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Entity Disambiguation with Extreme Multi-label Ranking
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ABSTRACT
Entity disambiguation is one of the most important natural lan-
guage tasks to identify entities behind ambiguous surface mentions
within a knowledge base. Although many recent studies apply
deep learning to achieve decent results, they need exhausting pre-
training and mediocre recall in the retrieval stage. In this paper, we
propose a novel framework, eXtremeMulti-label Ranking for Entity
Disambiguation (XMRED), to address this challenge. An efficient
zero-shot entity retriever with auxiliary data is first pre-trained
to recall relevant entities based on linear models. Specifically, the
retrieval process can be considered as an extreme multi-label rank-
ing (XMR) task. Entities are first clustered at different scales to
form a label tree, thereby learning multi-scale entity retrievers over
the label tree with high recall. Moreover, XMRED applies deep
cross-encoder as a re-ranker to achieve high precision based on
high-quality candidates. Extensive experimental results based on
the AIDA-CoNLL benchmark and five zero-shot testing datasets
demonstrate that XMRED obtains 98% and over 95% recall scores
for in-domain and zero-shot datasets with top-10 retrieved entities.
With a deep cross-encoder as the re-ranker, XMRED further out-
performs the previous state-of-the-art by 1.74% in In-KB micro-F1
scores on average with a significant improvement on the training
efficiency from days to 3.48 hours. In addition, XMRED also beats
the state-of-the-art for page-level document retrieval by 2.38% in
accuracy and 1.90% in recall@5.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Informa-
tion systems→ Information retrieval.

KEYWORDS
extreme multi-label classification, entity disambiguation, entity
retriever
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1 INTRODUCTION
Entity disambiguation is one of themost crucial steps in understand-
ing languages by automatically ironing out references of named en-
tities for various real-world applications, such as entity linking [27],
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relation extraction [26], and knowledge-aware retrieval [16]. Specif-
ically, entity disambiguation models aim to identify the ground
truth entity within a given knowledge base behind its mention,
which is a contiguous text span referring to the entity. For example,
the mention of “Michael Jordan” could refer to either a professor
in a computer science article or a basketball player in sports news,
depending on the context.

To capture semantics about the named entity, it is essential to
exploit the context information (i.e., the surrounding text of the
mention), so contextualized neural language models (NLMs), such
as BERT [6] and ELMo [31], have already become a go-to solution
in the deep learning era. For instance, NLMs can derive continuous
representations of mentions [1, 28] while bi-encoders and cross-
encoders can also jointly model candidates for entity classification
and ranking [2, 15, 36, 39]. NLM-based sequence-to-sequence mod-
els decode entity titles from the mention and its context [3, 5].
However, existing approaches could suffer from their complexity
for candidate selection and exhausting pre-training.

A knowledge base is usually enormous with millions of entities.
Deep learning models could be too complicated to consider the
whole entity space. Accordingly, most of the previous studies rely
on a small and pre-defined candidate set derived from the mention-
entity prior of a large-scale annotated corpus [10, 30]. However,
the dependency on external annotations can be risky and harmful
for both accuracy and evaluation. First, the quality of candidate
sets significantly affects the task difficulty while different candidate
sets result in distinct prediction accuracy for a certain model [40].
Second, the distribution of the prior can be inappropriate to the
dataset, especially when mentions may not have annotations in the
external corpus [39].

To achieve decent accuracy, training large-scale NLMs for entity
disambiguation is challenging because of both data quality and
sparsity. As a result, previous approaches usually pre-train their
models with external annotations in order to obtain state-of-the-art
results. However, pre-training NLMs with an extensive corpus is
time-consuming. For example, many studies conducted pre-training
with Wikipedia hyperlinks [1–3, 5], which could take weeks even
with multiple GPUs. Besides, pre-training on external annotations
could also cause information leaks as many benchmark datasets for
evaluation are constructed from these signals [12].

In this paper, we propose eXtreme Multi-label Ranking for Entity
Disambiguation (XMRED) to address the above challenges. Specif-
ically, we treat entity disambiguation as an eXtreme Multi-label
Ranking (XMR) task to retrieve high-quality relevant entities for
a mention. First, XMRED derives bag-of-words instance features
while a label tree can be built based on positive instance feature
aggregation (PIFA) to semantically index all label entities. Second,
an XMR-based entity retriever is learned over the label tree so that
we can efficiently derive relevant entities from the whole entity
space with high recall using beam search. Finally, XMRED learns
a BERT-based cross-encoder to re-rank the retrieved entities for
achieving better precision on final prediction.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’24, May 13–17, 2024, Singapore Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Pre-training Stage

Retrieval Stage

Re-ranking Stage

Training Data

Knowledge
Base

mention context
Auxiliary

Data

title abstract

Feature
Extraction

<latexit sha1_base64="bMCRzZO/dFBUwsROiWBz6EjjJZo=">AAACB3icbVDLSsNAFJ3UV1sfjboR3AwWoYKURES7LLpxWcE+oA1hMp22Q2eSMDMRYwi49Rvc6lpwIW79DMGNf+L0sbCtBy4czrmXczleyKhUlvVlZJaWV1bXsrn8+sbmVsHc3mnIIBKY1HHAAtHykCSM+qSuqGKkFQqCuMdI0xtejvzmLRGSBv6NikPicNT3aY9ipLTkmoVSx+PJnUvTYxi79Mg1i1bZGgMuEntKitW9++/cw9tFzTV/Ot0AR5z4CjMkZdu2QuUkSCiKGUnznUiSEOEh6pO2pj7iRDrJ+PEUHmqlC3uB0OMrOFb/XiSISxlzT29ypAZy3huJ/3ntSPUqTkL9MFLEx5OgXsSgCuCoBdilgmDFYk0QFlT/CvEACYSV7momxeOp7sSeb2CRNE7K9ln59FqXUwETZME+OAAlYINzUAVXoAbqAIMIPIFn8GI8Gq/Gu/ExWc0Y05tdMAPj8xcqXpw+</latexit>

(xi, yi)

Training
Instances

Positive Instance
Feature Aggregation

(PIFA)

label

<latexit sha1_base64="IxBu9sBx6XVTqdOtWjWHexbP9e0="></latexit>{x` | ` 2 L}
Entity Features

Hierarchical
Label Tree

Hierarchical
Clustering

Extreme Multi-Label
Ranking Model

<latexit sha1_base64="919ukrLsHkKCRKcPMK6apxKBtOw=">AAAB+3icbVA9SwNBFNzzM8avqKUgi0GwCncims6AjWUCXhJIjrC32UuW7N4du++EcFxpbau1ndgKqfwfltb+CTcfhUkcWBhm3vDejh8LrsG2v6yV1bX1jc3cVn57Z3dvv3BwWNdRoihzaSQi1fSJZoKHzAUOgjVjxYj0BWv4g9ux33hgSvMovIdhzDxJeiEPOCVgJLfdjUB3CkW7ZE+Al4kzI8Wbz1Ht5/FkVO0Uvk2OJpKFQAXRuuXYMXgpUcCpYFm+nWgWEzogPdYyNCSSaS+dHJvhM6N0cRAp80LAE/VvIiVS66H0zaQk0NeL3lj8z2slEJS9lIdxAiyk00VBIjBEePxz3OWKURBDQwhV3NyKaZ8oQsH0M7fFl5npxFlsYJnUL0rOVemyZhcrZTRFDh2jU3SOHHSNKugOVZGLKOLoCT2jFyuzXq036306umLNMkdoDtbHL7aemZ8=</latexit>. . .

Training

Testing
Instance

Retrieved
Entities

<latexit sha1_base64="nmgcXyyIpjYg3EgCUzK0BSFwJxk=">AAACAXicbVDLSgMxFM34rPVVdSlIsAiuyoyIdmfBTZct2AdMS8mkmTY0jyHJCGXoSvwEt7p2J64Kgv/h0rU/YabtwrYeCBzOuZd7coKIUW1c98tZWV1b39jMbGW3d3b39nMHh3UtY4VJDUsmVTNAmjAqSM1Qw0gzUgTxgJFGMLhN/cY9UZpKcWeGEWlz1BM0pBgZK/ktjkwfI5aUR51c3i24E8Bl4s1I/uZzXP15PBlXOrnvVlfimBNhMENa+54bmXaClKGYkVG2FWsSITxAPeJbKhAnup1MIo/gmVW6MJTKPmHgRP27kSCu9ZAHdjKNqBe9VPzP82MTFtsJFVFsiMDTQ2HMoJEw/T/sUkWwYUNLEFbUZoW4jxTCxrY0dyXgaSfeYgPLpH5R8K4Kl1U3XyqCKTLgGJyCc+CBa1ACZVABNYCBBE/gGbw4D86r8+a8T0dXnNnOEZiD8/ELZCGcOw==</latexit>H

Cross
Encoder

Knowledge
Base title abstract

mention context
Input Data

Candidate Entity

Rank
Score

C
oncatenation

Fine-tune

<latexit sha1_base64="ksKAj9H3bHFfh6XOSNbdfQjknC0=">AAAB/HicbVA9SwNBEJ2LXzF+RS0FOQyCVbgT0XQGbCwTMB+QhLC32UvW7O4du3tiOGJnb6u1ndhKKv+HpbV/wr0khUl8MPB4b4aZeV7IqNKO82WllpZXVtfS65mNza3tnezuXlUFkcSkggMWyLqHFGFUkIqmmpF6KAniHiM1r3+V+LU7IhUNxI0ehKTFUVdQn2KkjVRtejy+H7azOSfvjGEvEndKcpefo/LP4+Go1M5+NzsBjjgRGjOkVMN1Qt2KkdQUMzLMNCNFQoT7qEsahgrEiWrF42uH9rFROrYfSFNC22P170SMuFID7plOjnRPzXuJ+J/XiLRfaMVUhJEmAk8W+RGzdWAnr9sdKgnWbGAIwpKaW23cQxJhbQKa2eLxJBN3PoFFUj3Nu+f5s7KTKxZggjQcwBGcgAsXUIRrKEEFMNzCEzzDi/VgvVpv1vukNWVNZ/ZhBtbHL68imi4=</latexit>x

<latexit sha1_base64="+XsUgGizsUYiMgO+nMqVxEVmyTw=">AAACAXicbVC7SgNBFJ2Nrxhf0ZQ2gyFgFXZFNGXAxjKCecBmCbOT2WTIzM4yMyssy1b6C7Za24mtvf+gnY1f4Ac4m6Qw0QMXDufcy733+BGjStv2u1VYWV1b3yhulra2d3b3yvsHHSViiUkbCyZkz0eKMBqStqaakV4kCeI+I11/cpH73RsiFRXhtU4i4nE0CmlAMdJGcvtjpNMkG6STbFCu2nV7CviXOHNSbVZqd99vXx+tQfmzPxQ45iTUmCGlXMeOtJciqSlmJCv1Y0UihCdoRFxDQ8SJ8tLpyRmsGWUIAyFNhRpO1d8TKeJKJdw3nRzpsVr2cvE/z4110PBSGkaxJiGeLQpiBrWA+f9wSCXBmiWGICypuRXiMZIIa5PSwhaf55k4ywn8JZ2TunNWP70y4TTADEVwCI7AMXDAOWiCS9ACbYCBAPfgATxat9aT9Wy9zFoL1nymAhZgvf4AInCcuw==</latexit>

ŷk
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Figure 1: The overall illustration of the XMRED framework.

Overall, the contributions of this paper are three-fold.
• First, XMRED establishes the label tree of the entity space

so that the hierarchical relations among entities can not
only address the data sparsity but also alleviate the need of
external annotations for candidate selection.

• Second, we show that simple models and representations,
such as linear models with bag-of-words features, are suffi-
cient to retrieve high-quality candidate entities with great
efficiency. Specifically, XMRED can obtain 98% and over
95% recall for in-domain and zero-shot datasets.

• Third, we demonstrate that pre-training with a colossal
amount of external annotations can be unnecessary when
it comes to better candidate entities. Extensive experiments
on AIDA-CoNLL and five zero-shot datasets demonstrate
that XMRED outperforms competitive baseline methods
in entity disambiguation by 1.74% in micro-F1 on average.
In addition, XMRED also beats the state-of-the-art results
for page-level document retrieval with 2.38% and 1.90%
improvements in accuracy and recall@5.

2 XMRED: EXTREME MULTI-LABEL
RANKING FOR ENTITY DISAMBIGUATION

In this section, we introduce our framework, eXtreme Multi-label
Ranking for Entity Disambiguation (XMRED).
Problem Statement. Suppose that a knowledge base has a set of
entities L as the space of label entities. Given a document 𝑋 =

{𝑥1, 𝑥2, . . . , 𝑥 |𝑊 | } that consists of a sequence of tokens 𝑥𝑖 , for a
certain mention𝑚 = [𝑥𝑠𝑚 , . . . , 𝑥𝑠𝑚+|𝑚 | ], our goal is to identify the
ground truth entity behind the mention, where 𝑥 𝑗 is the 𝑗-th token
of the document; 𝑥𝑠𝑚 is the starting token of the mention𝑚 within
a |𝑚 |-token span. For simplicity, we define𝑚 and its document as
an input instance for the machine learning model to determine the
entity behind the mention.
Framework Overview. Figure 1 shows the illustration of our pro-
posed XMRED framework. XMRED first constructs a hierarchical
label tree H to leverage relations among label entities, thereby
training an extreme multi-label ranking model. After retrieving a
few relevant entities, XMRED treats them as candidates and learns a
deep cross-encoder to provide a rank score 𝑟𝑘 for each candidate 𝑦𝑘 .

2.1 Bag-of-words Instance Features
XMRED utilizes simple features and models to efficiently retrieve
relevant entities for entity disambiguation. In this work, we use
unigram and bigram TF-IDF vectors [25] as bag-of-words instance
features to represent both mentions and contexts. Formally, we
derive the feature vector of a certain mention𝑚 by concatenating
mention and context features as

𝒙𝑚 = [TFIDF𝑚 (𝑚); TFIDF𝑐 (𝑋 )] ∈ R𝑑 , (1)

where the functions TFIDF𝑚 (·) and TFIDF𝑐 (·) featurize the texts
of mentions and contexts into TF-IDF vectors; 𝑑 is the feature
dimension.

2.2 Hierarchical Semantic Indexing
With the features of training instances, it is intuitive to learn a
machine learning model to compute relevance scores of all label
entities for relevance ranking. However, there are two caveats when
it comes to entity disambiguation and extreme multi-label ranking.
First, the enormous label entity space L could have millions of
entities so that both training and inference would be inefficient.
Second, the accuracy for tail entities might fall short because of
limited training instances.

To address these issues, we propose to conduct hierarchical se-
mantic indexing for label entities by establishing a label tree based
on clustering as shown in Figure 2. Through the label tree, tail
entities can leverage other semantically similar entities within the
same clusters while the efficiency can be also significantly boosted.
Positive Instance Feature Aggregation (PIFA). Following stud-
ies in the field of extreme multi-label ranking [44], for entities in
L, XMRED adopts positive instance feature aggregation (PIFA)
to derive label features that are related to entity disambiguation.
Specifically, the label features 𝒛ℓ for an entity ℓ ∈ L can be com-
puted by aggregating the features of mentions whose ground truth
entities match the label entity. Given the mention set Mℓ of the
entity ℓ in the training data, the PIFA features 𝒛ℓ for entity ℓ can be
computed as follows:

𝒛ℓ =
𝒗ℓ
∥𝒗ℓ ∥

, where 𝒗ℓ =
∑︁

𝑚∈Mℓ

𝒙𝑚 . (2)

Label Tree Construction via Clustering. To establish a label tree
for the entities, XMRED conducts hierarchical clustering. Suppose
the root node of a label treeH represents all of the label entities in

2
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Figure 2: An example label tree with eight entities. Note
that the semantics of nodes are not given, and ideally to be
implicitly determined by hierarchical clustering.

Algorithm 1: BuildLabelTree(𝐿, 𝑍, 𝐾, 𝐵)
Input: Entity set 𝐿 ⊂ L, label features 𝑍 = {𝒛ℓ | ℓ ∈ 𝐿},

cluster number 𝐾 , stopping criterion 𝐵.
Output: Constructed label treeH .

1 LetH = {𝑟 } with a root 𝑟 serving all labels;
2 Assign the representative entities 𝑟 .𝐿 = 𝐿;
3 Initialize the child nodes N(𝑟 ) = ∅;
4 if |𝐿 | ≤ 𝐵 then
5 for ℓ ∈ 𝐿 do
6 Add a leaf node 𝑢 into N(𝑟 ) into H ;
7 𝑢.𝐿 = {ℓ}, 𝑢.label = ℓ ,;

8 else
9 Perform balanced 𝐾-means to partition 𝐿 into 𝐾 clusters

{𝐶 (𝑟 )
𝑖

} using 𝑍 ;
10 for 𝑖 = 1 . . . 𝐾 do
11 𝑍𝑖 = {𝒛ℓ | ∀ℓ ∈ C𝑖 };
12 H𝑖 = BuildLabelTree(𝐶 (𝑟 )

𝑖
, 𝑍𝑖 , 𝐾, 𝐵);

13 Add the root ofH𝑖 into N(𝑟 );

14 return H ;

L while each node exclusively contains a subset of representative
entities from its parent. As shown in Algorithm 1, the balanced 𝐾-
Means algorithm recursively partitions the representative entities 𝐿
of a node 𝑣 into𝐾 clusters {𝐶𝑖 } for child nodesN(𝑣) until |𝐿 | meets
the stopping criterion 𝐵. Note that although we adopt balanced
𝐾-Means as many existing XMC studies [33, 44] for the ease of
training and inference, it can simply be replaced with arbitrary
clustering algorithms. As a result, H consists of O(|L| log |L|)
nodes, including |L| leaf nodes for label entities ℓ ∈ L and other
non-leaf nodes that implicitly gather entities with similar semantics.

2.3 eXtreme Multi-label Ranking (XMR) for
Entity Retrieval

XMRED treats entity retrieval as an XMR task and learns to rank the
representative entities L𝑣 of nodes 𝑣 in the established label treeH .
Given the hierarchical structure ofH , XMRED is able to efficiently

perform beam search to identify the most relevant entities for a
given input instance.
One-Versus-All Linear Ranker. For each non-leaf node 𝑣 inH ,
XMRED learns a one-versus-all linear model to rank its child nodes
N(𝑣). Formally, for each child node 𝑢 ∈ N (𝑣), we learn a linear
ranker ℎ𝑣 (𝒙, 𝑢) parameterized by the model weights𝒘𝑣𝑢 ∈ R𝑑 as:

ℎ𝑣 (𝒙, 𝑢) = 𝒘𝑣𝑢
⊺𝒙 . (3)

The ranker can then be easily learned by a linear SVM [7] with the
following loss function as follows:∑︁

(𝒙,𝑦) ∈D

∑︁
𝑢∈N(𝑣)

Loss(𝒙, 𝑦,𝑢, ℎ𝑣) +
_

2

∑︁
𝑢∈N(𝑣)

∥𝒘𝑣𝑢 ∥2, (4)

Loss(𝒙, 𝑦,𝑢, ℎ𝑣) = max(0, 1 − 1[𝑦 ∈ 𝑢.𝐿] · ℎ𝑣 (𝒙, 𝑢)), (5)
where D is a proper training dataset; 1 [𝑦 ∈ 𝑢.𝐿] ∈ {+1,−1} indi-
cates whether the ground truth entity 𝑦 is covered by the repre-
sentative entities 𝑢.𝐿 of the child node 𝑢 ∈ N (𝑣). Finally, we can
further obtain a probabilistic rank score for the child 𝑢 of the node
𝑣 by applying the sigmoid function as:

𝑃 (𝑢 | 𝒙, 𝑣) = sigmoid(ℎ𝑣 (𝒙𝑖 , 𝑢))). (6)

Note that although TF-IDF could result in a high-dimensional space,
the features 𝒙 are actually extremely sparse. Therefore, the ranker is
very efficient since the predictions only involve non-zero elements
in the feature vector. Moreover, we also prune the model weight
𝒘𝑣𝑢 by a threshold 𝛿 to further reduce model size and inference
cost.
Hard Negative Sampling. Using all training instances for training
O(|L| log |L|)) models is infeasible when the knowledge base has
millions of label entities. To tackle this problem, XMRED identifies
hard negative samples to not only boost training, but also achieve
better performance. Precisely, we utilize Teacher-Forcing Negatives
(TFN) [18, 37]. To train the weights𝒘𝑣𝑢 for the ranker ℎ𝑣 , XMRED
collects the eligible TFN samples whose labels are also covered by
the parent node 𝑣 as follows:

{(𝒙neg, 𝑦neg) | 𝑦neg ∈ 𝑢′ .𝐿,𝑢′ ≠ 𝑢,𝑢′ ∈ N (𝑣)}. (7)

Zero-shot Entity Retriever with Auxiliary Data. Conventional
training data for entity disambiguation is usually sparse. For exam-
ple, whileWikipedia involves millions of entities, AIDA-CoNLL [14]
only contains training instances for thousands of them. To deal
with the cold-start issue, XMRED leverages the knowledge base and
the metadata from a Cirrus Search Wikipedia dump. Specifically,
for each label entity, we treats title and abstract as the mention and
context to construct a pseudo training instance.

Note that in this paper we do not use the hyperlinks inWikipedia
as additional datasets for learning or pre-training as some previous
studies [1, 5, 41]. This is because many benchmark datasets, such as
AIDA-CoNLL [14] and WNED-WIKI [11], are actually produced by
hyperlinks. Hence, exploiting those signals would lead to leakage
and unfair experiments. This phenomenon can also be observed in
our study as shown in Table 3, and 4, and 5.
Fast Inference with Beam Search. To efficiently retrieve relevant
entities, XMRED applies beam search [44] through the label tree
as shown in Algorithm 2. Precisely, for each level of the label tree,
beam search examines all children 𝑢 ∈ N (𝑣) of searched nodes

3
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Algorithm 2: EntityRetriever(𝒙,H , 𝑏, 𝑅)
Input: Input features 𝒙 , label treeH , beam size 𝑏, # of

returned entities 𝑅
Output: Relevant entities [. . . , 𝑦𝑘 , . . . ].

1 Let 𝑇 be the depth ofH ;
2 Beams = [H .root];
3 for 𝑡 = 2 . . .𝑇 do
4 if |Beams| > 𝑏 then
5 Beams = Beams[:b];
6 Candidates = [];
7 for 𝑣 ∈ Beams do
8 for 𝑢 ∈ N (𝑣) do
9 Candidates.append(𝑢);

10 Sort Candidates by the score 𝑝𝑢 ;
11 Beams = Candidates;
12 RelEntities = [];
13 for 𝑖 = 1 . . . 𝑅 do
14 RelEntities.append(Beams[i].label);
15 return RelEntities;

𝑣 from the previous level, and only keeps top-𝑏 child nodes in
the beam based on their relevance scores 𝑝𝑢 . When it comes to
the bottom level with the leaf nodes, XMRED retrieves the top-𝑅
candidates as the retrieved entities. In this study, we leverage the
whole search path from the root and estimate the relevance score
𝑝𝑢 of a node 𝑢 as:

𝑝𝑢 = 𝑝𝑣 · 𝑃 (𝑢 | 𝒙, 𝑣), (8)

where 𝑣 is the parent node of 𝑢. Therefore, XMRED can obtain top
relevant entities in𝑂 (𝑑 |L| log |L|) computational time complexity.
Note that the hyper-parameters𝑏 and𝑅 are not part of the amortized
time complexity because the children of nodes in the same level
are mutually exclusive.

2.4 Cross-encoder as a Re-ranker
To precisely identify the entity, we further deploy a BERT-based
cross-encoder [6] to re-rank the relevant candidates retrieved in
XMR. Note that in this study we use the cross-encoder as an exam-
ple, but the re-ranker can be simply replaced by arbitrary models.

For each retrieved candidate entity 𝑦𝑘 , we concatenate its title
and abstract in the knowledge base with the mention and context as
the input for the cross-encoder. Specifically, we apply RoBERTa [23]
to derive the score 𝑟𝑘 for re-ranking as:

𝑟𝑘 = F (RoBERTa(title�̂�𝑘 </s>abs�̂�𝑘 </s>𝑚</s>𝑐𝑚)), (9)

where title�̂�𝑘 and abs�̂�𝑘 are the title and abstract of the retrieved
candidate 𝑦𝑘 in the knowledge base; F is a fully-connected hidden
layer to produce the ranking score 𝑟𝑘 . To learn the re-ranker, we
simply apply binary cross-entropy [13] as the loss function for
optimization. Specifically, for each training mention, we collect
top-𝑅′ retrieved entities derived by XMRED so that non-hit entities
can be considered as hard negative examples. Note that the number
of retrieved entities in training 𝑅′ may differ from the number 𝑅

Dataset Topic # Docs # Mentions
AIDA (training) News 18,448 946

AIDA (devlopment) News 4,791 216
AIDA (testing) News 4,485 231

MSNBC News 20 656
AQUAINT News 50 743
ACE2004 News 57 259

WNED-CWEB Web 320 11,154
WNED-WIKI Wikipedia 320 6,821

Table 1: Statistics of six entity disambiguation datasets.

Dataset # of Mentions
Train Dev Test

AIDA-YAGO2 18,395 4,784 4,463
WNED-WIKI N/A 3,396 3,376
WNED-CWEB N/A 5,599 5,543

Table 2: Statistics of three datasets for the task of page-level
document retrieval .

used for re-ranking during inference. Finally, the predicted entity
is the candidate entity with the highest score argmax�̂�𝑘 𝑟𝑘 .

3 EXPERIMENTS
In this section, we conduct extensive experiments and in-depth
analysis on benchmark datasets to verify the effectiveness and
robustness of XMRED in entity disambiguation and page-level
document retrieval.

3.1 Experimental Datasets
We evaluate XMRED on several benchmark datasets in two tasks:
(1) entity disambiguation and (2) page-level document retrieval.
Entity Disambiguation. For the task of entity disambiguation,
AIDA-CoNLL (AIDA) [14] that retrofits the CoNLL 2003NER dataset
with Wikipedia annotations is considered the benchmark dataset.
Specifically, we treat AIDA as the in-domain dataset for training,
validation, and testing. Five additional testing datasets, MSNBC,
AQUAINT, ACE2004, WNED-CWEB (CWEB) and WNED-WIKI
(WIKI) [9, 12], are also included in the experiments as out-of-domain
datasets to evaluate the zero-shot capability [1]. Table 1 shows the
statistics of the entity disambiguation datasets.
Page-level Document Retrieval. For page-level document re-
trieval, we employ three entity linking datasets in the KILT bench-
mark [32], including AIDA-YAGO2, WNED-CWEB, and WNED-
WIKI. Similar to entity disambiguation, AIDA-YAGO2 serves for
training, validation, and testing while WNED-CWEB and WNED-
WIKI are two out-domain zero-shot datasets. Note that the labels of
testing datasets are not directly provided in KILT while the evalua-
tion process is conducted on the official online evaluation platform.
Table 2 shows the statistics of the page-level document retrieval
datasets.
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Method In-Domain Out-of-Domain (OOD) Avg AvgOODAIDA MSNBC AQUAINT ACE2004 CWEB WIKI
LNA [10]∗ 92.20 93.70 88.50 88.50 77.90 77.50 86.38 85.22
RW [12] 89.00 92.00 87.00 88.00 77.00 84.50 86.25 85.70
SGTB [43] 93.00 92.60 89.90 88.50 81.80 79.20 87.50 86.40
LRM [19]∗ 93.07 93.90 88.30 89.90 77.50 78.00 86.78 85.52
LUD [20]∗ 89.66 92.20 90.70 88.10 78.20 81.70 86.75 86.18
DCA [42] 93.73 93.80 88.25 90.14 75.59 78.84 86.73 85.32

EntELMo [36] 93.50 92.30 90.10 88.70 78.40 79.80 87.13 85.86
DeepRL [8]∗ 94.30 92.80 87.50 91.20 78.50 82.80 87.85 86.56
Bootleg [28]∗ 80.90 80.50 74.20 83.60 70.20 76.20 77.60 76.94
ReFinED [1]∗ 93.90 94.10 90.80 90.80 79.40 87.40 89.40 88.50
GlobalED[41]∗ 95.00 94.10 91.50 90.70 78.30 87.60 89.53 88.44
GENRE [5]∗ 93.30 94.30 89.90 90.10 77.30 87.40 88.72 87.80

GENRE w/o additional annotation 88.60 88.10 77.10 82.30 71.90 71.70 79.95 78.22
ExtEnD [2]∗ 92.60 94.70 91.60 91.80 77.70 88.80 89.53 88.92

ExtEnD w/o additional annotation 90.00 94.50 87.90 88.90 76.60 76.70 85.77 84.92
XMRED 94.38 95.05 92.29 97.55 81.25 87.08 91.27 90.64

Table 3: In-KB Micro-F1 scores of methods on six entity disambiguation benchmark datasets. (∗) denotes the methods that
utilize hyperlinks of Wikipedia as additional annotations. Avg and AvgOOD denote the average performance on all six and five
out-of-domain datasets. Note that all baseline metrics are reported in their original reports. The best and second-best results
are bold and underlined.

3.2 Experimental Setup
Implementation Details. We implement XMRED in C++ for fast
CPU operations based on PECOS for XMR [44]. TFIDF𝑚 (·) and
TFIDF𝑐 (·) treat unigrams and bigrams with top 98% document
frequency as the TF-IDF feature spaces for mentions and con-
texts. To train the label tree H , the cluster number 𝐾 is set as
16 while the stopping criterion 𝐵 is 100. The rankers ℎ𝑣 are opti-
mized by the solver of LIBLINEAR [7] with the hyper-parameters
(𝐶, 𝜖, 𝑏) = (1, 0.1, 1) (i.e., _ = 1 in Equation 4). The re-ranker of XM-
RED is built with PyTorch [29] and the Hugging Face Transformer
library [38]. We initialize the reranker F with the SRoBERTa large
model [35] as a pre-trained cross-encoder, and then fine-tune it for
10 epochs. AdamW [24] is used for optimizationwith an initial learn-
ing rate 2e-5 and the hyper-parameters (𝛽1, 𝛽2, _) = (0.9, 0.999, 0.1).
The numbers of retrieved entities 𝑅′ and 𝑅 for fine-tuning and
inference are set as 15 and 20. All experiments are conducted on
an Amazon EC2 p3dn.24xlarge instance with 768 GB memory,
96 CPUs, and 8 NVIDIA Tesla V100 GPUs. All used libraries are
feasible for academic research under Apache-2.0 and BSD-3-Clause
licenses.
Comparative Baselines. The baselines incorporate recent pub-
lished state-of-the-art works on two benchmarks. RAG [22], T5 [34],
and BART [21] are conventional generative models. LNA [10],
LRM [19], LUD [20], and Bootleg [28] learn the local attention
between context and entities. SGTB [43] conducts structured gra-
dient tree boosting for disambiguation. RW [12] applies random
walk algorithms on a mention-entity graph to discover the most
relevant entity. DeepRL [8] models the task as a sequence decision
problem for reinforcement learning. EntELMo [36], GlobalED [41],
and ExtEnD [2] learn discriminate models with pre-trained deep

neural language models. BLINK [39] retrieves candidates with a
bi-encoder and re-ranks them with a cross-encoder. GENRE [5],
ReFinED [1], and CorpusBrain [3] learn BART-based autoregressive
models to decode mentions into entity titles.

3.3 Entity Disambiguation Evaluation
Table 3 demonstrates In-KB micro-F1 scores of different methods
on six entity disambiguation benchmark datasets. Among the base-
line methods, GlobalED, ExtEnD, and ReFinED perform the best
against others because they leverage properly pre-trained models
and additional annotations from the BLINK data (i.e., 9 million extra
training instances). In the task of entity disambiguation, there is no
particular edge for either discriminative methods (e.g., GlobalED
and ExtEnD) or generative methods (e.g., ReFinED). This could
be because the nature of entity disambiguation is actually an (ex-
treme) classification problem. Accordingly, discriminative methods
directly learn the classification hypotheses while token prediction
in generative methods can also be treated as classifying tokens ap-
peared in entity texts. This finding also demonstrates why learning
a high-quality XMR model as a retriever can significantly enhance
entity disambiguation.

With the pre-trained XMR model as the retriever and a simple
cross-encoder as the re-reranker, XMRED performs the best in
both average scores on all six datasets (Avg) and five OOD datasets
(AvgOOD). An interesting observation is that the performance drops
after removing the additional annotations on WIKI are much more
significant than the drops on other datasets for both GENRE and
ExtEnD. This validates our hypothesis that hyperlinks could result
in leakage to some degree as mentioned in Section 2.3. On the
other hand, this phenomenon further exhibits the significance and
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Dataset In-Domain Out-of-Domain (OOD)
AIDA-YAGO2 WNED-WIKI WNED-CWEB

Method Dev Test Dev Test Dev Test
RAG 77.40 72.60 49.00 48.10 46.70 47.60
T5 86.62 74.00 47.35 47.10 46.58 49.30

BART 87.98 77.60 - 45.90 - 49.20
BLINK∗ - 81.50 - 80.20 - 68.80
GENRE∗ 92.75 89.85 87.69 87.44 70.57 71.22

CorpusBrain∗ 92.86 89.98 88.64 88.12 71.35 70.58
(-add’l annot.) 90.84 - 72.26 - 66.23 -

XMRED 93.96 92.36 80.12 82.32 72.21 71.95
(Retriever Only) 85.10 79.72 76.47 76.72 67.51 67.91

Table 4: Accuracy of methods on the dev and test sets of
three page-level document retrieval benchmarks. (∗) denotes
the methods that utilize hyperlinks of Wikipedia as addi-
tional annotations. Note that all baselinemetrics are reported
in their original reports while (-) indicates unavailable re-
ports in the original results or the leaderboard. The best and
second-best results are bold and underlined.

robustness of our approach without using Wikipedia hyperlinks as
additional annotations.

3.4 Page-level Document Retrieval Evaluation
Table 4 shows the accuracy of different methods on the dev and test
sets of page-level document retrieval benchmarks. Interestingly,
using only the entity retriever (i.e., the pre-trained XMR modle) can
beat conventional deep learning models (i.e., RAG, T5, and BART)
with only its top-1 prediction. XMRED significantly outperforms
all baseline methods in AIDA-YAGO2 and WNED-CWEB. Similar
to the situation described in Section 3.3, the performance drop
for CorpusBrain discarding additional annotations is also more
intense on WNED-WIKI. If we renounce repercussion from the
potential leak, XMRED can then beat CorpusBrain without using
extra signals.

3.5 Retrieval Recall of XMRED Candidates
As an entity retriever, the pre-trained XMR model of XMRED needs
to achieve high recall because the recall directly determines the
upper-bound of accuracy for re-ranking. Figure 3 illustrates the re-
trieval performance of XMRED over different numbers of retrieved
entities 𝑅. As a result, XMRED can obtain 96.23% and 98.59% recall
scores with only top-5 and top-15 retrieved entities on AIDA for en-
tity disambiguation. For the other five out-of-domain datasets, the
recall scores are above 90% when 𝑅 is greater than 5. For page-level
document retrieval, Table 5 shows the recall@5 scores of methods
on the dev and test sets of three benchmark datasets. Note that we
report recall@5 because the official leaderboard only reports this
specific recall position. Similarly, XMRED generally obtains high
recall and outperforms deep learning methods on AIDA-YAGO2
and WNED-CWEB. On WNED-WIKI, the recall@5 of XMRED is
91.9% while the two leading baselines are actually in the risk of leak-
age from their additional Wikipedia annotations. From the above
observations, even with only bag-of-words features, XMRED is
indeed a strong entity retriever with a great opportunity to supply
high-quality candidate entities for downstream re-rankers.

Number of Retrieved Entities (R)

R
ec

al
l @

 R

70%

75%

80%
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100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Figure 3: Retrieval performance of XMRED with top-𝑅 re-
trieved entities on six entity disambiguation datasets.

Dataset In-Domain Out-of-Domain (OOD)
AIDA-YAGO2 WNED-WIKI WNED-CWEB

Method Dev Test Dev Test Dev Test
RAG 77.4 72.6 50.0 45.2 46.7 47.6
T5 81.8 74.1 47.4 47.1 46.6 49.3

BART 86.6 77.6 47.9 45.9 48.0 49.2
BLINK∗ - 94.8 - 91.5 - 81.8
GENRE∗ - 94.8 - 94.2 - 79.2

CorpusBrain∗ - 94.9 - 95.6 - 78.8
XMRED 94.7 96.7 90.6 91.9 85.2 84.7

Table 5: Recall@5 ofmethods on the dev and test sets of three
page-level document retrieval benchmarks. (∗) denotes the
methods that utilize hyperlinks of Wikipedia as additional
annotations. (-) indicates unavailable reports in the original
results or the leaderboard.

3.6 Training Efficiency
The training process of XMRED is efficient. Table 6 shows the train-
ing time of different method in pre-training and fine-tuning for
AIDA and AIDA-YAGO2. As the pre-training phase, training the
XMR model of XMRED only needs 2.25 hours with 96 CPUs. It
is indeed significantly faster than other deep learning baselines
that require multiple pre-training days with the same hardware
resources. For fine-tuning, with a simple cross-encoder structure,
XMRED is also more efficient than baselines with complex struc-
tures and objectives. Precisely, XMRED is 4.9x/16.4x/5.9x faster
than CorpusBrain/BLINK/GlobalED in GPU hours. These results
further demonstrate that there is actually no need of significant
pre-training to achieve state-of-the-art results when it comes to
entity disambiguation. The training time within a day also enables
the capability of frequent model refreshment.

3.7 Analysis and Discussions
In this section, we have some analysis and discussions.
Semantics in the Label TreeH . The label treeH plays an impor-
tant role in both training and inference stages of XMRED. Figure 4
depicts part of the constructed label tree. Note that label entities
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Method Hardware Pre-training Fine-tuning
GENRE 32 GPUs 22.86 hours 1.14 hours
ReFinED 4 GPUs 2 days 4.32 hours
GlobalED 8 GPUs 10 days 7.36 hours
BLINK 8 GPUs 107.20 hours 20.18 hours

CorpusBrain 2 GPUs 3 days 1 day

XMRED 96 CPUs 2.25 hours
8 GPUs 1.23 hours

Table 6: Training time of different methods in pre-training
and fine-tuning for AIDA and AIDA-YAGO2.
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Figure 4: Illustration of part of the constructed label tree.
Note that label entities within dotted boxes are leaf nodes
under the corresponding parent level-5 nodes.

within dotted boxes are leaf nodes under the corresponding par-
ent nodes for simplicity of illustration. First, from the cluster of
bottom non-leaf nodes, we can observe that with only instance
features, PIFA successfully constructs label features so that seman-
tically similar entities would also share similar features. Second,
hierarchical clustering enables multi-scale semantic granularity
of clusters over levels of the label tree. The inference process of
XMRED can be considered as a reasoning process from broader to
narrow semantics.
Numbers of Retrieved Entities 𝑅 and 𝑅′. The number of re-
trieved entities is an important hyper-parameter for both fine-
tuning and inference. Table 7 presents the In-KB micro-F1 scores of
XMRED using different 𝑅 and 𝑅′ of retrieved entities for fine-tuning
and inference on AIDA. For both 𝑅 and 𝑅′, when the numbers of
candidates increase from small numbers, the scores would be im-
proved because of more fine-tuning samples and higher recall as
shown in Figure 3. However, the performance is dropped with too
many retrieved entities. For fine-tuning, it could be because only
top-ranked entities are favorable hard negatives. For inference, a
longer candidate list can potentially increase the risk of noises when
there is only one ground truth for entity disambiguation. According
to this study, we set 𝑅′ and 𝑅 as 15 and 20.

4 RELATEDWORK
The recent advances of entity disambiguation are basically a deep
learning story. Specifically, many studies adopt pre-trained neural
language models to independently [1, 10, 19, 20, 28] or jointly [2,

𝑅 for Re-ranker Inference
5 10 15 20 25

𝑅′ for 5 92.32 93.50 94.01 94.15 94.10
XMRED 10 92.43 93.61 94.10 94.31 94.24
Re-ranker 15 92.50 93.68 94.22 94.38 94.38
Fine-tuning 20 91.53 92.62 93.17 93.36 93.31

Table 7: In-KB Micro-F1 scores of XMRED using different
numbers 𝑅′ and 𝑅 of retrieved entities on AIDA.

36, 41] model mentions and candidate entities with continuous
representations to “classify“ if the candidate entity is legit for
the mention. The other line of research is to treat the task as
sequence-to-sequence generation for replacing mentions with en-
tity titles [1, 3, 5, 39]. However, both of these classification and
generative approaches are too complicated to appropriately tackle
the extreme and sparse entity space of knowledge bases. As a re-
sult, they heavily rely on external annotations for pre-training and
candidate selection. In contrast, XMRED can efficiently produce
high-quality candidates with only bag-of-words features and sim-
ply re-rank entities with a simple cross-encoder and fine-tune the
model with limited training data.

XMR aims to retrieve a few relevant labels from an enormous
space. One line of research is to learn sparse linear models with par-
titioning techniques, subdividing the label space to smaller spaces
for complexity reduction [33, 44]. The other line is to learn latent
neural embedding of the input text [4, 17], but neural models with
the extreme space usually result in much lower efficiency. In this
work, to efficiently retrieve relevant entities, we learn sparse linear
models. Besides, to the best of our knowledge, we are the pioneer
of using partition-based XMR for entity disambiguation.

5 CONCLUSIONS
In this paper, we propose the novel framework, eXtreme Multi-
label Ranking for Entity Disambiguation (XMRED), to address the
challenges in entity disambiguation. We first show that an extreme
multi-label ranking model can be a strong entity retriever for en-
tity disambiguation with only bag-of-words features. The label
tree based on positive instance feature aggregation (PIFA) and hi-
erarchical clustering can capture multi-scale semantics of label
entities, thereby levering the semantic relations among entities dur-
ing both training and inference. With a simple cross-encoder as the
re-ranker, XMRED can obtain the state-of-the-art performance. In
two in-domain and seven out-domain datasets of two benchmarks,
XMRED also consistently achieves state-of-the-art performance
with not only faster training time, but also exemption from the
need of extra annotations.

This work also shows the huge opportunity of mining the nature
of entities from their semantic relations. Our analysis indicates
the capability of XMRED to automatically compose the semantic
structures about entities and their implicit types. The structured
semantics has a great potential to further benefit more knowledge-
related tasks.
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