object-centric learning, the discrepancy between the quantitative improvement in optimization
and evaluation metrics on the one hand and the less intuitive qualitative attention masks on real
world observations like COCO (Fig. 3) on the other hand still suggests a gap between what we
optimize these methods to do and what we actually want them to do. This paper proposes a novel
conceptualization of object representations as fast weights that converge towards a set of fixed points
during execution. Because it is so simple to apply implicit differentiation to any fixed point algorithm,
we hope this work inspires future work to leverage tools developed for implicit differentiation for
improving object-centric learning and methods for learning latent structure more broadly.
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Joseph Marino, Alexandre Piché, Alessandro Davide Ialongo, and Yisong Yue. Iterative amortized
policy optimization. arXiv preprint arXiv:2010.10670, 2020.

Radford M Neal and Geoffrey E Hinton. A view of the em algorithm that justifies incremental, sparse,
and other variants. In Learning in graphical models, pp. 355–368. Springer, 1998.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32:
8026–8037, 2019.

Aravind Rajeswaran, Chelsea Finn, Sham Kakade, and Sergey Levine. Meta-learning with implicit
gradients. 2019.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. arXiv preprint arXiv:2102.12092, 2021.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In International conference on machine learning,
pp. 1278–1286. PMLR, 2014.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn:
the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation
for bilevel optimization. In The 22nd International Conference on Artificial Intelligence and
Statistics, pp. 1723–1732. PMLR, 2019.

Gautam Singh, Fei Deng, and Sungjin Ahn. Illiterate dall·e learns to compose. arXiv preprint
arXiv:2110.11405, 2021.

Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media, 2012.

Sjoerd Van Steenkiste, Michael Chang, Klaus Greff, and Jürgen Schmidhuber. Relational neural
expectation maximization: Unsupervised discovery of objects and their interactions. arXiv preprint
arXiv:1802.10353, 2018.

Rishi Veerapaneni, John D Co-Reyes, Michael Chang, Michael Janner, Chelsea Finn, Jiajun Wu,
Joshua Tenenbaum, and Sergey Levine. Entity abstraction in visual model-based reinforcement
learning. In Conference on Robot Learning, pp. 1439–1456. PMLR, 2020.

C. F. Jeff Wu. On the Convergence Properties of the EM Algorithm. The Annals of Statistics, 11(1):
95 – 103, 1983. doi: 10.1214/aos/1176346060. URL https://doi.org/10.1214/aos/
1176346060.

Daniel Zoran, Rishabh Kabra, Alexander Lerchner, and Danilo J Rezende. Parts: Unsupervised seg-
mentation with slots, attention and independence maximization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 10439–10447, 2021.

11

https://doi.org/10.1214/aos/1176346060
https://doi.org/10.1214/aos/1176346060


Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

A APPENDIX
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Figure 5: Stability. (5a) Without gradient clipping, our implicit differentiation technique keeps gradients small
while backpropagating through the unrolled iterations causes gradients to explode. (5b) Training with implicit
differentiation also is not sensitive to the number of iterations with which to iterate the slot attention module.

When we remove gradient clipping, the gradients of vanilla SLATE explodes, whereas they stays
stable for our method. Fig. 5b shows that our method is not sensitive to the number of iterations with
which to iterate the slot attention cell, whereas vanilla slot attention is, with more iterations being
harder to train.

12


	Introduction
	Related Work
	Background
	Iterative amortized inference
	Implicit differentiation

	Inference As A Fixed Point Iteration
	The nested optimization problem
	Posterior inference and parameter estimation
	Entities as independently initialized fixed points

	Implicit Iterative Inference
	Experiments
	Does implicit differentiation stabilize the training of slot attention?
	Can we simplify the need for optimization tricks?

	Discussion and Limitations
	Appendix

