
Spectrum Guided Topology Augmentation for Graph
Contrastive Learning

Lu Lin†§, Jinghui Chen†, Hongning Wang§
†The Pennsylvania State University, §University of Virginia

{lulin,jzc5917}@psu.edu, hw5x@virginia.edu

Abstract

Graph contrastive learning (GCL) is a major self-supervised graph learning tech-
nique that aims to capture invariant properties of graphs via instance discrimination.
Its performance heavily relies on the construction of multiple graph views yet it
still remains unclear about what makes effective topology augmentations. Recent
studies mainly perform topology augmentations in a uniformly random manner
without considering graph properties. In this work, we aim to find principled
ways for topology augmentations by exploring the invariance of graphs from the
graph spectral perspective. Specifically, we propose a novel topology augmentation
method guided by spectral change. Extensive experiments on both graph and node
classification tasks demonstrate the effectiveness of our method in capturing the
structural essence of graphs for self-supervised learning. The proposed method also
brings promising performance in transfer learning and adversarial attack settings.
We envision this work to provide a principled way for graph augmentation.

1 Introduction

Graph neural networks (GNNs) [26, 54, 60] have advanced graph representation learning in a (semi-)
supervised manner, yet it requires supervised labels and may fail to generalize due to overfitting [43].
To obtain more generalizable, transferable, and robust representations, the self-supervised learning
(SSL) paradigm has recently emerged which enables GNNs to learn from pretext tasks constructed
on unlabeled graph-structured data [21, 20, 63, 23]. As the current state-of-the-art SSL technique,
graph contrastive learning (GCL) has attracted the most attention due to its simplicity and remarkable
empirical performance [55, 67, 17, 61, 48, 49].

A typical GCL method works by creating augmented views of the input graph and learning node
(or graph) representations by contrasting related graph objects against unrelated ones. Different
contrastive objects are studied, such as node-node [67, 68, 37], node-(sub)graph [56, 17, 47] and
graph-graph [1, 49, 48] contrastive pairs. The goal of GCL is to maximize the congruence between the
representations of graph objects in augmented views, following the mutual information maximization
(InfoMax) principle [18]. This makes graph augmentation one of the most critical designs in GCL, as
it determines the effectiveness of the contrastive objective. However, despite various GCL methods
have been proposed, it remains a mystery about what makes the most effective graph augmentations.

Unlike images, which can be augmented by rotation or cropping to naturally highlight the main
subject from the background, it is less intuitive and more challenging to augment graphs due to the
complicated topology structure of diverse nature (e.g., citation networks [45], social networks [34],
chemical and biomedical molecules [29, 20]). Most existing works perform topology augmentations
in a uniformly random manner [62, 67, 49, 1]. Although such a strategy indeed achieves a certain level
of empirical success, it is far from optimal: recent studies show that perturbations on different edges
post unequal influence on the graph spectrum [8, 3] while the uniformly random edge perturbation
adopted in many GCL methods treats all edges equally and ignores such differences. Given the

NeurIPS 2022 New Frontiers in Graph Learning Workshop (NeurIPS GLFrontiers 2022).

importance of graph spectrum for spectral filters in GNNs [6], such a discrepancy between uniform
edge perturbations and their non-uniform influence on the graph spectrum urges us to rethink a
fundamental but not yet clearly answered question:

Will graph spectrum based topology augmentations be more effective for GCL?

In this paper, we answer this question affirmatively. By studying the influence of different edge
perturbation strategies on graph spectrum, we observe a clear positive relationship between the overall
spectral change on augmented graphs and the resulting GCL performance. This empirical finding
further motivates us to propose a principled Graph Contrastive Learning scheme with Topology
Augmentation guided by the Graph Spectrum, termed GCL-TAGS. Specifically, instead of perturbing
edges uniformly at random, we search for graph augmentations that mostly change the graph spectrum
of the input graph. By identifying sensitive edges where the graph spectrum is largely affected, GCL-
TAGS allows the GNN encoder to focus on robust components (which can be hardly affected by
small edge perturbations) in the spectral filters and to reduce its dependency on relatively vulnerable
components (which can be easily affected). Therefore, the learned encoder captures the minimally
sufficient information about the graph [51, 50] for the downstream tasks.

We extensively evaluate GCL-TAGS on various benchmark datasets consisting of social networks
and molecules, which cover commonly seen graph learning tasks such as node classification, graph
classification and regression. We also consider various settings to test the applicability of our
proposed method including unsupervised learning, transfer learning and adversarial learning setting.
In general, GCL-TAGS achieves remarkable performance gains compared to the state-of-the-art
baselines. Meanwhile, GCL-TAGS is easy to plug and play with different GCL paradigms as it only
requires a one-time pre-computation of the edge perturbation probability for topology augmentation.

2 Related Works

Existing graph SSL methods focus on self-prediction [14, 38, 13, 63, 23] and contrastive learning.
We focus on contrastive learning, and will mainly discuss existing designs of topology augmentation.

Graph Contrastive Learning (GCL) leverages the InfoMax principle [18] to maximize the corre-
spondence between related objects on the graph such that invariant property across objects is captured.
Depending on how the positive objects are defined, one line of work treats different parts of a graph
as positive pairs, while constructing negative examples from a corrupted graph [20, 22, 56, 37, 47]. In
such works, contrastive pairs are defined as nodes [56] or substructures [47] v.s. the entire graph, and
the input graph v.s. reconstructed graph [37]. The other line of works exploits graph augmentation to
generate multiple views, which enable more flexible contrastive pairs [49, 1, 62, 17, 40, 48, 61, 9]. By
generating augmented views, the GNN model is encouraged to encode crucial graph information that
is invariant to different views. While both topology and feature augmentations are explored in prior
GCL works, we focus on topology augmentation strategies. As a parallel effort in self-supervised
learning, augmentation-free techniques [28, 58] recently arise, which avoid augmentation but requires
special treatments (e.g., kNN search or clustering) to obtain positive and negative pairs.

Graph Topology Augmentation. The most widely adopted topology augmentation is the edge
perturbation following uniform distribution [67, 49, 1, 62]. The underlying assumption is that
each edge is equally important to the property of the input graph. However, a recent study shows
that edge perturbations do not post equal influence to the graph spectrum [3] which summarizes
a graph’s structural property. To better preserve graph property that has been ignored by uniform
perturbations, domain knowledge from network science is leveraged by considering the importance
of edges measured via node centrality [68], the global diffusion matrix [17], and the random-walk
based context graph [40]. While these works consider ad-hoc heuristics, our method targets the
graph spectrum, which comprehensively summarizes global graph properties and plays a crucial
role in the spectral filter of GNNs. To capture minimally sufficient information from the graph and
remove redundancy that could compromise downstream performance, adversarial training strategy
is paired with GCL for graph augmentation [48, 61, 9], following the information bottleneck (IB)
[51] and InfoMin principle [50]. While the adversarial augmentation method requires frequent
back-propagation during training, our method realizes a similar principle with a simpler but effective
augmentation by maximizing the spectral change of graph with only one-time pre-computation.
Recent analyses also find some data-centric properties which are essential for GCL when using
generic graph augmentations, yielding insights about the necessity of inducing task-relevant variance

2

[52] and maintaining the low-frequency information [31]. The finding of maximizing the spectral
difference between views contributes a new dimension of such properties to investigate GCL.

3 Preliminaries

Notations. We focus on connected undirected graphs G = (X,A) with n nodes and m edges, where
X ∈ Rn×d describes node features, and A ∈ Rn×n denotes its adjacency matrix such that Aij = 1 if
an edge exists between node i and j, otherwise Aij = 0. The unnormalized Laplacian matrix of the
graph is defined as Lu = D−A, where D = diag(A1n) is the diagonal degree matrix with entry
Dii =

∑n
i=1 Aij and 1n being an all-one vector with dimension n. The normalized Laplacian matrix

is further defined as Lnorm = Lap(A) = In −D−1/2AD−1/2, where In is an n× n identity matrix.

Graph Spectrum. By treating node features as signals, one can apply graph signal processing
(GSP) techniques to conduct graph filtering for representation learning. The most essential com-
ponent of GSP is the graph shift operator (GSO), which commonly adopts the normalized Lapla-
cian matrix Lnorm and admits an eigendecomposition as Lnorm = UΛU⊤. The diagonal matrix
Λ = eig(Lnorm) = diag(λ1, . . . , λn) consists of the real eigenvalues which are known as graph
spectrum, and the corresponding U = [u1, . . . ,un] ∈ Rn×n collecting the orthonormal eigenvectors
are the spectral bases. Graph spectrum plays a significant role in analyzing and modeling graphs, as
discussed in Appendix A. On one hand, it comprehensively summarizes important graph structural
properties, including connectivity [5], clusterability [27] and diffusion distance [15]. On the other
hand, at the essence of many graph models, including GNNs, is the spectral filter which is defined
on the graph spectrum, and different filters can manipulate graph signals in various ways, such as
smoothing and denoising [44], anomaly detection [33] and clustering [57].

Graph Representation Learning. Given a graph G ∈ G, the goal of node representation learning
is to train an encoder fθ : G → Rn×d′

, such that fθ(G) produces a low-dimensional vector for
each node in G which can be served in downstream tasks, such as node classification. One can
further obtain a graph representation by pooling the set of node representations via a readout function
gϕ : Rn×d′ → Rd′

, such that gϕ(fθ(G)) outputs a low-dimensional vector for graph G which can be
used in graph-level tasks such as graph classification or regression task.

Graph Contrastive Learning by Topology Augmentation. GCL methods generally apply graph
augmentation to perturb the input graph and decrease the amount of information inherited from the
original graph; then they leverage the InfoMax principle [18] over the perturbed graph views such that
an encoder is trained to capture the remaining information [48]. Given a graph G ∈ G with adjacency
matrix A, we denote a topology augmentation scheme as T (A) and a sampled augmented view as
t(A) ∼ T (A). GCL with two-branch augmentation can be formulated as the following problem:

GCL : min
Θ
LGCL(t1(A), t2(A),Θ), s.t. ti(A) ∼ Ti(A), i ∈ {1, 2} (1)

where the contrastive loss LGCL measures the disagreement between representations from contrastive
positive pairs, which can be defined among different levels of representations, such as node-node
[67], graph-graph [48], and node-graph [56, 17] representations. The topology augmentation scheme
determines a distribution from which perturbed graphs are sampled in augmented views, and its
detailed formulation will be presented in Section 4.2.

4 Graph Contrastive Learning Guided by Graph Spectrum

In this section, we introduce our graph contrastive learning framework with topology augmentation
guided by the change of graph spectrum (GCL-TAGS). We start with some empirical evidence on the
relationship between the spectral change and GCL performance, then propose a new augmentation
principle to maximize the spectral change when perturbing the graph.

4.1 Behavior of Edge Perturbation on Graph Spectrum

Given that graph spectrum is a comprehensive manifestation of graph structural properties [5, 27, 15],
to further understand its role in GCL, we study how the behavior of edge perturbation on graph
spectrum correlates with GCL performance.

3

0.25 0.50 0.75
Perturbation Rate

0

5

10

15

20

25

30

Sp
ec

tra
l C

ha
ng

e Uniform
Clustered

0.25 0.50 0.75
Perturbation Rate

76

78

80

82

84

86

88

F1
 S

co
re

Unifrom
Clustered

Figure 1: The spectral change (left) and down-
stream task performance (right) of two aug-
mentation strategies.

Pre-analysis Setup. We take node representation
learning on Cora dataset as an example, and adopt the
same contrastive learning setup as in GRACE [67].
We consider two topology augmentation heuristics:
1) uniform: the original augmentation from GRACE
[67] which removes edges with uniformly random
probability; 2) clustered: a cluster-based strategy
which removes edges between different clusters with
a larger probability. The cluster-based strategy explic-
itly modifies the connectivity between clusters which
may result in large change on the graph spectrum as
suggested by recent studies [4, 30], thus it stands in
sharp contrast to the uniform perturbations. For the
two augmentation branches, one is fixed with the uniform version, and we compare the strategies
when the other augmentation branch adopts the uniform or the clustered perturbation. Figure 1 shows
their comparison with respect to spectral change (measured by the L2 distance of graph spectrum
between the original and the augmented graphs), and F1 score (measuring the downstream node
classification performance). More experiment details are left in Appendix C.1.

Remarks. From Figure 1, we can clearly observe that under the same perturbation budget indicated
by x-axis, the cluster-based strategy leads to a larger change on graph spectrum, while achieving better
performance on the downstream task. This analysis suggests that an effective edge augmentation
should pay more attention to sensitive edges that introduce large disturbance to graph spectrum. The
performance gap between these two simple strategies suggests a distinct possibility to improve over
the uniformly random augmentation. Unlike the proof-of-concept cluster-based heuristic, we aim on
designing a principled topology augmentation by directly maximizing the spectral change.

4.2 Augmentation Scheme via Spectral Change Maximization

We now introduce our augmentation scheme guided by graph spectrum. We first define the edge
perturbation based topology augmentation scheme determined by a Bernoulli probability matrix.
Based on that, we formulate our augmentation principle as a spectral change maximization problem.

Edge Perturbation Based Augmentation Scheme. We focus on topology augmentation using edge
perturbation. Following the GCL formulation in Eq. (1), we define topology augmentation T (A) as a
Bernoulli distribution B(∆ij) for each entry Aij . All Bernoulli parameters for all entries constitute
a probability matrix ∆ ∈ [0, 1]n×n. We can sample an edge perturbation matrix E ∈ {0, 1}n×n,
where Eij ∼ B(∆ij) indicates whether to flip the edge between node i and j, and the edge is flipped
if Eij = 1 otherwise remaining unchanged. A sampled augmented graph is then obtained via:

t(A) = A+C ◦E, C = Ā−A (2)

where Ā is the complement matrix of the adjacency matrix A, calculated by Ā = 1n1
⊤
n − In −A,

with (1n1
⊤
n − In) denoting the fully-connected graph without self-loops. Therefore, C = Ā−A ∈

{−1, 1}n×n denotes legitimate edge adding or removing operations for each node pair: edge adding
between node i and j is allowed if Cij = 1, and edge removing is allowed if Cij = −1. Taking the
Hadamard product C ◦E finally gives valid edge perturbations to the graph.

Since E is a matrix of random variables following Bernoulli distributions, we can easily obtain the
expectation of sampled augmented graphs in Eq. (2) as E[t(A)] = A+C ◦∆. Therefore, the design
of ∆ determines the topology augmentation scheme. Taking uniformly random edge removal as an
example, the entry ∆ij is set as a fixed dropout ratio if Cij = −1; and 0 otherwise.

Spectral Change Maximization. The default uniform edge perturbation adopted in many GCL
methods is far from satisfactory. Motivated by our observation in Section 4.1, instead of setting
fixed values for ∆, we propose to optimize it guided by graph spectrum. Specifically, we aim to
search for ∆ that in expectation maximizes the spectral difference between the original graph and the
augmented graph. Recall that we denote the normalized Laplacian matrix of A as Lap(A), and the
graph spectrum vector can be calculated by Λ = eig(Lap(A)). We formulate the following problem
to search for the desired perturbation matrix ∆ in a single augmentation branch:

Single-way scheme: max
∆∈S

∥eig(Lap(A+C ◦∆))− eig(Lap(A))∥22 (3)

4

where S = {s|s ∈ [0, 1]n×n, ∥s∥1 ≤ ϵ} and ϵ controls the strength of graph perturbation. By
solving Eq. (3), we obtain the optimal Bernoulli probability matrix ∆∗, from which we can sample
augmented views that in expectation differ the most from the original graph in graph spectrum. Note
that Eq. (3) only provides one augmented view, to further introduce flexibility for a two-branch
augmentation framework and enlarge the spectral difference between the resulting two views, we
extend Eq. (3) as follows:

Two-way scheme: max
∆1,∆2∈S

∥eig(Lap(A+C ◦∆1))− eig(Lap(A+C ◦∆2))∥22 (4)

where ∆i is the Bernoulli probability matrix for augmentation branch i’s scheme Ti(A) in Eq. (1).
Note that Eq. (3) is a special case of Eq. (4) when setting ∆2 = 0. Eq. (4) gives better flexibility
yet also makes the nonconvex optimization problem harder to solve, thus we further simplify it by
pushing two branches towards opposite directions: maximizing the spectral norm in one branch,
while minimizing it in the other, which leads to the final objective for our augmentation scheme:

Opposite-direction scheme: max
∆1∈S

LGS(∆1), and min
∆2∈S

LGS(∆2) (5)

where LGS(∆) = ∥eig(Lap(A+C ◦∆))∥22 measures the Graph Spectral norm under augmentation
scheme with ∆. For scheme T1(A), ∆1 produces views that overall have larger spectral norm than
the original graph, while for T2(A), ∆2 produces views with smaller spectrum. We can understand
them as setting a spectral boundary for the input graph such that the encoder is trained to capture
information that is essential and robust regarding perturbations within this region.

Optimizing ∆1 and ∆2. Eq. (5) can be solved via projected gradient descent (for ∆2) or ascent
(for ∆1). Taking ∆2 as an example, its update works as follows:

∆
(t)
2 = PS [∆

(t−1)
2 − ηt∇LGS(∆

(t−1)
2)] (6)

where t is the iteration step, ηt > 0 is the learning rate for step t, and PS(a) = argmins∈S∥s− a∥22
is the projection operator at a over the constraint set S. The calculation of gradient∇LGS(∆

(t−1)
2)

is done via chain rule. We now explain how to obtain a closed-form gradient over eigenvalues as it
looks less straightforward. For a real and symmetric matrix L, one can obtain the derivatives of its
k-th eigenvalue λk by: ∂λk/∂L = uku

⊤
k [42], where uk is the corresponding eigenvector. Note that

the derivative calculation requires distinct eigenvalues, which does not hold for graphs satisfying
automorphism [10]. To avoid such cases, we add a small noise term to the adjacency matrix1, e.g.,
A+C ◦∆ + ε × (N + N⊤)/2, where each entry in N is sampled from a uniform distribution
U(0, 1) and ε is a very small constant. Such a noise addition will almost surely break the graph
automorphism, thus enabling a valid gradient calculation of eigenvalues.

For T iterations, the time complexity of optimizing such a scheme is O(Tn3) due to the eigen-
decomposition eig(·) in LGS, which is prohibitively expensive for large graphs. To reduce the
computational cost, instead of measuring the spectral change over all eigenvalues, we only maintain
the K lowest- and highest-eigenvalues which are the most informative, as suggested by the spectral
graph theory. The performance with different choices of K is studied in Appendix D.1. Using
selective eigen-decomposition via the Lanczos Algorithm [36], the time complexity of augmentation
scheme optimization is recuded toO(TKn2) 2. The scalability can be further improved by deploying
the practical treatments in modeling large-scale graphs [40] (e.g., ego-nets sampling, batch training),
which is left as our future work.

4.3 Formulation and Framework of GCL-TAGS

Figure 2 illustrates our GCL framework equipped with the spectrum-guided augmentation. A detailed
algorithm can be found in Appendix B. We first pre-compute the probability matrices ∆1 and
∆2 via Eq. (5) to set up the augmentation scheme. For each iteration of contrastive learning, we
sample two augmented graphs for the input graph t1(A) ∼ T (A|∆1) and t2(A) ∼ T (A|∆2). The
augmented graphs are then fed into a GNN encoder fθ, which outputs two sets of node representations
H(1),H(2) ∈ Rn×d′

. A readout pooling function gϕ is further applied to aggregate and transform the
node representations and obtain graph representations z(1), z(2) ∈ Rd′

. Finally, the GNN encoder and
1The form of (N+N⊤)/2 is to keep the perturbed adjacency matrix symmetric for undirected graphs.
2Since we only require to precompute ∆1 and ∆2 once, the time complexity is totally acceptable.

5

A

max
Δ

ℒGS(Δ)

min
Δ

ℒGS(Δ)

Input Graph

Graph View

t1(A) ∼ T(A |Δ1)

GNN
Encoder

fθ

SharedShared

Node-level
Representation

H(1)

Readout
Function

gϕ

Graph-level
Representation

z(1)

GNN
Encoder

fθ

Node-level
Representation

H(2)

Readout
Function

gϕ

Graph-level
Representation

z(2)

ℒGCL

Graph View

t2(A) ∼ T(A |Δ2)

Augmentation Scheme

T(A |Δ1) :
0.3

0.5

0.
2

0.6

0.2

0.1

0.2

0.2

0.
2

0.1

0.6

0.4

0.2

0.6

Augmentation Scheme

T(A |Δ2) :

Figure 2: The framework of GCL-TAGS contains topology augmentation and contrastive objective.
The opposite-direction augmentation scheme guided by graph spectrum is pre-computed following
Eq. (5). The contrastive objective is to maximize the mutual information between node representations
from one view and the graph representation from another view, and vice versa.

the readout function are trained by a contrastive objective LGCL that maximizes the correspondence
between local node representations of one view and the global graph representation of the other view.
Given training graphs G, we formulate GCL-TAGS as the following optimization problem:

GCL-TAGS : min
θ,ϕ
LGCL(t1(A), t2(A), θ, ϕ) = − 1

|G|
∑
G∈G

(
1

n

n∑
i=1

(
I(H

(1)
i , z(2)) + I(H

(2)
i , z(1))

))
s.t. ti(A) ∼ T (A|∆i), i ∈ {1, 2},∆1 = argmax∆∈S LGS(∆),∆2 = argmin∆∈S LGS(∆) (7)

where I(X1, X2) calculates the mutual information between variables X1 and X2, and we adopt
InfoNCE as its estimator which is proven to be a lower bound of mutual information [53, 39].
Specifically, denoting cosine similarity as sim(·, ·), we estimate the mutual information as follows:

I(H
(a)
i , z(b)) = log

exp(sim(H
(a)
i , z(b)))∑n

j=1 exp(sim(H̃j , z(b)))
(8)

where a and b index the augmented views, and H̃ is the node representations for a corrupted graph by
randomly shuffling the features of the input graph [56, 17] to serve as negative examples. Note that
the augmentation scheme is optimized prior to contrastive learning, which is a one-time computation
thus does not introduce any extra complexity to the contrastive learning process.

5 Experiments

Experiment Setup: An extensive set of evaluations is performed for node classification, graph
classification and regression tasks under unsupervised learning, transfer learning and adversarial
attack settings. Our evaluations include various graph datasets ranging from citation networks, social
networks to chemical molecules. We use GCN (for node prediction tasks) and GIN (for graph
prediction tasks) as the base encoder for all methods to demonstrate the performance gain from
contrastive learning. We adopt the following linear evaluation protocol for downstream tasks [48]:
based on the representations given by the encoder, we train and evaluate a Logistic classifier or a
Ridge regressor. We repeat our experiments for 10 times and report the mean and standard derivation
of the evaluation metrics. We summarize the experimental details about datasets, baselines and
configurations in Appendix C.

5.1 Unsupervised Learning

To evaluate the quality of learned representations, a linear model is trained for the downstream tasks
using these learned representations as features and the resulting prediction performance is reported.
The effectiveness of GCL-TAGS is evaluated on both node- and graph-level prediction tasks.

Node Classification Task. The datasets include Cora, Citeseer, PubMed citation networks [45], Wiki-
CS hyperlink network [32], Amazon-Computer/Photo co-purchase network [46], and Coauthor-CS
network [46]. We compare GCL-TAGS against GCL methods that augment topology with uniformly
random edge perturbation (e.g., GRACE [67], BGRL [49], GBT [1]), centrality (GCA [68]), diffusion

6

Table 1: Node classification performance in unsupervised setting. The metric is accuracy%. Bold
highlights that our method significantly outperforms baselines suggested by t-test with p-value≤0.05.

Dataset Cora Citeseer PubMed Wiki-CS Amazon-Computer Amazon-Photo Coauthor-CS

Raw-X 48.93±0.00 50.81±0.00 68.33±0.00 71.98±0.00 73.81±0.00 78.53±0.00 90.37±0.00
S-GCN 81.34±0.35 70.42±0.45 79.82±0.41 77.19±0.12 86.51±0.54 92.42±0.16 93.03±0.31
R-GCN 56.44±0.24 63.52±0.25 73.92±0.32 72.95±0.58 82.46±0.38 90.08±0.48 90.64±0.29

B
as

el
in

es

GRACE [67] 83.33±0.43 72.10±0.54 78.72±0.13 80.14±0.48 89.53±0.35 92.78±0.30 91.12±0.20
BGRL [49] 83.63±0.38 72.52±0.40 79.83±0.25 79.98±0.13 90.34±0.19 93.17±0.30 93.31±0.13
GBT [1] 80.24±0.42 69.39±0.56 78.29±0.43 76.65±0.62 88.14±0.33 92.63±0.44 92.95±0.17
MVGRL [17] 85.16±0.52 72.14±1.35 80.13±0.84 77.52±0.08 87.52±0.11 91.74±0.07 92.11±0.12
GCA [68] 83.67±0.44 71.48±0.26 78.87±0.49 78.35±0.05 88.94±0.15 92.53±0.16 93.10±0.01
GMI [37] 83.02±0.33 72.45±0.12 79.94±0.25 74.85±0.08 82.21±0.31 90.68±0.17 91.08±0.56
DGI [56] 82.34±0.64 71.85±0.74 76.82±0.61 75.35±0.14 83.95±0.47 91.61±0.22 92.15±0.63

GCL-TAGS 85.86±0.57 72.76±0.63 81.54±0.24 82.13±0.15 90.09±0.32 93.52±0.26 93.91±0.24

Table 2: Graph representation learning performance in unsupervised setting. TOP shows the biochem-
ical and social network classification results on TU datasets (measured by accuracy%). BOTTOM
shows the molecular regression (measured by RMSE) and classification (measured by ROC-AUC%)
results on OGB datasets. Bold indicates that our method outperforms baselines with p-value≤ 0.05.

Dataset Biochemical Molecules Social Networks

NCI1 PROTEINS MUTAG DD COLLAB RDT-B RDT-M5K IMDB-B IMDB-M

S-GIN 78.27±1.35 72.39±2.76 90.41±4.61 74.87±3.56 74.82±0.92 86.79±2.04 53.28±3.17 71.83±1.93 48.46±2.31
R-GIN 62.98±0.10 69.03±0.33 87.61±0.39 74.22±0.30 63.08±0.10 58.97±0.13 27.52±0.61 51.86±0.33 32.81±0.57

B
as

el
in

es

InfoGraph [47] 68.13±0.59 72.57±0.65 87.71±1.77 75.23±0.39 70.35±0.64 78.79±2.14 51.11±0.55 71.11±0.88 48.66±0.67
GraphCL [62] 68.54±0.55 72.86±1.01 88.29±1.31 74.70±0.70 71.26±0.55 82.63±0.99 53.05±0.40 70.80±0.77 48.49±0.63
MVGRL [17] 68.68±0.42 74.02±0.32 89.24±1.31 75.20±0.55 73.10±0.56 81.20±0.69 51.87±0.65 71.84±0.78 50.84±0.92
AD-GCL [48] 69.67±0.51 73.59±0.65 89.25±1.45 74.49±0.52 73.32±0.61 85.52±0.79 53.00±0.82 71.57±1.01 49.04±0.53
JOAO [61] 72.99±0.75 71.25±0.85 85.20±1.64 66.91±1.75 70.40±2.21 78.35±1.38 45.57±2.86 71.60±0.86 51.14±0.69

GCL-TAGS 71.43±0.49 75.78±0.41 89.12±0.76 75.78±0.52 75.01±0.45 83.62±0.64 54.10±0.49 73.65±0.69 52.16±0.72

Dataset Regression (Metric: RMSE) Classification (Metric: ROC-AUC%)

molesol mollipo molfreesolv molbace molbbbp molclintox moltox21 molsider

S-GIN 1.173±0.057 0.757±0.018 2.755±0.349 72.97± 4.00 68.17±1.48 88.14±2.51 74.91±0.51 57.60±1.40
R-GIN 1.706±0.180 1.075±0.022 7.526±2.119 75.07±2.23 64.48±2.46 72.29±4.15 71.53±0.74 62.29±1.12

B
as

el
in

es

InfoGraph [47] 1.344±0.178 1.005±0.023 10.005±4.819 74.74±3.64 66.33±2.79 64.50±5.32 69.74±0.57 60.54±0.90
GraphCL [62] 1.272±0.089 0.910±0.016 7.679±2.748 74.32±2.70 68.22±1.89 74.92±4.42 72.40±1.01 61.76±1.11
MVGRL [17] 1.433±0.145 0.962±0.036 9.024±1.982 74.20±2.31 67.24±1.39 73.84±4.25 70.48±0.83 61.94±0.94
AD-GCL [48] 1.217±0.087 0.842±0.028 5.150±0.624 76.37±2.03 68.24±1.47 80.77±3.92 71.42±0.73 63.19±0.95
JOAO [61] 1.285±0.121 0.865±0.032 5.131±0.722 74.43±1.94 67.62±1.29 78.21±4.12 71.83±0.92 62.73±0.92

GCL-TAGS 1.218±0.052 0.802±0.019 4.531±0.463 76.74±2.02 69.59±1.34 80.28±2.42 72.83±0.62 64.87±0.88

matrix (MVGRL [17]) and the original graph (e.g., GMI [37] and DGI [56]). We also consider a fully
semi-supervised GCN (S-GCN), a randomly initialized untrained GCN (R-GCN) and using the raw
node features as node representations (Raw-X). All the methods exploit a 2-layer GCN encoder and a
downstream linear classifier with the same hyper-parameters for a fair comparison. We adopt random
feature masking in GCL-TAGS, following the setup in SOTA works [68, 1].

Table 1 shows that on the node classification task, GCL-TAGS achieves state-of-the-art performance
in 6 out of the 7 datasets, 5 of which are significantly better than others. Specifically, comparing
GCL-TAGS with MVGRL and GCA which use domain knowledge of the graph (e.g., node centrality
or graph diffusion), the performance gain suggests the advantage of the spectrum based augmentation
over previous domain-knowledge based heuristics. Meanwhile, GCL-TAGS is shown to be more
effective than GRACE, BGRL and GBT which adopt uniformly random augmentation3 and use a
node-level contrastive objective. It is noteworthy that the representations learned by GCL methods
achieve better performance than the base encoder R-GCN with semi-supervision, which suggests the
effectiveness of self-supervised learning when label information is limited.

3We also discuss the gain of spectrum augmentation in Appendix D.2 by directly plugging our proposed
augmentation into these frameworks.

7

Graph Prediction Task. We test on TU biochemical and social networks [34], Open Graph Bench-
mark (OGB) [19] and ZINC [20, 11] chemical molecules, and Protein-Protein Interaction (PPI)
biological networks [20, 69] for graph prediction. We compare GCL-TAGS with five GCL methods
including InfoGraph [47], GraphCL [62], MVGRL [17], AD-GCL (with fixed regularization weight)
[48] and JOAO (v2) [61]. We use a 5-layer GIN encoder for all methods, including a semi-supervised
S-GIN and a randomly initialized R-GIN. A readout function with a graph pooling layer and a 2-layer
MLP is applied to generate graph representations.

Table 2 summarizes the graph prediction performance. GCL-TAGS gives the best results on 13
out of 17 datasets, of which 10 are significantly better than others. Compared with GraphCL and
JOAO which select the best combination of augmentations for each dataset from a pool of methods
including edge perturbation, node dropping and subgraph sampling, GCL-TAGS using only edge
perturbation based augmentation still outperforms them. This suggests the effectiveness of graph
spectrum in guiding topology augmentation. Compared with MVGRL, our performance gain mainly
comes from the augmentation scheme, as these two methods share similar contrastive objectives,
and our augmentation guided by graph spectrum is clearly more effective than the widely adopted
uniformly random augmentation. While AD-GCL and GCL-TAGS follow a similar principle to
remove edges that carry non-important and redundant information, GCL-TAGS is more flexible since
the augmentation scheme is optimized in an independent pre-computation step without interfering
with the contrastive learning procedure.

5.2 Transfer Learning

This experiment evaluates the generalizability of the GNN models, which are pre-trained on some
datasets and re-purposed on different but related datasets. Table 3 reports the performance on
chemical and biological graph classification datasets from [20]. Appendix C.5 further studies an even
more challenging setting [40] where the encoder is pre-trained on social networks and transferred
to multiple out-of-domain tasks. A reference model without pre-training (No-Pre-Train-GIN) is
compared to demonstrate the gain of pre-training. GCL-TAGS is shown to be more effective in
learning generalizable encoders. This supports our augmentation principle: by perturbing edges that
cause large spectral changes, the encoder is pre-trained to ignore unreliable structural information,
such that the relationship between such information and downstream labels can be removed to
mitigate the overfitting issue. The generalizability of the GNN encoder on molecule classification
depends on the structural fingerprints such as subgraphs [7]. JOAO and GraphCL using subgraph
sampling augmentation is outperformed by GCL-TAGS, which suggests that the graph spectrum
could be another important fingerprint to study chemical and biological molecular properties.

5.3 Adversarial Attack Setting

This setting demonstrates the robustness property of the proposed augmentation when the input
graph is adversarially poisoned. The representations are learned from graphs poisoned by different
structural attack strategies, including Random (which randomly flips edges), DICE (which deletes
edges internally and connects nodes externally across classes), GF-Attack (which maximizes a low-
rank matrix approximation loss) and Mettack (which maximizes the training loss via meta-gradients).
We test the perturbation ratios σ ∈ {0.05, 0.2}: σ ×m edges are flipped for a graph with m edges.

Table 4 reports the node classification performance under adversarial attack. The encoders learned
by GCL methods with graph augmentations are generally more robust to perturbed graph structure
compared with S-GCN. GCL-TAGS outperforms baselines with a clear margin, even under the strong

Table 3: Graph classification performance in transfer learning setting on molecular classification task.
The metric is ROC-AUC%. Bold indicates that our method outperforms baselines with p-value≤ 0.05.

Dataset Pre-Train ZINC-2M PPI-306K

Fine-Tune BBBP Tox21 SIDER ClinTox BACE HIV MUV ToxCast PPI

No-Pre-Train-GIN 65.8±4.5 74.0±0.8 57.3±1.6 58.0±4.4 70.1±5.4 75.3±1.9 71.8±2.5 63.4±0.6 64.8±1.0

B
as

el
in

es

InfoGraph [47] 68.8±0.8 75.3±0.5 58.4±0.8 69.9±3.0 75.9±1.6 76.0±0.7 75.3±2.5 62.7±0.4 64.1±1.5
GraphCL [62] 69.7±0.7 73.9±0.7 60.5±0.9 76.0±2.7 75.4±1.4 78.5±1.2 69.8±2.7 62.4±0.6 67.9±0.9
MVGRL [17] 69.0±0.5 74.5±0.6 62.2±0.6 77.8±2.2 77.2±1.0 77.1±0.6 73.3±1.4 62.6±0.5 68.7±0.7
AD-GCL [48] 70.0±1.1 76.5±0.8 63.3±0.8 79.8±3.5 78.5±0.8 78.3±1.0 72.3±1.6 63.1±0.7 68.8±1.3
JOAO [61] 71.4±0.9 74.3±0.6 60.5±0.7 81.0±1.6 75.5±1.3 77.5±1.2 73.7±1.0 63.2±0.5 64.0±1.6

GCL-TAGS 70.0±0.7 78.0±0.5 64.7±0.5 80.7±2.1 79.9±0.7 77.8±0.6 73.8±0.9 64.2±0.4 70.0±0.8

8

Table 4: Node classification performance on Cora in adversarial attack setting (measured by accu-
racy%). Bold indicates that our method outperforms baselines with p-value≤ 0.05.

Attack Clean Random DICE GF-Attack Mettack

Ratio σ 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2

S-GCN 81.34±0.35 81.11±0.32 80.02±0.36 79.42±0.37 78.37±0.42 80.12±0.33 79.43±0.32 50.29±0.41 31.04±0.48

B
as

el
in

es

GRACE [67] 83.33±0.43 83.23±0.38 82.57±0.48 81.28±0.39 80.72±0.44 82.59±0.35 80.23±0.38 67.42±0.59 55.26±0.53
BGRL [49] 83.63±0.38 83.12±0.34 83.02±0.39 82.83±0.48 81.92±0.39 82.10±0.37 80.98±0.42 70.23±0.48 60.42±0.54
GBT [1] 80.24±0.42 80.53±0.39 80.20±0.35 80.32±0.32 80.20±0.34 79.89±0.41 78.25±0.49 63.26±0.69 53.89±0.55
MVGRL [17] 85.16±0.52 85.28±0.49 84.21±0.42 83.78±0.35 83.02±0.40 83.79±0.39 82.46±0.52 73.43±0.53 61.49±0.56
GCA [68] 83.67±0.44 83.33±0.46 82.49±0.37 82.20±0.32 81.82±0.45 81.83±0.36 79.89±0.47 58.25±0.68 49.25±0.62
GMI [37] 83.02±0.33 83.14±0.38 82.12±0.44 82.42±0.44 81.13±0.49 82.13±0.39 80.26±0.48 60.59±0.54 53.67±0.68
DGI [56] 82.34±0.64 82.10±0.58 81.03±0.52 80.48±0.38 79.89±0.43 81.30±0.54 79.88±0.58 71.42±0.63 63.93±0.58

GCL-TAGS 85.86±0.57 86.29±0.52 86.21±0.78 85.52±0.59 84.30±0.63 85.08±0.77 84.28±0.82 77.28±0.82 69.92±0.83

Mettack which solicits the downstream label information. This demonstrates a good property of our
proposed augmentation scheme: even though it is not explicitly designed for adversarial robustness,
it achieves an effect that the encoder can stay invariant to the adversarially perturbed graph if its
spectrum falls into the range captured by the opposite-direction augmentation scheme. Compared
with the parallel efforts in designing robust GNNs [59, 8, 66, 24], the proposed augmentation provides
a new insight using graph spectrum as a tool to study graph invariants and perturbations.

5.4 Behavior of Spectrum Guided Augmentation

To intuitively show the spatial change caused by perturbing the graph spectrum, we visualize a case
study on a random geometric graph in Figure 3 where3a draws the original graph, 3b and 3c show
the perturbation probability obtained by maximizing and minimizing LGS(∆), respectively. We
can observe that maximizing the spectral norm assigns larger probability to remove edges bridging
clusters such that the clustering effect becomes more obvious, while minimizing the spectral norm
tends to add edges connecting clusters such that the clustering effect is blurred. Intuitively, such
an augmentation perturbs these spurious edges that can easily affects the structural property (e.g.
clustering) to preserve structural invariant, and the information about these edges are disentangled
and minimized in the learned representations by contrastive learning. Such an interplay of spectral
change and spatial change is also justified theoretically in Appendix D.3.

(a) Original graph
0.0

0.1

0.2

0.3

0.4

0.5

(b) ∆1 = argmax∆LGS(∆)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(c) ∆2 = argmin∆LGS(∆)

Figure 3: A case study of the spectrum-guided augmentation scheme on a random geometric graph.

6 Conclusion

In this work, we proposed a principled topology augmentation scheme guided by graph spectrum. Our
principle is that a well-behaving GNN encoder should stay invariant to sensitive structures that cause
large changes on graph spectrum. To achieve this goal, we searched for the augmentation scheme
that would mostly change the graph spectrum of the input graph, which leads to an opposite-direction
augmentation scheme that changes the graph spectrum towards opposite directions. Based on the
augmentation scheme, we developed a practical GCL framework GCL-TAGS, which has shown
remarkable advantage in a variety of settings. Currently we only focus on topology augmentation,
and ignore its interplay with node features, which could be another important dimension in GCL.

9

References
[1] Piotr Bielak, Tomasz Kajdanowicz, and Nitesh V Chawla. Graph barlow twins: A self-

supervised representation learning framework for graphs. arXiv preprint arXiv:2106.02466,
2021.

[2] Aleksandar Bojchevski and Stephan Günnemann. Adversarial attacks on node embeddings via
graph poisoning. In International Conference on Machine Learning, pages 695–704. PMLR,
2019.

[3] Heng Chang, Yu Rong, Tingyang Xu, Yatao Bian, Shiji Zhou, Xin Wang, Junzhou Huang, and
Wenwu Zhu. Not all low-pass filters are robust in graph convolutional networks. Advances in
Neural Information Processing Systems, 34, 2021.

[4] Ashish Chiplunkar, Michael Kapralov, Sanjeev Khanna, Aida Mousavifar, and Yuval Peres. Test-
ing graph clusterability: Algorithms and lower bounds. In 2018 IEEE 59th Annual Symposium
on Foundations of Computer Science (FOCS), pages 497–508. IEEE, 2018.

[5] Fan RK Chung and Fan Chung Graham. Spectral graph theory. Number 92. American
Mathematical Soc., 1997.

[6] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. Advances in neural information processing
systems, 29:3844–3852, 2016.

[7] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning
molecular fingerprints. Advances in neural information processing systems, 28, 2015.

[8] Negin Entezari, Saba A Al-Sayouri, Amirali Darvishzadeh, and Evangelos E Papalexakis. All
you need is low (rank) defending against adversarial attacks on graphs. In Proceedings of the
13th International Conference on Web Search and Data Mining, pages 169–177, 2020.

[9] Shengyu Feng, Baoyu Jing, Yada Zhu, and Hanghang Tong. Adversarial graph contrastive
learning with information regularization. arXiv preprint arXiv:2202.06491, 2022.

[10] Chris D Godsil. On the full automorphism group of a graph. Combinatorica, 1(3):243–256,
1981.

[11] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS central science, 4(2):268–276, 2018.

[12] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in Neural
Information Processing Systems, 33:21271–21284, 2020.

[13] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 855–864, 2016.

[14] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[15] David K. Hammond, Yaniv Gur, and Chris R. Johnson. Graph diffusion distance: A difference
measure for weighted graphs based on the graph laplacian exponential kernel. In 2013 IEEE
Global Conference on Signal and Information Processing, pages 419–422, 2013.

[16] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via spectral
graph theory. Applied and Computational Harmonic Analysis, 30(2):129–150, 2011.

[17] Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning
on graphs. In International Conference on Machine Learning, pages 4116–4126. PMLR, 2020.

10

[18] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman,
Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information
estimation and maximization. arXiv preprint arXiv:1808.06670, 2018.

[19] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118–22133, 2020.

[20] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference on
Learning Representations, 2020.

[21] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, 2020.

[22] Yizhu Jiao, Yun Xiong, Jiawei Zhang, Yao Zhang, Tianqi Zhang, and Yangyong Zhu. Sub-graph
contrast for scalable self-supervised graph representation learning. In 2020 IEEE International
Conference on Data Mining (ICDM), pages 222–231. IEEE, 2020.

[23] Wei Jin, Tyler Derr, Haochen Liu, Yiqi Wang, Suhang Wang, Zitao Liu, and Jiliang Tang.
Self-supervised learning on graphs: Deep insights and new direction, 2020.

[24] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph
structure learning for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data mining, pages 66–74, 2020.

[25] Nabil Kahale. Eigenvalues and expansion of regular graphs. J. ACM, 42(5):1091–1106, sep
1995.

[26] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2017.

[27] James R Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning and
higher-order cheeger inequalities. Journal of the ACM (JACM), 61(6):1–30, 2014.

[28] Namkyeong Lee, Junseok Lee, and Chanyoung Park. Augmentation-free self-supervised
learning on graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pages 7372–7380, 2022.

[29] Michelle M. Li, Kexin Huang, and Marinka Zitnik. Representation learning for networks in
biology and medicine: Advancements, challenges, and opportunities. CoRR, abs/2104.04883,
2021.

[30] Lu Lin, Ethan Blaser, and Hongning Wang. Graph structural attack by spectral distance, 2021.

[31] Nian Liu, Xiao Wang, Deyu Bo, Chuan Shi, and Jian Pei. Revisiting graph contrastive learning
from the perspective of graph spectrum. arXiv preprint arXiv:2210.02330, 2022.

[32] Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
networks. arXiv preprint arXiv:2007.02901, 2020.

[33] Benjamin A Miller, Michelle S Beard, and Nadya T Bliss. Matched filtering for subgraph
detection in dynamic networks. In 2011 IEEE Statistical Signal Processing Workshop (SSP),
pages 509–512. IEEE, 2011.

[34] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020.

[35] Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
Advances in neural information processing systems, 14, 2001.

[36] Beresford N Parlett and David S Scott. The lanczos algorithm with selective orthogonalization.
Mathematics of computation, 33(145):217–238, 1979.

11

[37] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and
Junzhou Huang. Graph representation learning via graphical mutual information maximization.
In Proceedings of The Web Conference 2020, pages 259–270, 2020.

[38] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710, 2014.

[39] Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
bounds of mutual information. In International Conference on Machine Learning, pages
5171–5180. PMLR, 2019.

[40] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan
Wang, and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 1150–1160, 2020.

[41] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec: Learning node
representations from structural identity. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 385–394, 2017.

[42] Lynn C Rogers. Derivatives of eigenvalues and eigenvectors. AIAA journal, 8(5):943–944,
1970.

[43] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep
graph convolutional networks on node classification. In International Conference on Learning
Representations, 2020.

[44] Michael T Schaub and Santiago Segarra. Flow smoothing and denoising: Graph signal process-
ing in the edge-space. In 2018 IEEE Global Conference on Signal and Information Processing
(GlobalSIP), pages 735–739. IEEE, 2018.

[45] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[46] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

[47] Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information maximization. In
International Conference on Learning Representations, 2019.

[48] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to
improve graph contrastive learning. Advances in Neural Information Processing Systems, 34,
2021.

[49] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos, Petar
Veličković, and Michal Valko. Bootstrapped representation learning on graphs. In ICLR
2021 Workshop on Geometrical and Topological Representation Learning, 2021.

[50] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
makes for good views for contrastive learning? Advances in Neural Information Processing
Systems, 33:6827–6839, 2020.

[51] Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method.
arXiv preprint physics/0004057, 2000.

[52] Puja Trivedi, Ekdeep Singh Lubana, Mark Heimann, Danai Koutra, and Jayaraman J Thia-
garajan. Analyzing data-centric properties for contrastive learning on graphs. arXiv preprint
arXiv:2208.02810, 2022.

[53] Aaron Van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv e-prints, pages arXiv–1807, 2018.

12

[54] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations,
2018. accepted as poster.

[55] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. ICLR (Poster), 2(3):4, 2019.

[56] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep Graph Infomax. In International Conference on Learning Representations, 2019.

[57] Hoi-To Wai, Santiago Segarra, Asuman E Ozdaglar, Anna Scaglione, and Ali Jadbabaie.
Community detection from low-rank excitations of a graph filter. In 2018 IEEE international
conference on acoustics, speech and signal processing (ICASSP), pages 4044–4048. IEEE,
2018.

[58] Haonan Wang, Jieyu Zhang, Qi Zhu, and Wei Huang. Augmentation-free graph contrastive
learning. arXiv preprint arXiv:2204.04874, 2022.

[59] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adver-
sarial examples on graph data: Deep insights into attack and defense. IJCAI, 2019.

[60] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

[61] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning
automated. In International Conference on Machine Learning, pages 12121–12132. PMLR,
2021.

[62] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. Advances in Neural Information Processing
Systems, 33:5812–5823, 2020.

[63] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. When does self-supervision
help graph convolutional networks? In international conference on machine learning, pages
10871–10880. PMLR, 2020.

[64] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In International Conference on Machine Learn-
ing, pages 12310–12320. PMLR, 2021.

[65] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna.
GraphSAINT: Graph sampling based inductive learning method. In International Conference
on Learning Representations, 2020.

[66] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Robust graph convolutional networks
against adversarial attacks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 1399–1407, 2019.

[67] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep Graph
Contrastive Representation Learning. In ICML Workshop on Graph Representation Learning
and Beyond, 2020.

[68] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive
learning with adaptive augmentation. In Proceedings of the Web Conference 2021, WWW ’21,
page 2069–2080, New York, NY, USA, 2021. Association for Computing Machinery.

[69] Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):i190–i198, 2017.

13

A A Review of Graph Spectrum

Graph spectrum plays a significant role in analyzing graph property (e.g., connectivity, cluster
structure, diameter etc.) and is the foundation of spectral filters in GNNs. This motivates us to guide
our proposed topology augmentation method using graph spectrum.

Graph Spectrum and Graph Property. The graph spectrum summarizes important properties
related to a graph’s global structure, which has been studied in graph spectral theory. We list some
widely discussed properties revealed by graph spectrum to support our design: graph spectrum can
be used as a comprehensive proxy for capturing graph properties in GCL.

• Algebraic connectivity [5], also known as Fiedler eigenvalue, of a graph is the second-smallest
eigenvalue (counting multiple eigenvalues separately) of the Laplacian matrix. This eigenvalue is
greater than 0 if and only if the graph is a connected graph. A corollary is that the number of times
0 appears as an eigenvalue in the Laplacian is the number of connected components in the graph.
The magnitude of this value reflects how well connected the overall graph is.

• Diameter of a graph can be upper and lower bounded from its spectrum [5]. If the graph has r
distinct eigenvalues, its diameter d is at most r − 1. Meanwhile, if the graph has m edges and
n nodes, we can bound the diameter by the first and second smallest non-zero eigenvalues as
1/2mλ1 ≥ d ≥ 4/nλ2. For all k ≥ 2, we also have d ≤ k log n/λk.

• Clusterability of a graph reveals how easy it is to partition the graph, which can be captured by
the differences between the smallest successive eigenvalues of connected graphs. The difference
between the first two eigenvalues, often referred to as the spectral gap, upper and lower bounds the
graph expansion and conductance by the Cheeger inequality [25]. Nevertheless, analogous results
also hold for higher-order eigenvalues [27].

• Diffusion distance [15] between two nodes vi and vj can be defined as D(vi, vj) = ∥[ϕ(L)]i,: −
[ϕ(L)]j,:∥22 =

∑n
l=1 ϕ(λl)

2(ul[i]− ul[j])
2, where ϕ(L) = Uϕ(Λ)U⊤ and ϕ(x) is a decreasing

kernel function such as ϕ(x) = e−tx. Therefore, a map that separates nodes with a specific
diffusion distance is obtained when embedding graph nodes using eigenvectors.

Graph Spectrum and Spectral Filter. By viewing graph embedding models from a signal processing
perspective, the normalized Laplacian Lnorm serves as a graph shift operator and defines the frequency
domain of a graph. As a result, its eigenvectors U can be considered as the graph Fourier bases,
and the eigenvalues Λ (a.k.a., graph spectrum) correspond to the frequency components. Take one
column of node features X as an example of graph signal, which can be compactly represented as
x ∈ Rn. The graph Fourier transform of graph signal x is given by x̂ = U⊤x and the inverse graph
Fourier transform is then x = Ux̂. The graph signals in the Fourier domain are filtered by amplifying
or attenuating the frequency components Λ.

At the essence of GNNs is the spectral convolution, which can be defined as the multiplication of a
signal vector x with a spectral filter gϕ in the Fourier domain [6]:

gϕ(L) ⋆ x = g(UΛU⊤)x = Ugϕ(Λ)U⊤x (9)

The filter gϕ defines a smooth transformation function of the graph spectrum. One can apply a spectral
filter and graph Fourier transformation to manipulate graph signals in various way, such as smoothing
and denoising [44], abnormally detection [33] and clustering [57]. Here we show how the spectral
convlution is defined in two popular GNNS used in our experiments: GCN [26] and GIN [60].

The vanilla GCN [26] is a first-order approximation of Chebyshev polynomial filter [16] with
gϕ(Λ) = (2−Λ)ϕ , and the corresponding convolution for d-dimensional signal X is:

gGCN
ϕ (L) ⋆X = U(2−Λ)U⊤XΦ = (In +D−1/2AD−1/2)XΦ = D̃−1/2ÃD̃−1/2XΦ (10)

where Φ ∈ Rd×d′
is the matrix of spectral filter parameters, and a renormalization trick In +

D−1/2AD−1/2 → D̃−1/2ÃD̃−1/2 is applied by adding self-loop Ã = A+ In. GIN [60] with
equal discriminative power as WL test designs spectral convolution as:

gGIN
ϕ (L) ⋆X = U(2 + ϵ−Λ)U⊤XΦ = (In(1 + ϵ) +D−1/2AD−1/2)XΦ (11)

where ϵ can be a learnable parameter or a fixed scalar. Since the spectral filters gϕ(Λ) are the key in
graph convolutions to encode graph signals that are transformed in the Fourier domain. The output of

14

the spectral filters is then transformed back to the spatial domain to generate node representations.
Therefore, we aim to augment graphs to influence the graph spectrum and the filtered graph signals,
such that the encoder with altered spectral filters is encouraged to stay invariant to such perturbations
through GCL.

B Algorithm of GCL-TAGS

Algorithm 1 illustrates the detailed steps of GCL-TAGS. Note that only one training graph is included
(e.g., L = 1) for node representations learning, and multiple graphs are used (e.g., L ≥ 2) for graph
representation learning.

Algorithm 1: GCL-TAGS
Input :Data {Gl = (Xl,Al) ∼ G|l = 1 · · · , L}; GNN encoder fθ; Readout function gϕ.
Params :Augmentation optimization step M and learning rate η;

Contrastive learning step N and learning rate β.
Output :Trained encoder fθ∗ and readout function fϕ∗ .

1 /* Lower-level optimization for augmentation scheme in Eq. (7) */
2 for each graph l← 1 to L do
3 Initialize Bernoulli parameters for each graph: ∆(0)

l,1 ∈ [0, 1]n×n,∆
(0)
l,2 ∈ [0, 1]n×n;

4 for t← 1 to M do
5 /* Optimize one direction of scheme: max∆∈S LGS(∆) */
6 LGS(∆

(t−1)
l,1) = ∥eig(Lap(A+C ◦∆(t−1)

l,1))∥22;

7 ∆
(t)
l,1 ← PS [∆

(t−1)
l,1 + η∇LGS(∆

(t−1)
l,1)];

8 /* Optimize the other direction of scheme: min∆∈S LGS(∆) */
9 LGS(∆

(t−1)
l,2) = ∥eig(Lap(A+C ◦∆(t−1)

l,2))∥22;

10 ∆
(t)
l,2 ← PS [∆

(t−1)
l,2 − η∇LGS(∆

(t−1)
l,2)] based on Eq. (6);

11 end
12 ∆l,1 ←∆

(M)
l,1 ,∆l,2 ←∆

(M)
l,2 ;

13 end
14 /* Upper-level optimization for contrastive learning in Eq. (7) */
15 Initialize encoder and readout function: θ(0), ϕ(0);
16 for t← 1 to N do
17 Sample a batch of graphs {G1, · · · , GQ};
18 /* Sample augmented views for this graph based on Eq. (2) */
19 for l← 1 to Q do
20 Sample perturbations from Bernoulli distributions: El,1 ∼ B(∆l,1),El,2 ∼ B(∆l,2);
21 Calculate topology augmentations: Al,1 = A+C ◦El,1,Al,2 = A+C ◦El,2;
22 Randomly mask node features to obtain Xl,1,Xl,2 following [68, 1] if applicable;
23 Two graph views are generated as Gl,1 = (Xl,1,Al,1), Gl,2 = (Xl,2,Al,2)
24 end
25 /* Optimize contrastive objective minθ,ϕ LGCL */

26 Define L(Gl,1, Gl,2, θ, ϕ) =
1
n

∑n
i=1

(
I(H

(1)
i , z(2)) + I(H

(2)
i , z(1))

)
for Gl;

27 Calculate objective: LGCL(θ
(t−1), ϕ(t−1)) = − 1

Q

∑Q
l=1 L(Gl,1, Gl,2, θ

(t−1), ϕ(t−1));
28 Update the encoder: θ(t) ← θ(t−1) − β∇θLGCL(θ

(t−1), ϕ(t−1));
29 Update the readout function: ϕ(t) ← ϕ(t−1) − β∇ϕLGCL(θ

(t−1), ϕ(t−1));
30 end

Output :Encoder fθ(N) and readout function hϕ(N)

15

C Experiment Setup Details

This section includes the detailed setup for all experiments, including the procedure of conducting
pre-analysis, datasets, baselines, and hyper-parameter settings. The experiments were performed on
Nvidia GeForce RTX 2080Ti (12GB) GPU cards for most datasets, and RTX A6000 (48GB) cards for
PubMed and Coauthor-CS datasets. Optimizing memory use for large graphs will be our future work.

C.1 Pre-analysis Experiment of Figure 1

We now introduce the detailed information to reproduce Figure 1 on Cora. This experiment is to show
that uniformly random edge perturbation adopted in many GCL methods is not effective enough
to reveal essential graph properties, described by graph spectrum. Since graph spectrum is closely
related to graph properties such as clusterability (as discussed in Appendix A), in contrast to the
uniform edge perturbation, we created a node cluster based strategy as follows: We first grouped
the edges among nodes by whether the end nodes belong to the same cluster, treating nodes’ class
labels as their clusters. For inter-cluster edges, we assign a larger removing probability, while for
intra-cluster edges we assign a smaller removing probability. Note that in expectation, we remove
the same amount of edges as the uniformly random strategy, but allocate different probabilities to
these two groups of edges. We should note the purpose of this experiment is only to demonstrate the
impact of graph spectrum for GCL, and we used the class label of nodes as a proxy about the graph
spectrum (due to the relation between clusterability and graph spectrum). Our proposed solution
GCL-TAGS is fully unsupervised, i.e., it does not depend on the node labels at all.

Specifically, an edge removing ratio σ indicated by the x-axis of Figure 1 represents the augmentation
strength: for an input graph with m edges, we remove σ ·m edges to generate an augmented graph.
For the uniformly random augmentation method (Uniform), each edge is assigned an equal removing
probability as σ; for the cluster-based augmentation heuristic (Clustered), given minter inter-cluster
edges and mintra = m−minter intra-cluster edges, we increase the removing probability of each inter-
cluster edge as σinter = min{1.2σ, σ ·m/minter}, and the removing probability of each intra-cluster
edge is decreased to σintra = (σ ·m − σinter ·minter)/mintra to make sure that in expectation σ ·m
edges are removed as in the uniform strategy.

When conducting the contrastive learning procedure following GRACE [67], one augmentation
branch used the uniformly random edge removing strategy, and the other branch adopted either the
uniform or the clustered strategy. Both branches included a random feature masking with ratio 0.3.
For these two GCL methods based on different augmentation strategies, the experiment setup is
as follows: both methods used a GCN encoder with the same architecture and hyper-parameters
(e.g., 2 convolutional layers with the embedding dimension of 32). Both performed 1000 training
iterations to obtain node representations, whose quality was evaluated by using them as features for a
downstream node classification task.

We compared the clustered augmentation based GCL with the uniform augmentation based GCL from
two aspects: their performance in the downstream task and the spectral change on the augmented
graphs. The right-side of Figure 1 reports the mean and standard derivation of F1 score for 10 runs
with different random seeds, which measures the downstream task performance. Meanwhile, we
calculated the eigenvalues of the normalized Laplacian matrix of the input graph (Λ), the augmented
graphs with uniform strategy (Λ′

uniform) and the augmented graphs with clustered strategy (Λ′
clustered).

The left-side of Figure 1 reports the L2 distance of eigenvalues between the input and augmented
graphs (e.g., ∥Λ−Λ′

uniform∥2 and ∥Λ−Λ′
clustered∥2) to measure the spectral change.

C.2 Summary of Datasets

The proposed GCL-TAGS is evaluated on 25 graph datasets. Specifically, for the node classification
task, we included Cora, Citeseer, PubMed citation networks [45], Wiki-CS hyperlink network [32],
Amazon-Computer and Amazon-Photo co-purchase network [46], and Coauthor-CS network [46].
For the graph classification and regression tasks, we employed TU biochemical and social networks
[34], Open Graph Benchmark (OGB) [19] and ZINC [20, 11] chemical molecules, and Protein-
Protein Interaction (PPI) biological networks [20, 69]. We summarize the statistics of these datasets
and briefly introduce the experiment settings on them.

16

Table 5: Node classification dataset. The metric is accuracy.
Data Name #Nodes #Edges #Features #Classes Cluster Coefficient

Cora 2,708 5,278 1,433 7 0.2407
Citeseer 3,327 4,552 3,703 6 0.1415
PubMed 19,717 44,324 500 3 0.0602

Wiki-CS 11,701 215,863 300 10 0.4527
Amazon-Computers 13,752 245,861 767 10 0.3441
Amazon-Photos 7,650 119,081 745 8 0.4040
Coauthor-CS 18,333 81,894 6,805 15 0.3425

Table 6: TU Benchmark Datasets [34] for graph classifcation task in unsupervised learning setting.
The metric used for classification task is accuracy.

Data Type Name #Graphs Avg. #Nodes Avg. #Edges #Classes

Biochemical Molecules

NCI1 4,110 29.87 32.30 2
PROTEINS 1,113 39.06 72.82 2
MUTAG 188 17.93 19.79 2
DD 1,178 284.32 715.66 2

Social Networks

COLLAB 5,000 74.5 2457.78 3
REDDIT-BINARY 2,000 429.6 497.75 2
REDDIT-MULTI-5K 4,999 508.8 594.87 5
IMDB-BINARY 1,000 19.8 96.53 2
IMDB-MULTI 1,500 13.0 65.94 3

• A collection of datasets were used to evaluate node classification performance in both unsupervised
learning and adversarial attack settings, and Table 5 summarizes the statistics of these datasets.
Cora, Citeseer, PubMed citation networks [45] contain nodes representing documents and edges
denoting citation links. The task is to predict the research topic of a document given its bag-of-word
representation. Wiki-CS hyperlink network [32] consists of nodes corresponding to Computer
Science articles, with edges based on hyperlinks. The task is to predict the branch of the field
about the article using its 300-dimension pretrained GloVe word embeddings. Amazon-Computer,
Amazon-Photo co-purchase networks [46] have nodes being items and edges representing that two
items are frequently bought together. Given item reviews as bag-of-word node features, the task is
to map items to their respective item category. Coauthor-CS network [46] contains node to be
authors and edges to be co-author relationship. Given keywords of each author’s papers, the task
is to map authors to their respective field of study. All of these datasets are included in the PyG
(PyTorch Geometric) library4.

• Two sets of datasets were used to evaluate graph prediction tasks under the unsupervised learning
setting. TU Datasets [34] provides a collection of benchmark datasets, and we used several
biochemical molecules and social networks for graph classification as summarized in Table 6. The
data collection is also included in the PyG library following a 10-fold evaluation data split. We used
these datasets for evaluation of the graph classification task in unsupervised learning setting. Open
Graph Benchmark (OGB) [19] contains datasets for chemical molecular property classification
and regression tasks, which are summarized in Table 7. This data collection can be load via the
OGB platform 5, and we used its processed format available in PyG library.

• A set of biological and chemical datasets were used to evaluate graph classification task under the
transfer learning setting, summarized in Table 8. Following the transfer learning pipeline in [20],
an encoder was first pre-trained on a large biological Protein-Protein Interaction (PPI) network or
ZINC chemical molecule dataset, and then was evaluated on small datasets from the same domains.

4https://pytorch-geometric.readthedocs.io/en/latest/index.html
5https://ogb.stanford.edu/docs/graphprop/

17

Table 7: OGB chemical molecular datasets [19] for both graph classification and regression tasks
in unsupervised learning setting. The evaluation metric used for regression task is RMSE, and for
classification is ROC-AUC.

Task Type Name #Graph Avg. #Nodes Avg. #Edges #Tasks

Regression
ogbg-molesol 1,128 13.3 13.7 1
ogbg-molipo 4,200 27.0 29.5 1
ogbg-molfreesolv 642 8.7 8.4 1

Classification

ogbg-molbace 1,513 34.1 36.9 1
ogbg-molbbbp 2,039 24.1 26.0 1
ogbg-molclintox 1,477 26.2 27.9 2
ogbg-moltox21 7,831 18.6 19.3 12
ogbg-molsider 1,427 33.6 35.4 27

Table 8: Biological interaction and chemical molecular datasets [20] for graph classification task in
transfer learning setting. The evaluation metric is ROC-AUC.

Data Type Stage Name #Graph Avg. #Nodes Avg. #Degree

Protein-Protein Interaction Networks Pre-training PPI-306K 306,925 39.82 729.62

Fine-tuning PPI 88,000 49.35 890.77

Chemical Molecules

Pre-training ZINC-2M 2,000,000 26.62 57.72

Fine-tuning

BBBP 2,039 24.06 51.90
Tox21 7,831 18.57 38.58

SIDER 1,427 33.64 70.71
ClinTox 1,477 26.15 55.76

BACE 1,513 34.08 73.71
HIV 41,127 25.52 54.93

MUV 93,087 24.23 52.55
ToxCast 8,576 18.78 38.52

C.3 Summary of GCL Baselines

We compared GCL-TAGS against seven self-supervised learning baselines for node representation
learning, including GRACE [67], its extension GCA [68], BGRL [49], GBT [1], MVGRL [17],
GMI [37] and DGI [56]. Meanwhile, five baselines designed for graph representation learning
were compared, including InfoGraph [47], GraphCL [62], MVGRL [17], AD-GCL (with fixed
regularization weight) [48] and JOAO (v2) [61]. In the contrastive objective design of these methods,
different contrastive modes are adopted to compare node-level or graph-level representations. We
summarize them based on their contrastive modes as follows:

• Node v.s. node mode specifies the contrastive examples as node pairs in a local perspective, which
focuses on node-level representation learning to serve node prediction tasks. In particular, GRACE
[67] employs uniformly random edge removing to generate two views, and treats the same node
from two views as positive pairs, and all the other nodes as negatives. GCA [68] extends GRACE
[67] with an adaptive augmentation considering the node centrality. BGRL [49] adopts uniformly
random edge removing augmentation and applies a bootstrapping [12] framework to avoid collapse
without negative sampling. GBT [1] uses uniformly random edge removing as graph augmentation
and a Barlow-twins [64] objective to avoid collapse without requiring negative sampling. GMI
[37] maximizes a general form of graphical mutual information defined on both features and edges
between nodes in input graph and reconstructed output graph.

• Graph v.s. node mode takes graph and node pairs as contrastive examples to decide whether
they are from the same graph, which obtains both node- and graph-level representations. In
particular, MVGRL [17] maximizes the mutual information between the local Laplacian matrix
and a global diffusion matrix, which obtains both node-level and graph-level representations that
can serve for both node and graph prediction tasks. DGI [56] proposes to maximize the mutual
information between representations of local nodes and the entire graph, in contrast with a corrupted
graph by node shuffling. InfoGraph [47] aims to maximize the mutual information between the

18

representations of entire graphs and substructures (e.g., nodes, edges and triangles) with different
granularity, and it is evaluated on graph-level prediction tasks.

• Graph v.s. graph mode treats contrastive examples as graph pairs from a global perspective, which
mainly targets on graph-level representation learning for graph prediction tasks. Specifically,
AD-GCL [48] aims to avoid capturing redundant information during the training by optimizing
adversarial graph augmentation strategies in GCL, and designs a trainable non-i.i.d. edge-dropping
graph augmentation. JOAO [61] adopts a bi-level optimization framework to search the optimal
strategy among multiple types of augmentations such as uniform edge or node dropping, subgraph
sampling. GraphCL [62] extensively studies graph structure augmentations including random
edge removing, node dropping and subgraph sampling.

C.4 Hyper-parameter Setting

Training Configuration. We summarize the configuration of our GCL framework, including the GNN
encoder and training parameters. For node representation learning, we used GCN [26] encoder, and set
the number of GCN layers to 2, the size of hidden dimension for each layer to 512. The training epoch
is 1000. For graph representation learning, we adopted GIN [60] encoder with 5 layers, which was
concatenated by a readout function that adds node representations for pooling. The embedding size
was set to 32 for TU dataset and 300 for OBG dataset. We used 100 training epochs with batch size 32.
In all the experiments, we used the Adam optimizer with learning rate 0.001 and weight decay 10−5.
For data augmentation, we adopted both edge perturbation and feature masking, whose perturbation
ratio σe and σf were tuned by grid search among {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} based on
the validation set. Note that in our formulation Eq. (7), the augmentation strength ϵ = σe ·m where
m is the number of edges in the input graph.

Evaluation Protocol. When evaluating the quality of learned representations on downstream tasks in
an unsupervised setting, we adopted the evaluation protocol proposed in [48]. Specifically, based on
the representations given by the encoder, we trained and evaluated a Logistic classifier or a Ridge
regressor with L2 regularization, whose weight was tuned among {0.001, 0.01, 0.1, 1.0, 10.0, 100.0}
on the validation set for each dataset.

C.5 Out-of-Domain Transfer Learning

A more challenging transfer learning setting is proposed in [40], which supports model training on
multiple graphs from academic and social networks and transferring to different downstream tasks for
other datasets. We further conducted a transfer learning experiment under such setting to demonstrate
the out-of-domain transferability of our proposed solution GCL-TAGS. Specifically, we pre-train
the encoder on the Yelp dataset [65] which contains 716,847 nodes and 13,954,819 edges; and then
the encoder is fine-tuned and evaluated on the US-airport dataset [41] for node classification task
and three TU social networks [34] for graph classification task via 10-fold CV. We sample 80,000
2-hop ego-nets from the Yelp dataset for pre-training, and use node degree as the node feature for all
datasets.

Table 9 summarizes the results of downstream classification accuracy. Overall, we can observe
satisfactory performance gain using contrastive learning to pre-train the GIN encoder on Yelp dataset
under such a cross-domain setting. Meanwhile, our proposed method GCL-TAGS outperforms other
contrastive learning methods on three out of four downstream datasets.

D Model Analysis

D.1 Influence of Choosing Eigenvalues

To reduce the time complexity of eigen-decomposition when calculating the spectrum norm LGS(∆),
we can approximate the norm by only using the K lowest- and highest-eigenvalues. The time
complexity of optimizing the augmentation scheme in Eq. (5) with T iterations is O(TKn2). This
experiment shows the influence of K to the resulting GCL performance. Since the graphs encountered
in the node prediction tasks are much larger than those in graph prediction tasks, we used the node
classification datasets in Table 5 to conduct this experiment. Specifically, we test influence of K
on four large graphs representing different types of networks: PubMed citation network, Wiki-CS

19

Table 9: Node and graph classification performance under out-of-domain transfer learning setting.
The metric is accuracy%. Bold indicates that our method outperforms baselines with p-value≤ 0.05.

Dataset
Pre-Train Yelp

Fine-Tune Node Classification Graph Classification

US-Airport COLLAB RDT-B IMDB-B

No-Pre-Train-GIN 62.42±1.27 74.82±0.92 86.79±2.04 71.83±1.93
B

as
el

in
e MVGRL 63.83±0.97 74.78±0.84 86.24±1.26 73.21±1.54

AD-GCL – 75.11±0.70 88.72±1.53 74.34±1.23
JOAO – 75.35±0.93 87.65±1.72 75.15±1.67

GCL-TAGS 65.21±0.86 76.37±0.73 88.41±1.12 75.89±1.20

hyperlink network, Amazon-Computers co-purchase network and Coauthor-CS network. We tuned
K among {50, 100, 200, 500, 1000, 5000} for each of the datasets containing n ≥ 10, 000 nodes.
The other components of GCL maintained the same, except the resulting augmentation scheme using
spectrum norm with different K.

50 100 200 500 1k 5k all
K

79

80

81

Ac
cu

ra
cy

PubMed

50 100 200 500 1k 5k all
K

79

80

81

82
Wiki-CS

50 100 200 500 1k 5k all
K

88.5

89.0

89.5

90.0

90.5
Amazon-Computers

50 100 200 500 1k 5k all
K

91

92

93

94
Coauthor-CS

Figure 4: Node classification performance when choosing K lowest- and highest-eigenvalues
Figure 4 demonstrates the performance of GCL-TAGS on the node classification task when different
K was used to generate the augmentation scheme. The x-axis denotes the value of K with “all”
indicating that all the eigenvalues were used. The performance decreases marginally when we used
a smaller K, and generally when K = 1000 we can still achieve a comparable performance. This
suggests that low and high eigenvalues are already quite informative in capturing graph structural
properties. Similar phenomenon is also discussed in previous works [30]: small eigenvalues carry
smoothly varying signals (e.g., similar neighbor nodes within the same cluster), while high eigenvalues
carry sharply varying signals (e.g., dissimilar nodes from different clusters).

D.2 Gain of Spectrum Guided Augmentation on Other GCL Frameworks

In this experiment, we use an ablation study to evaluate the effectiveness of the graph spectrum
guided topology augmentation scheme when applied to different contrastive learning frameworks. We
focus on GCL for node-level representation learning, as this line of work adopts distinct contrastive
objectives (e.g., bootstrapping in BGRL, and Barlow twins in GBT) and contrastive modes (e.g., node
v.s. node in GRACE, and node v.s. graph in MVGRL), such that we can comprehensively demonstrate
the effectiveness of our proposed augmentation in covering a variety of GCL frameworks.

Specifically, we replace the original uniformly random edge removing augmentation in GRACE,
BGRL, GBT, and the diffusion matrix based augmentation in MVGRL with the proposed spectrum
based augmentation scheme, and use -TAGS as suffix to denote them. Note that MVGRL-TAGS is
basically GCL-TAGS since it uses the same contrastive objective as in MVGRL such that both node-
and graph-level representations are obtained to serve a broader range of downstream tasks.

Table 10 shows the results of plugging our augmentation scheme on four types of GCL frameworks.
We can observe that our augmentation scheme does not depend on a particular contrastive objective,
but brings a clear performance gain across different GCL frameworks. Intuitively, our augmentation
captures the essential structural properties by perturbing edges that cause large spectral change.
Therefore, no matter what contrastive objective or mode is used, maximizing the correspondence of
two views encourages the encoder to ignore the information carried by such sensitive edges. This
demonstrates the importance of studying graph spectral properties for graph augmentation.

20

Table 10: Node classification performance under unsupervised setting. We plug the spectrum based
augmentation to different GCL frameworks, highlighted with suffix -TAGS. The metric is accuracy%.
Bold highlights that the GCL framework with plugging our augmentation method outperforms its
original version with p-value≤ 0.05.

Dataset Cora Citeseer PubMed Wiki-CS Amazon-Computer Amazon-Photo Coauthor-CS

GRACE [67] 83.33±0.43 72.10±0.54 78.72±0.13 80.14±0.48 89.53±0.35 92.78±0.30 91.12±0.20
GRACE-TAGS 84.21±0.51 72.87±0.58 79.94±0.22 80.63±0.47 89.95±0.41 92.56±0.34 91.98±0.20

BGRL [49] 83.63±0.38 72.52±0.40 79.83±0.25 79.98±0.13 90.34±0.19 93.17±0.30 93.31±0.13
BGRL-TAGS 84.34±0.42 72.73±0.44 80.78±0.32 81.04±0.22 90.12±0.21 93.58±0.39 93.77±0.21

GBT [1] 80.24±0.42 69.39±0.56 78.29±0.43 77.30±0.62 88.02±0.32 92.23±0.35 92.85±0.31
GBT-TAGS 82.43±0.51 71.12±0.48 80.05±0.49 78.89±0.54 89.04±0.43 92.78±0.43 92.95±0.37

MVGRL [17] 85.16±0.52 72.14±1.35 80.13±0.84 77.52±0.08 87.52±0.11 91.74±0.07 92.11±0.12
MVGRL-TAGS 85.86±0.57 72.76±0.63 81.54±0.24 82.13±0.15 90.09±0.32 93.52±0.26 93.91±0.24

D.3 Spatial Behavior of Spectrum Guided Augmentation

We provide a theoretical justification which reveals the interplay of spectral change and spatial change.
As derived in Theorem 2 of [2], given an edge flip ∆wij = (1− 2Aij) ∈ {−1, 1} between node i
and j (e.g. if ∆wij = 1, adding edge (i, j); otherwise removing edge (i, j)), the k-th eigenvalue is
changed as λ′

k = λk +∆λk. ∆λk can be approximated by:

∆λk = ∆wij(2uki · ukj − λk(u
2
ki + u2

kj)) (12)

where uk is the k-th eigenvector corresponding to the eigenvalue λk. If we only focus on the
magnitude of eigenvalue change, we can obtain:

|∆λk| = |(uki − ukj)
2 + (λk − 1)(u2

ki + u2
kj)| (13)

Remarks. Since the eigenvectors are normalized, we can treat (u2
ki + u2

kj) as a constant as it is a
relatively stable value. Based on the theory in spectral clustering [35], if the eigenvectors of node i
and node j have a larger difference (i.e., ∥u.,i − u.,j∥2 is large), these two nodes should belong to
different clusters. The first term in Eq. (13) suggests a larger eigenvalue change, if uki and ukj have
a larger difference. Therefore, flipping the edge between nodes from different clusters (thus with a
larger (uki − ukj)

2) results in a larger spectral change. The second term suggests that such an effect
becomes more obvious for eigenvalues close to 0 or 2.

D.4 The Convergence of Optimizing the Spectrum Guided Augmentations

In this section, we show how the graph spectrum norm changes as the augmentation optimization
proceeds following Eq. (5). To better show the relative change of graph spectrum compared with
the original graph, we calculate LGS(∆) normalized by the spectrum norm of the original graph,
that is, LGS(∆)/LGS(0) = ∥eig(Lap(A+C ◦∆))∥22/∥eig(Lap(A))∥22. The value of normalized
LGS(∆)/LGS(0) is reported in Figure 5.

0 20 40
Iteration

0.90

0.95

1.00

1.05

L G
S(

)/L
G

S(
0)

Cora

max LGS()
min LGS()

0 20 40
Iteration

0.7

0.8

0.9

1.0

Amazon-Photo

max LGS()
min LGS()

0 20 40
Iteration

0.6

0.8

1.0
Wiki-CS

max LGS()
min LGS()

0 20 40
Iteration

0.6

0.8

1.0
PubMed

max LGS()
min LGS()

Figure 5: The value of relative spectral change LGS(∆)/LGS(0) when maximizing the spectrum
norm (orange) or minimizing it (blue) via Eq. (5)
Based on the graph spectral theory, the eigenvalues are bounded within [0, 2], thus the L2-norm of the
graph spectrum is also bounded by the total number of nodes, For example, the values of the original
spectrum norm LGS(0) for Cora, Amazon-Photo, Wiki-CS and PubMed are 24.88, 22.13, 31.79,
and 65.26 respectively. From Figure 5, we can observe that maximizing LGS(∆) indeed results
in an a larger spectrum norm compared with the original graph (i.e. LGS(∆)/LGS(0) > 1), while
minimizing it achieves a smaller spectrum norm (i.e. LGS(∆)/LGS(0) < 1).

21

	Introduction
	Related Works
	Preliminaries
	Graph Contrastive Learning Guided by Graph Spectrum
	Behavior of Edge Perturbation on Graph Spectrum
	Augmentation Scheme via Spectral Change Maximization
	Formulation and Framework of GCL-TAGS

	Experiments
	Unsupervised Learning
	Transfer Learning
	Adversarial Attack Setting
	Behavior of Spectrum Guided Augmentation

	Conclusion
	A Review of Graph Spectrum
	Algorithm of GCL-TAGS
	Experiment Setup Details
	Pre-analysis Experiment of Figure 1
	Summary of Datasets
	Summary of GCL Baselines
	Hyper-parameter Setting
	Out-of-Domain Transfer Learning

	Model Analysis
	Influence of Choosing Eigenvalues
	Gain of Spectrum Guided Augmentation on Other GCL Frameworks
	Spatial Behavior of Spectrum Guided Augmentation
	The Convergence of Optimizing the Spectrum Guided Augmentations

