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ABSTRACT

In dynamical system modeling, traditional numerical methods have a solid theoreti-
cal foundation but are limited by high computational costs and sensitivity to initial
conditions. Current data-driven approaches use deep learning models to capture
complex spatiotemporal features, but they rely heavily on large amounts of data
and assume a stable data distribution, making them ineffective against data scarcity
and distribution shifts. To address these challenges, we propose SPARK, a physics-
guided quantized augmentation plugin. SPARK integrates boundary information
and physical parameters, using a reconstruction autoencoder to build a physics-rich
discrete memory bank for data compression. It then enhances selected samples for
downstream tasks with this pre-trained memory bank. SPARK then utilizes an at-
tention mechanism to model historical observations and combines fourier-enhanced
graph ODE to efficiently predict long-term dynamical systems, enhancing robust-
ness and adaptability to complex physical environments. Extensive experiments
on benchmark datasets show that our approach significantly outperforms various
baseline methods in handling distribution shifts and data scarcity.

1 INTRODUCTION

Modeling dynamical systems has long been a critical challenge across numerous scientific fields,
including fluid dynamics (Li et al., 2023; Janny et al., 2023; Zhao et al., 2023), molecular dynam-
ics (Brown & Yamada, 2013; Yang et al., 2022), and atmospheric science (Pathak et al., 2022; Bi
et al., 2023), et al. Conventional numerical methods (Odibat & Baleanu, 2020), often rooted in
rigorous partial differential equations (PDEs) (Long et al., 2018; Takamoto et al., 2022) and physical
theory formula (Lippe et al., 2023), offer a robust foundation for modeling the dynamical evolution
of complex systems. However, these methods are notoriously limited by their computational cost and
sensitivity to different initial conditions and physical parameters.

Recently, numerous data-driven methods leveraging various neural network architectures have
been proposed to solve this problem. They are committed to design delicate spatial and temporal
components (Lippe et al., 2023; Raonic et al., 2024) to capture high-dimensional non-linear dynamical
patterns and latent data distribution. This paper focuses exclusively on scenarios with fixed data
observation points. Mainstream approaches select different model architectures based on whether the
data is arranged in a regular pattern. Specifically, for irregular grids or complex geometric boundaries,
graph neural networks (Kipf & Welling, 2017) are employed to capture intricate interactions between
nodes and even along the boundaries (Wang et al., 2024a).

Despite their promising performance, the majority of these data-driven approaches considerably rely
on a substantial volume of data and the assumption of distribution invariance (Wang et al., 2021;
Yang et al., 2022). Formally, this dynamical system modeling task is still highly challenging in: (i)
Lack of Physical Guidance. Some existing methods simply attach an external parameter embedding
module (Lakshmikantham, 2019; Gao et al., 2021) to the neural networks. However, such methods
struggle to capture higher-order correlations between physical parameters and data itself, and are
difficult to generalize to unseen parameter configurations (Rame et al., 2022; Wu et al., 2024b). (ii)
Data Sparsity. Data acquisition is limited due to the high computational cost of traditional numerical
simulations (Schober et al., 2019) or the practical constraints on sensor usage in several real-world
scenarios. (iii) Out-of-distribution Generalization.Within the dynamical systems, there usually exist
two types of distribution shifts, namely environmental distribution shift (Li et al., 2022; Song et al.,
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2023) and temporal distribution shift (Wang et al., 2022; Lu et al., 2024). The former is determined
by predefined environmental attributes such as boundary conditions and physical parameters within
the dynamical fields, while the latter arises from potential shifts within the data distribution over
long-term temporal evolution.

CNO

U-Net

FNO

VIT

NMO

Backbone+SPARK
Backbone

SSIM

Figure 1: Performance
comparison with or without
SPARK on ERA5 dataset.

To address these challenges, we propose a universal augmentation
plugin, named SPARK, designed to efficiently encode rich physical
priors alongside the given observations, enabling compressed rep-
resentations and facilitating sample augmentation through physics-
guided transformations. To begin, we extract latent representations
of observed samples, where boundary information and physical pa-
rameters are fused through customized positional encodings and cus-
tomized channel attention mechanisms. Further, to achieve efficient
compression, we utilize a graph neural network framework com-
bined with latent space quantization techniques (Van Den Oord et al.,
2017), constructing a low-cost discretized memory bank infused
with physical priors. Subsequently, we perform sample selection
and query the pre-trained discretized memory bank for data augmen-
tation, thus mitigating the impact of environmental distribution shift
to some extent. Finally, to address temporal distribution shifts, we
encode historical observations into an initial state through attention mechanism, and then implement a
fourier-enhanced graph ODE for effectively long-term prediction. As shown in Figure 1, augmenting
data through our SPARK can consistently improve the performance of baseline models.

In summary, our paper makes the following contributions: (1) Novel Perspective. We are the first
to propose a physics-guided compression and augmentation plugin, which highly enhances the
generalization capability to diverse physical scenarios. (2) Modern Architecture. In downstream task,
we encode historical observations into a latent space based on attention mechanism and introduce a
fourier-enhanced graph ODE to overcome temporal distribution shifts and realize efficient long-term
predictions. (3) Verification. We demonstrate the generalization and robustness of SPARK under data
scarcity and distribution shifts through both experimental evaluations and theoretical analysis.

2 RELATED WORK

Dynamical System Modeling. Deep neural networks have recently emerged as powerful tools for
tackling the challenges associated with dynamics forecasting (Gao et al., 2022; Yin et al., 2022),
showcasing their capabilities to efficiently model intricate, high-dimensional systems. To handle
complex spatiotemporal dependencies, various advanced models based on convolutional neural
networks (CNN) (Ren et al., 2022; Raonic et al., 2024), recurrent neural networks (RNN) (Mohajerin
& Waslander, 2019; Maulik et al., 2021), Transformer (Wu et al., 2023a; Chen et al., 2024), or
exquisite hybrid architectures (Shi et al., 2015; Wu et al., 2023b) have been proposed. Recently,
Neural Operators (Li et al., 2021; Rahman et al., 2022; Tran et al., 2023) become a popular data-driven
approach by learning to approximate the past-future infinite-dimensional function space mappings.
Additionally, Physics-Informed Neural Networks (PINN) (Raissi et al., 2019; Wang et al., 2020)
integrate prior physical knowledge as additional regularizers into the training process for physical
constraints, particularly in systems governed by partial differential equations. Moreover, most of
these approaches are limited to structured grids and lack the ability to handle irregular grids or varying
connectivity. Thus researchers have turned to graph neural networks (Fan et al., 2019) as a promising
alternative to accommodate a broader range of scenarios. GNNs inherit key physical properties from
geometric deep learning, including permutation invariance and spatial equivariance (Li et al., 2020;
Wu et al., 2022), which offer distinct advantages for modeling dynamical systems.

Out-of-distribution Generalization. Out-of-distribution (OOD) generalization (Liu et al., 2021a;
Hendrycks et al., 2021; Deng et al., 2023) has emerged as a critical challenge in machine learning,
especially for models that encounter distribution shifts between training and testing data. Signifi-
cant advancements have been made in OOD generalization techniques, containing invariant causal
inference (Gui et al., 2023; Luo et al., 2024), data augmentation (Wang et al., 2024b), and domain
adaptation (Kundu et al., 2020; Garg et al., 2022), et al. Most existing work focuses on static scenar-
ios (Li et al., 2022; Gui et al., 2023), with limited research on dynamical systems. These dynamic
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Figure 2: Model overview – The proposed framework consists of four steps: (1) Physical prior
incorporation, where boundary and physical parameters are encoded into the input observations; (2)
Dynamical discretization modeling through reconstruction to create a discrete physics-rich memory
bank; (3) Memory bank promoted augmenting on sampled training data; and (4) Fourier-enhanced
graph ODE for dynamical system prediction based on historical observations.

systems exhibit more complicated distribution patterns corresponding to varying system properties
or spatiotemporal environments, which is the primary focus of our study. In this work, we propose
SPARK, which compresses rich physical information into a discrete memory bank for generalization,
and design a fourier-enhanced graph ODE to relieve temporal distribution shifts.

3 METHODOLOGY

Problem Definition. Given a dynamical system governed by physical laws such as PDEs, we
aim to enhance prediction using autoencoder reconstruction and discrete quantization. We have
N observation points in the domain Ω, located at s = {s1, · · · , sN}, where si ∈ Rds . At time
step t, the observations are X t = {X t

1 , · · · ,X t
N}, where X t

i ∈ Rd and d represents the number of
observation channels. Boundary information and physical parameters affect the dynamical system,
leading to different conditions and distribution shifts. We first employ reconstruction model and
construct a discrete memory bank to compress and store physical prior information. Then, given
historical observation sequences {X−T0+1:0

i }Ni=1, our goal is to use the pre-trained memory bank
for data augmentation and predict future observations {Y1:T

i }Ni=1 at each observation point.

3.1 FRAMEWORK OVERVIEW

In this section, we systematically introduce our SPARK framework, as shown in Figure 2. We
first introduce a coupled reconstruction autoencoder, which incorporates boundary information and
physical parameters, to generate a discrete, physics-rich memory bank for compression. Subsequently,
in downstream task, we employ the pre-trained memory bank to augment the training samples based
on the fusion mechanism. We then utilize the attention mechanism to model historical observations
and propose a fourier-based graph ODE to realize downstream dynamical system prediction.

3.2 PHYSICS-INCORPORATED DATA COMPRESSION

Here, we seek to transform the dynamical system observations, along with rich boundary information
and physical parameters, into a structured representation. We then maintain a discrete memory bank
and leverage graph neural networks to reconstruct the observations based on this representation.

Boundary Information Incorporation. Before merging the boundary information into the historical
observations, it is important to construct the graph G = {V, E} with the finite discrete internal node.
Similar to other methods within spatial domian (Fan et al., 2019), we propose to select the K-nearest
nodes for each node to construct the edge set E .
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Then, how to effectively embed boundary information into neural networks is a critical aspect of
the design. From prior research (Wang et al., 2024a; Lötzsch et al., 2022), the straightforward
concatenation of boundary information with node features has been regarded as suboptimal and is
easily overfit. Here, we integrate the relative positional information with the boundary into each
node’s positional encoding, which is further projected into the node features.

ui = Proj
(
Xi,p

rel
i

)
with prel

i = ϕ
(
si,p

boun
i

)
, (1)

where si is the location information of node i, and pboun
i denotes the relative positional relationship

between node i and the nearest boundary point. For better incorporation, we embed the complete
boundary information into a latent vector B using an MLP, which are then fed into each message-
passing layer of the GNN during the subsequent reconstruction phase.

Physical Parameters Guided Channel Attention. Inspired by (Takamoto et al., 2023), we employ
a channel attention mechanism to effectively embed external parameters into the neural networks,
facilitating the transfer of parameter information into the latent space. Hereafter, we refer to the
neural network parameters as ‘weights’ to avoid terminological conflicts with the physical parameters
in dynamical systems. Specifically, the channel attention obtains two d-dimentional mask attention
vectors aϑ ∈ Rd (ϑ = 1, 2) from the parameters δ using a 2-layer MLP.

aϑ = W2,ϑσ(W1,ϑδ + b1) + b2, (2)

where W1/2,ϑ is the weight matrix, b1/2 is the bias term, and σ is the GeLU activation function. For
the boundary-enhanced node feature u, we employ two convolutional opertors: a 1× 1 convolution
(g1) and a spectral convolution (g2). The former one ensures fine-grained alignment between channels,
and the latter one operates at a global frequency-domain and captures the broader and structural
correlations. Then the obtained representations are multiplied by the mask attention vectors separately
and finally combined to realize the channel attention between observations and parameters.

zi,ϑ = gϑ(ui), hi,ϑ = aϑ ⊙ zi,ϑ ⇒ hi = ui + hi,1 + hi,2, (3)

where ⊙ is the Hadamard operator. By this way, we achieve parameter channel fusion for physical
processes through attention-enhanced convolutional networks.

Physics-Embedded Reconstruction with Discrete Memory bank. Now we have obtained the
observation features h fusing with the boundary and parameter information. For reconstruction, we
propose to tokenize each node as discrete embeddings using a L-layer GNN encoder and a variant of
VQ-VAE (Van Den Oord et al., 2017). Formally, in the l-th layer of the GNN encoder, the output
representations h(l) are combined from the previous representations using aggregation operator and
residual function as:

h
′(l)
i = AGGREGATE(l)

({
h
(l−1)
j : j ∈ N (i)

}
,B
)
,h

(l)
i = COMBINE(l)

(
h
(l−1)
i ,h

′(l)
i

)
, (4)

where B denotes the aforementioned boundary latent vector. Then, the selector look up the nearest
neighbor code embedding zi in the maintained memory bank E = [e1, e2, · · · , eM ] ∈ RM×D (M
denotes the memory bank size) for each node embedding hi.

zi = argminj

∥∥∥hL
i − ej

∥∥∥
2
. (5)

Finally, the discretized representations z are fed into a linear decoder I(·) to reconstruct the input
observations for an end-to-end optimization.

Pre-training Loss Function. For the whole reconstruction pre-training, we minimize the reconstruc-
tion loss and the discrete memory bank loss simultaneously. Specifically, to overcome the training
challenges associated with discretization encoding, we utilize the stopgradient operator sg(·) (Van
Den Oord et al., 2017). The whole pre-training loss function Lpre is as follows:

Lpre =
1

TN

T∑
t=1

N∑
i=1

(
X̂ t

i −X t
i

)2
+

1

TN

T∑
t=1

N∑
i=1

(
µ
∥∥ht

i − sg[e]
∥∥2
2
+ γ

∥∥∥sg [ht
i

]
− e
∥∥∥2
2

)
, (6)

where X̂ t
i and X t

i denote the reconstructed and the initial node embedding, µ and γ are the hyperpa-
rameters to balance the loss components.
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3.3 DOWNSTREAM DATA AUGMENTATION AND DYNAMICS SYSTEM PREDICTION TRAINING

Memory bank Promoted Augmentation. Now we have compressed multi-physics coupled infor-
mation into a discrete memory bank. Based on this, we introduce a memory bank promoted data
augmentation strategy to enhance the robustness and generalization of the training set. Specifically,
given a training set D = {(Xi,Yi)}Ni=1, where Xi represents the input dynamical system observations
and Yi denotes the corresponding output (e.g., future states), we augment the dataset by sampling a
subset D′ ⊂ D according to a probabilistic sampling method. Formally, for each sampled data, we
utilze the pre-trained GNN encoder and follow the equation (5) to augment the data by combining
with its Top-K nearest discrete embeddings:

vi = λhi + (1− λ)

K∑
n=1

en, (7)

where λ ∈ [0, 1] is the balance factor. Using Top-K nearest neighbors for augmentation enhances
physical diversity and better captures the underlying data distribution. The augmented samples
are incorporated into the training set to enhance the model’s generalization performance during
subsequent training stage.

Fourier-enhanced Graph ODE for Prediction. We first manage to map the historical observations
of individual node into a latent representation. Specifically, we employ an attention mechanism to
calculate the corresponding attention score of each time step, and then initialize the observation state
vector based on this. In formulation:

qi =
1

T0

T0∑
t=1

δ(αt
i · vt

i), αt
i =

(
vt
i

)T · tanh


 1

T0

T0∑
t=1

vt
i

Wα

 , (8)

where αt
i denotes the attention score of node i at time step t. We further propose a fourier-enhanced

graph ODE to model the obtained state vector by integration of the spectral global feature and the
local feature. In formulation:

dqi
dt

= Φ(q1, q2 · · · qN ,G,Θ) =

L∑
l=1

σ

(
F−1

(
AF

(
H l
)
W l

F

)
+AH lW l + bl

)
. (9)

Here, G and Θ are the graph structure and the whole model parameters, F denotes Discrete Fourier
Transform (DFT) (Tolstov, 2012), A is the adjacency matrix, and WF , W , b are the matrix weights.
Then, the latent dynamics can be solved by any ODE solver like Runge-Kutta (Schober et al., 2014):

qt1
i · · · qtT

i = ODESolve(Φ, [q0
1 , q

0
2 · · · q0

N ]) ⇒ ŷt
i |qt

i ∼ p(ŷt
i |fdec(qt

i)), (10)

where {qt1
i · · · qtT

i } represents the latent future vector of node i, and ŷt
i is the corresponding predicted

vector through a stacked two-layer MLP decoder fdec(·).
Training. The training objective for the dynamics system prediction is to learn a mapping from the
input observations X to future states Y , where the system evolves according to certain physical laws
like parameters. Formally, we aim to minimize the following loss function:

Ldyn =
1

TN

T∑
i=1

N∑
i=1

∥Ŷt
i − Yt

i ∥22 + λregR(θ), (11)

where Ŷ denotes the predicted future states, and R(θ) is a regularization term on the model
parameters θ to prevent overfitting. Finally, to seamlessly integrate the augmented samples into the
training pipeline, we adopt a curriculum learning approach, gradually adding the augmented samples
into the training set. Initially, the model is trained on the original dataset, and as training progresses,
the proportion of augmented samples is increased, allowing the model to adapt to a richer variety of
dynamical behaviors.

3.4 THEORETICAL ANALYSIS

Theorem 1 (Enhancement of Model Generalization via Physical Priors from an Information-The-
oretic Perspective). Let D be the training dataset, θ be the model parameters, and P be the physical

5
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prior information. Assume that the conditional mutual information between θ and D given P is
I(θ;D | P).

For an i.i.d. training dataset of size n, the upper bound on the expected generalization error is:∣∣∣Eθ,D
[
L(θ)− Lemp(θ;D)

]∣∣∣ ≤√2I(θ;D | P)

n
, (12)

where L(θ) is the expected loss under the true distribution, and Lemp(θ;D) is the empirical loss on
the training data.

Thus, introducing physical prior information P reduces the conditional mutual information I(θ;D |
P), which, by the above theorem, decreases the upper bound of the generalization error. This implies
that physical priors enhance model generalization, improving performance on unseen data. The
detailed theorem with the proof is illustrated in Appendix A.
Theorem 2 (Upper Bound on Generalization Error in Bayesian Learning with Physical Pri-
ors). Let H be a hypothesis space, θ ∈ H be the model parameters, and D = {(Xi,Yi)}Ni=1
be the training dataset. Let ℓ(θ;X ,Y) be the loss function, with the true risk defined as
L(θ) = E(X ,Y)∼Pdata [ℓ(θ;X ,Y)] and the empirical risk as Lemp(θ) =

1
N

∑N
i=1 ℓ(θ;Xi,Yi).

Assume the prior distribution P (θ) incorporates physical prior information, and the posterior
distribution is Q(θ). For any δ > 0, with probability at least 1− δ, the following upper bound on the
generalization error holds:

Eθ∼Q[L(θ)] ≤ Eθ∼Q[Lemp(θ)] +

√√√√KL(Q∥P ) + ln
2
√
N

δ
2N

, (13)

where KL(Q∥P ) is the Kullback-Leibler divergence (Van Erven & Harremos, 2014) between the
posterior distribution Q and the prior distribution P .

By incorporating physical prior information as the prior P (θ), the KL divergence KL(Q∥P ) be-
tween the posterior Q(θ) and the prior P (θ) is reduced, thereby lowering the upper bound on the
generalization error. This demonstrates that physical priors enhance model generalization in the
Bayesian framework. We have the theorem with proof in Appendix B.

4 EXPERIMENT

In this section, we present experimental results to demonstrate the effectiveness of the SPARK
framework. Our experiments are designed to address the following research questions: RQ1. Does
SPARK effectively handle out-of-distribution generalization while maintaining consistent superiority?
RQ2. Can SPARK tackle challenging tasks? RQ3. Is SPARK scalable and physically consistent? RQ4.
Does SPARK enhance model generalization?

4.1 EXPERIMENTAL SETTINGS

Benchmarks. We choose benchmark datasets from three fields. First, for computational fluid
dynamics, we use Prometheus (Wu et al., 2024b) and follow its original environment settings.
Second, for real-world data, we use ERA5 (Hersbach et al., 2020), selecting different combinations
of atmospheric u, v velocity components and humidity as forcing terms to predict atmospheric
temperature. Finally, for partial differential equations, we examine the 2D Navier-Stokes Equa-
tions (Li et al., 2021), focusing on the effect of viscosity ν on vorticity, and simulate vorticity under
ten different viscosities. We also study the Spherical Shallow Water Equations (Galewsky et al.,
2004) to simulate large-scale atmospheric and oceanic flows on Earth’s surface, involving viscosity ν,
tangential vorticity w, and fluid thickness h. Additionally, we consider the 3D Reaction-Diffusion
Equations (Rao et al., 2023), describing chemical diffusion and reaction in space, with diffusion
coefficient D, and involving u and v velocity components. More detailed descriptions see Appentix D.

Baselines. We select representative models from two domains as baselines. ▷ Visual Backbone
Networks. We include ResNet (He et al., 2016), U-Net (Ronneberger et al., 2015), Vision Transformer

6
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Table 1: Comparison of different models on five benchmark datasets (Prometheus, Navier–Stokes,
Spherical-SWE, 3D Reaction–Diff, ERA5) with and without OOD. Our method (Ours + SPARK)
achieves the best performance across all benchmarks, especially under OOD conditions.

MODEL

BENCHMARKS

PROMETHEUS NAVIER–STOKES SPHERICAL-SWE 3D REACTION–DIFF ERA5

w/o OOD w/ OOD w/o OOD w/ OOD w/o OOD w/ OOD w/o OOD w/ OOD w/o OOD w/ OOD

U-NET 2015 0.0931 0.1067 0.1982 0.2243 0.0083 0.0087 0.0148 0.0183 0.0843 0.0932
RESNET 2016 0.0674 0.0696 0.1823 0.2301 0.0081 0.0192 0.0151 0.0186 0.0921 0.0977
VIT 2021 0.0632 0.0691 0.2342 0.2621 0.0065 0.0072 0.0157 0.0192 0.0762 0.0786
SWINT 2021B 0.0652 0.0729 0.2248 0.2554 0.0062 0.0068 0.0155 0.0190 0.0782 0.0832

FNO 2021 0.0447 0.0506 0.1556 0.1712 0.0038 0.0045 0.0132 0.0179 0.7233 0.9821
UNO 2022 0.0532 0.0643 0.1764 0.1984 0.0034 0.0041 0.0121 0.0164 0.6652 0.7621
CNO 2024 0.0542 0.0655 0.1473 0.1522 0.0037 0.0038 0.0145 0.0182 0.5243 0.7821
NMO 2024C 0.0397 0.0483 0.1021 0.1032 0.0026 0.0031 0.0129 0.0168 0.0432 0.0563

OURS + SPARK 0.0294 0.0308 0.0714 0.0772 0.0018 0.0020 0.0102 0.0116 0.0322 0.0321

Target

Spark

FNO

VIT

Time Step

Figure 3: Comparison of Prediction Performance of Different Models Over Time Evolution.
The figure shows the target values and the predictions from different models (SPARK, FNO, VIT) at
multiple time steps. It is evident that SPARK’s predictions are closest to the target values, especially in
the locally complex regions (highlighted in red or white boxes), demonstrating higher detail-capturing
ability and accuracy. In contrast, FNO and VIT show larger deviations in the same regions.

(ViT) (Dosovitskiy et al., 2021), and Swin Transformer (SwinT) (Liu et al., 2021b). ▷ Neural
Operator Architectures. We consider FNO (Li et al., 2021), UNO (Ashiqur Rahman et al., 2022),
CNO (Raonic et al., 2024), and NMO (Wu et al., 2024c). More details see Appentix E.

4.2 ASSESSING THE EFFICACY OF SPARK (RQ1)

As shown in Table 1 and Figure 3, We have the following observations:

Obs 1: Our method (SPARK) shows better performance on all benchmark datasets, especially with
out-of-distribution (OOD) data. For example, in the Prometheus dataset, SPARK achieves an MSE of
0.0294 and 0.0308 for regular and OOD conditions, respectively, significantly outperforming the next
best model, NMO (0.0483 and 0.0483), with an error reduction of about 36%. On the Navier-Stokes
dataset, SPARK achieves an MSE of 0.0714 (regular) and 0.0772 (OOD), lower than NMO’s 0.1021
and 0.1032. On the Spherical-SWE dataset, SPARK achieves an MSE of 0.0018 and 0.0020, also
outperforming other models like FNO (0.0038 and 0.0045). For the ERA5 dataset, SPARK’s MSE
(0.0322 and 0.0321) is better than models like ResNet and FNO, demonstrating SPARK’s superior
adaptability and robustness across different conditions.

Obs 2: SPARK shows better performance under both regular and out-of-distribution (OOD) condi-
tions on all benchmark datasets, clearly outperforming existing baseline models. This improvement
is most evident in handling complicated fluid dynamics data (e.g., Navier-Stokes and Spherical-SWE)
and real meteorological data (e.g., ERA5), where SPARK’s error is significantly lower than other
models, proving its strong generalization ability and adaptability.

Obs 3: The visualization results, as shown in the figure 3, demonstrate that in the ERA5 and
Navier-Stokes experiments, SPARK outperforms other models (such as FNO (Li et al., 2021) and
VIT (Dosovitskiy et al., 2021)) in capturing complex details of fluid dynamics. Particularly in specific
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Time Step (1~10 days)

Target

SPARK

FNO

U-Net

Figure 4: The figure shows the predictions of different models for sea ice data over 1 to 10 time steps.
The horizontal axis represents time steps, and the vertical axis shows, from top to bottom, the target
data, SPARK, FNO, and U-Net model predictions. SPARK predictions are closer to the target, while
FNO and U-Net have larger deviations.

regions, Spark’s predictions are closer to the target and capture details more accurately. This indicates
that Spark has stronger generalization and robustness in complex spatiotemporal dynamic predictions.

These results show that SPARK, with its physics-guided data compression and augmentation mech-
anism, effectively improves the model’s generalization and robustness under scarcity data and
distribution shift conditions.

4.3 SPARK CAN HANDLE CHALLENGING TASKS EFFECTIVELY (RQ2)

(a)                                                  (b)                                                 (c)

Figure 5: Performance Metrics for SPARK.

Here, we analyze SPARK’s perfor-
mance on sea ice data based on ex-
perimental results, as shown in Fig-
ure 4 and Figure 5. The sea ice data
is derived from ERA5. This challenge
arises from the complex, nonlinear in-
teractions governing its Lagrangian
motion (Notz, 2012), compounded by
the spatiotemporal variability of envi-
ronmental forcing factors.

Obs 1: Qualitative Analysis. In the visual results of sea ice prediction (Figure 4), SPARK’s
predictions are closest to the target values, especially in locally complex regions, demonstrating
strong detail-capturing ability and prediction accuracy. In contrast, FNO and U-Net show larger
deviations in the same regions, particularly at boundaries and areas with significant structural changes,
indicating SPARK’s better generalization and robustness in handling complex dynamic systems.

Obs 2: Quantitative Analysis. From the loss curve during training (Figure 5 a), SPARK’s training
and validation losses rapidly decrease and stabilize within 80 epochs, indicating a good fit on both
training and validation sets. Additionally, SSIM and PSNR (Figures 5 b and 5 c) increase with epochs,
eventually approaching high values of approximately 0.95 and 40 dB, respectively. This means the
model performs well in reconstruction quality and image clarity, capturing complex spatiotemporal
features and providing high-fidelity predictions.

Both qualitative and quantitative analyses demonstrate that SPARK not only surpasses other models
(like FNO and U-Net) in numerical evaluation metrics but also more precisely captures dynamic
changes in complex scenarios, such as long-term sea ice evolution. This highlights its effectiveness
and distinct advantage in tackling challenging tasks.

4.4 ANALYSIS OF PHYSICAL CONSISTENCY AND SCALABILITY (RQ3)

In this section, we focus on examining the physical consistency and scalability of the SPARK
framework. Drawing from the energy spectrum visualization in Figure 6 and the performance metrics
of pretrained models of different sizes in Table 2, we highlight two key observations:
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Navier Stokes Spherical-Shallow Water 3D Reaction–Diff

True

SPARK

Swin-T

FNO

Local details

Figure 6: Energy Spectrum Comparison Results.

Obs 1: SPARK shows excellent physical consistency, with energy spectra closer to real data.
Figure 6 shows that the energy spectra generated by SPARK are very close to real data, especially
in complex fluid dynamics scenarios like Navier-Stokes and Spherical Shallow Water. Compared
to other baseline models such as Swin-T and FNO, SPARK better captures the complex details of
dynamic systems. This performance is due to SPARK incorporating physical priors, which effectively
enhances its ability to model physical phenomena and improves its physical consistency.

Table 2: Upstream pre-trained
models of different sizes.

MODEL SIZE ERA5 NS

24.56MB 0.0302 0.0723
17.65MB 0.0323 0.0733
9.43MB 0.0342 0.0734
4.57MB 0.0388 0.0787
2.18MB 0.0391 0.0798

Obs 2: Model performance remains stable as size reduces,
showing good scalability. The Table 2 shows that pretrained
models of different sizes have similar error rates on the ERA5
and Navier-Stokes datasets. For example, when the model size
decreases from 24.56 MB to 9.43 MB, the error on ERA5 only in-
creases slightly from 0.0302 to 0.0342. This indicates that SPARK
has good scalability, maintaining high prediction accuracy even
when the model is reduced in size. This is due to the physics-
guided compression and augmentation mechanisms in SPARK,
which preserve key physical features while reducing complexity,
ensuring stable model performance.

The physical consistency and scalability of SPARK make it suitable for high-precision prediction of
complex dynamical systems under limited computational resources.

4.5 TRANSFERABILITY OF SPARK (RQ4)

Table 3: Transfer the model pre-trained from full-data ERA5 to limited-data SEVIR. The results are
presented in the formalization of E → S, where E is the model performance when it is trained from
scratch and S is the performance fine-tuned from the ERA5 pre-trained model.

MSE 20% SEVIR 40% SEVIR 60% SEVIR 80% SEVIR 100% SEVIR

SIMVP 0.37→0.36 (-2.70%) 0.36→0.34 (-5.56%) 0.29→0.31 (+6.90%) 0.25→0.26 (+4.00%) 0.19→0.22 (+15.79%)
SIMVP + SPARK 0.28→0.26 (-7.14%) 0.27→0.24 (-11.11%) 0.25→0.22 (-12.00%) 0.21→0.19 (-9.52%) 0.18→0.16 (-11.11%)

PREDRNN 0.62→0.58 (-6.45%) 0.52→0.41 (-21.15%) 0.42→0.33 (-21.43%) 0.27→0.24 (-11.11%) 0.23→0.25 (+8.70%)
PREDRNN + SPARK 0.30→0.27 (-10.00%) 0.28→0.26 (-7.14%) 0.27→0.24 (-11.11%) 0.25→0.23 (-8.00%) 0.22→0.19 (-13.64%)

EARTHFARSEER 0.26→0.25 (-3.85%) 0.24→0.24 (0.00%) 0.23→0.21 (-8.70%) 0.22→0.19 (-13.64%) 0.16→0.17 (+6.25%)
EARTHFARSEER + SPARK 0.24→0.22 (-8.33%) 0.21→0.18 (-14.29%) 0.19→0.17 (-10.53%) 0.17→0.16 (-5.88%) 0.15→0.13 (-13.33%)

In the experimental design for transfer capability, we transfer the pretrained model from the full
ERA5 dataset to the data-limited SEVIR dataset to evaluate SPARK’s cross-domain transfer ability.
The experiment is based on three baseline models (SimVP (Tan et al., 2022), PredRNN (Wang et al.,
2017), Earthfarseer (Wu et al., 2024a)), comparing their performance with and without using SPARK.
To better demonstrate the effectiveness of transfer learning, we pretrain on the full ERA5 dataset and
then fine-tune on different amounts of SEVIR dataset (20%, 40%, 60%, 80%, 100%), using mean
squared error (MSE x 100) as the evaluation metric. Results as shown in Tabel 3, we have two key
observations as follows:

Obs 1: SPARK significantly improves transfer performance. For all baseline models, using
SPARK for fine-tuning significantly reduces the error on the SEVIR dataset. For instance, Earth-
farseer’s error decreases from 0.21 to 0.18 (a reduction of 14.29%) after pretraining on 40% of
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ERA5 data, which demonstrate a significant advantage over training without SPARK (error remains
unchanged). This indicates that SPARK effectively leverages physics-guided information to enhance
the model’s transfer learning capability.

Obs 2: SPARK performs especially well with limited data. With smaller data amounts (e.g., 20%
of ERA5 data), models using SPARK show greater performance improvements. For SimVP-V2,
when pretrained with 20% of the data, MSE decreases from 0.28 to 0.26 (a reduction of 7.14%), while
without SPARK, the reduction is only 2.70%. This result demonstrates that SPARK exhibits strong
transfer capabilities, particularly in data-scarce scenarios, effectively addressing data insufficiency in
cross-domain environments and significantly enhancing model generalization.

4.6 COMPARISON OF OOD HANDLING BETWEEN SPARK AND OTHER METHODS

Table 4: Performance comparison of different models with and without
OOD conditions on the Prometheus, ERA5, and Spherical-SWE bench-
mark datasets. SPARK achieves the best results in all scenarios, showing
stronger generalization and robustness.

MODEL

BENCHMARKS

PROMETHEUS ERA5 SPHERICAL-SWE

w/o OOD w/ OOD w/o OOD w/ OOD w/o OOD w/ OOD

LEADS 2022 0.0374 0.0403 0.2367 0.4233 0.0038 0.0047
CODA 2021 0.0353 0.0372 0.1233 0.2367 0.0034 0.0043
NUWA 2024B 0.0359 0.0398 0.0645 0.0987 0.0032 0.0039
SPARK (OURS) 0.0323 0.0328 0.0398 0.0401 0.0022 0.0024

To highlight the capa-
bility of our model in
handling OOD scenar-
ios, we further select
state-of-the-art OOD
baselines for compari-
son. In particular, we
include LEADS (Kirch-
meyer et al., 2022),
CODA (Yin et al., 2021)
and NUWA (Wang et al.,
2024b) in our experi-
ments. These are selected
due to their relevance in tackling dynamics modeling and boundary condition incorporation, which
aligns with our focus on fluid dynamics modeling under different input conditions. Experimental
results on three benchmark datasets are illustrated in Table 4.

The results from Table 4 show that SPARK performs significantly better in handling OOD scenarios,
especially on the Prometheus, ERA5, and Spherical-SWE benchmarks. On the Prometheus dataset,
SPARK achieves errors of 0.0323 and 0.0328 for w/o OOD and w/ OOD, respectively, clearly
outperforming LEADS (0.0374 and 0.0403), CODA (0.0353 and 0.0372), and NUWA (0.0359 and
0.0398), showing strong generalization and adaptability to changes. On the ERA5 dataset, SPARK’s
errors are 0.0398 and 0.0401, while other models show significantly increased errors under OOD,
such as LEADS increasing from 0.2367 to 0.4233, indicating better robustness of SPARK under
complex atmospheric conditions. On the Spherical-SWE dataset, SPARK achieves errors of 0.0022
and 0.0024 for w/o OOD and w/ OOD settings, respectively, compared to errors of 0.0038 and 0.0047
by models like LEADS. This further demonstrates SPARK’s stability and accuracy in handling
boundary condition changes and complex spatiotemporal systems. The results clearly demonstrate
that SPARK has excellent performance, high robustness, and strong generalization in OOD scenarios.

5 CONCLUSION

In this paper, we propose SPARK, a novel physics-guided quantitative augmentation framework
aimed at improving out-of-distribution generalization on dynamical system modeling. SPARK first
construct a discrete memorybank for efficient augmentation by incorporating boundary information
and physical parameters through a vector quantization-based compression mechanism. Additionally,
SPARK integrates a fourier-enhanced graph ODE for efficient and precise system prediction, further
addressing temporal distribution shifts. Experimental results on both real-world and synthetic datasets
demonstrate that SPARK outperforms existing methods under distribution shifts.
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A PROOFS OF THEOREM 1

We prove that introducing physical priors improves model generalization from an information-
theoretic perspective, based on the relationship between mutual information and generalization
error.

A.1 PRELIMINARIES

A.1.1 GENERALIZATION ERROR AND EMPIRICAL ERROR

▷ True Risk (Expected Loss):

L(θ) = E(X,Y )∼Dtrue [ℓ(θ;X,Y )], (14)

where ℓ(θ;X,Y ) is the loss function, and Dtrue is the true data distribution.

▷ Empirical Risk:

Lemp(θ;D) =
1

n

n∑
i=1

ℓ(θ;xi, yi), (15)

where D = {(xi, yi)}ni=1 is the training dataset.

A.1.2 MUTUAL INFORMATION

▷ Mutual Information:

I(θ;D) = Eθ,D

[
log

p(θ,D)

p(θ)p(D)

]
. (16)

▷ Conditional Mutual Information (given physical prior P):

I(θ;D | P) = Eθ,D,P

[
log

p(θ,D | P)

p(θ | P)p(D | P)

]
. (17)

A.2 PROOF

We then prove that introducing physical prior information reduces the upper bound of the generaliza-
tion error.

Relating Generalization Error to Mutual Information

According to information-theoretic results1, for any learning algorithm, the expected generalization
error has the following upper bound:∣∣∣Eθ,D

[
L(θ)− Lemp(θ;D)

]∣∣∣ ≤√2I(θ;D)

n
. (18)

Introducing Physical Prior Information

When we introduce physical prior information P , we consider the conditional mutual information
I(θ;D | P). Since P is known, we can reconsider the upper bound on the generalization error under
the condition of P .

Recalculate the Upper Bound of Generalization Error

Based on conditional mutual information, the upper bound becomes:∣∣∣Eθ,D,P
[
L(θ)− Lemp(θ;D) | P

]∣∣∣ ≤√2I(θ;D | P)

n
. (19)

1Reference: Xu, A., & Raginsky, M. (2017). Information-theoretic analysis of generalization capability of
learning algorithms. Advances in Neural Information Processing Systems, 30.
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Since P is fixed, we can take the expectation over P:∣∣∣Eθ,D
[
L(θ)− Lemp(θ;D)

]∣∣∣ ≤√2I(θ;D | P)

n
. (20)

Physical Prior Reduces Mutual Information

The physical prior P provides additional knowledge about the model parameters θ, which reduces
the mutual information I(θ;D | P) between θ and D under the condition P .

Intuitively, the physical prior restricts the possible parameter space, reducing the influence of training
data on parameters and thus decreasing the model’s dependence on the training data. Mathematically,
mutual information satisfies:

I(θ;D) ≥ I(θ;D | P). (21)

Combining the above steps, we conclude:∣∣∣Eθ,D
[
L(θ)− Lemp(θ;D)

]∣∣∣ ≤√2I(θ;D | P)

n
≤
√

2I(θ;D)

n
. (22)

Thus, introducing physical prior information P reduces the mutual information I(θ;D | P), leading
to a reduced upper bound on generalization error, and thereby improving the model’s generalization
capability.

A.3 GENERALIZATION ERROR BOUND IN BAYESIAN LEARNING WITH PHYSICAL PRIOR

Consider a hypothesis space H, with model parameters θ ∈ H, a training dataset D = {(xi, yi)}ni=1,
and a loss function ℓ(θ;x, y). The true risk is:

L(θ) = E(x,y)∼Pdata [ℓ(θ;x, y)], (23)

and the empirical risk is:

Lemp(θ) =
1

n

n∑
i=1

ℓ(θ;xi, yi). (24)

Assume the prior distribution P (θ) contains physical prior information, and the posterior distribution
is Q(θ). For any δ > 0, with probability at least 1 − δ, the generalization error has the following
upper bound:

Eθ∼Q[L(θ)] ≤ Eθ∼Q[Lemp(θ)] +

√√√√KL(Q∥P ) + ln
2
√
n

δ
2n

, (25)

where KL(Q∥P ) is the Kullback-Leibler divergence between the posterior Q and the prior P .

Introducing physical prior information as the prior distribution P (θ) reduces the Kullback-Leibler
divergence KL(Q∥P ) between the posterior Q(θ) and the prior P (θ). According to the theorem, this
reduces the upper bound of the generalization error. This implies that, within the Bayesian learning
framework, incorporating physical prior information enhances the model’s generalization ability,
leading to better performance on unseen data.

B PROOFS OF THEOREM 2

We prove that introducing physical priors improves model generalization from a Bayesian learning
perspective, using the PAC-Bayesian theory. The PAC-Bayesian theorem provides an upper bound on
the generalization error for randomized algorithms, which relates to the KL divergence between prior
and posterior distributions.
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B.1 PRELIMINARIES

▷ PAC-Bayesian Theorem

The PAC-Bayesian theorem provides a probabilistic upper bound on the generalization performance
of randomized learning algorithms. The core idea is to define a probability distribution over the
hypothesis space and use the KL divergence between the prior and posterior to quantify generalization
error.

▷ KL Divergence (Relative Entropy)

For two probability distributions P and Q, the KL divergence is defined as:

KL(Q∥P ) =

∫
ln

(
dQ

dP

)
dQ. (26)

The KL divergence measures how far the distribution Q deviates from P .

B.2 PROOF

Define the Randomized Prediction Function

In the Bayesian framework, the model parameter θ is treated as a random variable, whose distribution
is given by the posterior distribution Q(θ). During prediction, the model samples θ from the posterior
and uses it for prediction.

Introduce Physical Prior Information

Physical prior information is encoded in the prior distribution P (θ). This prior reflects our belief
about the model parameters before observing data.

Apply the PAC-Bayesian Theorem

According to the PAC-Bayesian theorem, for any posterior distribution Q(θ), with probability at least
1− δ, we have:

Eθ∼Q[L(θ)] ≤ Eθ∼Q[Lemp(θ)] +

√√√√KL(Q∥P ) + ln
2
√
n

δ
2n

. (27)

Note: The full proof of this theorem involves the Hoeffding inequality and variations of martingale
inequalities, but here we focus on applying the conclusion.

Interpret the Role of KL Divergence

The smaller the KL divergence KL(Q∥P ), the closer the posterior distribution Q is to the prior
distribution P . This means that the model deviates less from the prior information during learning.

Introducing physical prior information makes the prior distribution P (θ) closer to the true parameter
distribution, reducing the KL divergence between the posterior Q(θ) and prior P (θ), i.e., KL(Q∥P )
decreases.

Derive the Reduction in Generalization Error Bound

Since KL(Q∥P ) decreases, the PAC-Bayesian upper bound on the generalization error also decreases:

Eθ∼Q[L(θ)]− Eθ∼Q[Lemp(θ)] ≤

√√√√↓ KL(Q∥P ) + ln
2
√
n

δ
2n

. (28)

Thus, introducing physical prior information reduces the upper bound on the generalization error,
thereby improving the model’s generalization capability.
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B.3 DISCUSSION

B.3.1 ROLE OF PHYSICAL PRIOR INFORMATION

▷ Narrowing the Parameter Space: Physical priors restrict the possible values of model parameters,
making the prior distribution P (θ) more concentrated in regions that follow physical laws. ▷ Guiding
the Posterior Distribution: Since the prior distribution includes physical information, the posterior
distribution tends to favor parameter regions that are consistent with physical laws during the update.

B.3.2 RELATIONSHIP BETWEEN KL DIVERGENCE AND GENERALIZATION ERROR

▷ KL Divergence as a Measure of Deviation: KL divergence measures how much the posterior
deviates from the prior. The smaller the deviation, the lower the upper bound on the generalization
error. ▷ Coordination between Prior and Posterior: A good prior allows the model to make
less drastic adjustments to parameters given the data, thereby maintaining model stability and
generalizability.

B.3.3 ADVANTAGES OF THE BAYESIAN LEARNING FRAMEWORK

▷ Naturally Incorporates Prior Knowledge: The Bayesian approach allows prior knowledge to be
incorporated into the model as a probability distribution, which helps improve model performance,
especially when data is limited. ▷ Probabilistic Interpretation: The PAC-Bayesian theorem provides
an upper bound on the generalization error with probabilistic guarantees, making the theoretical
results more robust.

C THE PROPOSED SPARK ALGORITHM

The whole learning algorithm of SPARK is summarized in Algorithm 1.

Algorithm 1 Training of SPARK

Require: historical observations {s1:T0
i }Ni=1; boundary information B; physical parameter set λ

1: Stage 1: Data Compression with Physical Priors
2: Randomly initialize parameters of memorybank ΘM, GNN encoder ΘE , linear decoder ΘI
3: for each sensor i do
4: Incorporate boundary information B into observations si w.r.t position embeddings
5: Fuse physical parameter λ through designed channel attention aϑ

6: Implement vector quantization with GNN encoder ΘE and discrete memorybank ΘM
7: Fed discretized representations z into linear decoder I for reconstruction
8: end for
9: Optimize the pre-training framework with memorybank M

10: Stage 2: Memorybank-Guided Data Augmentation
11: Sample instances from training set with probabilistic model
12: for each instance Xi do
13: Search Top-K nearest discrete embeddings {e1, · · · , eK} for augmentation
14: end for
15: Stage 3: Fourier-enhanced Graph ODE
16: for each observation sequence {Xi,Yi} do
17: Initialize the observation state with attention mechanism
18: Employ attention mechanism to map historical observations Xi into hidden state hi

19: model hidden state through fourier-enhanced graph ODE Φ(·)
20: Predict future observations Yi

21: end for
22: Optimize framework by minimizing the MSE loss

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D DETAILED DESCRIPTION OF DATASETS

We evaluate our proposed SPARK on benchmark datasets in three fields: Prometheus for computa-
tional fluid dynamics; ERA5 for real-world scenarios; 2D Navier-Stokes Equations, Spherical Shallow
Water Equations, and 3D Reaction-Diffusion Equations for partial differential equations.

Prometheus (Wu et al., 2024b) is a large-scale, out-of-distribution (OOD) fluid dynamics dataset
designed for the development and benchmarking of machine learning models, particularly those that
predict fluid dynamics under varying environmental conditions. This dataset includes simulations
of tunnel and pool fires (representated as Prometheus-T and Prometheus-P in experiments), encom-
passing a wide range of fire dynamics scenarios modeled using fire dynamics simulators that solve
the Navier-Stokes equations. Key features of the dataset include 25 different environmental settings
with variations in parameters such as Heat Release Rate (HRR) and ventilation speeds. In total, the
Prometheus dataset encompasses 4.8 TB of raw data, which is compressed to 340 GB. It not only
enhances the research on fluid dynamics modeling but also aids in the development of models capable
of handling complex, real-world scenarios in safety-critical applications like fire safety management
and emergency response planning.

ERA5 (Hersbach et al., 2020) is a global atmospheric reanalysis dataset developed by the European
Centre for Medium-Range Weather Forecasts (ECMWF), offering comprehensive weather data from
1979 to the present with exceptional spatial resolution (31 km) and hourly temporal granularity.
This dataset encompasses a rich array of meteorological variables, including but not limited to
surface pressure, sea surface temperature, sea surface height, and two-meter air temperature. ERA5
is extensively employed across a multitude of domains, including climate modeling, environmental
monitoring, atmospheric dynamics research, and energy management optimization. The dataset’s
integration of physical models with vast observational data makes it a cornerstone for advancing
predictive models in meteorology and climate science.

2D Navier-Stokes Equations (Li et al., 2021) describe the motion of fluid substances such as liquids
and gases. These equations are a set of partial differential equations that predict weather, ocean
currents, water flow in a pipe, and air flow around a wing, among other phenomena. The equations
arise from applying Newton’s second law to fluid motion, together with the assumption that the fluid
stress is the sum of a diffusing viscous term proportional to the gradient of velocity, and a pressure
term. The equations are expressed as follows:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · τ + f,

∂ρ

∂t
+∇ · (ρu) = 0,

∂(ρE)

∂t
+∇ · ((ρE + p)u) = ∇ · (τ · u) +∇ · (k∇T ) + ρf · u,

(29)

where u denotes the velocity field, ρ represents the density of the fluid, p is the pressure, τ is the
viscous stress tensor, given by µ(∇u+ (∇u)T )− 2

3µ(∇ · u)I. E is the total energy per unit mass,
E = e+ 1

2 |u|
2, e is the internal energy per unit mass, T denotes the temperature, and k represents

the thermal conductivity.

Spherical Shallow Water Equations (Galewsky et al., 2004) model surface water flows under the
assumption of a shallow depth compared to horizontal dimensions. This simplification leads to the
Shallow Water equations, a set of partial differential equations (PDEs) that describe the flow below
a pressure surface in a fluid (often water). Shallow Water typically encompasses variables such as
water surface elevation and the two components of velocity field (u-velocity in the x-direction and
v-velocity in the y-direction). These properties are crucial for modeling waves, tides, and large-scale
circulations in oceans and atmospheres. The equations consist of a continuity equation for mass
conservation and a momentum equation for momentum conservation:

∂h

∂t
+∇ · (h · u) = 0,

∂u

∂t
+ (u · ∇)u+ g∇h = 0,

(30)
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where h represents the fluid depth, u is the velocity field, and g denotes the acceleration due to gravity.
These equations are used extensively in environmental modeling, including weather forecasting,
oceanography, and climate studies.

3D Reaction-Diffusion Equations (Rao et al., 2023) are a class of partial differential equations (PDEs)
that describe the temporal and spatial evolution of chemical species in three-dimensional domains.
These equations are fundamental for modeling systems where chemical substances not only react
but also diffuse through a 3D medium. The interaction between reaction kinetics and diffusion
mechanisms leads to intricate spatiotemporal dynamics that are critical in fields such as biology,
chemistry, and physics. The general form of the 3D reaction-diffusion system can be expressed as:

∂u

∂t
= Du∇2u+ f(u, v, w)− g(u, v)u+ αu + σuSu(x, y, z, t),

∂v

∂t
= Dv∇2v + h(u, v)u2 − βv + αv + σvSv(x, y, z, t),

∂w

∂t
= Dw∇2w + p(v, w)− γw + αw + σwSw(x, y, z, t),

(31)

where u, v, and w represent the concentrations of different chemical species, Du, Dv, and Dw

denote their respective diffusion coefficients. The terms f(u, v, w) and p(v, w) describe the reaction
kinetics that govern the interactions between these species, while g(u, v) and h(u, v) control the
rate of conversion and interaction. αu, αv, and αw represent constant growth rates, and σu, σv, and
σw introduce noise terms that model stochastic external influences through spatially and temporally
dependent source functions Su(x, y, z, t), Sv(x, y, z, t), and Sw(x, y, z, t). The resulting system
of equations provides a robust framework for simulating complex dynamical behaviors in three-
dimensional reactive-diffusive environments.

E DETAILS OF COMPARED APPROACHES

The approaches compared in this study are listed as follows:

• U-Net Ronneberger et al. (2015) is a convolutional neural network originally developed for
biomedical image segmentation. Its U-shaped architecture with symmetric skip connections
between the encoder and decoder facilitates effective feature integration.

• ResNet He et al. (2016) introduces residual connections to address the issue of performance
degradation in deep networks. These skip connections allow information to bypass layers, enabling
deeper and more trainable architectures.

• ViT Dosovitskiy et al. (2021) utilizes the Transformer model for image classification. The image is
divided into patches, which are processed using self-attention mechanisms, achieving a balance
between computational efficiency and accuracy.

• SwinT Liu et al. (2021b) employs a sliding window technique for the extraction of both local and
global features. This makes it versatile for a wide range of computer vision tasks.

• FNO Li et al. (2021) leverages Fourier transforms for extracting global features, making it par-
ticularly effective for handling continuous field data and solving partial differential equations
(PDEs).

• UNO Ashiqur Rahman et al. (2022) combines U-Net’s architecture with optimization techniques to
boost feature extraction and fusion, thereby enhancing the model’s overall performance.

• CNO Raonic et al. (2024) integrates convolutional operations with operator learning to better
handle high-dimensional continuous data, focusing on the modeling of intricate dynamic systems.

• NMO Wu et al. (2024c) improves the capability to model multi-scale dynamic systems by integrat-
ing neural networks with manifold learning methods.

F METRICS DETAILS

Mean Squared Error (MSE): This metric provides the average of the squares of the differences
between the actual and predicted values. A lower MSE indicates a closer fit of the predictions to the
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true values. It’s given by the equation:

MSE =
1

N

N∑
i=1

(Vtrue,i − Vfut,i)
2 (32)

where Vtrue,i represents the true value, Vfut,i denotes the predicted value, and N is the number of
observations.

Multi-Scale Structural Similarity (SSIM): SSIM is designed to provide an assessment of the
structural integrity and similarity between two images, x and y. Higher SSIM values suggest that the
structures of the two images being compared are more similar.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(33)

where µ is the mean, σ represents variance, and c1 and c2 are constants to avoid instability.

Peak Signal-to-Noise Ratio (PSNR): PSNR gauges the quality of a reconstructed image compared
to its original by measuring the ratio between the maximum possible power of the signal and the
power of corrupting noise. A higher PSNR indicates a better reconstruction quality.

PSNR = 10× log10

(
MAX2

I

MSE

)
(34)

where MAXI is the maximum possible pixel value of the image.

G PARAMETER SENSITIVITY ANALYSIS

To investigate the influence of hyperparameter k, we add experiments on the value of k on the
Navier-Stokes, Prometheus, 3D Reaction–Diff, and ERA5 datasets. The candidate values are
{1, 3, 5, 7, 9, 11}, and the results are shown in Table 5.

Table 5: Performance comparison of different k.

k Navier–Stokes Spherical-SWE Prometheus 3D Reaction–Diff

1 0.0752 0.0022 0.0315 0.0116
3 0.0726 0.0018 0.0296 0.0108
5 0.0715 0.0021 0.0303 0.0104
7 0.0731 0.0024 0.0311 0.0110
9 0.0764 0.0025 0.0320 0.0121
11 0.0780 0.0029 0.0327 0.0128

As k increases, the model’s performance first improves and then declines, with optimal performance
generally achieved when k is between 3 and 5.

H EXTERNAL EXPERIMENTS

H.1 ABLATION STUDY

To further demonstrate the contribution of each strategy, we conduct ablation experiments with five
model variants. The experiments are conducted on Prometheus and Navier–Stokes datasets with
OOD scenarios, and the results are shown in Table 6.

Table 6: Performance comparison of different model variants.

Ours w/o param w/o bound w/o param&bound w/o MemBank w/o CL

Prometheus 0.0301 0.0357 0.0324 0.0397 0.0416 0.0338
Navier–Stokes 0.0725 0.0833 0.0764 0.0902 0.1058 0.0792

As observed, removing physical parameters or boundary conditions during pretraining leads to a
performance decline, with an even greater drop when the memory bank is discarded. This validates
the effectiveness of physical compression when addressing OOD problems.
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H.2 LOW-DATA REGIME EXPERIMENTS

To explore the performance of our model in very low-data regime of transfer learning, we conduct
experiments here. Specifically, after pre-training on the full ERA5 dataset, we finetune on subsets of
the Sevir dataset with varying amounts of data (1%, 3%, 5%, and 10%). The detailed comparison of
baseline models (PredRNN and SimVP) with and without the SPARK plugin is shown in Table 7.

Table 7: Performance comparison of varying data amounts.

1% Sevir 3% Sevir 5% Sevir 10% Sevir

PredRNN 3.51→3.38 2.57→2.35 1.83→1.68 1.22→1.16
PredRNN+SPARK 3.37→3.02 2.49→2.14 1.72→1.45 1.14→0.97
SimVP 2.43→2.20 1.86→1.55 1.29→1.11 0.75→0.68
SimVP+SPARK 2.30→1.98 1.75→1.23 1.21→0.98 0.71→0.57

The results show that models with SPARK plugin consistently outperform their baseline models in
the very low data regime.

H.3 EXPERIMENTS ON 1-D DATA

To explore model performance on 1-D data, we add experiments on 1-D data using the Burgers
Equations. The results are shown in Table 8, which indicate that our method is also applicable to 1-D
data.

Table 8: Performance on 1-D Burgers Equations.

U-Net ResNet FNO CNO NMO Ours+SPARK

w/o OOD 0.362 0.338 0.298 0.314 0.246 0.228
w/ OOD 0.397 0.351 0.325 0.338 0.273 0.243

H.4 CROSS-DIMENSION GENERALIZATION EXPERIMENTS

We select FNO, CNO, and NMO as baselines to evaluate SPARK’s generalization capability across
different dimensional data. Specifically, we pre-train on 2-D Navier-Stokes Equations and finetune
on 1-D Burgers Equations. The results shown in Table 9 validate that model variants with SPARK
plugin have better generalization capability than their baseline models.

Table 9: Cross-dimension generalization performance.

FNO FNO+SPARK CNO CNO+SPARK NMO NMO+SPARK

Burgers 0.317→0.294 0.308→0.275 0.298→0.275 0.280→0.256 0.241→0.223 0.228→0.204

H.5 CHALLENGING TASK EXPERIMENTS

We add two challenging experiments, namely long-term prediction and extreme event prediction. We
choose Prometheus and Sevir datasets to conduct the two experiments, separately.

long-term prediction.

For long-term prediction, we use Prometheus with ten steps as input and supervise the prediction
of the next ten steps during training. During inference, we predict the next 10, 30, and 50 steps in
an autoregressive manner. The results in Table 10 demonstrate that our model outperforms other
baselines in long-term prediction performance.

Extreme event prediction.

For extreme event prediction, we use Sevir dataset, which contains data related to severe weather
phenomena. To better evaluate the prediction performance of extreme events, we used the Critical
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Table 10: Long-term prediction performance.

Time Step U-Net ViT FNO NMO Ours

10 0.0931 0.0674 0.0447 0.0397 0.0294
30 0.1374 0.1038 0.0815 0.0726 0.0537
50 0.2238 0.1842 0.1374 0.1154 0.0921

Success Index (CSI), in addition to MSE. For simplicity, we used only the thresholds 16, 133, 181,
219 and the mean CSI-M. The results in Table 11 show that our model consistently outperform these
baselines in extreme event prediction.

Table 11: Extreme event prediction performance.

Model CSI-M ↑ CSI-219 ↑ CSI-181 ↑ CSI-133 ↑ CSI-16 ↑ MSE (10−3) ↓

U-Net 0.3593 0.0577 0.1580 0.3274 0.7441 4.1119
ViT 0.3692 0.0965 0.1892 0.3465 0.7326 4.1661
PredRNN 0.4028 0.1274 0.2324 0.3858 0.7507 3.9014
SimVP 0.4275 0.1492 0.2538 0.4084 0.7566 3.8182
Ours 0.4683 0.1721 0.2734 0.4375 0.7792 3.6537

H.6 COMPARISON OF TRAINING COST

We add experiments of computational costs on Prometheus dataset. To be fair, we conduct the
experiments on a single NVIDIA 40GB A100 GPU. From the Table 12, we can observe that our
method has a competitive computation cost.

Table 12: Comparison performance of training cost.

Method UNet ResNet VIT SwinT FNO UNO CNO NMO Ours

Training time (h) 11.2 9.76 14.5 12.3 6.9 7.8 13.4 6.3 6.7
Inference time (s) 1.34 0.93 1.32 1.13 0.54 0.67 0.12 0.52 0.55

H.7 COMPARISON WITH OOD-SPECIFIC MODELS

Our SPARK is specifically designed for OOD problem. Here, we use three models specialized in
OOD dynamical system modeling mentioned before, along with FNO, for comparison. The results
shown in Table 13 indicate that OOD-specific models outperform FNO in both OOD and non-OOD
scenarios, with SPARK achieving the best performance.

Table 13: Comparison performance with OOD-specific models.

Dataset Prometheus (ID) Prometheus (OOD) ERA5 (ID) ERA5 (OOD) SSWE (ID) SSWE (OOD)

FNO 0.0547 0.0606 0.7233 0.9821 0.0061 0.0084
LEADS 0.0374 0.0403 0.2367 0.4233 0.0038 0.0047
CODA 0.0353 0.0372 0.1233 0.2367 0.0034 0.0043
NUWA 0.0359 0.0398 0.0645 0.0987 0.0032 0.039
Ours 0.0323 0.0328 0.0398 0.0401 0.0022 0.0024

H.8 COMPARISON WITH DGODE

We run DGODE’s open-source code and conduct comparative experiments in both non-OOD (ID)
and OOD scenarios. The results shown in Table 14 indicate that SPARK performs better.
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Table 14: Comparison performance with DGODE.

Dataset Prometheus (ID) Prometheus (OOD) ERA5 (ID) ERA5 (OOD) SSWE (ID) SSWE (OOD)

DGODE 0.0344 0.0359 0.0387 0.0435 0.0024 0.0029
Ours 0.0323 0.0328 0.0398 0.0401 0.0022 0.0024

H.9 COMPARISON WITH BEAMVQ

To, compare with BeamVQ, we conduct experiments on the Navier–Stokes, Spherical-SWE,
Prometheus, and 3D Reaction–Diff dataset. Here, we use FNO and SimVP as backbones. Fur-
ther, we select parameter count, training time, and inference time on Navier–Stokes to compare the
effiency of two models. Table 15 and Table 16 below shows that SPARK is much more lightweight
and performs better. Notably, the SimVP+BeamVQ model variant crashes on 3D Reaction-Diff due
to memory overflow, as its parameter complexity is unsuitable for 3D scenarios.

Table 15: Comparison performance with BeamVQ.

Method Navier–Stokes SSWE Prometheus 3D Reaction–Diff

FNO 0.1556 0.0038 0.0447 0.0132
FNO+BeamVQ 0.1342 0.0032 0.0356 0.0104
FNO+SPARK 0.1257 0.0029 0.0338 0.0095
SimVP 0.1262 0.0031 0.0394 0.0108
SimVP+BeamVQ 0.1173 0.0027 0.0375 -
SimVP+SPARK 0.1105 0.0024 0.0360 0.0087

Table 16: Effiency performance with BeamVQ.

Method MSE Param Training Time Inference Time

FNO+BeamVQ 0.1342 214.25 MB 26.11 h 3.25 s
FNO+SPARK 0.1257 35.67 MB 4.2 h 0.58 s
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Figure 7: Schematic comparison of SPARK and BeamVQ.
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I DETAILS OF MODEL ARCHITECTURE AND RELATED SETUP

Table 17: Details of SPARK’s upstream architecture.

Upstream

Procedure Layer Dimension

Boundary information injection Boundary Fusion (Concat + Linear) (4096, 128)
Boundary Encoding (Linear + LayerNorm) (4096, 128)

Physical parameters injection Channel attention (2, 128)
Aggregation (4096, 128)

GNN reconstruction Graph Encoder (GNN Layer × L) (4096, 128)
BatchNorm + ReLU (4096, 128)

Memory bank Construction (M , 128)
Linear + LayerNorm (4096, 128)

Table 18: Details of SPARK’s downstream architecture.

Downstream

Procedure Layer Dimension

Augmentation GNN Encoder (T0, 4096, 128)
Memory bank retrieval (T0, 4096, 128)

Historical observations encoding Attention score of time steps (, T0)
Initial state encoding (1, 4096, 128)

Fourier-enhanced graph ODE Fourier transform (1, 4096, 128)
Linear transform (1, 4096, 128)
Inverse Fourier transform (1, 4096, 128)
ODE solver (T , 4096, 128)

Table 19: Detailed setup for OOD experiments.

Equation/Model Training Parameters Testing Parameters

2D Navier-Stokes Equation ν = {1e−1, 1e−2, . . . , 1e−7, 1e−8} ν = {1e−9, 1e−10}
Spherical Shallow Water Equation ν = {1e−1, 1e−2, . . . , 1e−7, 1e−8} νt = {1e−9, 1e−10}
3D Reaction-Diffusion Equations D = {2.1 × 10−5, 1.6 × 10−5, 6.1 × 10−5} D = {2.03 × 10−9, 1.96 × 10−9}
ERA5 V = {Sp, SST, SSH, T2m} V = {SSR, SSS}

Relative positional relationship 

Velocity, Pressure, Temperature, Humidity

Figure 8: Example of Boundary Information on ERA5.
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