
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Towards High-performance Spiking Transformers from ANN to
SNN Conversion

Anonymous Authors

ABSTRACT
Spiking neural networks (SNNs) show great potential due to their

energy efficiency, fast processing capabilities, and robustness. There

are two main approaches to constructing SNNs. Direct training

methods require much memory, while conversion methods offer

a simpler and more efficient option. However, current conversion

methods mainly focus on converting convolutional neural networks

(CNNs) to SNNs. Converting Transformers to SNN is challenging

because of the presence of non-linear modules. In this paper, we

propose an Expectation Compensation Module to preserve the

accuracy of the conversion. The core idea is to use information

from the previous T time-steps to calculate the expected output

at time-step T. We also propose a Multi-Threshold Neuron and

the corresponding Parallel Parameter normalization to address the

challenge of large time steps needed for high accuracy, aiming to

reduce network latency and power consumption. Our experimental

results demonstrate that our approach achieves state-of-the-art

performance. For example, we achieve a top-1 accuracy of 88.60%

with only a 1% loss in accuracy using 4 time steps while consuming

only 35% of the original power of the Transformer. To our knowl-

edge, this is the first successful ANN to SNN conversion for Spiking

Transformers that achieves high accuracy, low latency, and low

power consumption on complex datasets.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence.

KEYWORDS
Spiking Neural Networks, Spiking Transformer, ANN-SNN Con-

version, Expectation Compensation, Multi-Threshold Neurons

1 INTRODUCTION
Spiking neural networks(SNNs) are a type of neural network model

that imitates the mechanisms of biological neurons[1, 17]. They

are called the third generation of neural networks [32] due to their

biologically plausible interpretation and efficient computational

efficiency[41, 49]. Unlike traditional neural networks, SNNs con-

centrate on the generation and reception of spikes. Neurons in

SNNs do not produce output in every iteration. Instead, they be-

come active and emit spikes only when their membrane potential

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

reaches a specific threshold. This sparse spike activity results in sig-

nificantly higher computational efficiency than traditional neural

networks [37], especially when deployed on neuromorphic chips

[6, 7, 33]. However, training large-scale, high-precision, and low-

latency SNNs remains challenging due to the non-differentiable

nature of spikes.

Currently, there are two main approaches to train SNNs. The

first approach is direct training using backpropagation [14, 26,

34, 46, 47, 53]. This method employs surrogate gradients during

backpropagation, which utilizes differentiable continuous functions

or spike-time-dependent plasticity strategies to replace the non-

differentiable spike emission rules. However, this training process

still relies on standard GPUs that are not well-suited for the unique

characteristics of SNNs, leading to significant resource consump-

tion and limited performance. The second approach is Artificial

Neural Network (ANN) to SNN conversion [3, 4, 9, 28, 38]. This con-

version method does not require any additional training. Instead, it

uses pre-trained ANNs and replaces the activation functions with

spiking neurons. This process takes advantage of the similarity

between ReLU activation functions and the spike emission rates

of integrate-and-fire models. The result is a conversion of ANNs

into SNNs while significantly preserving the original ANN’s perfor-

mance. However, this method often leads to longer inference times,

and the modules that can be successfully converted are limited.

As is well known, Transformers have demonstrated exceptional

performance in various vision tasks [5, 12, 23, 31, 35]. However, de-

spite numerous efforts to convert CNNs to SNNs, nowell-established

method exists for converting Transformer models. This is because

Transformers have modules such as layernorm and GELU that differ

from the ReLU function in CNNs. These modules require interaction

between neurons within the same layer and exhibit non-linear char-

acteristics, making it challenging to achieve accurate conversion

through the linear piecewise quantization of individual neurons.

This paper proposes a new method to convert Transformer to

SNN. The primary obstacle in this conversion is dealing with non-

linear modules. To overcome this challenge, we propose using an Ex-

pectation CompensationModule (ECM) that calculates expectations

and replaces each non-linear module. Specifically, a customized

ECM is employed in place of the matrix product, conducting most

of its operations through accumulations. This reduces power con-

sumption and ensures that the total output matches the expected

result at each moment. To improve the efficiency of minimal spikes,

we introduce Multi-Threshold Neurons and the corresponding Par-

allel Parameter normalization, significantly reducing the required

latency and power consumption for inference with comparable

accuracy.

Our main contributions are summarized as follows:

• We analyze the challenges of non-linear module conversion

in Transformer and present a novel solution called the Ex-

pectation Compensation Module, which uses the informa-

tion from the previous time steps to calculate the expected

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

output at the current time step, thus effectively tackling

the limitations of conventional conversion methods while

demonstrating a minimal power consumption increase.

• To overcome the issue of slow accuracy improvement over

time during Transformer conversion, we propose a Multi-

Threshold Neuron and the corresponding Parallel Parameter

normalization, substantially reducing power consumption

requirements and significantly decreasing latency.

• The proposed method has shown its effectiveness on the

ImageNet1k dataset. Our approach not only outperforms

the accuracy of existing SNN models but also substantially

reduces power consumption compared to other Transformer

models. For example, we reach a top-1 accuracy of 88.60%,

with a minimal accuracy loss of only 1% compared to ANN ,

while achieving a 65% reduction in energy consumption.

2 RELATEDWORKS
ANN-SNN Conversion
The ANN-SNN conversion methods aim to replicate the perfor-

mance of ANNs by converting pre-trained ANNweights into synap-

tic weights of SNNs. Initially, Cao et al. [4] proposed to train an

ANN with ReLU activation function and then use IF neurons to re-

place the activation layer in the conversion process. Diehl et al. [10]

further narrowed the gap between ANNs and SNNs by scaling and

normalizing the weights. To address spike count errors resulting

from the hard reset mechanism, a soft reset neuron was proposed

in Rueckauer et al. [38] and Han et al. [18] to preserve temporal

information.

Further research has conducted both theoretical and experimen-

tal examinations of conversion errors and investigated different

optimization techniques to minimize these errors, including: (1)

Optimizing thresholds: Sengupta et al. [39] and Zhang et al. [50]

proposed dynamic threshold adjustment strategies during the con-

version process. (2) Optimizing membrane potential: Bu et al. [2]

demonstrated that setting the initial membrane potential at half

the threshold can reduce conversion errors. They also proposed an

analysis of residual membrane potential as a strategy to eliminate

conversion errors [20]. (3) Optimizing the pre-conversion ANN

structure: Esser et al. [13] suggested training ANNs with quan-

tized activation values. Ho and Chang [21] introduced a trainable

clipping layer (TCL) for threshold determination. Ding et al. [11]

proposed a rate norm layer as a replacement for ReLU in ANN train-

ing, while [3, 19, 24, 43] introduced different activation functions

to replace ReLU in ANN training. (4) Optimizing spiking neuronal

models. Li et al. [30] introduced a neuron model capable of releas-

ing burst spikes. Wang et al. [44] proposed a memory-enhanced

signed neuron model, while Li et al. [27] suggested incorporating

negative spikes and extending simulation time, which indicates that

increasing the precision of the output layer can improve accuracy

at a relatively small cost.

The Previous approaches for converting CNNS to SNNS were re-

stricted by the CNNS’ performance. Jiang et al.[25] introduced Uni-

versal Group Operators and a Temporal-Corrective Self-Attention

Layer to approximate the original Transformer. However, it has a

long inference latency and a gap with the ANN.

In contrast, this paper presents a new method for converting

a Transformer to an SNN and demonstrates that this conversion

method can achieve high accuracy and low latency while reducing

network energy consumption.

Directly Trained Transformer in ANNs and SNNs
The Transformer architecture has performed exceptionally in the

ANN and SNN domains. Initially, Transformers gained prominence

in the ANN domain due to their outstanding performance with

self-attention mechanisms. The original Transformer architecture,

which consists of an encoder and a decoder, was proposed by

Vaswani et al.[42]. Upon this, Dosovitskiy et al. [12] introduced the

Vision Transformer (ViT) model in 2020. The ViT model divides

images into fixed-size patches as token inputs, and this successful

application of the Transformer architecture in computer vision has

resulted in significant achievements. Fang et al. [15, 16] and Sun

et al. [40] have further scaled standard ViT models to one billion

parameters, exploring the performance limits of large-scale visual

models.

In the SNNdomain, research on spike-based Transformers quickly

emerged. Researchers have proposed different SNN-based spike

self-attention mechanisms, albeit with some floating-point calcu-

lations [29, 55]. Subsequently, Zhou et al. [54] and Yao et al. [48]

introduced fully event-driven Transformers, while Wang et al. [45]

enhanced the computational efficiency and accuracy of Spiking

Transformers by introducing masking techniques. Previous studies

have successfully applied the combination of Transformers and

SNNs to a range of applications, such as monocular depth esti-

mation [52], single-object tracking with event cameras [51], and

automatic speech recognition. Wang et al.[45] first trained a modi-

fied Transformer and then converted it into a Spiking Transformer.

In contrast to the methods mentioned above that train Trans-

former networks from scratch, this paper focuses on converting

pre-trained Transformer networks into SNNs to reduce energy

consumption while preserving the model’s performance.

3 PRELIMINARIES
In this section, we first detail the theoretical basis of the conversion

process from ANNs to SNNs. Then, we introduce the Vision Trans-

former (ViT), the ANN architecture we selected for conversion.

3.1 ANN-SNN conversion theory
Neurons in ANNs. In ANNs, for linear or convolution layers in CNNs
that use the ReLU activation, the output 𝒂𝑙 of neurons in layer 𝑙

can be formulated as:

𝒂𝑙 = ReLU(𝑾𝑙𝒂𝑙−1) = max(𝑾𝑙𝒂𝑙−1, 0), (1)

where𝑾𝑙
denotes the linear transformation or convolution weights

in this layer.

Integrate-and-Fire Neurons in SNNs. For Integrate-and-Fire (IF) neu-
rons in SNNs, let𝒎𝑙 (𝑡) and 𝒗𝑙 (𝑡) denote the membrane potential of

neurons in the 𝑙-th layer before and after firing spikes at time-step

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Towards High-performance Spiking Transformers from ANN to SNN Conversion ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

𝑡 , the neural dynamic can be formulated as follows:

𝒎𝑙 (𝑡) = 𝒗𝑙 (𝑡 − 1) +𝑾𝑙𝒙𝑙−1 (𝑡), (2)

𝒔𝑙 (𝑡) = 𝐻 (𝒎𝑙 (𝑡) − 𝜃𝑙), (3)

𝒙𝑙 (𝑡) = 𝜃𝑙 𝒔𝑙 (𝑡), (4)

𝒗𝑙 (𝑡) = 𝒎𝑙 (𝑡) − 𝒙𝑙 (𝑡). (5)

where 𝐻 represents the Heaviside step function and 𝜃𝑙 denotes

the threshold of the neuron in layer 𝑙 . 𝒔𝑙 (𝑡) is the actual output
spike of layer 𝑙 . 𝒙𝑙 (𝑡) is the postsynaptic potential and theoretical

output of layer 𝑙 , the element of which equals 𝜃𝑙 if the neuron

fires and 0 otherwise. Similar to [38] and [18], we use the “reset-

by-subtraction" mechanism, where the membrane potential 𝒗𝑙 (𝑡)
decreases by a value of 𝜃𝑙 if the neuron fires.

ANN-SNN Conversion. Combining Equations (2)-(5), we have

𝒗𝑙 (𝑡) − 𝒗𝑙 (𝑡 − 1) =𝑾𝑙𝒙𝑙−1 (𝑡) − 𝒙𝑙 (𝑡) . (6)

By summing from time-step 1 to time-step 𝑇 , we have

𝒗𝑙 (𝑇) − 𝒗𝑙 (0)
𝑇

=
𝑾𝑙 ∑𝑇

𝑖=1 𝒙
𝑙−1 (𝑖)

𝑇
−

∑𝑇
𝑖=1 𝒙

𝑙 (𝑖)
𝑇

. (7)

Let Φ𝑙 (𝑇) =
∑𝑇

𝑖=1 𝒙
𝑙 (𝑖)

𝑇
, then we have

Φ𝑙 (𝑇) =𝑾𝑙Φ𝑙−1 (𝑇) − 𝒗𝑙 (𝑇) − 𝒗𝑙 (0)
𝑇

. (8)

By comparing Equation (1) and Equation (8), it can be observed

that the term
𝒗𝑙 (𝑇)−𝒗𝑙 (0)

𝑇
tends to 0 when 𝑇 is sufficiently large.

This allows us to use Φ𝑙 (𝑇) in SNNs to approximate 𝒂𝑙 in ANNs.

Parameter normalization. Approximation errors are inevitable due

to the nature of spike-based communication between neurons since

the neurons in SNNs can emit one spike at each time and are there-

fore limited to a firing rate range of [0, 𝑟max], whereas ANNs typi-
cally do not have such constraints. To prevent approximation errors

caused by excessively low or high firing rates, weight normalization

was introduced by [10, 38]. This normalization approach rescales

all parameters using the following equations:

𝑊 𝑙
SNN

=𝑊 𝑙
ANN

𝜆𝑙−1

𝜆𝑙
. (9)

The value of 𝜆𝑙 is determined by the 𝑝-th percentile of the total

activity distribution of layer 𝑙 . Modifying Equation (9) and setting

𝜃𝑙
𝑗
to 1 is equivalent to adjusting the firing threshold on the soft-

reset neuron to 𝜆𝑙 [2]. This adjustment ensures that the output 𝒙𝑙 (𝑡)
is a spike matrix equal to 𝒔𝑙 (𝑡) and suits the operational dynamics

of SNNs.

3.2 Vision Transformer
Vision Transformer (ViT) architecture consists of three core compo-

nents: Embeddings, Transformer Encoder, and Classification Head.

Embeddings: The process starts by segmenting an image into

patches of specific dimensions, viewing them as a sequence of to-

kens. Each patch undergoes linear embedding with added positional

embeddings, enriching the output token vectors with the patch’s

content and location within the image.

Transformer Encoder: Central to feature extraction, the Trans-
former Encoder plays a crucial role in various visual tasks. It is

divided into two primary segments:

(1) Self-AttentionMechanism. Thismechanism calculates aweighted

sum of all the values 𝑉 in a given sequence. The attention weights

are determined based on the similarity between a query 𝑄 and a

key 𝐾 . The values 𝑄 , 𝐾 , and 𝑉 are obtained through the input 𝑋

using weight matrices𝑊𝑄
,𝑊𝐾

, and𝑊𝑉
respectively. The follow-

ing equation describles the matrix form of the output calculation

for the self-attention mechanism:

𝑂 = Softmax

(
𝑄𝑇𝐾
√
𝑑
𝑉

)
= Softmax

(
(𝑊𝑄𝑋)𝑇𝑊𝐾𝑋

√
𝑑

𝑊𝑉𝑋

)
. (10)

where 𝑑 is the dimension of the key and query vectors.

(2) Feed-Forward Network. Here, the input vector passes through

two linear layers and is activated by the GELU function between

them.

Classification Head: Features related to the CLS token are di-

rected toward the classification head, which then computes the

probabilities for the various classes.

4 METHOD
In this section, we first analyze the main errors encountered in

ANN-SNN conversion. Following this, we propose the Expectation

Compensation Module (EC) to preserve the accuracy of non-linear

modules. In particular, we detailed a lossless conversion method for

the matrix product layer, mainly using additional operations. Addi-

tionally, a Multi-Threshold Neuron (MT) is designed to improve the

efficiency of minimal spikes, which significantly reduces network

latency and energy consumption. The diagram shown in Figure 1

provides an overview of the architecture we utilized.

4.1 Error Analysis of Nonlinear Module in
ANN-SNN Conversion

Existing ANN-SNN conversion methods mainly focus on CNNs,

which typically employ linear operations, such as linear transfor-

mations and convolutions, combined with ReLU activation, as for-

mulated in Equation (1). However, Transformer architecture uses

many non-linear operations, such as GELU, softmax, layernorm, and

matrix product, which cannot be directly formulated using Equa-

tion (1). Consequently, the current conversion theory discussed

in Section 3.1 does not apply to Transformers, which can lead to

conversion errors.

To be specific, we assume that the outputs of layer 𝑙 − 1 in

both ANNs and SNNs are identical, denoted as 𝒂𝑙−1 = Φ𝑙−1 (𝑇) =∑𝑇
𝑡=1 𝒙

𝑙−1 (𝑡)
𝑇

, and we will compare the outputs 𝒂𝑙 and Φ𝑙 in layer 𝑙 .

Considering an arbitrary non-linear module in layer 𝑙 of an ANN,

its function can be formulated as:

𝒂𝑙 = 𝐹 (𝒂𝑙−1), (11)

where 𝐹 is the function of this layer. Obviously, it cannot be ex-

pressed equivalently using Equation (1). In this case, if we do not

introduce a further conversion method for this non-linear mod-

ule, the actual output of the SNN counterpart at time 𝑡 will be

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Classification Head

Input

Transformer Encoder

H W C

Embeddings

Patch
Embedding

CLS

Position
Embedding

 L

Attention

MLP

LayerNorm-EC

LayerNorm-EC

Linear

MT-N

Linear

MT-N

Linear

MT-N

MT-N MT-N

Matrix Product-EC

Softmax-EC

MT-N

Matrix Product-EC

MT-N

Linear

MT-N

Attention

MLP

Linear

MT-N

GELU-EC

Linear

MT-N

Figure 1: An overview of the proposed architecture, including
the whole architecture, Attention, and MLP module.

𝒙𝑙 (𝑡) = 𝐹 (𝒙𝑙−1 (𝑡)). The average output can be formulated as fol-

lows:

Φ𝑙 (𝑇) =
∑𝑇
𝑡=1 𝒙

𝑙 (𝑡)
𝑇

=

∑𝑇
𝑡=1 𝐹 (𝒙𝑙−1 (𝑡))

𝑇
. (12)

However, in the case of ANNs, the expected average output can

be formulated as:

𝒂𝑙 = 𝐹 (𝒂𝑙−1) = 𝐹
(∑𝑇

𝑡=1 𝒙
𝑙−1 (𝑡)
𝑇

)
. (13)

Due to the non-linear nature of the module, we have:∑𝑇
𝑡=1 𝐹 (𝒙𝑙−1 (𝑡))

𝑇
≠ 𝐹

(∑𝑇
𝑡=1 𝒙

𝑙−1 (𝑡)
𝑇

)
. (14)

This implies that the output Φ𝑙 (𝑇) of SNNs in Equation (12) is

not equivalent to the output 𝒂𝑙 of ANNs in Equation (13), posing

challenges for non-linear conversion.

4.2 Expectation Compensation Module
To overcome the challenge of converting non-linear layers, we

propose using Expectation Compensation Modules to preserve non-

linearity throughout the conversion process by leveraging prior

information to compute expectations.

Expectation Compensation (EC)

Matrix Product-EC

Figure 2: The upper diagram shows the general Expectation
Compensationmodule(EC). The lower diagram shows the Ex-
pectation Compensation module for Matrix Product(Matrix
Product-EC).

4.2.1 General Expectation Compensation Module.
The theorem below calculates the expected output of the arbi-

trary non-linear layer at each time step in SNNs.

Theorem 4.1. Consider a non-linear layer 𝑙 with a function 𝐹 .
In SNNs, the output of this layer at time 𝑡 is denoted as 𝑶𝑙 (𝑡). Let
𝑺𝑙 (𝑇) be the cumulative sum of layer 𝑙 outputs up to time 𝑇 , given
by 𝑺𝑙 (𝑇) = ∑𝑇

𝑡=1 𝑶
𝑙 (𝑡). The expected output of the SNNs at time 𝑇 is

given by:

𝑶𝑙 (𝑇) = 𝑇𝐹
(
𝑺𝑙−1 (𝑇)
𝑇

)
− (𝑇 − 1)𝐹

(
𝑺𝑙−1 (𝑇 − 1)
𝑇 − 1

)
. (15)

The detailed proof is provided in the supplementary materials.

Theorem 4.1 indicates that lossless conversion can be achieved

by an accumulator to records 𝑺𝑙−1 (𝑇) and an optional variable to

records 𝑇𝐹

(
𝑺𝑙−1 (𝑇)/𝑇

)
as shown in Figure 2.

4.2.2 Expectation Compensation Module for Matrix Product.
For the matrix product layer, we can convert it into a specialized

module that primarily uses additional operations to achieve loss-

less conversion. The theorem below outlines how to calculate the

expected output of the matrix product layer at each time step in

SNNs.

Theorem 4.2. Consider a module for matrix product that receives
two sets of spike inputs, denoted by 𝑨𝑣𝑎 (𝑡) and 𝑩𝑣𝑏 (𝑡). These inputs
are generated by neurons 𝐴 and 𝐵, respectively, and are characterized
by multiple thresholds 𝑣𝑎 and 𝑣𝑏 , as described in Section 4.3.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Towards High-performance Spiking Transformers from ANN to SNN Conversion ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

MTH
......

Synapse Dendrite Soma Axon

Figure 3: Diagram of MT neuron. MT neuron receives input
from nonlinear/linear modules and emits up to one spike.

We can integrate the input by 𝑨(𝑡) = ∑
𝑣𝑎 𝑣𝑎𝑨𝑣𝑎 (𝑡) and 𝑩(𝑡) =∑

𝑣𝑏
𝑣𝑏𝑩𝑣𝑏 (𝑡). Here, 𝑨(𝑡) and 𝑩(𝑡) are the sum matrices weighted

by multiple thresholds 𝑣𝑎 and 𝑣𝑏 , respectively.
Let 𝑺𝐴 (𝑇) =

∑𝑇
𝑡=1𝐴(𝑡) and 𝑺𝐵 (𝑇) =

∑𝑇
𝑡=1 𝐵(𝑡) represent the cu-

mulative sum of inputs up to time𝑇 . We define 𝑺𝐾 (𝑇) = 𝑺𝐴 (𝑇)𝑺𝐵 (𝑇).
Then, the expected output at time T can be formulated as:

𝑶 (𝑇) = 1

𝑇
𝑺𝐾 (𝑇) −

1

𝑇 − 1

𝑺𝐾 (𝑇 − 1), (16)

where 𝑺𝐾 (𝑇) can be calculated mainly using addition, as described
by the following equation:

𝑺𝐾 (𝑇) = 𝑺𝐾 (𝑇 − 1) + 𝑲 (𝑇) (17)

𝑲 (𝑇) =
∑︁
𝑣𝑎,𝑣𝑏

𝑣𝑎𝑣𝑏𝑨𝑣𝑎 (𝑇)𝑩𝑣𝑏 (𝑇) +
∑︁
𝑣𝑎

𝑣𝑎𝑨𝑣𝑎 (𝑇)𝑺𝐵 (𝑇 − 1)

+
∑︁
𝑣𝑏

𝑣𝑏𝑺𝐴 (𝑇 − 1)𝑩𝑣𝑏 (𝑇) .
(18)

The detailed proof is provided in the supplementary materials.

According to Theorem 4.2, the output𝑶 (𝑇) can be obtained through
the process illustrated in Figure 2. The main power consumption in

this process occurs during the matrix product calculation of 𝑲 (𝑇)
using spike matrices, which can be implemented through accumula-

tions. Since each position of the input matrix has only one effective

threshold at each time, it limits the total number of input spikes,

thereby restricting the total number of operations. Combined with

the sparsity of spikes, this reduces power consumption at each time

step while achieving lossless conversion.

4.3 Multi-Threshold Neuron
4.3.1 Problem of Consumption and Latency.

If we only use the Expectation Compensation Module, neuron

communication will remain in a floating-point format. As discussed

in Section 5.5, most of the network’s power consumption occurs

in the linear and matrix product layers. To reduce the network’s

energy consumption, we introduce spiking neurons before each

linear layer and matrix product layer. Thus, we can significantly

reduce the network’s power consumption by adopting spiking com-

munication.

However, if we only use one threshold, no matter how set, it will

result in excessively high firing rates or high inference latency. The

findings in Section 5.4 demonstrate the importance of having large

and small thresholds in the Transformer.

4.3.2 The Proposed Solution: Multi-Threshold Neuron.

Neuron Neuron

...

...

Layer

MT Neuron

Layer Layer Layer

MT Neuron

Figure 4: Left: Original connection in ANN. Right: Parallel
Parameter normalization of MT neuron in SNN. The MT
Neuron extends one connection to 2𝑛 channels. At each time,
only one of the 2𝑛 channels can emit a spike.

To tackle the challenges of high power consumption and latency,

we propose a Multi-Threshold Neuron (MT neuron).

This neuron model has additional thresholds built upon the base

threshold, allowing it to process more information in a single time

step. The MT neuron is characterized by parameters including

the positive and negative base thresholds, represented as 𝜃1 and

−𝜃2, respectively, and the number of thresholds denoted as 2𝑛.

We can refer to 𝜆𝑙𝑝 as the 𝑝-th threshold value of the MT neuron

corresponding to index 𝑝 .

𝜆𝑙
1
= 𝜃𝑙

1
, 𝜆𝑙

2
= 2𝜃𝑙

1
, ..., 𝜃𝑙𝑛 = 2

𝑛−1𝜃𝑙
1
,

𝜆𝑙𝑛+1 = −𝜃𝑙
2
, 𝜆𝑙𝑛+2 = −2𝜃𝑙

2
, ..., 𝜆𝑙

2𝑛 = −2𝑛−1𝜃𝑙
2
,

(19)

As shown in Figure 3, the dynamic of MT neurons is described by:

𝐼 𝑙𝑗 (𝑡) = 𝐹
𝑙
𝑗 (𝒔

𝑙−1
,1 (𝑡), ..., 𝒔𝑙−1,2𝑛 (𝑡)), (20)

𝑚𝑙𝑗 (𝑡) = 𝑣
𝑙
𝑗 (𝑡 − 1) + 𝐼 𝑙𝑗 (𝑡), (21)

𝑠𝑙𝑗,𝑝 (𝑡) = 𝑀𝑇𝐻𝜃1,𝜃2,𝑛 (𝑚
𝑙
𝑗 (𝑡)) (22)

𝑥𝑙𝑗 (𝑡) =
∑︁
𝑝

𝑠𝑙𝑗,𝑝 (𝑡)𝜆
𝑙
𝑝 , (23)

𝑣𝑙𝑗 (𝑡) =𝑚
𝑙
𝑗 (𝑡) − 𝑥

𝑙
𝑗 (𝑡) . (24)

The variables 𝐼 𝑙
𝑗
(𝑡),𝑠𝑙

𝑗
(𝑡),𝑥𝑙

𝑗
(𝑡),𝑚𝑙

𝑗
(𝑡) and 𝑣𝑙

𝑗
(𝑡) respectively repre-

sent the input, output, postsynaptic potential, and the membrane

potential before and after spikes of the 𝑗-th neuron in the 𝑙-th layer

at time 𝑡 . Meanwhile, 𝐹 is a linear or nonlinear function of this layer.

The function𝑀𝑇𝐻𝜃1,𝜃2,𝑛 (𝑥) can be described using the following

piecewise function:

𝑀𝑇𝐻𝜃1,𝜃2,𝑛 (𝑥) :

𝜆𝑙𝑛 − 𝜆𝑙
1

2
≤𝑥 : 𝑠𝑙

𝑗,𝑛
(𝑡) = 1,

𝜆𝑙
𝑛−1 −

𝜆𝑙
1

2
≤𝑥 < 𝜆𝑙𝑛 − 𝜆𝑙

1

2
: 𝑠𝑙

𝑗,𝑛−1 (𝑡) = 1,

... ...
𝜆𝑙
1

2
≤𝑥 < 𝜆𝑙

2
− 𝜆𝑙

1

2
: 𝑠𝑙

𝑗,1
(𝑡) = 1,

𝜆𝑙
𝑛+1
2

≤𝑥 <
𝜆𝑙
1

2
: 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑠𝑙

𝑗,𝑝
(𝑡) = 0,

𝜆𝑙
𝑛+2 −

𝜆𝑙
𝑛+1
2

≤𝑥 <
𝜆𝑙
𝑛+1
2

: 𝑠𝑙
𝑗,𝑛+1 (𝑡) = 1,

... ...

𝜆𝑙
2𝑛

− 𝜆𝑙
𝑛+1
2

≤𝑥 < 𝜆𝑙
2𝑛−1 −

𝜆𝑙
𝑛+1
2

:𝑠𝑙
𝑗,2𝑛−1 (𝑡) = 1,

𝑥 < 𝜆𝑙
2𝑛

− 𝜆𝑙
𝑛+1
2

: 𝑠𝑙
𝑗,2𝑛

(𝑡) = 1.

(25)

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

The results of experiments presented in Section 5.4 indicate that

although this neuron has multiple thresholds, most of the spikes it

generated are concentrated in 𝜃1 and −𝜃2. The spikes generated by

other thresholds are minimal, which reduces energy consumption

and inference latency.

4.3.3 Parallel Parameter normalization for MT Neuron.
Spike neurons communicate with each other by producing an

output spike of either 0 or 1. As for function 𝐹 in Figure 3.

If 𝐹 is a Matrix Product-EC function, we only need to send spikes

𝑠𝑙 (𝑡) to 𝐹 as 𝑨𝑣𝑎 (𝑡) or 𝑩𝑣𝑏 (𝑡).
If 𝐹 is a general nonlinear EC function, we will integrate spike

output by 𝐼 𝑙
𝑗
(𝑡) = 𝐹 𝑙

𝑗
(∑𝑝 𝒔

𝑙−1
,𝑝 (𝑡)𝜆𝑙−1𝑝).

If 𝐹 is a linear function, 𝐼 𝑙
𝑗
(𝑡) can be expressed by

𝐼 𝑙𝑗 (𝑡) =
∑︁
𝑖

𝑤𝑙𝑖 𝑗ANN𝑥
𝑙−1
𝑖 (𝑡) =

∑︁
𝑖

𝑤𝑙𝑖 𝑗ANN

∑︁
𝑝

𝑠𝑙−1𝑖,𝑝 (𝑡)𝜆𝑙−1𝑝 (26)

A parallel parameter normalization method is proposed to support

spike communication between MT neurons in a linear layer. This

method extends the ANN weight to 2n weights in the SNN corre-

sponding to 2n thresholds of MT neurons, as shown in Figure 4.

We update these weights using the following formula:

𝑊 𝑙
SNN,𝑝 =𝑊 𝑙

ANN

𝜆𝑙−1𝑝

𝜆𝑙
1

(27)

Here, we divide an extra variable 𝜆𝑙
1
to equilibrate parameter size.

Let’s set 𝜂𝑙 =
𝜃𝑙
2

𝜃𝑙
1

. This brings the neuron to an equivalent form,

which is as follows:

𝐼 𝑙𝑗 (𝑡) =
∑︁
𝑖,𝑝

𝑤𝑙𝑖 𝑗SNN,p𝑠
𝑙−1
𝑖,𝑝 (𝑡) (28)

𝜃1,𝑛𝑒𝑤 = 1, 𝜃2,𝑛𝑒𝑤 = 𝜂 (29)

Based on the above discussion, we name this method: Expecta-

tion Compensation and Multi-Threshold(ECMT). The overall con-

version algorithm can be summarized in Algorithm 1.

5 EXPERIMENTAL RESULTS
In this section, we first evaluate the proposed method’s perfor-

mance on the ImageNet dataset. Then, we compare our methodwith

state-of-the-art SNN training and ANN-SNN conversion methods.

Additionally, we perform ablation experiments on Multi-Threshold

Neurons. Finally, we analyze the power consumption of the SNNs

converted by our method.

5.1 Experimental Setup
We convert pre-trained Vision Transformer including the ViT-S/16,

ViT-B/16, ViT-L/16 with 224 resolution [42], and the EVA model

[16] on Imagenet1k dataset [8]. For all Multi-Threshold Neurons,

we set 𝑛 to 8 for ViT-S/16, ViT-B/16, ViT-L/16 and 6 for EVA. And

we set threshold percent 𝑝 to 99. A more detailed setup can be found

in supplementary materials.

5.2 Experimental results on different model
Based on the provided data, Table 1 compares performance met-

rics for various architectures. The analysis shows that our SNN

Algorithm 1 The conversion method using Expectation Compen-

sation Module and Multi-Threshold Neuron(ECMT)

Input: Pre-trained Transformer ANN model 𝑓ANN (𝑾); Dataset D;
Time-step T to test dataset; Threshold percent p.

Output: SNN model 𝑓SNN (𝑾 , 𝜽1, 𝜽2, 𝒗)
1: step1: Obtain the base thresholds 𝜽1 and 𝜽2
2: for length of Dataset 𝑫 do
3: Sample minibatch data from 𝑫
4: Run the data on 𝑓ANN and static the activation values before

linear and matrix product module at p% and (1-p%), setting

them as 𝜽1 and −𝜽2 respectively.
5: end for
6: step2: Converted to SNN model

7: for module m in 𝑓ANN .Module do
8: if m is Linear Module then
9: Add a Multi-Threshold Neuron before m

10: else if m is Matrix Product then
11: replace m by two Multi-Threshold Neurons followed by a

Matrix Product EC Module

12: else if m is Other Nonlinear Module then
13: replace m by an EC Module

14: end if
15: end for
16: Set the base thresholds of MT neurons to corresponding 𝜽1,−𝜽2

and set the initial membrane potential 𝒗 to 0.

17: 𝑓SNN = Parallel Parameter normalization(𝑓ANN)

18: return 𝑓SNN

approach can achieve comparable accuracies to traditional ANNs

with few time steps. Notably, there is only a 1% drop in accuracy ob-

served relative to their ANN counterparts at T=10 for ViT-S/16, T=8

for ViT-B/16, T=6 for ViT-L/16, and as early as T=4 for EVA. This

trend highlights the efficiency of our conversion strategy, especially

within the larger models.

Taking a closer look at the EVA model, our method achieves an

impressive 88.60% accuracy at just T=4, with a negligible 1% accu-

racy degradation while using only 35% of the energy required by the

equivalent ANN model. These results demonstrate our approach’s

effectiveness and suggest its potential for significant energy sav-

ings without substantially compromising accuracy, particularly in

complex and larger-scale model architectures.

5.3 Comparison with the State-of-the-art
Our experiments on the ImageNet1k dataset have pushed the fron-

tiers of neural network efficiency and accuracy. Table 2 provides

a compelling narrative of our progress. Our method is unique in

that it facilitates the conversion of Transformer models into SNNs,

and it stands out for its computational frugality and high accuracy

yield. This marks a significant stride over previous state-of-the-art

methodologies.

Firstly, our method is designed to be more efficient than direct

training approaches. Instead of starting from scratch, we leverage

large pre-trained models to economize on computational efforts

and achieve higher accuracy levels than traditional methods. This

approach demonstrates our ability to capitalize on the intrinsic

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Towards High-performance Spiking Transformers from ANN to SNN Conversion ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Accuracy and energy consumption ratio of ECMT(Ours) on ImageNet1k dataset

Arch. Accuracy/Energy Original (ANN)

Ours (SNN)

T=1 T=2 T=4 T=6 T=8 T=10 T=12

ViT-S/16

Acc. (%) 78.04 0.17 10.66 62.85 73.22 76.03 77.07 77.41

Energy ratio 1 0.06 0.15 0.37 0.59 0.82 1.03 1.25

ViT-B/16

Acc. (%) 80.77 0.24 20.89 69.98 77.81 79.40 80.12 80.38

Energy ratio 1 0.04 0.12 0.30 0.48 0.66 0.84 1.01

ViT-L/16

Acc. (%) 84.88 3.62 75.38 83.20 84.32 84.60 84.68 84.71

Energy ratio 1 0.04 0.12 0.27 0.43 0.58 0.74 0.89

EVA

Acc. (%) 89.62 2.49 84.08 88.60 89.23 89.40 89.45 89.51

Energy ratio 1 0.06 0.15 0.35 0.55 0.74 0.93 1.13

Table 2: Comparison between the proposed method and previous works on ImageNet1k dataset

Method Type Arch. Param. (M) T Accuracy (%)

Spikingformer[54] Direct Training Spikingformer-4-384-400E 66.34 4 75.85

Spike-driven Transformer[48] Direct Training Spiking Transformer-8-768* 66.34 4 77.07

Spikeformer[29] Direct Training Spikeformer-7L/3×2×4 38.75 4 78.31

RMP[18] CNN-to-SNN VGG-16 138 4096 73.09

SNM[44] CNN-to-SNN VGG-16 138 64 71.50

TS[9] CNN-to-SNN VGG-16 138 64 70.97

QFFS[27] CNN-to-SNN VGG-16 138 4(8) 72.10(74.36)

QCFS[3] CNN-to-SNN

ResNet-34 21.8 64 72.35

VGG-16 138 64 72.85

SRP[20] CNN-to-SNN

ResNet-34 21.8 4(64) 66.71(68.61)

VGG-16 138 4(64) 66.46(69.43)

MST[45] Transformer-to-SNN Swin-T(BN) 28.5 128(512) 77.88(78.51)

STA[25] Transformer-to-SNN ViT-B/32 86 32(256) 78.72(82.79)

ECMT(Ours) Transformer-to-SNN

ViT-S/16 22 8(10) 76.03(77.07)

ViT-B/16 86 8(10) 79.40(80.12)

ViT-L/16 307 4(8) 83.20(84.60)

EVA 1074 4(8) 88.60(89.40)

efficiencies of pre-trained networks and apply them successfully to

SNNs.

Secondly, our technique surpasses the CNN-to-SNN conversion

methods in every aspect. Remarkably, even with the ViT-S/16 model

at just 8 time steps, we have achieved an accuracy of 76.0%, which

outperforms the highest accuracy metrics achieved in previously

published CNN-to-SNN works. This highlights the effectiveness of

our conversion protocol and confirms its superiority in translating

CNN architectures into their spiking counterparts.

Finally, compared to the Swin-T(BN) transformer-to-SNN con-

version method mentioned in [45], our approach does not require

specific transformer structures for SNN training. Instead, it enables

the direct conversion of mainstream ViT models. When compared

to the transformer-to-SNN conversion method in [25], our method

can decrease overall energy consumption while requiring extremely

lower latency. Based on the above discussion, our process ensures

quick turnaround and achieves accuracy within 10 temporal steps.

We conducted experiments using four different models, ViT-S/16,

ViT-B/16, ViT-L/16, and EVA, and found that the accuracies achieved

at time steps 8, 8, 4, and 4, respectively, were as follows: 76.03%,

79.4%, 83.2%, and 88.6%. The EVA model, in particular, performed

exceptionally well at reduced time steps, indicating the robustness

of our method and its potential to set new benchmarks in SNN

performance.

5.4 The Effect of Multi-Threshold Neuron
To verify the effectiveness of the Multi-Threshold Neuron, we con-

ducted an experiment to explore the model by varying the number

of thresholds in the neurons. We denoted the number of thresholds

as 2𝑛 and experimented with 𝑛 = 4, 𝑛 = 6, and 𝑛 = 8. Our re-

sults, depicted in Figure 5, illustrate that as the value of 𝑛 increases,

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0 2 4 6 8 10
T

0

10

20

30

40

50

60

70

80

A
cc

(%
)

n=4,threshold*1
n=6,threshold*1
n=8,threshold*1
n=8,threshold*2
n=8,threshold*3

Figure 5: Accuracy under different number and size of thresh-
olds on ViT-S/16, 2𝑛 denotes the number of thresholds.

18.257

3.808
5.325

1.441
0.5170.1720.042 0.555 0.208 0.082 0.032 threshold

firing rate/percent

17.994

0.0120.005 0.012 0.002

Figure 6: Firing rate at different thresholds

more large thresholds are included. This suggests that having large

thresholds is crucial for enhancing performance.

We raised the base threshold to investigate further while keep-

ing 𝑛 = 8. This enabled us to examine the impact of discarding

smaller thresholds. Our findings were precise: models that lacked

small thresholds performed much worse than those with both large

and small thresholds. Therefore, our results suggest that having a

complete range of threshold sizes is crucial for achieving optimal

model performance.

We also increased the base threshold to investigate further while

keeping 𝑛 = 8. This allowed us to study the effect of smaller thresh-

olds by their omission. The results were precise: models without

small thresholds performed worse than those with both large and

small thresholds. Our results showed that both large and small

thresholds are crucial for the model. This emphasizes the need for

a larger 𝑛 to achieve low-latency and high-accuracy conversion.

Additionally, we measured the firing rates of spikes associated

with each threshold when 𝑛 was set to 8. The outcomes are pre-

sented in Figure 6, which shows that the majority of spikes cluster

around the base thresholds, while the spikes generated by other

thresholds are minimal. This indicates that adding thresholds con-

sumes less energy but significantly reduces the inference latency.

5.5 Energy Estimation
In order to determine the energy consumption of the SNNs, we

begin by calculating the theoretical computational complexity for

each module presented in the EVA model, as detailed in Table 3.

Table 3: Theoretical calculation dimensions and actual nu-
merical results of different modules, with image patches
𝑁 = 577, channels 𝐶 = 1408, self-attention heads 𝑁ℎ = 16, and
MLP hidden layer channels 𝐶ℎ = 6144.

Module

Computation

Complexity Results (M)

LayerNorm 1 𝑁 ∗𝐶 0.81

Linear 𝑞𝑘𝑣 𝑁 ∗𝐶 ∗ 3𝐶 3431.65

Matrix Product 𝑞, 𝑘 𝑁ℎ ∗ 𝑁 ∗ (𝐶/𝑁ℎ)2 71.49

Softmax 𝑁ℎ ∗ 𝑁 ∗ 𝑁 5.33

Matrix Product 𝑠, 𝑣 𝑁ℎ ∗ 𝑁 ∗ 𝑁 ∗ (𝐶/𝑁ℎ) 468.76

Linear out 𝑁 ∗𝐶 ∗𝐶 1143.88

LayerNorm 2 𝑁 ∗𝐶 0.81

MLP Linear 1 𝑁 ∗𝐶 ∗𝐶ℎ 4991.48

GELU 𝑁 ∗𝐶ℎ 3.54

MLP Linear 2 𝑁 ∗𝐶ℎ ∗𝐶 4991.48

We then employ the formula presented in [36] to estimate the

energy consumption of SNNs, as detailed in Equation (30):

𝐸SNN

𝐸ANN
=
𝑀𝐴𝐶𝑠SNN ∗ 𝐸MAC +𝐴𝐶𝑠SNN ∗ 𝐸AC

𝑀𝐴𝐶𝑠ANN ∗ 𝐸MAC

. (30)

Here we set 𝐸MAC = 4.6𝑝 𝐽 and 𝐸AC = 0.9𝑝 𝐽 according to [22].

The original network performs most of its computation in linear

and matrix product layers. Our method enables us to implement

linear transformations of spikes entirely using accumulations and

matrix products primarily using accumulations. As a result, we can

estimate the number of multiply operations (𝑀𝐴𝐶𝑠SNN) to be zero.

We evaluated the total energy consumption ratio of our method

compared to the original ANNs, and the results are summarized in

Table 1. Our method reaches a high accuracy of 88.60% using only

4 time steps, with a marginal loss of 1% compared to the original

ANNs, while consuming only 35% of the energy.

6 CONCLUSION AND DISCUSSION
In this paper, we propose a novel method for converting pretrained

Vision Transformers to SNNs with reduced latency. This approach

diverges from previous approaches focusing on converting CNNs

to SNNs or directly training SNNs, our method converts pre-trained

ViTs to SNNs in a low latency. It replaces various modules with

a combination of Expectation Compensation Modules and Multi-

Threshold Neurons, achieving significantly higher accuracy on the

ImageNet dataset with very low latency compared to previous

conversion methods. Moreover, the converted models exhibit sub-

stantially less energy consumption than the original ANN ViTs. Our

method bridges the performance gap between SNNs and ANNs,

paving the way for ultra-high-performance SNNs.

However, our current method still requires a small amount of

multiplication and cannot use accumulations for implementation

alone. Future work may focus on finding alternative solutions for

non-linear modules to eliminate the remaining multiplications. This

will make them more suitable for conversion and pave the way for

further exploration of the conversion from Transformers to SNNs.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Towards High-performance Spiking Transformers from ANN to SNN Conversion ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Sander M Bohte, Joost N Kok, and Johannes A La Poutré. 2000. SpikeProp:

backpropagation for networks of spiking neurons.. In The European Symposium
on Artificial Neural Networks, Vol. 48. 419–424.

[2] Tong Bu, Jianhao Ding, Zhaofei Yu, and Tiejun Huang. 2022. Optimized Potential

Initialization for Low-Latency Spiking Neural Networks. Proceedings of the AAAI
Conference on Artificial Intelligence 36, 1 (2022), 11–20.

[3] Tong Bu, Wei Fang, Jianhao Ding, PENGLIN DAI, Zhaofei Yu, and Tiejun Huang.

2022. Optimal ANN-SNN Conversion for High-accuracy and Ultra-low-latency

SpikingNeural Networks. In International Conference on Learning Representations.
[4] Yongqiang Cao, Yang Chen, and Deepak Khosla. 2015. Spiking Deep Convolu-

tional Neural Networks for Energy-Efficient Object Recognition. International
Journal of Computer Vision 113 (2015), 54–66.

[5] Peng Chen, Yingying ZHANG, Yunyao Cheng, Yang Shu, Yihang Wang, Qing-

song Wen, Bin Yang, and Chenjuan Guo. 2024. Multi-scale Transformers with

Adaptive Pathways for Time Series Forecasting. In Proceedings of the International
Conference on Learning Representations.

[6] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang

Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain,

Yuyun Liao, Chit-Kwan Lin, Andrew Lines, Ruokun Liu, Deepak Mathaikutty,

Steven McCoy, Arnab Paul, Jonathan Tse, Guruguhanathan Venkataramanan,

Yi-Hsin Weng, Andreas Wild, Yoonseok Yang, and Hong Wang. 2018. Loihi: A

Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro 38, 1
(2018), 82–99.

[7] Michael V. DeBole, Brian Taba, Arnon Amir, Filipp Akopyan, Alexander An-

dreopoulos, William P. Risk, Jeff Kusnitz, Carlos Ortega Otero, Tapan K. Nayak,

Rathinakumar Appuswamy, Peter J. Carlson, Andrew S. Cassidy, Pallab Datta,

Steven K. Esser, Guillaume J. Garreau, Kevin L. Holland, Scott Lekuch, Michael

Mastro, Jeff McKinstry, Carmelo di Nolfo, Brent Paulovicks, Jun Sawada, Kai

Schleupen, Benjamin G. Shaw, Jennifer L. Klamo, Myron D. Flickner, John V.

Arthur, and Dharmendra S. Modha. 2019. TrueNorth: Accelerating From Zero to

64 Million Neurons in 10 Years. Computer 52, 5 (2019), 20–29.
[8] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:

A Large-Scale Hierarchical Image Database. In IEEE conference on computer vision
and pattern recognition. 248–255.

[9] Shikuang Deng and Shi Gu. 2021. Optimal Conversion of Conventional Artificial

Neural Networks to Spiking Neural Networks. In International Conference on
Learning Representations.

[10] Peter U. Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and

Michael Pfeiffer. 2015. Fast-classifying, high-accuracy spiking deep networks

through weight and threshold balancing. In Proceedings of International Joint
Conference on Neural Networks. 1–8.

[11] Jianhao Ding, Zhaofei Yu, Yonghong Tian, and Tiejun Huang. 2021. Optimal

ANN-SNN Conversion for Fast and Accurate Inference in Deep Spiking Neu-

ral Networks. In Proceedings of the International Joint Conference on Artificial
Intelligence. 2328–2336.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is

Worth 16x16Words: Transformers for Image Recognition at Scale. In International
Conference on Learning Representations.

[13] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy,

and Dharmendra S Modha. 2019. Learned Step Size Quantization. arXiv preprint
arXiv:1902.08153 (2019).

[14] Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and

Yonghong Tian. 2021. Deep Residual Learning in Spiking Neural Networks. In

Advances in Neural Information Processing Systems, Vol. 34. 21056–21069.
[15] Yuxin Fang, Quan Sun, Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue

Cao. 2023. EVA-02: A Visual Representation for Neon Genesis. arXiv preprint
arXiv:2303.11331 (2023).

[16] Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang,

Tiejun Huang, Xinlong Wang, and Yue Cao. 2023. EVA: Exploring the Limits of

Masked Visual Representation Learning at Scale. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 19358–19369.

[17] Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. 2014.

Neuronal dynamics: From single neurons to networks and models of cognition.
Cambridge University Press.

[18] Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. 2020. RMP-SNN: Resid-

ual Membrane Potential Neuron for Enabling Deeper High-Accuracy and Low-

Latency Spiking Neural Network. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 13558–13567.

[19] Jianing Han, Ziming Wang, Jiangrong Shen, and Huajin Tang. 2023. Symmetric-

threshold ReLU for Fast and Nearly Lossless ANN-SNN Conversion. Machine
Intelligence Research 20, 3 (2023), 435–446.

[20] Zecheng Hao, Tong Bu, Jianhao Ding, Tiejun Huang, and Zhaofei Yu. 2023.

Reducing ANN-SNN Conversion Error through Residual Membrane Potential.

Proceedings of the AAAI Conference on Artificial Intelligence 37, 1 (2023), 11–21.

[21] Nguyen-Dong Ho and Ik-Joon Chang. 2021. TCL: an ANN-to-SNN Conver-

sion with Trainable Clipping Layers. In 2021 58th ACM/IEEE Design Automation
Conference (DAC). 793–798.

[22] Mark Horowitz. 2014. 1.1 Computing’s energy problem (and what we can do

about it). In Proceedings of IEEE International Solid-State Circuits Conference Digest
of Technical Papers. 10–14.

[23] Jitesh Jain, Jiachen Li, Mang Tik Chiu, Ali Hassani, Nikita Orlov, and Humphrey

Shi. 2023. OneFormer: One Transformer To Rule Universal Image Segmenta-

tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2989–2998.

[24] Haiyan Jiang, Srinivas Anumasa, Giulia De Masi, Huan Xiong, and Bin Gu.

2023. A Unified Optimization Framework of ANN-SNN Conversion: Towards

Optimal Mapping from Activation Values to Firing Rates. In Proceedings of the
40th International Conference on Machine Learning, Vol. 202. 14945–14974.

[25] Yizhou Jiang, Kunlin Hu, Tianren Zhang, Haichuan Gao, Yuqian Liu, Ying Fang,

and Feng Chen. 2024. Spatio-Temporal Approximation: A Training-Free SNN

Conversion for Transformers. In Proceedings of the International Conference on
Learning Representations.

[26] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. 2016. Training Deep Spiking

Neural Networks Using Backpropagation. Frontiers in Neuroscience 10 (2016),
228000.

[27] Chen Li, Lei Ma, and Steve Furber. 2022. Quantization Framework for Fast Spiking

Neural Networks. Frontiers in Neuroscience 16 (2022), 918793.
[28] Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and Shi Gu. 2021. A Free

Lunch From ANN: Towards Efficient, Accurate Spiking Neural Networks Cali-

bration. In Proceedings of the 38th International Conference on Machine Learning,
Vol. 139. 6316–6325.

[29] Yudong Li, Yunlin Lei, and Xu Yang. 2022. Spikeformer: A Novel Architecture

for Training High-Performance Low-Latency Spiking Neural Network. arXiv
preprint arXiv:2211.10686 (2022).

[30] Yang Li and Yi Zeng. 2022. Efficient and Accurate Conversion of Spiking Neural

Network with Burst Spikes. In Proceedings of the International Joint Conference
on Artificial Intelligence. 2485–2491.

[31] Xinyu Liu, Houwen Peng, Ningxin Zheng, Yuqing Yang, Han Hu, and Yixuan

Yuan. 2023. EfficientViT: Memory Efficient Vision Transformer With Cascaded

Group Attention. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 14420–14430.

[32] Wolfgang Maass. 1997. Networks of spiking neurons: The third generation of

neural network models. Neural Networks 10, 9 (1997), 1659–1671.
[33] Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy,

Jun Sawada, Filipp Akopyan, Bryan L. Jackson, Nabil Imam, Chen Guo, Yutaka

Nakamura, Bernard Brezzo, Ivan Vo, Steven K. Esser, Rathinakumar Appuswamy,

Brian Taba, Arnon Amir, Myron D. Flickner, William P. Risk, Rajit Manohar,

and Dharmendra S. Modha. 2014. A million spiking-neuron integrated circuit

with a scalable communication network and interface. Science 345, 6197 (2014),
668–673.

[34] Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. 2019. Surrogate Gradi-

ent Learning in Spiking Neural Networks: Bringing the Power of Gradient-Based

Optimization to Spiking Neural Networks. IEEE Signal Processing Magazine 36, 6
(2019), 51–63.

[35] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,

Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,

Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models

FromNatural Language Supervision. In Proceedings of the International Conference
on Machine Learning, Vol. 139. 8748–8763.

[36] Nitin Rathi and Kaushik Roy. 2020. Diet-snn: Direct Input Encoding with Leakage

and Threshold Optimization in Deep Spiking Neural Networks. arXiv preprint
arXiv:2008.03658 (2020).

[37] Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. 2019. Towards spike-

based machine intelligence with neuromorphic computing. Nature 575, 7784
(2019), 607–617.

[38] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-

Chii Liu. 2017. Conversion of Continuous-Valued Deep Networks to Efficient

Event-Driven Networks for Image Classification. Frontiers in Neuroscience 11
(2017), 294078.

[39] Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. 2019.

Going Deeper in Spiking Neural Networks: VGG and Residual Architectures.

Frontiers in Neuroscience 13 (2019), 95.
[40] Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue Cao. 2023. EVA-CLIP:

Improved Training Techniques for Clip at Scale. arXiv preprint arXiv:2303.15389
(2023).

[41] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée

Masquelier, and Anthony Maida. 2019. Deep learning in spiking neural networks.

Neural Networks 111 (2019), 47–63.
[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

you Need. In Advances in Neural Information Processing Systems, Vol. 30.

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[43] BingsenWang, Jian Cao, Jue Chen, Shuo Feng, and YuanWang. 2023. ANewANN-

SNNConversionMethodwith High Accuracy, Low Latency and Good Robustness.

In Proceedings of the International Joint Conference on Artificial Intelligence. 3067–
3075.

[44] Yuchen Wang, Malu Zhang, Yi Chen, and Hong Qu. 2022. Signed Neuron with

Memory: Towards Simple, Accurate and High-Efficient ANN-SNN Conversion.

In Proceedings of the International Joint Conference on Artificial Intelligence. 2501–
2508.

[45] Ziqing Wang, Yuetong Fang, Jiahang Cao, Qiang Zhang, Zhongrui Wang, and

Renjing Xu. 2023. Masked Spiking Transformer. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 1761–1771.

[46] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. 2018. Spatio-Temporal

Backpropagation for Training High-Performance Spiking Neural Networks. Fron-
tiers in Neuroscience 12 (2018), 323875.

[47] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. 2019. Direct

Training for Spiking Neural Networks: Faster, Larger, Better. Proceedings of the
AAAI Conference on Artificial Intelligence 33, 01 (2019), 1311–1318.

[48] Man Yao, JiaKui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi

Li. 2023. Spike-driven Transformer. In Advances in Neural Information Processing
Systems, Vol. 36. 64043–64058.

[49] Friedemann Zenke, Sander M. Bohté, Claudia Clopath, Iulia M. Comşa, Julian

Göltz, Wolfgang Maass, Timothée Masquelier, Richard Naud, Emre O. Neftci,

Mihai A. Petrovici, Franz Scherr, and Dan F.M. Goodman. 2021. Visualizing a

joint future of neuroscience and neuromorphic engineering. Neuron 109, 4 (2021),
571–575.

[50] Anguo Zhang, Jieming Shi, Junyi Wu, Yongcheng Zhou, and Wei Yu. 2023. Low

Latency and Sparse Computing Spiking Neural Networks With Self-Driven Adap-

tive Threshold Plasticity. IEEE Transactions on Neural Networks and Learning
Systems (2023), 1–12.

[51] Jiqing Zhang, Bo Dong, Haiwei Zhang, Jianchuan Ding, Felix Heide, Baocai

Yin, and Xin Yang. 2022. Spiking Transformers for Event-Based Single Object

Tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 8801–8810.

[52] Jiyuan Zhang, Lulu Tang, Zhaofei Yu, Jiwen Lu, and Tiejun Huang. 2022. Spike

Transformer: Monocular Depth Estimation for Spiking Camera. In European
Conference on Computer Vision. 34–52.

[53] Wenrui Zhang and Peng Li. 2020. Temporal Spike Sequence Learning via Back-

propagation for Deep SpikingNeural Networks. InAdvances in Neural Information
Processing Systems, Vol. 33. 12022–12033.

[54] Chenlin Zhou, Liutao Yu, Zhaokun Zhou, Han Zhang, Zhengyu Ma, Huihui Zhou,

and Yonghong Tian. 2023. Spikingformer: Spike-driven Residual Learning for

Transformer-based Spiking Neural Network. arXiv preprint arXiv:2304.11954
(2023).

[55] Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng YAN,

Yonghong Tian, and Li Yuan. 2023. Spikformer: When Spiking Neural Network

Meets Transformer. In Proceedings of the International Conference on Learning
Representations.

	Abstract
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 ANN-SNN conversion theory
	3.2 Vision Transformer

	4 Method
	4.1 Error Analysis of Nonlinear Module in ANN-SNN Conversion
	4.2 Expectation Compensation Module
	4.3 Multi-Threshold Neuron

	5 Experimental results
	5.1 Experimental Setup
	5.2 Experimental results on different model
	5.3 Comparison with the State-of-the-art
	5.4 The Effect of Multi-Threshold Neuron
	5.5 Energy Estimation

	6 Conclusion and Discussion
	References

