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Abstract

Large language models (LLMs) have the potential to generate texts that pose risks
of misuse, such as plagiarism, planting fake reviews on e-commerce platforms,
or creating inflammatory false tweets. Consequently, detecting whether a text is
generated by LLMs has become increasingly important. Existing high-quality
detection methods usually require access to the interior of the model to extract the
intrinsic characteristics. However, since we do not have access to the interior of
the black-box model, we must resort to surrogate models, which impacts detec-
tion quality. In order to achieve high-quality detection of black-box models, we
would like to extract deep intrinsic characteristics of the black-box model generated
texts. We view the generation process as a coupled process of prompt and intrinsic
characteristics of the generative model. Based on this insight, we propose to decou-
ple prompt and intrinsic characteristics (DPIC) for LLM-generated text detection
method. Specifically, given a candidate text, DPIC employs an auxiliary LLM to
reconstruct the prompt corresponding to the candidate text, then uses the prompt
to regenerate text by the auxiliary LLM, which makes the candidate text and the
regenerated text align with their prompts, respectively. Then, the similarity be-
tween the candidate text and the regenerated text is used as a detection feature, thus
eliminating the prompt in the detection process, which allows the detector to focus
on the intrinsic characteristics of the generative model. Compared to the baselines,
DPIC has achieved an average improvement of 6.76% and 2.91% in detecting texts
from different domains generated by GPT-4 and Claude3, respectively.

1 Introduction

Large language models (LLMs) such as PaLM [6], ChatGPT [29], LLaMA [38], and GPT-4 [1]
exhibit advanced language capabilities for understanding natural language and solving complex tasks
via text generation. The outstanding performance of LLMs has led to the belief that they can be the
artificial general intelligence (AGI) of this era [5]. However, if placed in the wrong hands, LLMs
such as ChatGPT can undoubtedly serve as a “weapon of mass deception” [35]. For example, the
formidable writing capabilities of ChatGPT pose a significant threat to democracy, as they enable the
creation of automated bots on online social networks that can manipulate people’s political choices
during election campaigns [36, 13]. Furthermore, the adoption of ChatGPT by students in educational
institutions has led to instances of academic dishonesty, with essays and assignments being generated
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Figure 1: The distinctions between DPIC and previous detection methods. DPIC extracts the deep
intrinsic characteristics of the black-box model generated texts by decoupling the prompt and the
intrinsic characteristics of the generative model.

through its use, as reported by various news sources [23, 31]. Therefore, it is essential and urgent to
detect LLM-generated texts.

Existing detectors can be grouped into two main categories: supervised classifiers [10, 25, 32, 41,
21] and zero-shot classifiers [12, 24, 37, 42, 4, 15]. Supervised classifiers are usually trained to
distinguish between LLM-generated texts and human-created texts. Supervised classifiers achieve
strong detection performance in detecting datasets belonging to the same domain as the training set,
but usually fail when faced with datasets that are not in the domain of the training set. [32, 3, 39]. As
a result, researchers have shifted their perspective to zero-shot classifiers. The zero-shot classifiers
directly use pre-trained language models without fine-tuning to gather statistical features and are
immune to domain-specific degradation. In general, zero-shot classifiers exhibit better generalizability.
However, zero-shot classifiers require model knowledge to extract intrinsic characteristics and perform
reliable detection, which is unrealistic for black-box models. Most powerful LLMs, such as ChatGPT,
are close-source. As a result, zero-shot classifiers cannot achieve the desired quality of detection when
detecting texts generated by closed-source models [2, 29, 1]. To achieve a high quality of detection of
black-box models, we would like to extract the deep intrinsic characteristics of the black-box models.
In this case, we can only rely on the text inputs and outputs for black-box models. The remaining and
significant challenge is how to extract deep intrinsic characteristics of the black-box model generated
texts.

In our view, the generation process can be seen as a coupled process of prompt and intrinsic
characteristics of the generative model. The texts generated by LLMs and created by humans
exhibit inconsistent intrinsic characteristics, central to distinguishing the two. The discriminative
features should rely more on the intrinsic characteristics to achieve a general detection. Zero-shot
detectors extract intrinsic characteristics by relying on internal information of the generative model
to identify texts generated by LLMs [4], achieving desired detection performance on white-box
models. However, when confronted with black-box models, these zero-shot detectors do not have
access to the model’s internal information and must rely on open-source surrogate models, leading
to detection performance degradation. Supervised detectors utilize only text for detection and do
not require access to the model internals. To eliminate the interference of prompts, the supervised
detectors often require large-scale datasets generated with various prompts and then focus on the
intrinsic characteristics of the generative model. However, it is impractical to include all prompts
in the dataset because of the diversity of prompts. This leads to the question of how to extract the
intrinsic characteristics from the black-box model generated texts skillfully?

In this paper, we propose to decouple prompt and intrinsic characteristics (DPIC) to extract deep
intrinsic characteristics from the black-box model generated texts for detection. Specifically, given a
candidate text, we utilize an auxiliary LLM, leveraging the LLM’s powerful inductive capabilities,
to reconstruct the prompt based on the candidate text. The reconstructed prompt is then used for
the auxiliary LLM to obtain the regenerated text. This process aims to make the candidate and
regenerated texts align with their prompts, respectively. Then, by comparing the similarity between
the candidate text and the regenerated text, we can determine whether the candidate text is generated
by LLMs or created by humans. In this case, the candidate text and the regenerated text are compared
with aligned prompts, which allows the detector to focus on the deep intrinsic characteristics. With
the decoupling process, we extract the deep intrinsic characteristics of black-box model generated
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texts by decoupling the prompt and the intrinsic characteristics. This provides the detector with richer
information about deep intrinsic characteristics and thus achieves higher detection quality and better
generalizability. Figure 1 shows the distinctions between our proposed detection method and previous
detection methods.

The main contributions of our work are as follows:

• New insight. We reconsider the generated text detection methods and propose a new
perspective to improve generalizability while ensuring detection quality. In our view, prompt
and intrinsic characteristics of the generative model in generated text are tightly coupled
together, which limits the generalizability of the detector. During the detection process, the
detector should rely more on the intrinsic characteristics to achieve better generalizability.

• Ingenious approach. we propose to decouple prompt and intrinsic characteristics (DPIC)
to extract the deep intrinsic characteristics of the black-box model generated texts. In
this process, the candidate text and the regenerated text are aligned with their respective
prompts. We then use the similarity between the candidate text and the regenerated text
as discriminative features, reducing the impact of prompts on the detection process and
allowing the detector to focus more on intrinsic characteristics.

• Impressive performance. DPIC achieves 6.76% and 2.91% average improvement in
detection performance compared to the baselines in detecting texts from different domains
generated by two commercial closed-source models: GPT-4 and Claude3. These findings
underscore the efficacy of our proposed method.

2 Related work

LLM-generated text detection could increase trust in natural language generation systems and
encourage adoption. Given its significance, there has been a growing interest in academia and
industry to pursue research on LLM-generated text detection. Current LLM-generated text detection
is categorized into supervised [36, 25] and zero-shot methods [12, 24, 37, 42, 4].

Previous research focuses on supervised methods, where classifiers are trained to differentiate between
texts generated by LLMs and texts created by humans. For example, OpenAI [30] trained the OpenAI
text classifier on a collection of millions of texts. RADAR [16] introduces the idea of adversarial
learning to train a detector that can resist paraphrase attacks. However, supervised methods exhibit
shortcomings in terms of generalization. Therefore, to obtain more generalizable detection methods,
current researchers work on developing zero-shot methods. Existing zero-shot methods primarily
rely on statistical features, leveraging pre-trained large language models to gather them. In our
view, these methods can be seen as extracting the intrinsic characteristics of LLMs in different ways.
For example, some researchs [36, 17] take advantage of the rank or entropy of each word in a text
conditioned on the previous context to represent the intrinsic characteristics. The other methods
represent the intrinsic characteristics by different features, including average probability, and top-K
buckets [12], likelihood [15], probability curvature [24], divergence between multiple completions of
a truncated passage (DNA-GPT) [42], and conditional probability curvature [4].

Due to excessive reliance on training data, the generalizability of supervised methods is question-
able [32, 3, 39]. That is, the reliability and robustness of the detection methods may significantly
decrease when applied to out-of-domain data. In order to achieve generalizability, existing researchers
have worked on developing zero-shot detection methods. Zero-shot detection methods are immune to
domain-specific degradation and are on par with supervised classifiers in terms of detection perfor-
mance. However, from the experimental results, the detection performance of zero-shot detectors
for black-box models will be significantly reduced compared to white-box models. Therefore, the
primary existing challenge is developing detection methods with high detection performance and
high generalizability for black-box models.

3 Threat models

Given a candidate text x, which may be human-created or generated by a language model, the detector
is dedicated to distinguishing between these two sources. In the white-box scenario, the detector has
the advantage of accessing the potential source model, including weights and probability distributions.
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Figure 2: An overview of DPIC. Given a candidate text, we utilize an auxiliary LLM to reconstruct
the prompt based on the candidate text. The reconstructed prompt is then used for the auxiliary LLM
to obtain the regenerated text. This process aims to make the candidate and regenerated texts align
with their prompts, respectively. Then, by comparing the similarity between the candidate text and
the regenerated text, we can determine whether the candidate text is generated by LLMs or created
by humans.

Conversely, in the black-box scenario, only the text input and output of the potential source model
are accessible. In this paper, we focus on the black-box scenario.

4 Method

4.1 Motivation

Exploiting the intrinsic characteristics of the text generated by LLMs is an effective way to improve
the detection quality and generalizability of the detector. DetectGPT [24] and Fast-DetectGPT [4]
can be regarded as adopting log probabilities as the intrinsic characteristic of the LLM. However,
the log probabilities cannot be accessible when facing black-box scenarios involving closed-source
models such as GPT-4 and Claude3.

In fact, the intrinsic characteristics of the model are not only reflected in the logistic probabilities.
The generated text itself is a coupling of the prompt and intrinsic characteristics. However, extracting
the intrinsic characteristics from the generated text is challenging because the prompts are diverse,
covering various topics, and are decoupled with the inherent characteristics. In supervised detection
methods, it is very important to extend the dataset as much as possible so that the detector is familiar
with the topic of the text to be detected. However, it is not feasible for the model to memorize
an infinite number of text topics. We aim to abandon the need for the detector to perform topic
recognition. Instead, we hope to provide the topic information of the texts to be detected to the
detector each time it performs a detection. The requirement reminds us of the powerful capabilities
of LLMs, which can regenerate text through induction and generation. In the comparison perspective
between the text to be detected and the regenerated text, the detection bias caused by the text topics
can be alleviated.

Based on the above analysis, we propose a supervised detection method based on decoupling prompt
and intrinsic characteristics (DPIC), as illustrated in Figure 2, including three modules: decoupling
process, feature extraction, and classification.

4.2 Decoupling process

Given a candidate text x and an auxiliary LLM Maux, the decoupling process aims to to obtain
a regenerated text x̂ that is consistent with x under the semantic constraints of the prompt p, i.e.,
x̂← argmax

x̂
PMaux (x̂|p), where← represents the sampling process of LLMs from the predicted

distribution. However, since the prompt used to generate x is unknown to the detector in the black-box
setting, we first need to reconstruct the prompt p of x. When the log probabilities are hidden, the
recently proposed prompt recovery method [27] based on inverting probabilities is inapplicable. We,
therefore, shift our focus to another similar task, namely question generation (QG) [8, 9, 20]. QG
involves generating natural-sounding questions based on given sentences or paragraphs. The QG task
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can be defined as finding q̄, such that:
q̄← argmax

q
P (q|t), (1)

where P (q|t), is the conditional log-likelihood of the predicted question sequence q, given the
input t. We notice that the LLM performs exceptionally well in the QG task. So we directly utilize
Maux to reconstruct the prompt.

p̂← argmax
x̂

PMaux(prc∥x), (2)

where prc represents the prompt template used to query Maux reconstructing the prompt. After
obtaining the reconstructed prompt p̂ of x, the next step is to utilizeMaux to get x̂ based on p̂.

x̂← argmax
x̂

PMaux(p̂∥prg), (3)

where prg regenerates the regeneration template we use to queryMaux. The details of prc and prg are
shown in Appendix B. In the aforementioned process,Maux can be a black box to the user, where the
user only inputs the text to be paraphrased or regenerated, and obtains the corresponding regenerated
text. The decoupling process can be formally represented as:

x̂←Maux(x, prc, prg). (4)

4.3 Feature extraction and classification

Through the decoupling process, we get x̂ aligned with x on the reconstructed prompt p̂. After that,
we measure the similarity of x and x̂, then use it as a discriminative feature. Since the two texts are
consistent at the prompt level, the similarity only indicates the intrinsic characteristics contained in
x. The hypothesis under our detection method is that the text generated by LLMs and text created
by humans exhibit inconsistent intrinsic characteristics. If the candidate text is generated by LLMs,
the regenerated text will exhibit higher similarity to the candidate text because the texts generated
by LLMs have similar intrinsic characteristics. On the contrary, if the candidate text is created by
humans, then the similarity will be lower because the text generated by LLMs and text created by
humans exhibit intrinsic characteristics.

We employed a Siamese Network to measure the similarity between texts. A Siamese Network is
a neural network that simultaneously processes two different input tensors using the same weights,
producing comparable output tensors. x and x̂ separately enter two subnets that share structures,
parameters, and weights. For each subnet, we employ a language model as an encoder to perform
feature extraction on the texts, which can be formulated as below.

vx = E(x),vx̂ = E(x̂), (5)
where E donates the encoder, v ∈ Rd. Finally, vx and vx̂ are concatenated and fed into a classifier
denoted as f : R2×d → R2. Specifically, we use gte-Qwen1.5-7B-instruct† as the encoder
which can encode texts with a maximum of 32K tokens into embeddings of 4096 dimensions, while
the classifier consists of three fully connected layers with ReLU function. The dimensions of the
intermediate layers in the classifier are 1024 and 512, respectively.

We freeze the weights of the Siamese encoder and train the classifier using binary cross-entropy loss.
The loss function can be formalized as:

L = − 1

N

N∑
i=1

(
y(i) log(y

(i)
pred) + (1− y(i)) log(1− y

(i)
pred)

)
, (6)

where y represents the true label of x, and the predicted label of the detector is represented as
ypred = f (E (x) ∥E (Maux (x, prc, prg))).

5 Experiment

5.1 Implementation details

Auxiliary models. We select two auxiliary models for the decoupling process, including ChatGPT‡

and Vicuna-7b-v1.5§. For ChatGPT, we directly use the ChatGPT API for querying. If Vicuna is
†https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct
‡https://platform.openai.com/docs/models/gpt-3-5-turbo
§https://huggingface.co/lmsys/Vicuna-7b-v1.5
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chosen as the auxiliary model, we locally deploy a Vicuna-7b model but treat it as a black-box, solely
obtaining its output responses without accessing the model parameters or probability distributions.

Training. Since the DPIC method we propose is supervised, it necessitates the selection of a training
set. In this paper, we used the open-source Human-ChatGPT Comparison Corpus (HC3) [14] dataset
collected by previous researchers as a training set to ensure the reproducibility of our approach. HC3
dataset consists of both human and ChatGPT responses to the same prompts. When the auxiliary
model is set to ChatGPT, we select these responses from the HC3 dataset as the texts to be detected.
When the intermediary model is Vicuna, we replace the texts generated by ChatGPT in the HC3
dataset with the texts generated by Vicuna as the machine-generated texts in the training set.

Testing. We evaluated the performance of the detection methods on texts generated by three current
widely used commercial closed-source models, including ChatGPT (gpt-3-5-turbo) ¶, GPT-4 (gpt-4-
0613) ||, and Claude3 (claude-3-opus-20240229) **. We refer to these models as the source models
for LLM-generated texts.

We use three datasets that are not part of the domains covered in the HC3 dataset to evaluate the
generalizability of detection methods fully. The three datasets are Xsum [28] for news articles,
WritingPrompts [11] for story writing, PubMedQA [18] for biomedical research question answering,
which are consistent with previous work [4] in the field. We use the three different source models
to generate texts on the aforementioned datasets. The original texts from the datasets and the texts
generated by the models together serve as the data to be detected in the testing process.

We also created other datasets for three different domains, and evaluated the detection performance
of our methods and baselines on these datasets. The details of these datasets and the results are
displayed in Appendix D.

Evaluation metric. We measure the detection performance in the area under the receiver operating
characteristic (AUROC). AUROC ranges from 0.0 to 1.0, mathematically denoting the probability of
a random machine-generated text having a higher predicted probability of being machine-generated
than a random human-written text. A higher AUROC value indicates a better detection quality.

Baselines. We compared DPIC with existing supervised detectors and zero-shot detectors. For
supervised detectors, we compared GPT-2 detectors based on RoBERTa-base/large [22] crafted by
OpenAI and RADAR [16]. For zero-shot detectors, we selected DNA-GPT [42], DetectGPT [24], and
its enhanced variants NPR [37] and Fast-DetectGPT [4]. We also chose classic zero-shot classifiers,
including Likelihood (mean log probabilities)[12], LogRank (average log of ranks in descending
order by probabilities) [36], Entropy (mean token entropy of the predictive distribution)[17], and
LRR (an amalgamation of log probability and log-rank)[37].

5.2 Performance

Detection effectiveness. The detection performance of DPIC and baselines is shown in Table 1.
When using ChatGPT as the auxiliary LLM, our method achieves an average AUROC of 96.34%,
97.34%, and 98.78%, respectively, in detecting ChatGPT, GPT-4, and claude3. By comparison, Fast-
DetectGPT, which achieves the highest AUROC among open source baselines, has lower AUROC of
96.15%, 90.58%, and 95.87%, respectively. It can be seen that our method outperforms the baselines
in terms of average detection quality, particularly in detecting advanced commercial closed-source
models like GPT-4 and Claude3, with a significant advantage. Meanwhile, when using Vicuna-7b as
the auxiliary model, our method achieves an average AUROC of 95.58%, 96.74%, and 98.75% in
detecting ChatGPT, GPT-4, and claude3, respectively. Although our training set only includes LLM-
generated text from either ChatGPT or Vicuna-7b, DPIC achieves high detection AUROC for text
originating from three different source models when using the two auxiliary models. This indicates
that our method does not require prior knowledge of the text’s source model, as the differences in
features between LLM-generated and human-created text are greater than the differences among
texts generated by various models. Besides, the effectiveness of the open-source auxiliary model
demonstrates that DPIC can conduct detection at a relatively low cost, indicating the practical efficacy
of our detection method in real-world scenarios.

¶https://platform.openai.com/docs/models/gpt-3-5-turbo
||https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4

**https://docs.anthropic.com/en/docs/models-overview
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Table 1: The detection performance (AUROC) of baselines and DPIC on three datasets generated by
ChatGPT, GPT-4, and Claude3.

Methods ChatGPT GPT-4 Claude3

XSum Writing PubMed Avg. XSum Writing PubMed Avg. XSum Writing PubMed Avg.

RoBERTa-base 0.9150 0.7084 0.6188 0.7474 0.6778 0.5068 0.5309 0.5718 0.8944 0.8036 0.3647 0.6876
RoBERTa-large 0.8507 0.5480 0.6731 0.6906 0.6879 0.3822 0.6067 0.5589 0.9027 0.7128 0.3579 0.6578

RADAR 0.9972 0.9593 0.7372 0.8979 0.9931 0.8593 0.8029 0.8851 0.9952 0.9438 0.8029 0.9139

Likelihood 0.9577 0.9739 0.8776 0.9364 0.7982 0.8553 0.8100 0.8212 0.9760 0.9744 0.9240 0.9581
Entropy 0.3305 0.1901 0.2766 0.2657 0.4364 0.3703 0.3296 0.3788 0.4109 0.0836 0.1686 0.2210

LogRank 0.9584 0.9656 0.8680 0.9307 0.7980 0.8289 0.7997 0.8089 0.9783 0.9732 0.9260 0.9592
LRR 0.9164 0.8962 0.7421 0.8516 0.7453 0.7040 0.6810 0.7101 0.9609 0.9598 0.8334 0.9180

DNA-GPT(Neo-2.7) 0.9040 0.9449 0.7598 0.8696 0.7267 0.8164 0.7163 0.7531 0.9071 0.9655 0.5911 0.8212
DNA-GPT(ChatGPT) 0.8396 0.7898 0.6722 0.7672 0.6146 0.6104 0.5745 0.5998 0.8560 0.8767 0.6729 0.8019
DNA-GPT(Vicuna-7b) 0.6992 0.6695 0.5639 0.6442 0.5594 0.5628 0.5366 0.5529 0.7241 0.7305 0.6001 0.6849

NPR 0.7845 0.9697 0.5483 0.7675 0.5211 0.8276 0.4976 0.6154 0.9232 0.9696 0.7746 0.8891
DetectGPT 0.4594 0.8008 0.3804 0.5469 0.3408 0.6542 0.3675 0.4542 0.4323 0.6800 0.7559 0.6227

Fast-DetectGPT 0.9907 0.9916 0.9021 0.9615 0.9064 0.9611 0.8498 0.9058 0.9942 0.9783 0.9035 0.9587

DPIC(ChatGPT) 1.0000 0.9821 0.9082 0.9634 0.9996 0.9768 0.9438 0.9734 1.0000 0.9950 0.9686 0.9878
DPIC(Vicuna-7b) 0.9976 0.9708 0.8990 0.9558 0.9986 0.9644 0.9394 0.9674 0.9992 0.9943 0.9690 0.9875

Generalizability. The detection performance of supervised methods, such as RADAR, exhibits
significant performance differences in detecting different datasets. Taking ChatGPT-generated text as
an example, the detection AUROC of RADAR on the Xsum dataset is 99.72%. However, the detection
AUROC on the PubMed dataset is only 73.72%. This indicates that the detection performance of
the supervised methods is susceptible to the domain dataset, which affects the generalizability.
Zero-shot detection methods show more balanced detection performances on Xsum and PubMed
datasets generated by ChatGPT. This suggests that the zero-shot method is more likely to maintain
generalizability by extracting the intrinsic characteristics of LLMs. DPIC extracts the deep intrinsic
characteristics of LLMs by decoupling the prompt, allowing the supervised detector to focus more on
the intrinsic characteristics. This approach enables DPIC to achieve the desired generalization while
maintaining high detection quality.

5.3 Ablation studies

We conducted ablation studies to reveal the impact of different similarity measurements and decou-
pling processes. Additionally, since the reconstructed prompts may differ from the original prompts,
we discuss the impact of these differences on detection performance.

Similarity measurement. In this experiment, we explored the effects of different similarity mea-
surements on the detection performance of the Siamese Network. Specifically, we experimented with
absolute distance, dot product, and concatenation methods for combining feature vectors. The results
are displayed in Table 2.

When combining the feature vectors by absolute distance and dot product, the detection AUROC
scores are 89.81% and 93.84% in detecting the Writing dataset generated by ChatGPT. In contrast,
when combining the feature vectors by concatenation, the AUROC score is 98.21%. These experi-
mental results show that concatenation results in higher AUROC scores than other methods, which
indicates that combining feature vectors by concatenation preserves more of the intrinsic characteristic
information. In contrast, the other methods result in the loss of critical intrinsic details. This findings
indicates that providing the detector with richer intrinsic characteristic information helps achieve
higher detection quality.

Prompt reconstruction and limitations Since reconstructed prompts may differ from the original
prompts, we discuss the impact of the prompt reconstruction process on detection performance in
this part. We tested the semantic similarity of the candidate text and the regenerated text obtained
by directly using the original prompt. We also test the semantic similarity of the candidate text and
regenerated text obtained by the reconstructed prompt. We used gte-Qwen1.5-7B-instruct†† for
feature extraction, and then used cosine similarity to measure the degree of semantic similarity.

††https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct
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Table 2: Detection AUROC of different similarity measurement on Writing dataset generated by
ChatGPT, GPT-4, and Claude3.

Similarity
Measurement

Decoupling by ChatGPT Decoupling by Vicuna-7b

ChatGPT GPT-4 Claude3 ChatGPT GPT-4 Claude3

Absolute Difference 0.8981 0.8696 0.9206 0.7878 0.7476 0.8426
Dot Product 0.9384 0.894 0.9575 0.9299 0.9111 0.9753

Concatenation (DPIC) 0.9821 0.9768 0.9950 0.9708 0.9644 0.9943

Figure 3: Detection AUROC of DNA-GPT, DNA-GPT (supervised), DNA-GPT (prompt), and DPIC.
All regeneration processes are implemented using Vicuna-7b.

We use a part of HC3 test dataset generated by ChatGPT, GPT-4, claude3. The results are presented in
Figure 4. From the result, we find that, compared to using the original prompt directly, the regenerated
text obtained by the reconstructed prompt has a higher semantic similarity with the original text in
texts generated by GPT-4 and Claude3.

We believe that this may be due to the following reasons: when users use LLM, the prompt is
sometimes not detailed, which leads to the fact that the text generated by LLM may deviate from
the original prompt. In other words, in the case where the prompt is not detailed, even if the same
prompt is used, the text generated multiple times is prone to larger deviations. However, when LLM
is used to regenerate the prompt from a candidate text, the reconstructed prompt is reconstruct from
the candidate text, which makes the prompt more semantically consistent with the candidate text.
Thereby, when we use the reconstructed prompt for text regeneration, the regenerated text can show
more semantic similarity with the candidate text, which is more helpful in reducing the impact of
semantics on the detection process.

However, directly using LLMs for regenerating for semantic disentanglement can indeed introduce
some time delays and costs, which we will discuss in the Limitations Section 6.

Figure 4: Cosine Similarity of the candidate text and the regenerated text obtained by different
prompts.

8



Decoupling Process In the decoupling process, given a candidate text, we initially reconstruct
the prompt based on the candidate text. The reconstructed prompt is then used for the auxiliary
LLM to obtain the regenerated text. Then, we use the embeddings of the candidate text and the
regenerated text as the discriminative feature to train a classifier. DNA-GPT [42] shares a similar idea.
Specifically, given a candidate text, DNA-GPT truncates from the half position of the text length and
then completes the text based on the truncated text using an auxiliary LLM. Unlike us, DNA-GPT
calculates the divergence between the candidate text and the completion of the truncated text and uses
a zero-shot classifier for detection. Another significant difference is that there is no semantic prompt
guidance in the completion process. In order to fully illustrate the effectiveness of our method, we
explore the impact of supervised learning and prompt guidance on detection performance using DPIC
and DNA-GPT as examples.

First, we compare the impact of zero-shot and supervised methods on the detection performance
using DNA-GPT. Specifically, given a candidate text, DNA-GPT truncates from the half position
of the text length and then completes the truncated text using an auxiliary LLM. Then, we use the
embeddings of the candidate text and the completion of the truncated text as the discriminative
feature to train a Siamese Network to classifier; the detailed experimental setup is consistent with the
description in Section 5.1. The results are displayed in Figure 3, comparing DNA-GPT and DNA-GPT
(supervised). The average detection AUROC of DNA-GPT (supervised) is 88.39%, 85.50%, and
91.51% on datasets generated by ChatGPT, GPT-4, and Claude3, respectively. In contrast, the average
detection AUROC of DNA-GPT is 64.42%, 55.29%, and 68.49%. DNA-GPT (supervised) shows
a substantial improvement compared to DNA-GPT, demonstrating that supervised methods help
achieve higher detection AUROC. However, DNA-GPT (supervised) exhibits a significant decrease
in detection AUROC on the PubMed dataset compared to the Xsum and Writing datasets, indicating
that generalizability is affected when using supervised methods.

Afterward, we evaluated the impact of the prompt semantic guidance on the detection performance
and generalizability of DNA-GPT (supervised). Specifically, given a candidate text, we reconstruct
the prompt based on the candidate text and complete the truncated text based on the prompt using an
auxiliary LLM. Then, we measure the difference between the candidate text and the prompt-based
completion of the truncated text and use a Siamese Network as the classifier. The results are displayed
in Figure 3, comparing DNA-GPT (supervised) and DNA-GPT (prompt). Compared to DNA-GPT
(supervised), DNA-GPT (prompt) achieves a more balanced detection performance across the three
datasets. On the PubMed dataset, DNA-GPT (prompt) achieves detection accuracies of 79.28%,
82.18%, and 86.46%, while DNA-GPT (supervised) achieves only 74.93%, 76.66%, and 79.52%,
respectively. It demonstrates the importance of prompts in regeneration, as they help reduce semantic
bias between the regenerated text and the candidate text, thereby mitigating the impact of the dataset
domain on the generalizability of the detector.

Finally, we compare the detection performance with the truncated-completion method and the
regeneration method on the detection performance, and the results are displayed in DNA-GPT
(prompt) and DPIC in Figure 3. As shown, the regeneration method of DPIC achieves better detection
quality and better generalization.

5.4 Robustness

Existing research [19, 33] has pointed out that the previous methods experience a reduction in
performance in complex scenarios where the text to be detected is subjected to interference. To better
understand how DPIC performs in real-world scenarios, we evaluate our detection method under two
modification methods.

The first one is the proposed paraphrasing attack called DIPPER [19] (or Discourse Paraphrase).
DIPPER is an 11B-parameter paraphrase generation model built by fine-tuning T5-XXL. It can
paraphrase paragraph-length texts, re-order content, and optionally leverage context such as input
prompts. The second interference we consider is a method that is more accessible to the broader
audience of large language models and does not require specialized knowledge, namely the back-
translation attack. Back-translation refers to the action of translating a work that has previously been
translated into the same language. We employed DeepL Translator ‡‡ to translate the given English
text into Chinese, followed by a subsequent translation back into English.

‡‡https://www.deepl.com/en/docs-api/
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Table 3: Detection performance of DPIC and the baselines in detecting Xsum dataset generated by
ChatGPT, GPT-4, and Claude3 with interference.

Methods ChatGPT GPT-4 Claude3

Ori. DIPPER Back-translate Ori. DIPPER Back-translate Ori. DIPPER Back-translate

RoBERTa-base 0.9150 0.8148 0.8379 0.6778 0.6469 0.7536 0.8944 0.8120 0.8052
RoBERTa-large 0.8507 0.7884 0.6853 0.6879 0.6833 0.6660 0.9027 0.8153 0.7583

RADAR 0.9972 0.9964 0.9801 0.9931 0.9924 0.9608 0.9952 0.9940 0.9701

Likelihood 0.9577 0.8438 0.9306 0.7982 0.6296 0.8449 0.9760 0.9080 0.9446
Entropy 0.3305 0.4514 0.3008 0.4364 0.5552 0.3705 0.4109 0.4978 0.3639

LogRank 0.9584 0.8596 0.9260 0.7980 0.6432 0.8436 0.9783 0.9256 0.9488
LRR 0.9164 0.8448 0.8621 0.7453 0.6607 0.8003 0.9609 0.9240 0.9243

DNA-GPT(Neo-2.7) 0.9040 0.7733 0.8624 0.7267 0.5595 0.7776 0.9071 0.7876 0.8399
DNA-GPT(ChatGPT) 0.8396 0.7910 0.7975 0.6146 0.5454 0.6070 0.8560 0.7996 0.7814
DNA-GPT(Vicuna-7b) 0.6992 0.6528 0.6175 0.5594 0.5523 0.5827 0.7241 0.6403 0.6321

NPR 0.7845 0.5648 0.8050 0.5211 0.3006 0.6820 0.9232 0.7860 0.9042
DetectGPT 0.4594 0.3074 0.5417 0.3408 0.1823 0.4530 0.4323 0.3283 0.5273

Fast-DetectGPT 0.9907 0.9536 0.9711 0.9064 0.8057 0.9137 0.9942 0.9720 0.9860

DPIC(ChatGPT) 1.0000 1.0000 0.9972 0.9996 0.9991 0.9931 1.0000 0.9996 0.9979
DPIC(Vicuna-7b) 0.9976 0.9980 0.9889 0.9986 0.9969 0.9903 0.9992 0.9996 0.9966

We present the detection performance of DPIC and baselines in detecting Xsum dataset generated by
ChatGPT, GPT-4, and Claude3 with interference in Table 3. RADAR shows the smallest decrease
among baselines against DIPPER attacks, especially for text generated by GPT-4, with a decrease of
00.07%, illustrating the robustness of RADAR in incorporating adversarial networks into detection.
However, our method still maintains optimal detection performance after both DIPPER and back-
translation attacks. The detection AUROC of DPIC is 100% and 99.72% for detecting the Xsum
dataset generated by ChatGPT under DIPPER and back-translation attacks, respectively, indicating
that our method is more robust in real-world scenarios. DIPPER and back-translation attacks mainly
alter the text semantically. Our method decouples the prompt-guided semantic information and the
intrinsic characteristics of the generative model, rendering semantic attacks ineffective and ensuring
robustness.

6 Limitations

We mitigated the risk of benchmark contamination in the testing phase by ensuring different sources
for the training and test sets. However, recent studies [7, 40, 34] have indicated that benchmark
contamination may be widespread in evaluating large models, which is a limitation not addressed in
this paper.

Another limitation of our method is the time required in the decoupling process. The regeneration
process significantly extends the processing time for each text segment. We selected advanced
training-based and zero-shot detection methods and tested memory and time consumption. Our
method does require more memory and time, compared to those that only input candidate text for
classification, primarily due to the regeneration component involving the LLM. Detailed information
regarding this can be found in the Appendix A.

7 Conclusion

We reconsider the detection methods for LLM-generated text and propose a decoupling-based de-
tection method, DPIC. This method extracts deep intrinsic characteristics of the black-box model
generated texts. Through the decoupling process, we provide the detector with a reconstructed prompt
covering the topic of the candidate text, allowing the detector to focus on deep intrinsic characteristics,
thereby achieving better generalization performance while maintaining detection quality. Experimen-
tal results further demonstrate that DPIC significantly improves detection performance by 6.76% and
2.91% when detecting texts generated by GPT-4 and Claude 3, respectively.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper proposes a decoupling-based method for extracting the deep
intrinsic characteristics of LLM from the text in black-box scenarios. The detection of
GPT-4 and Claude3 improves by 6.76% and 2.91% compared to baselines
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work are discussed in Limitations 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not include theoretical results, we validate our method by
experimental results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We fully disclose all the information needed to reproduce the main experimen-
tal results of the paper.
Guidelines: We fully disclose all the information needed to reproduce the main experimental
results in Section 5.1.

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to the data and code, we also provided our model.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details in Section 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: [NA] .

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources in Limitations 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and our research was conducted
with that in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The societal impacts of our work are discussed in Section 7.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We will release models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly credited it.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code and models are well documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing experiments and research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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