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(a) Accuracy of token merg- (b) An illustrative example showing the impact (c) Correlation between token
ing: (Transformer) vs. of token connection disruption in (Trans- connection survival rate and
(SSM). former) versus (SSM). accuracy.

Figure 1: Comparative analysis of token reduction. In Figure (b), blue solid lines denote direct token
connections, whereas black dotted lines signify potential connections.

Abstract

Mamba has proven efficient for long-sequence modeling in vision tasks. However,
when token reduction techniques are applied to improve efficiency, Mamba-based
models exhibit drastic performance degradation compared to Vision Transform-
ers (ViTs). This decline is potentially attributed to Mamba’s chain-like scanning
mechanism, which we hypothesize not only induces cascading losses in token
connectivity but also limits the diversity of spatial receptive fields. In this paper,
we propose Asymmetric Multi-scale Vision Mamba (AMVim), a novel architecture
designed to enhance pruning robustness. AMVim employs a dual-path structure,
integrating a window-aware scanning mechanism into one path while retaining
sequential scanning in the other. This asymmetry design promotes token con-
nection diversity and enables multi-scale information flow, reinforcing spatial
awareness. Empirical results demonstrate that AMVim achieves state-of-the-art
pruning robustness. During token reduction, AMVim-T achieves a substantial
34% improvement in training-free accuracy with identical model sizes and FLOPs.
Meanwhile, AMVim-S exhibits only a 1.5% accuracy drop, performing comparably
to ViT. Notably, AMVim also delivers superior performance during pruning-free
settings, further validating its architectural advantages.

1 Introduction

In recent years, the Mamba architecture, built upon state space models (SSMs), has emerged as a
transformative paradigm for efficiently modeling long-range dependencies in vision tasks [[1,2}13}14} 5]
By introducing an innovative chain-like scanning mechanism, Mamba [6, (7, (8} 9} [10, [11]] successfully
reduces the computational complexity from the quadratic demands of Transformers [12}[13}14] to a
linear scale. Alongside these advancements, token reduction techniques (eg., pruning [15} 116} [17]
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and merging [[18,[19]]) for Mamba have garnered increasing attention as promising avenues toward
further optimization.

Nevertheless, Mamba exhibits significantly greater performance degradation during token reduction
compared to Transformers (eg., ViT [13]), as shown in Figure[Tal This discrepancy arises from
Transformers using self-attention to establish fully connected token relationships, while Mamba
processes tokens sequentially along chain-like scanning paths. This chain-based structure makes
Mamba susceptible to cascading information loss during token reduction. For clarity, an illustrative
example is provided in Figure [Tb]

Recent Mamba variants [20, 21} 22]], such as Vim [6], have attempted to mitigate this limitation
through dual-path scanning strategies that combine forward and reverse sequential paths. While
these symmetric designs enhance sequence modeling capabilities and improve baseline performance,
they remain ineffective for token reduction. The inherent symmetry of dual-path scanning confines
token relationships to the same chain-like structure, failing to address the systemic vulnerability to
large-scale connection disruption during pruning.

Inspired by these observations, we hypothesize that minimizing connection disruption during token
reduction can mitigate performance drop. To validate this, we introduce asymmetric scanning
into dual-path Mamba. As illustrated in Figure asymmetric scanning paths reduce accuracy
degradation from 38% (with symmetric paths) to 21% at the same pruning ratio. This suggests that
diversifying chain-like dependencies effectively mitigate pruning-induced performance decline.

To further elucidate this phenomenon, we quantify the token connection survival rate across dif-
ferent dual-path strategies during token reduction. Figure|lc|reveals a strong positive correlation
between connection survival rates and accuracy, with asymmetric paths exhibiting superior robust-
ness. This confirms our hypothesis: enhancing token connection survival rates via asymmetric path
diversification is pivotal for improving Mamba’s pruning resilience.

In this work, we propose AMVim, a novel Asymmetric Multi-scale Vision Mamba for pruning ro-
bustness. To enhance space information diversity, we integrate a window-aware scanning mechanism
into one path. By adopting a different scanning direction within windows compared to the main path,
we construct multi-level asymmetric paths. This multi-dimensional information flow enables each
token to perceive neighborhood information from multiple perspectives. Furthermore, the integration
of window-based scanning with the main path creates a multi-level complementary design, allowing
for interactions between global context and local dependencies.

Empirically, as shown in Figure our method results in just a 3% accuracy drop during token
reduction (with the blue dotted line representing the baseline accuracy of 76.1%) on ImageNet-1K,
achieving a 34% improvement over Vim. This highlights that the multi-scale scanning mechanism
enhances the spatial awareness of SSMs, significantly reducing token sensitivity to local variations.

We highlight the main contributions of this paper below:

* We hypothesize token connection survival rate is a critical factor in performance degradation
and propose asymmetric scanning paths to effectively mitigate this issue.

* We design a multi-scale asymmetric scanning mechanism that balances global and local
spatial information while preserving the benefits of asymmetric paths.

* Our method achieves state-of-the-art pruning resilience, outperforming Vim-T by 34% on
ImageNet-1K under identical parameters and FLOPs.

2 Related Work

2.1 State Space Models

SSMs [23],124) 251 126}, 24} 1277]] were initially proposed in the NLP community to model long-range
dependencies in text. Recently, SSM variants have emerged as effective alternatives to ViTs [[13|
14} 112,128} 129, 30], reducing computational complexity in visual tasks from quadratic to linear time.
S4ND [31] is the first work to apply SSMs to visual tasks, extended the S4 [32] model by normalizing
the parameters to a diagonal structure. However, this approach struggled to capture image information
in an input-dependent manner. In response, Vim [6] was proposed, introducing bidirectional scanning
to enhance spatial awareness in vision tasks. Building upon this, PlainMamba [33]] introduced



continuous 2D scanning, which improves spatial continuity by maintaining adjacency among tokens
within the scanning sequence. Moreover, VMambea [7] proposed an SS2D scanning mechanism that
enables comprehensive scanning across four distinct paths.

Despite significant advancements, recent studies [34, [35] have identified limitations in Mamba’s
chain-like scanning structure, particularly in capturing local spatial dependencies. To address this, Shi
et al. [35]] introduced a multi-scale 2D scanning technique based on VMamba, combining original and
downsampled feature maps to alleviate the long-range forgetting issue. Similarly, LocalMambal34]]
proposed a window-based scanning mechanism that dynamically selects search paths at each layer to
capture local dependencies. In contrast, we introduce a multi-scale asymmetric scanning mechanism.
By improving both direct token connection complementarity and multi-scale information synergy,
our method enhances the spatial perception capability of SSM.

2.2 Token Reduction

Token reduction aims to enhance computational efficiency by dynamically removing or consolidating
redundant tokens during inference. These methods are typically classified into token pruning [[15}
19, [17, [16] and token merging [18 36, [37, 38 139]. Token pruning identifies and eliminates low-
importance tokens. For example, DynamicViT [15] employs the Gumbel-Softmax strategy to prune
less informative tokens, while EViT [19]] relies on the attentiveness of the [CLS] token to determine
key tokens. In contrast, token merging combines semantically similar tokens, as demonstrated
by ToMe [18]], a training-free approach that merges tokens via bipartite matching. However, the
underlying architectural differences between ViTs and Mambas present unique challenges when
applying these techniques to Mambas. First, most token pruning methods are designed for ViTs
and rely on self-attention scores, which Mamba lacks, making direct transfer infeasible. Second,
token merging in Mamba leads to significant performance degradation due to its chain-like scanning
mechanism, which enforces rigid sequential dependencies between tokens.

Recent work has sought to address these challenges. For instance, Zhan et al. [40] proposed a
pruning-aware hidden state alignment method to selectively skip tokens in Mamba. Their follow-
up work [41]] introduced hybrid metrics combining token importance and similarity for pruning.
These approaches focus on designing specialized pruning strategies for Mamba. In contrast, our
approach aims to strengthen the intrinsic robustness of Mamba’s architecture for token reduction. By
mitigating chain dependency vulnerabilities, our method enables seamless integration of existing
token merging techniques while further improving performance, offering a significant advantage for
practical deployment.

3 Method

3.1 Preliminaries

SSMs map a 1D input sequence z(t) € R to an output sequence y(¢t) € R through an implicit latent
state h(t) € RY, governed by linear ordinary differential equations (ODEs):

B'(t) = Ah(t) + Bx(t), y(t) = Ch(t), (1)

where A € RV*N governs state transitions, B € R¥*! projects inputs to the state space, and
C € R maps the state to outputs. A defining feature of SSMs is their chain-like scanning path,
which processes inputs sequentially to achieve linear computational complexity. This sequential
dependency can be formalized in the discretized recurrence:

hy =Ah,_1 +Bxzy, y; = Chy. ()

where A = ¢2% and B = (AA)~!(e2A —1) - AB are derived from the continuous-time parameters
via zero-order hold (ZOH) discretization. The chain-like structure ensures that each token z(t)
interacts directly with its immediate predecessor (¢t — 1), propagating information sequentially
through the state h(¢).

Mamba enhances SSMs with input-dependent selectivity (S6), dynamically adjusting parameters
B, C, A based on z(t):

B; = Linearg(z;), C; = Linearc(z:), A; = Softplus(Lineara (z:)). 3)
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Figure 3: Illustration of the Window-based Multi-Scale State Space (WMS3) block. Input patches
are processed along two scanning paths at different scales (multi-scale scan), with each sequence
independently encoded (encoder). The outputs are then restored to sequential order and merged to
form a 2D feature map as the final result (cross-merge).

While this improves flexibility, the underlying chain-like scanning path remains a core component.
Importantly, this chain structure design introduces a critical limitation: the model relies on local
neighbor dependencies for information propagation, which amplifies sensitivity to token removal.

3.2  Multi-Scale 2D Selective Scanning

The sequential scanning operation in S6 works well for
time-series data in NLP tasks but struggles with non-causal
visual data, which is inherently non-sequential and spa-
tially complex. To address this, Vim [6] introduces bidi-
rectional symmetric scanning paths (Figure [2a) to enhance
spatial context. Although this design improves spatial con-
text modeling, it fails to resolve the performance collapse
during token reduction.

We attribute this limitation to the chain-like scanning
mechanism underlying Mamba, which enforces a rigid (a) Vim (b) Asym. (c) Ours
neighbor dependency as depicted in Equation [2| To mit-
igate this issue, we propose a simple yet effective solution:
asymmetric scanning paths (Figure[2b). By diversifying
the scanning directions, asymmetric paths enhance the
complementarity of token connections, as shown in Figure
leading to a significant boost in pruning robustness. However, achieving full token connection
complementarity through scanning paths alone remains challenging under computational constraints.

Figure 2: Comparison of dual-path scan-
ning strategies. The solid dot represents
the starting position.

Recent studies [34}[35] emphasize the critical role of local spatial awareness in enhancing Mamba’s
robustness. Inspired by this insight, we propose a window-based multi-scale selective scanning
mechanism. As shown in Figure [2c} this design integrates a window-aware scanning strategy into one
path while preserving the global scanning directions of Vim. Specifically, the tokens are partitioned
into non-overlapping windows, where tokens are scanned vertically within windows and horizontally
globally. This orthogonal design ensures asymmetric dependencies, minimizing redundant token
connections while maximizing connection complementarity. Moreover, by harmonizing global
structures and local textures, it enables more comprehensive spatial understanding.

3.3 Overall Model Architecture

In this work, we extend Vim [6] by introducing the Window-based Multi-Scale State Space (WMS3)
block. As shown in Figure [3] WMS3 operates through three sequential stages: multi-scale scanning,
encoding, and cross-merge. Given an input token sequence X € RE*P where L is the sequence
length and D is the feature dimension, WMS3 first reorders X along two distinct traversal paths: the
sequential path and the window-aware path.

Each reordered sequence is then independently processed by a dedicated encoder block, which
integrates a 1D convolutional layer and a S6 module. Formally, for a sequence X, along path p €



{sequential, window}, the encoder block computes:
H, = E(X,) = S6(ConvlD(X,)) (Y]

where Conv1D(+) enhances local feature interactions, and S6(-) models long-range dependencies via
selective state transitions.

Finally, the outputs from both paths are restored to their original spatial order and merged via a
Cross-merge operation:
H-= Linear(Hsequential + Hwindow)7

where Linear(-) denotes a linear projection layer. Beyond the WMS3 block, our architecture retains
the core design of Vim [6], including the placement of the [CLS] token at the sequence center. This
multi-scale design expands spatial perception granularity without additional computational overhead,
significantly improving robustness to token reduction while maintaining efficiency.

4 Experiment

4.1 Datasets and Settings

We evaluate AMVim on the ImageNet-1K dataset, which includes 1,000 object classes, 1.28 million
training images, and 50,000 validation images. Images are augmented and resized to 224 x224 for
evaluation. This study focuses on the ImageNet-1K classification task, and we report top-1 validation
accuracy. All experiments are conducted with 4 x NVIDIA L40S GPUs.

The window size of AMVim is set to 3x3. AMVim is fine-tuned for 150 epochs with AdamW
optimization, initialized using the publicly available weights of Vim [6]. A batch size of 128 is used
with two-step gradient accumulation, resulting in an effective total batch size of 1,024. Additional
training details are listed in Table[9]in Appendix.

During token reduction, we employ the ToMe technique [18]] by default. To ensure a fair comparison,
token merging is applied to the even-indexed blocks, covering a total of 12 layers. In each layer, [5, 8,
11, 14] tokens are pruned, corresponding to reduction ratios of [0.17, 0.27, 0.36, 0.46].

4.2 Pruning Robustness Analysis

Comparison with SOTA methods.

To validate the advancement of the proposed ar- Table 1: Performance comparison with token prun-
chitecture, we compare AMVim with two state-  ing methods designed for Mamba on ImageNet-1K
of-the-art token pruning techniques specifically classification. AMVim achieves the highest top-1
designed for Mamba: Token Recognition [19] accuracy across different model scales while main-
and Hidden State Alignment [40]. For a fair taining comparable FLOPs.

comparison, these two methods are evaluated on
Vim [6] with a dual-path structure. Additionally,

reduction top-1 acc.(%) FLOPs (G)

method .

. - at - . -
we adhered to their fine-tuning protocols [40] M0 Tiny Small Tiny Small
during token reduction and reported the final Vim (baseline) 000  76.1 80.5 145 5.08
fine-tuned accuracy. Token Recognition [19] 0.17 713 748 128 3.57

' Hidden State Alignment [&0]  0.17  75.1 788 129 3.60
The results, presented in Table [I| show that  Amvim-ToMe (finetune) 017 753 79.5 127 3.60

AMVim consistently achieves the highest ac-

curacy across various model scales while maintaining comparable FLOPs. Specifically, AMVim-T
outperforms Token Recognition by 3.7% in accuracy, while AMVim-S achieves a 4.7% improvement.
Furthermore, AMVim-S exhibits only a 1% accuracy drop while reducing FLOPs by one-quarter,
significantly surpassing both Token Recognition and Hidden State Alignment. These results highlight
that instead of designing specialized token pruning methods for Mamba, addressing its architectural
fragility offers a more promising solution.

Robustness across various reduction ratios. Figure [4acompares the top-1 accuracy of our method
with recent state-of-the-art vision Mamba models across various token reduction ratios. As the
reduction ratio increases, all methods exhibit a predictable decline in performance due to increased
information loss. Our method consistently demonstrates superior robustness, outperforming Vim [6]
by approximately 30% across all reduction ratios. LocalVim [34]] shows improved robustness over
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Figure 4: Comparison with state-of-the-art vision Mamba methods in terms of top-1 accuracy and
throughput across various token reduction ratios. Our method demonstrates superior robustness
against Vim and LocalVim, while achieving comparable throughput with Vim and twice that of
LocalVim. This highlights that our method strikes a good balance between efficiency and robustness.

Vim by incorporating local modeling. However, it still lags significantly behind our method, especially
as the reduction ratio increases. Notably, even at a nearly threefold higher reduction ratio (0.46 vs.
0.17), our method still achieves higher accuracy than both Vim and LocalVim.

Figure [b] presents the computational throughput across methods. Our approach achieves throughput
comparable to Vim, with a marginal deficit of 200 img/s attributable to directional change operations.
In contrast, it delivers approximately 2x higher throughput than LocalVim, which incurs heavier
computational overhead from per-layer directional changes. These results collectively underscore our
method’s optimal trade-off between performance robustness and computational efficiency.

Robustness on various pruning methods.

To further validate the pruning robustness of AMVim, we introduce random token pruning, a
method that randomly discards tokens without relying on any pruning criteria (e.g., similarity or
importance). Table 2] compares the top-1 accuracy of Vim and AMVim under both token merging
and random pruning conditions. The results demonstrate that AMVim consistently outperforms
Vim by approximately 30% across all scenarios, irrespective of the pruning method employed. This
significant performance gap highlights the exceptional robustness of AMVim’s architecture, which
consistently delivers strong performance under any pruning method, solidifying its design superiority
over Vim.

Notably, AMVim exhibits inferior performance under random token pruning compared to token
merging. This observation is expected, as token merging leverages similarity as a guiding metric,
whereas random pruning lacks such guidance. In contrast, at reduction rates of 0.17 and 0.27, random
pruning yields better performance than token merging on Vim. This counterintuitive result suggests

Table 2: Random pruning vs. Token merging: Table 3: Performance comparison between Vim
top-1 accuracy (%) under various token reduc- and AMVim on ImageNet-1K. “ToMe” indicates
tion techniques. A denotes the performance token reduction applied via ToMe [18] for each
difference between Vim and AMVim. AMVim  method, with training-free accuracy reported. A
achieves roughly 30% higher accuracy than Vim  represents the performance gap between Vim and
across both token merging and token pruning AMVim. AMVim consistently outperforms Vim

methods. across both pruned and non-pruned settings.
operation reduction Vim-T AMVim-T A thod image #param FLOPs top-1 acc. A
@ methot
ratio (%) (%) (%) size M) (G) (%) (%)
0.17 427 72.4 29.74 Vim-T 2242 7 15 76.1 0
) 0.27 45.9 69.5 23.61 Vim-S 242 26 5.1 80.5 0
pruning
0.36 36.6 65.2 28.61 ToMe-Vim-T 2242 7 1.3 387 0
0.46 225 58.6 32.11 ToMe-Vim-S 2242 26 44 78.4 0
0.17 38.7 72.8 34.11 AMVim-T 2242 7 L5 763 021
) 0.27 41.6 70.3 28.71 AMVim-S 2242 26 5.1 807 021
mergin,
s 0.36 37.6 66.7 29.11 ToMe-AMVim-T 2242 7 13 728 3417
0.46 342 61.3 27.14 ToMe-AMVim-S 2242 26 44 792 081
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Figure 5: Illustration of the scanning directions commonly used in vision Mamba. The solid dot
represents the starting position.

that Vim’s performance degradation is not inherently tied to the pruning method but rather stems from
its architectural vulnerability, rendering the guiding metric ineffective. These findings collectively
highlight the resilience of AMVim’s architecture while exposing fundamental limitations in Vim’s.

4.3 Image Classification

Table 3| compares the performance of Vim and AMVim on the ImageNet-1K classification task with
an image size of 224 x224. The results show that AMVim consistently achieves higher top-1 accuracy
than Vim across various model scales while maintaining the same parameter count and FLOPs. This
improvement can be attributed to AMVim’s enhanced spatial awareness capability, which effectively
achieves the learning of both local dependency and global context.

With token reduction applied (reduction ratio = 0.16), AMVim-T exhibits a training-free accuracy drop
of only 3.8%, while AMVim-S shows an even smaller drop of 1.5%, approaching the performance of
ViT. Compared to Vim, AMVim-T delivers a substantial 34.1% improvement in pruned accuracy,
and AMVim-S shows a 0.8% increase. These results collectively demonstrate that AMVim not only
delivers superior robustness to token reduction but also enhances model expressive capability through
its innovative design. AMVim strikes a balance between performance and stability, emerging as a
powerful solution for vision tasks.

4.4 Semantic Segmentation

We evaluate AMVim on the downstream se- Table 4: Semantic segmentation performance on
mantic segmentation task using the ADE20K  ADE20K [42] val set with UperNet. “ToMe” de-
dataset [42], with results summarized in Ta- notes token merging applied via ToMe [18] in a
ble @l When integrated into the UperNet training-free manner. A indicates the improvement
framework [43], AMVim consistently outper- of AMVim over the Vim baseline. AMVim consis-
forms Vim across both full-precision and token- tently outperforms Vim, and when combined with
reduced settings. In the non-pruned setting, ToMe, achieves significantly higher mloU under
AMVim achieves improvements of +0.2% and  heavy pruning.

+0.1% mloU over Vim-Ti and Vim-S, respec-
tively, demonstrating enhanced representational

image #param valmloU A

cgpacity due to its multi-scale scanning mecha- method backbone sze M) %) %)
nism. UperNet Vim-Ti 5122 13 400 0
Under ToMe-based token reduction [[18], the  UperNet Vim-S 5122 46 433 0
performance advantage of AMVim becomes  UperNet — AMVim-Ti 5122 13 402 021
even more pronounced, yielding mloU gains  UperNet ~ AMVim-S 5122 46 434 o1t
of +5.9% and +6.7% over the corresponding ~ UperNet  ToMe-Vim-Ti ~ 512* 13 211 0
pruned Vim models. This significant improve- ~ UperNet ~ ToMe-Vim-S  512* 46 220 0
ment under aggressive token merging highlights ~ UperNet  ToMe-AMVim-Ti 5127 13 210 591
the robustness and generalization capability of ~ UperNet  ToMe-AMVim-S 5122 46 287 677

AMVim in dense prediction tasks. These results

confirm that AMVim not only improves accu-

racy in standard evaluation but also exhibits stronger generalization under token merging, making it a
more effective and reliable backbone for efficient downstream vision tasks.

4.5 Ablation Study

We conducted extensive ablation studies to validate the effectiveness of each component in AMVim.
The scanning directions involved in these experiments are shown in Figure[5] This study specifically



Table 5: Comparison of Symmetric and Asym- Table 6: Ablation study on the impact of the
metric Paths. /A denotes the performance gap be- window-aware scanning mechanism on top-1 ac-
tween Vim (i.e., D1-D2) and other dual-path con-  curacy (%) during token reduction. Integrating
figurations. Asymmetric paths demonstrate su- the window-aware scanning mechanism signifi-
perior pruning robustness than symmetric ones.  cantly enhances resilience to pruning.

ducti FLOPs  top-1 acc. A reduction  FLOPs  top-1 acc. A

pathl  path2 U oo nee pathl — path2 ;) G % %
ratio (G) (%) (%) ©) (%) (%)

- 0 1.45 76.1 0

0 1.45 76.1 0 ST, e 017 1.27 38.7 0

= == o171 1.27 387 0 ES=8 ES=a 027 113 416 0

= T 036 1.00 37.6 0

EEEn E=E 113 416 0 D1 D2 0.46 0.86 34.2 0
DI Do 0.36 1.00 37.6 0 5 I T 037
0.46 0.86 342 0 0.17 127 66.5 27.8+
0 T 760 o1l e E 027 1.13 65.1 2351
- == 0.36 1.00 61.2 23.61
= MM O 1.27 »9 17 DI D2D2 (46 0.86 569 2271
= A 027 1.13 54.5 12.91 0 1.45 75.8 0.30
DI - 0.36 1.00 486 1107 = 0.17 127 69.0 30.31
= =~ 027 1.13 67.0 2544

0.46 0.86 44.9 10.7 {:I

i 21036 1.00 63.6 26.01
0 1.45 74.9 1.20 Dl D2_rand (46 0.86 593 25.11

T 0.17 1.27 45.1 6.51 - 0 1.45 76.3 027
S 027 113 435 191 = . gé; H; ;ég ;g%
DI rand 0.36 1.00 33 L E==C {:J 0.36 1.00 67  29.11
0.46 0.86 34.1 0.14 DI D2_D4 0.46 0.86 61.3 27.11

focuses on dual-path configurations. For clarity, the hyphen symbol “-” represents the connection
between the two paths, with the ends indicating the directions of the main paths. The underscore
symbol “_” denotes the window-aware scanning mechanism, where the left end indicates the main path
direction and the right end reflects the scanning direction within the window. Here, D1-D2 represents
Vim [6], while D1-D2_D4 corresponds to AMVim. Additionally, the pruning-free performance
discussed in this study is defined as the performance at a reduction ratio of 0.

Effect of asymmetry. Table 5] compares the performance of symmetric (D1-D2) and asymmetric
paths (D1-D4 and D1-rand). While D1-D4 exhibits a marginal 0.1% decrease in pruning-free accuracy
compared to D1-D2, it achieves consistent improvements of >10% across all reduction ratios, with a
notable 17.2% gain at a reduction ratio of 0.17.

To further validate the importance of asymmetry, we introduce a random scanning direction in the
second path (D1-rand). This configuration yields the lowest pruning-free performance, as the random
path struggles to capture token relationships and impedes the training process. Despite its reduced
pruning robustness relative to D1-D4, D1-rand still significantly outperforms the symmetric D1-D2.
These results conclusively demonstrate that asymmetric path designs are essential for enhancing the
pruning resilience of Mamba-based architectures.

Effect of window-aware scanning. Table[6] presents the ablation study results for the window-aware
scanning mechanism, with global scanning directions aligned with Vim (D1-D2). For simplicity, this
study focuses on applying the window-aware scanning mechanism to the second path, as similar
trends are observed in the first path (see Table[I0]in the Appendix).

< 76.1 76.3 76.0 76.0 76.0 | 76.1 76.3 76.0 76.0 76.0
X R e e e Sttt
> 2.8 72 >
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(a) reduction ratio = 0.17 (b) reduction ratio = 0.36

Figure 6: Ablation study on the impact of window size on top-1 accuracy (%) during token reduction.
The symbol ’'r’ represents the reduction ratio. Across different reduction ratios, moderate window
sizes (i.e., 3x3 and 5x5) consistently demonstrate superior pruning resistance.
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Table 7: Ablation study on the impact of multi-
scale paths on top-1 accuracy (%) during token
reduction. Red text in brackets indicates win-
dow sizes. The single-path window-aware design
demonstrates superior robustness than the dual-
path mechanism, despite both retaining asym-
metric multi-scale properties.

Table 8: Ablation study on the impact of win-
dow scanning direction on top-1 accuracy (%)
during token reduction. The symbol A quanti-
fies performance differences relative to Vim (i.e.,
D1-D2). Distinct scanning directions between
the window and global path ensure superior re-
sistance to pruning.

ducti FLOPs  top-1 A ] ] reduction  FLOPs  top-1 acc. A
pathl  path2 O o lopaee pachl  path2 0 G) %) (%)
ratio © (%) (%) 0 145 76.1 0
0 1.45 76.1 0 — 017 1.27 38.7 0
= == o7 127 387 0 E==3 E==a 027 L13 41.6 0
E==d ESss S 036 1.00 376 0
= I 113 41.6 0 DI D2 0.46 0.86 342 0
DI D2 0.36 1.00 376 0 0 45 764 037
0.46 0.86 342 0 = =s 0.17 1.27 66.5 27.81
0 5 752 081 — {j 0.27 113 65.1 2351
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The results reveal that introducing a same-direction window-aware scanning mechanism (D1-D2_D2)
already significantly enhances pruning robustness, underscoring the importance of local dependency
modeling in improving architectural robustness. When the main path and window scanning directions
are further diversified (D1-D2_D4), performance improves by an additional 5% compared to D1-
D2_D2, reinforcing the effectiveness of asymmetric design in boosting pruning resilience. Notably,
the pruning-free performance increases by 0.3% for D1-D2_D2 and 0.2% for D1-D2_D4, highlighting
the mechanism’s ability to enhance model representation through local dependency capture.

When the window scanning direction is randomized (D1-D2_rand), its pruning robustness lies between
D1-D2_D2 and D1-D2_D4, underscoring the irreplaceability of asymmetry and the importance
of semantic relationship modeling. Additionally, the pruning-free performance of D1-D2_rand
decreases by only 0.3%, demonstrating that the window mechanism effectively mitigates randomness
by coordinating global and local information flows.

Effect of window size.

Window size is a critical hyperparameter introduced in this study. To assess its impact on performance,
we conducted extensive ablation studies, as shown in Figure [f] In these experiments, the global path
remains aligned with Vim (D1-D2), while the second path incorporates the window-aware scanning
mechanism. Notably, a window size of 1x1 corresponds to the D1-D2 configuration, whereas a
window size of 14 14 corresponds to the D1-D4 configuration.

The results reveal that the window size has a relatively minor effect on pruning-free performance, with
optimal performance achieved at 3 x3. However, token reduction performance exhibits significant
fluctuations as the window size varies, with this trend remaining consistent across all reduction ratios
(r = 0.17 in Figure [6a] and r = 0.36 in Figure [6b). The optimal pruning robustness is observed at
intermediate window sizes (3x3 and 5x5), whereas excessively small or large windows all lead to a
performance collapse.

This behavior is expected, as the window-aware mechanism is specifically designed to capture local
dependencies. However, larger window sizes exacerbate Mamba’s long-range forgetting issue [, 35],
reducing its effectiveness. Furthermore, the poor robustness of the 1x1 and 14 x 14 window sizes
results from their deviation from the multi-scale path design. These findings demonstrate that careful
window size selection is essential for harmonizing local dependencies with global context, a key
factor in maximizing the efficacy of the multi-scale architecture.

Effect of multi-scale path. The proposed design integrates window-aware scanning into one path



while retaining sequential scanning in the other, forming asymmetric multi-scale paths. This raises a
natural question: can a dual-path window-aware mechanism achieve comparable performance by
varying window sizes?

As shown in Table (/] the dual-path window-aware configuration (D1_D5(5)-D2_D4(3)) underper-
forms the single-path window-aware design (D1-D2_D4), despite both maintaining asymmetric
multi-scale properties. This performance gap arises from the homogeneous scanning mechanisms in
dual window-aware paths. While varying window sizes introduce scale diversity, the lack of receptive
field heterogeneity limits their ability to capture hierarchical spatial dependencies. In contrast, the
single-path window-aware design achieves superior robustness through heterogeneous scanning
mechanisms, balancing local granularity and global continuity.

Effect of scan direction. Table [§] summarizes ablation studies on the scanning direction within
windows, with the global scanning direction fixed to align with Vim (D1-D2). The results show that
when the window and main path share the same scanning direction (D1-D2_D?2), accuracy drops
by approximately 7% compared to heterogeneous scanning directions (D1-D2_D6 and D1-D2_D4).
Although D1-D2_D2 maintains an asymmetric path design, its diversity in token connections remains
significantly lower than that of the heterogeneous configurations, which primarily accounts for its
inferior performance.

Additionally, we observe that as long as the scanning direction within the window differs from the
main path, the performance remains largely comparable (i.e., D1-D2_D6 vs. D1-D2_D4). While
D1-D2_D6 exhibits slightly better pruning robustness, D1-D2_D4 offers a marginal pruning-free
performance improvement of 0.1%. In this study, we adopt D1-D2_D4 as our default architecture,
but we will release weights for both configurations to allow flexibility in choice. These findings
collectively demonstrate that pruning robustness is ensured by heterogeneous scanning directions
between the window and main path, regardless of the specific direction chosen.

5 Conclusion

In this work, we propose AMVim, a vision Mamba architecture designed for pruning robustness. By
incorporating a window-aware scanning mechanism into one of paths, AMVim enables asymmetric
multi-scale scanning. Extensive experiments have verified the effectiveness and high robustness of
AMVim, laying a foundation for future research on the stability of SSM-based models.

Limitations. Due to resource constraints, we have not yet fully explored the scalability of AMVim,
such as validating its efficacy on multi-task scenarios or integrating it with cross-modal frameworks.
Despite these limitations, our experiments conclusively demonstrate AMVim’s superiority in pruning
robustness and spatial modeling, and we plan to investigate its broader applicability in future work.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately capture the paper’s contributions and
scope, with claims supported by results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses its limitations in the conclusion, providing transparency
about the boundaries of the work and guiding future research directions.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The method pipeline and experimental details are presented along with corre-
sponding reproducible credentials.
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» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All data sources used in this study are clearly cited in the paper, and the code
will be uploaded in a zipped format.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Comprehensive training and testing details are provided in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results include the standard deviation calculated from multiple random
runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed information about computational resources in the experi-
mental settings.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research presented in this paper complies with the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper addresses both the potential positive contributions and possible
negative societal impacts of the research.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original owners of the data and models used in the paper are properly
credited, and the licenses and terms of use are clearly stated and fully respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are thoroughly documented and made
available along with the existing ones.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implement Details

AMVim is fine-tuned using the pretrained weights from Vim. The detailed training configurations are
presented in Table[] All other settings are aligned with those of Vim.

Table 9: Training settings for AMVim on  Table 10: Comparison results with window-

ImageNet-1K. aware scanning mechanism applied on various
finetune config AMVim-T AMVim-§ paths. The window-aware mechanism on the
optimizer AdamW AdamW second path exhibits stronger pruning resistance
base learning rate 4e-5 le-5 than on the first path.
minimal learning rate le-5 Se-6 pathl  path2 red. ratio FLOPs(G) top-1acc(%) A (%)
weight decay le-8 0.05 ey ey O 1.45 76.1 0
optimizer momentum | $1,82=0.9,0.999  41,32=0.9,0.999 S e 8'% ﬁ; jfl"g 8
batch size 1024 1024 ey peeitm ():36 1:00 37i6 0
training epochs 150 150 D1 D2 0.46 0.86 34.2 0
learning rate schedule cosine decay cosine decay ol gy O 1.45 76.4 0.37

vy = 0.17 1.27 72.3 33.61

warmup epochs 3 3 - 027 1.13 702 28.61
warmup learning rate le-5 le-5 “=— 036 1.00 65.4 27.8%
warmup schedule linear linear D1_D3 D2 0.46 0.86 56.8 22.61
drop path 0 03 - 0 145 763 027
. 08 08 = 0.17 1.27 72.8 34.11
Txup : : = E 0.27 113 70.3 28.71
cutmix 1 1 e = 036 1.00 66.7 29.14
EMA None None DI D2D4 o046 0.86 61.3 27.11

B More Experiments

Impact of window-aware on various paths. To further validate the superiority of our design,
we applied the window-aware scanning mechanism to the first path (D1_D3-D2) for comparison.
As shown in Table[T0} both configurations exhibit comparable performance at reduction ratios of
0.17 and 0.27. However, as the reduction ratio increases, the D1-D2_D4 configuration significantly
outperforms D1_D3-D2. This indicates that while the window-aware mechanism benefits either
path, its integration into the second path yields optimal performance, particularly under aggressive
pruning scenarios. Impact of the global scanning direction. In this work, we align the global
scanning direction with Vim (i.e., D1-D2). To investigate the impact of global scanning direction,
we conducted experiments by changing the global scanning direction of the second path from D2
to D4. As shown in Table E], when the intra-window scanning direction is set to D2 (D1-D4_D2),
pruning robustness improves but remains inferior to configurations with intra-window direction D6
(D1-D4_D6). This performance gap likely stems from the significant overlap in token connections
and receptive fields between the D1 and D2 directions, limiting their complementary information
flow.

Furthermore, while D1-D4_D6 achieves notable improvements in pruning robustness, it still under-
performs our design with global direction D2 (D1-D2_D4) by approximately 2% in accuracy. These
results demonstrate that the choice of global scanning direction is critical when combined with the
window-aware mechanism.

Impact of sequential scanning path. To further investigate the role of the sequential scanning
branch, we implemented the window-aware scanning mechanism on both paths. As shown in Table[I2]
regardless of the intra-window scanning direction, these configurations achieve comparable pruning
robustness. While they significantly outperform Vim (which relies solely on sequential scanning) due
to the stability introduced by the window-aware mechanism in capturing local dependencies, they
exhibit performance degradation in pruning-free settings compared to Vim. This underscores the
importance of sequential scanning for preserving base performance.

The proposed architecture combines sequential scanning with window-aware scanning, inheriting
the strengths of both strategies. This combination achieves an optimal balance between pruning
robustness and model performance.
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Table 11: Ablation study on the impact of global  Tuple 12: Ablation study on the impact of

scanning directions. A denotes the performance e sequential scanning path. /A represents

gap relative to Vim (i.e., D1-D2). When inte-  the performance gap relative to Vim (i.e., D1-

gra'lted with the windovx{-awa.re sc.:anning mech- D2). While the dual-path window-aware design

anism, the global scanning direction D2 outper-  gemonstrates superior pruning robustness com-

forms D4. pared to Vim, it suffers from performance degra-
pathl  path2 red. ratio FLOPs(G) top-1acc(%) A (%) dation in pruning_free set’[ings,

0 1.45 76.1 0 pathl path2 red. ratio FLOPs(G) top-1acc(%) A (%)

0.17 1.27 38.7 0 0 1.45 76.1 0

0.27 1.13 41.6 0 0.17 1.27 38.7 0

0.36 1.00 37.6 0 027 1.13 416 0

0.46 0.86 34.2 0 036 1.00 37.6 0

0 1.45 76.2 0.17 0.46 0.86 342 0
0.17 1.27 59.7 2111 = 0 1.45 75.8 0.3}
[] 07 113 59.2 17.61 = BN 017 1.27 69.8 31.2¢
om0 a0 ssom How oo 2

0.46 0.86 511 17.01 DI_DI D2_D2

0.46 0.86 583 2421
SR R T
g e oW BTN W
= 5 L b1 B . N A T
DI Dipe 036 1.00 64.0 26.51 o1 b3 D2 Da 036 1.00 61.8 2437
0.46 0.86 587 2457 - - 0.46 0.86 56.3 22.11
0 145 76.3 021 0 145 75.4 0.6
0.17 1.27 72.8 34.11 E 0.17 1.27 70.6 31.91
@ 0.27 1.13 70.3 28.71 0.27 1.13 67.5 2591
pi p2ps O3 LT Sy 29.11 DI_D3 D2.D6 -0 1.00 63.5 2591
T 046 0.86 613 27.11 0.46 0.86 583 2421
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