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Abstract

Early detection of symptoms of depression can
help minimise its impact on people suffering
from depression. Social media, where users
often share emotions and life experiences, of-
fers a valuable resource for NLP-driven men-
tal health research. We posit that mining so-
cial media posts enables researchers to iden-
tify clinically significant depressive symptoms.
This paper introduces: a) the DepSy dataset,
a novel resource annotated by psychologists
for depressive symptoms, containing over 40k
posts; and b) the DepSy model, a fine-tuned
model trained to identify and extract depressive
symptoms. We conducted comparative experi-
ments between BERT-based models and large
language models (LLMs) for symptom extrac-
tion. Our results show that both BERT-based
models and LLMs demonstrated comparable
performance, with BERT achieving the highest
overall f-1 score of 0.522.

1 Introduction

Mental health issues are rising globally, with WHO
estimating that one in four people will experience a
condition in their lifetime (World Health Organiza-
tion, 2001). These conditions significantly impact
the quality of life and contribute to disability and
high suicide rates (DSMS5, 2013). Understanding
symptoms is essential for advancing mental health
research and developing effective models to sup-
port both individuals with mental health conditions
and those with similar experiences.

Most NLP research on mental health monitoring
has focused on electronic health records and diag-
nostic assessments (Kim et al., 2020; Pradier et al.,
2021; Mesbah et al., 2021; de Oliveira et al., 2021;
Ignashina et al., 2025). While these provide valu-
able insights, social media offers an alternative by
capturing large-scale, real-time expressions of emo-
tions and mental states. With billions of users shar-
ing experiences online, social media data presents

a rich resource for NLP-driven mental health re-
search. However, identifying high-quality datasets
for training models to monitor depressive symp-
toms remains a significant challenge (Gadzama
et al., 2024).

According to recent surveys (Montejo-Riez
et al., 2024; Garg, 2023), most existing studies
utilizing NLP on social media data have centred
around detecting the presence or absence of de-
pression and identifying shifts from depression to
suicidal ideation (De Choudhury et al., 2016; Gong
et al., 2019; Sawhney et al., 2020; Kour and Gupta,
2022; Baghdadi et al., 2022; Khafaga et al., 2023;
Adarsh et al., 2023). However, to date, little atten-
tion has been given to examining the occurrence of
depressive symptoms. This study aims to fill this
identified gap by enhancing early detection and in-
tervention strategies through improved datasets and
model development. Our key contributions can be
summarized as follows:

* DepSy Dataset: The first English dataset of de-
pression symptoms in textual posts of users who
self-reported being diagnosed with depression
that is fully annotated by psychologists'.

* Hier-DepSy: a BERT-based hierarchical model
architecture for depression symptom classifica-
tion from social media data.

* DepSyLlama: a fined-tuned LLM for identifying
depression symptoms

* Empirical work comparing multiple predictive
models (based on BERT, RoBERTa, Mental-
BERT, GPT, Llama 2, Llama 3, MentalLlama)
built using our dataset for the task of classify-
ing/extracting depression symptoms from posts.

'The DepSy dataset, DepSy model, and code will be made

available upon paper acceptance



2 Related Work

2.1 Datasets for Depression Monitoring on
Social Media

Several studies have developed social media
datasets for depression analysis, emphasising the
need for labelled data. Kabir et al. (2023) in-
troduced a dataset categorising tweets as "non-
depressed" or "depressed," with severity levels.
However, reliance on symptom-related keywords
may exclude relevant posts, and crowdworker anno-
tations can lack contextual depth. The PRIMATE
dataset (Gupta et al., 2022), based on PHQ-9 re-
sponses from Reddit, raises similar concerns. The
lack of expertise among crowdworkers may lead
to inaccuracies. Milintsevich et al. (2024) later
re-annotated PRIMATE, finding errors and false
positives, highlighting the need for more rigorous
annotation processes to ensure high-quality mental
health datasets. To address these limitations, our
work involves constructing a large dataset fully an-
notated by expert psychologists, with the goal of
achieving a high level of annotation agreement.

2.2 Monitoring Depression Symptoms
through Social Media

Several studies have focused on monitoring de-
pression through social media platforms such as
X (Twitter) and Reddit (Aragon et al., 2023; Shah
et al., 2020; Tavast et al., 2022; Zogan et al., 2022;
Chiong et al., 2021a,b; Wang et al., 2022). These
studies typically annotate posts using matching
terms, which can result in data loss or inaccurate la-
belling, as the context in which these terms are used
may often be sarcastic (Ezerceli and Dehkharghani,
2024; Pavlova and Berkers, 2022). This limita-
tion highlights the challenges inherent in relying
solely on keyword matching for sentiment analysis
in sensitive mental health contexts. Several studies
have adopted the PHQ-9 framework to detect de-
pressive symptoms in social media. Early work by
Mowery et al. (2016) identified three PHQ-9 symp-
toms using a two-stage classifier, laying ground-
work for symptom-level annotation. Yazdavar et al.
(2017) used a labelled LDA model on tweets from
keyword-identified users to detect nine symptoms,
but relied on non-expert annotations and showed
performance disparities across symptoms. More
recent work by Yadav et al. (2020) proposed a
BERT-based multi-task model incorporating fig-
urative language, though keyword-based data col-
lection limited generalisability. Yadav et al. (2023)

introduced RESTORE, a multimodal dataset of an-
notated memes, showing improvements with or-
thogonal constraints across modalities. To improve
cross-domain robustness, Nguyen et al. (2022)
grounded predictions in PHQ-9 descriptions, en-
hancing interpretability, though performance may
be limited for contextually subtle symptoms. In a
large-scale study, Liu et al. (2023) used Reddit data
and RoBERTa to detect 13 expert-validated symp-
toms, achieving strong results on an external bench-
mark, though subreddit-based labelling may limit
clinical validity. Other studies employed the Beck
Depression Inventory (BDI) for symptom estima-
tion, including DepressMind (Ferndndez-Iglesias
et al., 2024), which uses sentence similarity, and a
prompting-based method by Aragén et al. (2024)
that maps user posts to BDI questions via Chat-
GPT. While promising, both rely on surface-level
or model-generated inferences rather than clinical
annotation. Accurate symptom detection requires
modelling symptoms and involving domain experts
in annotation. However, few existing works offer
clinically annotated, large-scale, multi-symptom
datasets with strong modelling baselines, leaving a
gap that this study aims to address.

3 DepSy Dataset

Recognizing the critical importance of precise and
expert-driven annotations in the study of mental
health through natural language processing (NLP),
we undertook a rigorous annotation process guided
by a robust annotation scheme. We annotated
a dataset originally collected by Alhamed et al.
(2024Db) of users who self-reported being clinically
diagnosed with depression on X (formerly Twit-
ter). We annotated the posts of users in the class
"after" being diagnosed with depression. The anno-
tation process followed the annotation scheme in
(Alhamed et al., 2024a) that was designed for anno-
tating posts for depressive symptom and severity,
and where high annotation agreement was reported.

The depressive symptoms in this scheme were
synthesised from well-established and validated
depression assessment tools, including the PHQ-9
(Kroenke et al., 2001), BDI (Beck et al., 1961), and
CES-D (Radloff, 1977) questionnaires; the final
symptoms list is shown in Table 1. Experienced
psychologists meticulously annotated each post in
the dataset for the mentioned list of depression
symptoms. This annotation process has resulted in
the creation of the first and largest dataset fully an-



Depression Symptoms

Poor appetite or eating disturbances
Feeling down and depressed
Crying

Concentration problems

Feeling tired or having little energy
Feelings of failure

Sleep disturbances

Loss of interest

Self-blame and shame

Loneliness

Suicidal thoughts

Table 1: List of depression symptoms

notated by professional psychologists, comprising
over 40,000 posts annotated for depression symp-
toms. Each post is annotated to indicate whether
it contains no symptoms, one symptom, or multi-
ple symptoms, with the corresponding symptom
name(s) included in the annotation. This resource
is intended to support further research and model
development in the detection and analysis of de-
pression within NLP applications?.

3.1 Data Annotation

The annotation task was carried out by five psychol-
ogists (co-authors), each with at least three years
of specialised experience in diagnosing depression
and/or anxiety disorders. Their involvement in this
task was entirely voluntary and driven by a shared
commitment to advancing mental health research.
The annotators completed consent forms, which are
securely stored on the college’s OneDrive servers,
and were provided with information sheets and de-
tailed annotation guidelines. They were asked to
select all (if any) depressive symptoms that existed
in a post from an existing list of symptoms. We
used Labelstudio * as a labelling interface for all
experiments in this work. Within Label Studio, we
designed a custom labelling interface to meet the
specific needs of our task, as none of the available
templates offered a suitable match. To evaluate the
consistency of our annotations, we utilised Cohen’s
kappa (x), a widely recognised statistic for assess-
ing inter-rater reliability on nominal data (Cohen,
1960). Cohen’s kappa accounts for agreement oc-
curring by chance, thus offering a more rigorous
measure of concordance than simple percentage
agreement. We obtained a pairwise kappa score
of 0.67 across 10% of annotated posts. Accord-
ing to the interpretation scale proposed by Landis

’The dataset will be made available upon paper acceptance
*https://labelstud.io/

and Koch (1977), this score falls within the “sub-
stantial” agreement range. The 10% subset was
selected to ensure robust and reliable results, ex-
ceeding the smaller subsets (20-100 posts) com-
monly used in similar studies (e.g.,Chancellor et al.
(2021); Harrigian and Dredze (2022)).

4 Data Analysis

This section presents an analysis of depression
symptom prevalence within the corpus of social
media posts. By examining the frequency distribu-
tion of symptoms, we aim to identify the most com-
monly occurring depressive symptoms that users
are willing to expose online. This analysis enables
us to gain deeper insights into the dynamic nature
of depressive symptoms and potential trajectories
of the condition.

4.1 Symptoms Co-morbidity

Number of Symptoms | Number of Posts
0 (No Symptoms) 37,335
1 2,080
2 407
3 78
4 9
5 1

Table 2: Distribution of symptom co-occurrence in
DepSy dataset.

4.2 Depressive Symptoms Frequency

When we analysed the frequency distribution of de-
pressive symptoms within the users’ posts, feeling
down or depressed emerged as the most prevalent
symptom, followed by feeling tired or having little
energy, and crying. Symptoms such as self-blame
and suicidal ideation were reported to be the least
frequent. Figure 1 illustrates the frequency distri-
bution of symptoms in the posts.

We further analysed the distribution of depres-
sive symptoms in the dataset to understand their
prevalence and co-occurrence. As shown in Table 2,
the dataset is highly imbalanced, with the majority
of posts (37,335) containing no symptoms and only
2,575 posts labelled with one or more symptoms.
Most of the symptom-labelled posts contain a sin-
gle symptom, while posts with multiple symptoms
are increasingly rare. This imbalance is expected
to pose a challenge for model training.

Figure 2 shows the co-morbidity matrix of de-
pressive symptoms, capturing how often symptom
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Figure 1: depressive symptom frequency in posts

pairs co-occur. Diagonal values reflect individ-
ual symptom frequency, while off-diagonal values
indicate joint occurrences. “Feeling Down and
Depressed” is the most frequent symptom and co-
occurs frequently with others such as “Feeling Fail-
ure” and “Feeling tired or having little energy,” sug-
gesting a core cluster. In contrast, symptoms like
“Self Blame” and “Suicidal Thoughts” appear less
often and with weaker co-morbidity. These patterns
highlight inter-symptom dependencies relevant for
symptom-level classification.

5 Task Definition

Given a user-generated post F;, the objective is to
predict a binary label for each depressive symp-
tom from the predefined set of 11 symptoms. The
task is multi-label multi-class classification and is
formulated as:

Yi = f(P30),

Yi={yi1,%2 - %1}, ¥i;€{0,1}
Where, P; represents an individual user-generated
post, and f(-) denotes the classification model pa-
rameterized by . The output Y; corresponds to the
predicted set of binary labels for the 11 depressive

symptoms. Each element y; ; in Y; indicates the
binary label for symptom j in post F;.

ey

6 Hier-DepSy: A Hierarchical Model for
Classifying Unbalanced Data

We introduce Heir-DepSy, a hierarchical model ar-
chitecture for automated depression symptom clas-

sification from social media data. When examined
more thoroughly, the task of symptom classification
can be naturally divided into two sequential com-
ponents. The first component involves determining
whether a post expresses any depressive symptom.
The second, conditional on the first, involves iden-
tifying which specific symptoms are present. Heir-
DepSy explicitly models this structure using two
successive classification stages describe in Section
6.2. In addition to aligning with the task’s inherent
structure, this approach also addresses the signifi-
cant class imbalance in the dataset—where a large
proportion of posts are non-symptomatic and sev-
eral symptoms are underrepresented.

6.1 Model Selection and Training

Multiple pre-trained transformer models, including
BERT, RoBERTa, and Mental BERT, were evalu-
ated independently for each classification stage.
For each task, models were trained and evaluated
separately, and the best-performing model for each
stage was selected to construct the final Heir-DepSy
architecture. The models performance on each
stage can be found in Table 3

Based on the results, BERT was selected for
the binary classification task and RoOBERTa was
selected for multi-label classification, as they
achieved the best micro-averaged F1-score and han-
dled symptoms more effectively.



Symptom Co-morbidity Matrix

Concentration Problems - 123 0 1 1 9 0 0 3 0 3 0

Crying- 0 301 73 4 12 20 0 7 1 7 5
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Figure 2: depressive symptom frequency in posts

Model Accuracy | Precision | Recall | F-1

BERT 0.83 0.80 0.80 | 0.80

Binary Classification RoBERTa 0.83 0.79 0.80 | 0.79
MentalBERT 0.82 0.78 0.77 1 0.78

Multi-Label BERT 0.47 0.71 0.59 | 0.64
Symptom RoBERTa 0.49 0.67 0.65 | 0.66
Classification Mental BERT 0.47 0.70 0.59 | 0.64

Table 3: Results for models on classifying depressive symptoms, preparing for Hier-DepSy model. Precision, recall,
and F1 are micro-average scores.

6.2 Hier-DepSy Model Architecture

Hier-DepSy is implemented as a two-stage hierar-
chical classification model composed of two inde-
pendently trained transformer-based classifiers. As

Algorithm 1: Heir-DepSy Model Architec-
ture

we mentioned earlier, the first stage detects whether
a post expresses any depressive symptom (binary
classification), and the second stage, triggered only
for positive cases, identifies the specific symptoms
present (multi-label classification).

7 DepSyLlama Model

7.1 DepSy Instruction Dataset

The DepSy Instruction dataset is constructed us-
ing all posts from the raw dataset introduced in
Section 3, along with the selected prompts. The
symptoms listed in the "symptoms" columns are
directly utilized as responses to the corresponding
questions. To create the training portion of the
DepSy Instruction dataset, we merge the prompt,
post, and response into a single text. For optimal
model selection, a test set of 10% of the DepSy
dataset developed employing the same methodol-

Input: Input post x
Output: Predicted symptom vector
:’gsymplom S {07 1}11

// Stage 1: Binary Classification
Tk < BERT_Tokenizer(x, max_len=512);
[CLSTpert < BERT_Encoder(zk);
Zbinary <— LinearLayer_Binary([C'LS]en);
b < arg max(zpinary) // Binary prediction
if b = 0 then

‘ Z}symplom <~ [Oa 07 ceey O] B
else

// No symptoms

// Stage 2: Multi-label Classification

Tk <— ROBERTa_Tokenizer(z, max_len=512);

[CLS]oberta < RoBERTa_Encoder(ziok);

Zmulti <
LinearLayer_MultilLabel([C'LS]oberta);

D < o (Zmutsi) // Apply sigmoid
Jsymptom[¢] <— 1if p[i] > 0.5else 0, Vi €
{1,...,n}
return g
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Figure 3: Architecture of the Hier-DepSy model for depression symptoms classification. The model operates in two

independent stages without joint training.

ogy was used to test the model.

7.2 DepSyLlama Model Training

We fine-tune the LLaMA models on the DepSy
Instruction dataset to develop our DepSyLlaMA
model. Specifically, we constructed 2 versions of
DepSy by training LLaMA2-7B and Llama3-8B
on the DepSy training set for 16 epochs, selecting
the optimal model based on performance on the
DepSy validation set. The training process employs
a batch size of 8 and is optimized using
the AdamW optimizer, with a maximum learning
rate of 1e-5. The maximum input length for the
model is set to 4096 tokens. To expedite the
training process, we utilize QLoRA, configuring
the LoRA rank to 8 andthe alpha parameter
to 16. All models are trained on Nvidia Tesla
A100 GPUs, each with 40GB of memory. * For
model inference we used Depsy with the settings
(temperature = 0.2, max_new_tokens = 30)

8 Experiments and Results

We evaluate a range of models for our classification
tasks, including BERT, RoBERTa, Mental BERT,
and large language models (LLMs). Full model
details are provided in the appendix. We explore
the use of LLMs in zero-shot, zero-shot with labels,

and few-shot settings using various prompt formats.

*The model will be made publicly available on Hugging
Face upon paper acceptance

The specific prompts used in our experiments are
detailed in Appendix A, Table 6.

8.1 Evaluation Metrics

For BERT-based models, we used 5-fold cross-
validation to evaluate performance based on ac-
curacy, micro-averaged precision, recall, and F1
scores. Our implementation utilizes Scikit-learn
(Pedregosa et al., 2011). To evaluate the perfor-
mance of large language models (LLMs), we as-
sessed the presence of each symptom label within
the generated responses by identifying the corre-
sponding text spans. For the "no symptoms" label,
we verified the presence of the phrase "does not
contain symptoms" as this was introduced in the
prompt when no symptoms were indicated in the
post. After this step, we got 11 predicted columns
(11 symptoms) and 11 true labels. For evalu-
ating the model’s output, we used Scikit-learn’s
multilabel confusion matrix and extracted micro-
averaged precision, recall, F1-score, and accuracy.
Additionally, we performed 1,000 bootstrap resam-
ples to compute 95% confidence intervals (CI) for
these metrics. DepSyLlama was evaluated using
3-fold cross-validation. >

8.2 Results

Table 4 presents the performance comparison of
various models on the task, evaluating accuracy,

The code will be made available upon paper acceptance



Model Accuracy | Precision | Recall F-1 CI95% F-1
BERT 0.711 0.569 0.482 | 0.522 | [0.514, 0.529]
RoBERTa 0.686 0.505 0.501 | 0.501 | [0.488,0.512]
MentalBERT 0.701 0.546 0.483 | 0.512 | [0.500, 0.524]
Hier-DepSy 0.845 0.668 0.679 | 0.673 | [0.614,0.702]
GPT-40 0.527 0.714 0.033 | 0.064 | [0.038,0.091]
GPT-3.5 0.527 0.704 0.032 | 0.061 | [0.037,0.086]
Zero shot | MentalLlama_7b 0.526 0.418 0.068 | 0.118 | [0.086, 0.149]
DepSy Llama2 0.526 0.419 0.66 | 0.486 [ [0.47,0.502]
DepSy Llama3 0.313 0.370 0.494 | 0.423 | [0.411,0.435]
GPT-40 0.564 0.634 0.185 | 0.287 | [0.245, 0.325]
GPT-3.5 0.53 0.342 0.432 | 0.382 | [0.352,0.411]
Zero shot Llama2 0.479 0.116 0.099 | 0.107 | [0.082,0.132]
Llama3 0.521 0.305 0.066 | 0.108 | [0.079, 0.141]
with labels MentalLama 0.446 0.099 0.15 0.12 | [0.099, 0.142]
Depsy Llama 2 0.196 0.14 0.62 | 0.226 | [0.208, 0.244]
Depsy Llama 3 0.425 0.138 0.543 | 0.198 | [0.177,0.218]
GPT-40 0.612 0.527 0.492 | 0.509 | [0.475,0.543]
GPT-3.5 0.476 0.309 0.574 | 0.402 | [0.375, 0.429]
Llama2 0.397 0.119 0.135 | 0.126 | [0.103,0.15]
Few shots Llama3 0.422 0.13 0.197 | 0.157 | [0.132,0.181]
MentalLLama 0.168 0.121 0.457 | 0.191 | [0.173,0.21]
DepSy Llama2 0.360 0.259 0.379 | 0.308 | [0.29,0.325]
DepSy Llama3 0.168 0.121 0.457 | 0.191 | [0.173,0.21]

Table 4: Results for models on classifying depressive symptoms using DepSy dataset. Precision, recall, and F1 are

micro—average SCOres.

Symptom BERT RoBERTa MentalBERT Hier-DepSy

P R F1 P R Fl1 P R Fl1 P R F1
Feeling Down and Depressed 0.57 | 0.54 | 0.55 || 0.53 | 0.60 | 0.56 || 0.55 | 0.53 | 0.54 || 0.64 | 0.76 | 0.70
Feeling tired or having little energy | 0.49 | 0.46 | 0.47 || 0.64 | 0.50 | 0.56 || 0.56 | 0.43 | 0.48 || 0.60 | 0.60 | 0.60
Crying 0.67 | 0.75 | 0.71 || 0.62 | 0.72 | 0.67 || 0.64 | 0.89 | 0.74 || 0.74 | 0.91 | 0.82
Lonliness 0.61 | 0.23 | 0.33 || 0.66 | 0.37 | 0.47 || 0.46 | 0.27 | 0.34 || 0.65 | 0.71 | 0.68
Sleep Disturbance 0.69 | 0.72 | 0.71 || 0.67 | 0.72 | 0.70 || 0.67 | 0.70 | 0.68 || 0.78 | 0.90 | 0.84
Feeling Failure 0.29 | 0.11 | 0.16 || 0.18 | 0.20 | 0.19 || 0.38 | 0.13 | 0.20 || 0.48 | 0.52 | 0.50
Loss of Interest 0.27 | 0.23 | 0.25 || 0.14 | 0.16 | 0.15 || 0.17 | 0.16 | 0.17 || 0.36 | 0.33 | 0.35
Concentration Problems 0.32 ] 0.26 | 0.29 || 0.15 | 0.13 | 0.14 || 0.28 | 0.22 | 0.24 || 0.50 | 0.55 | 0.52
Poor Appetite / Eating Disturbance | 0.56 | 0.65 | 0.60 || 0.46 | 0.52 | 0.49 || 0.58 | 0.61 | 0.60 || 0.70 | 0.78 | 0.74
Suicidal Thoughts 1 0.33 | 0.50 1 10501 0.67 | 062|042 | 0.50 || 0.62 | 0.80 | 0.70

Self Blame 0 0 0 0 0 0 0 0 0 0 0 0

Table 5: Per-symptom precision, recall, and F1-score across four models. Symptoms are sorted by their frequency

in the dataset.

precision, recall, and Fl-score with 95% confi-
dence intervals. Among all models, our Hier-Depsy
model achieved the highest F1-score (0.673) and
accuracy (0.845), outperforming BERT, RoBERTa,
and MentalBERT and LLMs. In the LLMs zero-
shot setting, GPT-40 showed the highest precision
(0.714), but with extremely low recall (0.033), re-
sulting in a low F1-score (0.064). When provided
with labels, GPT-40’s performance improved sub-
stantially, achieving an F1-score of 0.385, suggest-
ing the benefit of added contextual guidance for
general-purpose LLMs. Among few-shot mod-
els, GPT-40 again outperformed others with an
F1-score of 0.475 and the highest accuracy (0.612),
approaching the performance of fine-tuned models.

Overall, LLaMA models showed limited effec-
tiveness across all settings, as reflected by low
precision, recall, and Fl-scores. This trend sup-
ports prior findings (Ignashina et al., 2025), indicat-
ing their difficulty in recognising nuanced mental
health symptoms. Given the importance of recall in
depression screening—where missing symptoms
can have serious implications—models with higher
recall are more appropriate for this task (Ren et al.,
2015). Depsy Llama models consistently demon-
strated strong recall across settings. In the zero-
shot setting, Depsy Llama 2 achieved the highest
recall (0.66), while in the few-shot setting, Depsy
Llama 3 reached a recall of 0.494. Although these
models had low precision, their ability to detect a



wider range of depressive symptoms makes them
useful for early-stage mental health assessment.

Table 5 reports per-symptom precision, recall,
and Fl-scores across four models, with symp-
toms sorted by frequency. Notably, higher fre-
quency does not always correspond to better per-
formance. Symptoms like Crying and Sleep Distur-
bance achieved the highest F1-scores (up to 0.82
and 0.84 with Hier-DepSy), likely due to their more
explicit linguistic expression. In contrast, abstract
symptoms such as Loss of Interest or Feeling Down
and Depressed showed lower performance, despite
being more frequent. Rare symptoms like Self-
Blame remained difficult to detect across all models.
Hier-DepSy consistently outperformed baselines,
particularly on less frequent symptoms, highlight-
ing its effectiveness in handling imbalanced and
subtle symptom classes.

9 Discussion

The Hier-DepSy model outperformed all other
approaches in our symptom classification task,
demonstrating the value of a hierarchical structure
for handling task complexity and class imbalance.
By decoupling binary detection from multi-label
classification, the model was better able to cap-
ture symptom-specific patterns. Similar layered
strategies have proven effective in related domains,
reinforcing the broader applicability of hierarchical
approaches in psychological NLP tasks.

Large language models (LLMs), in contrast,
underperformed compared to fine-tuned BERT-
based models. This aligns with previous findings
in health-related NLP and may be partly due to
embedded safety alignment, which can lead to
conservative outputs when handling sensitive con-
tent. While we did not observe explicit refusals or
safety prompts, implicit alignment may still have
influenced prediction behaviour. However, per-
symptom confusion matrix analysis (Appendix C)
did not reveal systematic avoidance of sensitive
symptoms such as suicidal ideation.

DepSyLLaMA, fine-tuned on our dataset using
QLoRA, did not outperform general LLMs. This
may be due to limitations in parameter-efficient
fine-tuning, which updates only a subset of pa-
rameters, reducing the model’s ability to adapt
fully to the task. Additionally, the limited size of
posts with symptoms and class imbalance likely af-
fected generalisation. Interestingly, DepSyLLaMA
performed best in the pure zero-shot setting, sug-

gesting that fine-tuning may reduce reliance on
in-context prompts and thus reduce the size of in-
ference.

Finally, domain-specific models like Mental-
LLaMA and MentalBERT did not outperform
general-purpose models. This suggests that pre-
training on mental health data alone is insufficient
for accurate symptom classification. These models
may have been tuned for empathetic dialogue rather
than multi-label detection. Our findings underscore
the need for task-specific fine-tuning strategies that
directly optimise for distinguishing nuanced symp-
tom categories, beyond domain relevance alone.

To further investigate model limitations, we con-
ducted detailed error analysis across symptoms and
models. Table 5 shows that symptoms such as
Crying, Sleep Disturbance, and Feeling Down and
Depressed achieved consistently high F1-scores,
likely due to their prevalence and clearer linguistic
cues. In contrast, low-frequency symptoms like
Loss of Interest and Self Blame were rarely de-
tected, with some models failing to predict them at
all. This highlights the effect of data imbalance and
the need for symptom-specific learning strategies.
Confusion matrix analysis of LLMs (Appendix C)
showed no strong evidence of safety-driven sup-
pression of sensitive symptoms, though underpre-
diction was observed for abstract or less explicitly
stated symptoms such as Loneliness and Feeling
Failure. These findings reinforce the strengths of
hierarchical models in managing imbalance and the
limitations of LLMs in capturing subtle symptom
expressions without direct optimisation.

10 Conclusions

This paper addressed the task of detecting de-
pressive symptoms in social media posts as a
multi-label classification problem. We evaluated
transformer-based models, large language models
(LLMs), and a hierarchical architecture. The pro-
posed Hier-DepSy model improved detection of
low-frequency symptoms by mitigating class im-
balance through a two-stage structure. We also in-
troduced DepSyLLaMA, a domain-adapted LLM,
which outperformed general-purpose open-source
LLMs in zero-shot settings and showed competi-
tive results compared to proprietary models. De-
spite these advances, symptom detection remains a
challenging task, with the best model achieving an
F1-score of 0.673, highlighting the need for further
research in this area.



11 Limitations

Despite the novel contributions of this study, sev-
eral limitations should be acknowledged. First,
while our model was developed using the DepSy
dataset, which is substantial in size (over 40,000
entries) compared to existing datasets and believed
to be robust, we aimed to further evaluate its gener-
alizability by testing it on additional datasets. How-
ever, our request for access to the SAD depressive
symptoms dataset (Mowery et al., 2017), which
would have enabled broader validation, did not re-
ceive a response from its owners. This limited our
ability to assess the model’s generalizability across
diverse data sources. Secondly, while the DepSy
dataset is carefully annotated by expert psycholo-
gists, it relies on publicly available social media
posts, which may not fully capture the diversity of
individuals experiencing depression. Social media
content often reflects self-presentation biases, po-
tentially affecting symptom reporting and model
generalizability.

Ethical Consideration

This study has received ethics approval from
XXXXXX 6 (Reference: 211C7222). The dataset
contains only publicly available posts from X, and
we are committed to following ethical practices to
protect the privacy and anonymity of the users. To
ensure this, the author’s usernames, which could
contain sensitive information related to the names
or locations of the user, are not saved or used.
Instead, the information was pre-processed and
replaced with user IDs. Social media data is of-
ten sensitive, particularly when it is related to
mental health, and we take great care to ensure
that our dataset is handled responsibly. Since the
dataset is related to mental disorders, it might trig-
ger some people, thus, annotators were advised
to take breaks during annotation and were given
plenty of time.
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Identify depression symptoms in this post

Can you extract depression symptoms from this text

Zero-shot

Extract depression symptoms from this text, return a list of symptoms

if none existed

Extract depression symptoms from this text, return a list of symptoms, return "no symptoms”

Extract depression symptoms from the post below, if there is no depression symptom, return
""this post does not contain depression symptoms''

Zero-shot
with labels

Extract depression symptoms from the post below , the symptoms could be one or more from this list
[poor appetite or eating disturbances, feeling down and depressed, crying, concentration problems,
feeling tired or having little energy, feelings of failure, sleep disturbances, loss of interest,

self-blame and shame, loneliness, suicidal thoughts] if there is no depression symptoms,

return "this post does not contain depression symptoms."

Extract depression symptoms from the post below , the symptoms could be one or more from

this list only [poor appetite or eating disturbances, feeling down and depressed, crying,

concentration problems, feeling tired or having little energy, feelings of failure, sleep disturbances,

loss of interest, self-blame and shame, loneliness, suicidal thoughts] if there is no depression symptoms,
return only ''this post does not contain depression symptoms.”

Few shots

Extract depression symptoms from the post below, the symptoms could be one or more from this

list only [poor appetite or eating disturbances, feeling down and depressed, crying,

concentration problems, feeling tired or having little energy, feelings of failure, sleep disturbances,
loss of interest, self-blame and shame, loneliness, suicidal thoughts] if there is no depression symptoms,
return only "'this post does not contain depression symptoms.' Examples: - post: "I Received

an unexpected surprise it’s been an emotional afternoon. I’m feeling sentimental about someone.
This season has been challenging, but this moment has lifted my spirits.

I’m feeling nostalgic' symptoms: feeling down and depressed - post: "others have commented on my
appearance, saying I seem more toned, and that makes me thrilled. Personally, I don’t

notice the difference, but it’s obvious that my new eating habits are paying off."" Symptoms: this post
does not contain depression symptoms - post: ''i’ve noticed a discrepancy between my online
presence and the response I get when I share my thoughts on a critical issue. It seems that

despite having a large following, my words often fall on deaf ears' symptoms:

feeling failure, loneliness POST: {post} symtoms:

Table 6: Prompts used for LLMs in extracting depression symptoms from a post. The chosen prompts are bold-faced

B Models Hyper-parameters for
Extracting Depressive Symptoms

We performed hyperparameter tuning for BERT-
based models to optimize performance. The best
results, obtained after extensive experimentation,
are presented below.

BERT
Model_card:
Epochs: 64
Batch_size: 8
Learning_rate:5e-5
Hidden_size:128
Optimizer:Adam

Loss: BCEWithLogitslLoss

"bert-base-uncased”

RoBERTa

Model_card: "roberta-base”
Epochs: 128

Batch_size: 32

Learning_rate:1e-05
Hidden_size:128
Optimizer:Adam

Loss: BCEWithLogitsLoss

MentalBERT

Model_card: "mental-bert-base-uncased”
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Epochs: 64

Batch_size: 32
Learning_rate:1e-05
Hidden_size:128
Optimizer:Adam

Loss: BCEWithLogitsLoss

GPT. We used the GPT-3.5 “gpt-3.5-turbo" and
GPT-4 “gpt-4-turbo” versions, as these have shown
a strong ability to understand human-like emotional
context (Tavast et al., 2022), and in sentiment analy-
sis (Kheiri and Karimi, 2023). We used the Official
OpenAl Python library’ to collect responses with
the settings (temperature = @.2, max tokens
= 30).

Llama 2. The Hugging Face library is used for
Mental BERT tokenization and fine-tuning, namely
the ‘meta-1lama/Llama-2-7b-hf’ model card.

Llama 3. The Hugging Face library is used for
MentalBERT tokenization and fine-tuning, namely
the meta-1lama/Meta-Llama-3-8B’ model card.

MentalLama. MentalLLama is a specialized
large language model built on Llama designed

"https://platform.openai.com/docs/libraries/python-
library
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Figure 4: Confusion matrices for GPT-4o0 in the few-shot setting for symptom-level classification.

to excel in the domain of mental health (Yang
et al., 2024). MentalLLama incorporates domain-
specific training data and techniques to en-
hance its ability to understand, process, inter-
pret, and generate text related to mental health.
‘klyang/MentalLaMA-chat-7B’

C Appendix: Per-Symptom Confusion
Matrices for LLMs
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Figure 5: Confusion matrices for GPT-3.5 in the few-shot setting for symptom-level classification.
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Figure 6: Confusion matrices for GPT-3.5 in the zero-shot with labels setting.
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Figure 8: Confusion matrices for GPT-40 in the pure zero-shot setting (no labels or examples provided).
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Figure 12: Confusion matrices for MentalLLaMA-7B
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Figure 13: Confusion matrices for Llama2-7B in the zero-shot with labels setting.
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Figure 14: Confusion matrices for LLaMA-7B in the few-shot setting.
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Confusion matrices for LLaMA3-8B in the zero-shot with labels setting.
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Figure 16: Confusion matrices for LLaMA3-8B in the few-shot setting.
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