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Towards High-performance Spiking Transformers from ANN to
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ABSTRACT
Spiking neural networks (SNNs) show great potential due to their

energy efficiency, fast processing capabilities, and robustness. There

are two main approaches to constructing SNNs. Direct training

methods require much memory, while conversion methods offer

a simpler and more efficient option. However, current conversion

methods mainly focus on converting convolutional neural networks

(CNNs) to SNNs. Converting Transformers to SNN is challenging

because of the presence of non-linear modules. In this paper, we

propose an Expectation Compensation Module to preserve the

accuracy of the conversion. The core idea is to use information

from the previous T time-steps to calculate the expected output

at time-step T. We also propose a Multi-Threshold Neuron and

the corresponding Parallel Parameter normalization to address the

challenge of large time steps needed for high accuracy, aiming to

reduce network latency and power consumption. Our experimental

results demonstrate that our approach achieves state-of-the-art

performance. For example, we achieve a top-1 accuracy of 88.60%

with only a 1% loss in accuracy using 4 time steps while consuming

only 35% of the original power of the Transformer. To our knowl-

edge, this is the first successful ANN to SNN conversion for Spiking

Transformers that achieves high accuracy, low latency, and low

power consumption on complex datasets.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence.

KEYWORDS
Spiking Neural Networks, Spiking Transformer, ANN-SNN Con-

version, Expectation Compensation, Multi-Threshold Neurons

1 INTRODUCTION
Spiking neural networks(SNNs) are a type of neural network model

that imitates the mechanisms of biological neurons[1, 17]. They

are called the third generation of neural networks [32] due to their

biologically plausible interpretation and efficient computational

efficiency[41, 49]. Unlike traditional neural networks, SNNs con-

centrate on the generation and reception of spikes. Neurons in

SNNs do not produce output in every iteration. Instead, they be-

come active and emit spikes only when their membrane potential
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reaches a specific threshold. This sparse spike activity results in sig-

nificantly higher computational efficiency than traditional neural

networks [37], especially when deployed on neuromorphic chips

[6, 7, 33]. However, training large-scale, high-precision, and low-

latency SNNs remains challenging due to the non-differentiable

nature of spikes.

Currently, there are two main approaches to train SNNs. The

first approach is direct training using backpropagation [14, 26,

34, 46, 47, 53]. This method employs surrogate gradients during

backpropagation, which utilizes differentiable continuous functions

or spike-time-dependent plasticity strategies to replace the non-

differentiable spike emission rules. However, this training process

still relies on standard GPUs that are not well-suited for the unique

characteristics of SNNs, leading to significant resource consump-

tion and limited performance. The second approach is Artificial

Neural Network (ANN) to SNN conversion [3, 4, 9, 28, 38]. This con-

version method does not require any additional training. Instead, it

uses pre-trained ANNs and replaces the activation functions with

spiking neurons. This process takes advantage of the similarity

between ReLU activation functions and the spike emission rates

of integrate-and-fire models. The result is a conversion of ANNs

into SNNs while significantly preserving the original ANN’s perfor-

mance. However, this method often leads to longer inference times,

and the modules that can be successfully converted are limited.

As is well known, Transformers have demonstrated exceptional

performance in various vision tasks [5, 12, 23, 31, 35]. However, de-

spite numerous efforts to convert CNNs to SNNs, nowell-established

method exists for converting Transformer models. This is because

Transformers have modules such as layernorm and GELU that differ

from the ReLU function in CNNs. These modules require interaction

between neurons within the same layer and exhibit non-linear char-

acteristics, making it challenging to achieve accurate conversion

through the linear piecewise quantization of individual neurons.

This paper proposes a new method to convert Transformer to

SNN. The primary obstacle in this conversion is dealing with non-

linear modules. To overcome this challenge, we propose using an Ex-

pectation CompensationModule (ECM) that calculates expectations

and replaces each non-linear module. Specifically, a customized

ECM is employed in place of the matrix product, conducting most

of its operations through accumulations. This reduces power con-

sumption and ensures that the total output matches the expected

result at each moment. To improve the efficiency of minimal spikes,

we introduce Multi-Threshold Neurons and the corresponding Par-

allel Parameter normalization, significantly reducing the required

latency and power consumption for inference with comparable

accuracy.

Our main contributions are summarized as follows:

• We analyze the challenges of non-linear module conversion

in Transformer and present a novel solution called the Ex-

pectation Compensation Module, which uses the informa-

tion from the previous time steps to calculate the expected

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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output at the current time step, thus effectively tackling

the limitations of conventional conversion methods while

demonstrating a minimal power consumption increase.

• To overcome the issue of slow accuracy improvement over

time during Transformer conversion, we propose a Multi-

Threshold Neuron and the corresponding Parallel Parameter

normalization, substantially reducing power consumption

requirements and significantly decreasing latency.

• The proposed method has shown its effectiveness on the

ImageNet1k dataset. Our approach not only outperforms

the accuracy of existing SNN models but also substantially

reduces power consumption compared to other Transformer

models. For example, we reach a top-1 accuracy of 88.60%,

with a minimal accuracy loss of only 1% compared to ANN ,

while achieving a 65% reduction in energy consumption.

2 RELATEDWORKS
ANN-SNN Conversion
The ANN-SNN conversion methods aim to replicate the perfor-

mance of ANNs by converting pre-trained ANNweights into synap-

tic weights of SNNs. Initially, Cao et al. [4] proposed to train an

ANN with ReLU activation function and then use IF neurons to re-

place the activation layer in the conversion process. Diehl et al. [10]

further narrowed the gap between ANNs and SNNs by scaling and

normalizing the weights. To address spike count errors resulting

from the hard reset mechanism, a soft reset neuron was proposed

in Rueckauer et al. [38] and Han et al. [18] to preserve temporal

information.

Further research has conducted both theoretical and experimen-

tal examinations of conversion errors and investigated different

optimization techniques to minimize these errors, including: (1)

Optimizing thresholds: Sengupta et al. [39] and Zhang et al. [50]

proposed dynamic threshold adjustment strategies during the con-

version process. (2) Optimizing membrane potential: Bu et al. [2]

demonstrated that setting the initial membrane potential at half

the threshold can reduce conversion errors. They also proposed an

analysis of residual membrane potential as a strategy to eliminate

conversion errors [20]. (3) Optimizing the pre-conversion ANN

structure: Esser et al. [13] suggested training ANNs with quan-

tized activation values. Ho and Chang [21] introduced a trainable

clipping layer (TCL) for threshold determination. Ding et al. [11]

proposed a rate norm layer as a replacement for ReLU in ANN train-

ing, while [3, 19, 24, 43] introduced different activation functions

to replace ReLU in ANN training. (4) Optimizing spiking neuronal

models. Li et al. [30] introduced a neuron model capable of releas-

ing burst spikes. Wang et al. [44] proposed a memory-enhanced

signed neuron model, while Li et al. [27] suggested incorporating

negative spikes and extending simulation time, which indicates that

increasing the precision of the output layer can improve accuracy

at a relatively small cost.

The Previous approaches for converting CNNS to SNNS were re-

stricted by the CNNS’ performance. Jiang et al.[25] introduced Uni-

versal Group Operators and a Temporal-Corrective Self-Attention

Layer to approximate the original Transformer. However, it has a

long inference latency and a gap with the ANN.

In contrast, this paper presents a new method for converting

a Transformer to an SNN and demonstrates that this conversion

method can achieve high accuracy and low latency while reducing

network energy consumption.

Directly Trained Transformer in ANNs and SNNs
The Transformer architecture has performed exceptionally in the

ANN and SNN domains. Initially, Transformers gained prominence

in the ANN domain due to their outstanding performance with

self-attention mechanisms. The original Transformer architecture,

which consists of an encoder and a decoder, was proposed by

Vaswani et al.[42]. Upon this, Dosovitskiy et al. [12] introduced the

Vision Transformer (ViT) model in 2020. The ViT model divides

images into fixed-size patches as token inputs, and this successful

application of the Transformer architecture in computer vision has

resulted in significant achievements. Fang et al. [15, 16] and Sun

et al. [40] have further scaled standard ViT models to one billion

parameters, exploring the performance limits of large-scale visual

models.

In the SNNdomain, research on spike-based Transformers quickly

emerged. Researchers have proposed different SNN-based spike

self-attention mechanisms, albeit with some floating-point calcu-

lations [29, 55]. Subsequently, Zhou et al. [54] and Yao et al. [48]

introduced fully event-driven Transformers, while Wang et al. [45]

enhanced the computational efficiency and accuracy of Spiking

Transformers by introducing masking techniques. Previous studies

have successfully applied the combination of Transformers and

SNNs to a range of applications, such as monocular depth esti-

mation [52], single-object tracking with event cameras [51], and

automatic speech recognition. Wang et al.[45] first trained a modi-

fied Transformer and then converted it into a Spiking Transformer.

In contrast to the methods mentioned above that train Trans-

former networks from scratch, this paper focuses on converting

pre-trained Transformer networks into SNNs to reduce energy

consumption while preserving the model’s performance.

3 PRELIMINARIES
In this section, we first detail the theoretical basis of the conversion

process from ANNs to SNNs. Then, we introduce the Vision Trans-

former (ViT), the ANN architecture we selected for conversion.

3.1 ANN-SNN conversion theory
Neurons in ANNs. In ANNs, for linear or convolution layers in CNNs
that use the ReLU activation, the output 𝒂𝑙 of neurons in layer 𝑙

can be formulated as:

𝒂𝑙 = ReLU(𝑾𝑙𝒂𝑙−1) = max(𝑾𝑙𝒂𝑙−1, 0), (1)

where𝑾𝑙
denotes the linear transformation or convolution weights

in this layer.

Integrate-and-Fire Neurons in SNNs. For Integrate-and-Fire (IF) neu-
rons in SNNs, let𝒎𝑙 (𝑡) and 𝒗𝑙 (𝑡) denote the membrane potential of

neurons in the 𝑙-th layer before and after firing spikes at time-step
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𝑡 , the neural dynamic can be formulated as follows:

𝒎𝑙 (𝑡) = 𝒗𝑙 (𝑡 − 1) +𝑾𝑙𝒙𝑙−1 (𝑡), (2)

𝒔𝑙 (𝑡) = 𝐻 (𝒎𝑙 (𝑡) − 𝜃𝑙 ), (3)

𝒙𝑙 (𝑡) = 𝜃𝑙 𝒔𝑙 (𝑡), (4)

𝒗𝑙 (𝑡) = 𝒎𝑙 (𝑡) − 𝒙𝑙 (𝑡). (5)

where 𝐻 represents the Heaviside step function and 𝜃𝑙 denotes

the threshold of the neuron in layer 𝑙 . 𝒔𝑙 (𝑡) is the actual output
spike of layer 𝑙 . 𝒙𝑙 (𝑡) is the postsynaptic potential and theoretical

output of layer 𝑙 , the element of which equals 𝜃𝑙 if the neuron

fires and 0 otherwise. Similar to [38] and [18], we use the “reset-

by-subtraction" mechanism, where the membrane potential 𝒗𝑙 (𝑡)
decreases by a value of 𝜃𝑙 if the neuron fires.

ANN-SNN Conversion. Combining Equations (2)-(5), we have

𝒗𝑙 (𝑡) − 𝒗𝑙 (𝑡 − 1) =𝑾𝑙𝒙𝑙−1 (𝑡) − 𝒙𝑙 (𝑡) . (6)

By summing from time-step 1 to time-step 𝑇 , we have

𝒗𝑙 (𝑇 ) − 𝒗𝑙 (0)
𝑇

=
𝑾𝑙 ∑𝑇

𝑖=1 𝒙
𝑙−1 (𝑖)

𝑇
−

∑𝑇
𝑖=1 𝒙

𝑙 (𝑖)
𝑇

. (7)

Let Φ𝑙 (𝑇 ) =
∑𝑇

𝑖=1 𝒙
𝑙 (𝑖 )

𝑇
, then we have

Φ𝑙 (𝑇 ) =𝑾𝑙Φ𝑙−1 (𝑇 ) − 𝒗𝑙 (𝑇 ) − 𝒗𝑙 (0)
𝑇

. (8)

By comparing Equation (1) and Equation (8), it can be observed

that the term
𝒗𝑙 (𝑇 )−𝒗𝑙 (0)

𝑇
tends to 0 when 𝑇 is sufficiently large.

This allows us to use Φ𝑙 (𝑇 ) in SNNs to approximate 𝒂𝑙 in ANNs.

Parameter normalization. Approximation errors are inevitable due

to the nature of spike-based communication between neurons since

the neurons in SNNs can emit one spike at each time and are there-

fore limited to a firing rate range of [0, 𝑟max], whereas ANNs typi-
cally do not have such constraints. To prevent approximation errors

caused by excessively low or high firing rates, weight normalization

was introduced by [10, 38]. This normalization approach rescales

all parameters using the following equations:

𝑊 𝑙
SNN

=𝑊 𝑙
ANN

𝜆𝑙−1

𝜆𝑙
. (9)

The value of 𝜆𝑙 is determined by the 𝑝-th percentile of the total

activity distribution of layer 𝑙 . Modifying Equation (9) and setting

𝜃𝑙
𝑗
to 1 is equivalent to adjusting the firing threshold on the soft-

reset neuron to 𝜆𝑙 [2]. This adjustment ensures that the output 𝒙𝑙 (𝑡)
is a spike matrix equal to 𝒔𝑙 (𝑡) and suits the operational dynamics

of SNNs.

3.2 Vision Transformer
Vision Transformer (ViT) architecture consists of three core compo-

nents: Embeddings, Transformer Encoder, and Classification Head.

Embeddings: The process starts by segmenting an image into

patches of specific dimensions, viewing them as a sequence of to-

kens. Each patch undergoes linear embedding with added positional

embeddings, enriching the output token vectors with the patch’s

content and location within the image.

Transformer Encoder: Central to feature extraction, the Trans-
former Encoder plays a crucial role in various visual tasks. It is

divided into two primary segments:

(1) Self-AttentionMechanism. Thismechanism calculates aweighted

sum of all the values 𝑉 in a given sequence. The attention weights

are determined based on the similarity between a query 𝑄 and a

key 𝐾 . The values 𝑄 , 𝐾 , and 𝑉 are obtained through the input 𝑋

using weight matrices𝑊𝑄
,𝑊𝐾

, and𝑊𝑉
respectively. The follow-

ing equation describles the matrix form of the output calculation

for the self-attention mechanism:

𝑂 = Softmax

(
𝑄𝑇𝐾
√
𝑑
𝑉

)
= Softmax

(
(𝑊𝑄𝑋 )𝑇𝑊𝐾𝑋

√
𝑑

𝑊𝑉𝑋

)
. (10)

where 𝑑 is the dimension of the key and query vectors.

(2) Feed-Forward Network. Here, the input vector passes through

two linear layers and is activated by the GELU function between

them.

Classification Head: Features related to the CLS token are di-

rected toward the classification head, which then computes the

probabilities for the various classes.

4 METHOD
In this section, we first analyze the main errors encountered in

ANN-SNN conversion. Following this, we propose the Expectation

Compensation Module (EC) to preserve the accuracy of non-linear

modules. In particular, we detailed a lossless conversion method for

the matrix product layer, mainly using additional operations. Addi-

tionally, a Multi-Threshold Neuron (MT) is designed to improve the

efficiency of minimal spikes, which significantly reduces network

latency and energy consumption. The diagram shown in Figure 1

provides an overview of the architecture we utilized.

4.1 Error Analysis of Nonlinear Module in
ANN-SNN Conversion

Existing ANN-SNN conversion methods mainly focus on CNNs,

which typically employ linear operations, such as linear transfor-

mations and convolutions, combined with ReLU activation, as for-

mulated in Equation (1). However, Transformer architecture uses

many non-linear operations, such as GELU, softmax, layernorm, and

matrix product, which cannot be directly formulated using Equa-

tion (1). Consequently, the current conversion theory discussed

in Section 3.1 does not apply to Transformers, which can lead to

conversion errors.

To be specific, we assume that the outputs of layer 𝑙 − 1 in

both ANNs and SNNs are identical, denoted as 𝒂𝑙−1 = Φ𝑙−1 (𝑇 ) =∑𝑇
𝑡=1 𝒙

𝑙−1 (𝑡 )
𝑇

, and we will compare the outputs 𝒂𝑙 and Φ𝑙 in layer 𝑙 .

Considering an arbitrary non-linear module in layer 𝑙 of an ANN,

its function can be formulated as:

𝒂𝑙 = 𝐹 (𝒂𝑙−1), (11)

where 𝐹 is the function of this layer. Obviously, it cannot be ex-

pressed equivalently using Equation (1). In this case, if we do not

introduce a further conversion method for this non-linear mod-

ule, the actual output of the SNN counterpart at time 𝑡 will be
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Figure 1: An overview of the proposed architecture, including
the whole architecture, Attention, and MLP module.

𝒙𝑙 (𝑡) = 𝐹 (𝒙𝑙−1 (𝑡)). The average output can be formulated as fol-

lows:

Φ𝑙 (𝑇 ) =
∑𝑇
𝑡=1 𝒙

𝑙 (𝑡)
𝑇

=

∑𝑇
𝑡=1 𝐹 (𝒙𝑙−1 (𝑡))

𝑇
. (12)

However, in the case of ANNs, the expected average output can

be formulated as:

𝒂𝑙 = 𝐹 (𝒂𝑙−1) = 𝐹
(∑𝑇

𝑡=1 𝒙
𝑙−1 (𝑡)
𝑇

)
. (13)

Due to the non-linear nature of the module, we have:∑𝑇
𝑡=1 𝐹 (𝒙𝑙−1 (𝑡))

𝑇
≠ 𝐹

(∑𝑇
𝑡=1 𝒙

𝑙−1 (𝑡)
𝑇

)
. (14)

This implies that the output Φ𝑙 (𝑇 ) of SNNs in Equation (12) is

not equivalent to the output 𝒂𝑙 of ANNs in Equation (13), posing

challenges for non-linear conversion.

4.2 Expectation Compensation Module
To overcome the challenge of converting non-linear layers, we

propose using Expectation Compensation Modules to preserve non-

linearity throughout the conversion process by leveraging prior

information to compute expectations.

Expectation Compensation (EC)

Matrix Product-EC

Figure 2: The upper diagram shows the general Expectation
Compensationmodule(EC). The lower diagram shows the Ex-
pectation Compensation module for Matrix Product(Matrix
Product-EC).

4.2.1 General Expectation Compensation Module.
The theorem below calculates the expected output of the arbi-

trary non-linear layer at each time step in SNNs.

Theorem 4.1. Consider a non-linear layer 𝑙 with a function 𝐹 .
In SNNs, the output of this layer at time 𝑡 is denoted as 𝑶𝑙 (𝑡). Let
𝑺𝑙 (𝑇 ) be the cumulative sum of layer 𝑙 outputs up to time 𝑇 , given
by 𝑺𝑙 (𝑇 ) = ∑𝑇

𝑡=1 𝑶
𝑙 (𝑡). The expected output of the SNNs at time 𝑇 is

given by:

𝑶𝑙 (𝑇 ) = 𝑇𝐹
(
𝑺𝑙−1 (𝑇 )
𝑇

)
− (𝑇 − 1)𝐹

(
𝑺𝑙−1 (𝑇 − 1)
𝑇 − 1

)
. (15)

The detailed proof is provided in the supplementary materials.

Theorem 4.1 indicates that lossless conversion can be achieved

by an accumulator to records 𝑺𝑙−1 (𝑇 ) and an optional variable to

records 𝑇𝐹

(
𝑺𝑙−1 (𝑇 )/𝑇

)
as shown in Figure 2.

4.2.2 Expectation Compensation Module for Matrix Product.
For the matrix product layer, we can convert it into a specialized

module that primarily uses additional operations to achieve loss-

less conversion. The theorem below outlines how to calculate the

expected output of the matrix product layer at each time step in

SNNs.

Theorem 4.2. Consider a module for matrix product that receives
two sets of spike inputs, denoted by 𝑨𝑣𝑎 (𝑡) and 𝑩𝑣𝑏 (𝑡). These inputs
are generated by neurons 𝐴 and 𝐵, respectively, and are characterized
by multiple thresholds 𝑣𝑎 and 𝑣𝑏 , as described in Section 4.3.
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Figure 3: Diagram of MT neuron. MT neuron receives input
from nonlinear/linear modules and emits up to one spike.

We can integrate the input by 𝑨(𝑡) = ∑
𝑣𝑎 𝑣𝑎𝑨𝑣𝑎 (𝑡) and 𝑩(𝑡) =∑

𝑣𝑏
𝑣𝑏𝑩𝑣𝑏 (𝑡). Here, 𝑨(𝑡) and 𝑩(𝑡) are the sum matrices weighted

by multiple thresholds 𝑣𝑎 and 𝑣𝑏 , respectively.
Let 𝑺𝐴 (𝑇 ) =

∑𝑇
𝑡=1𝐴(𝑡) and 𝑺𝐵 (𝑇 ) =

∑𝑇
𝑡=1 𝐵(𝑡) represent the cu-

mulative sum of inputs up to time𝑇 . We define 𝑺𝐾 (𝑇 ) = 𝑺𝐴 (𝑇 )𝑺𝐵 (𝑇 ).
Then, the expected output at time T can be formulated as:

𝑶 (𝑇 ) = 1

𝑇
𝑺𝐾 (𝑇 ) −

1

𝑇 − 1

𝑺𝐾 (𝑇 − 1), (16)

where 𝑺𝐾 (𝑇 ) can be calculated mainly using addition, as described
by the following equation:

𝑺𝐾 (𝑇 ) = 𝑺𝐾 (𝑇 − 1) + 𝑲 (𝑇 ) (17)

𝑲 (𝑇 ) =
∑︁
𝑣𝑎,𝑣𝑏

𝑣𝑎𝑣𝑏𝑨𝑣𝑎 (𝑇 )𝑩𝑣𝑏 (𝑇 ) +
∑︁
𝑣𝑎

𝑣𝑎𝑨𝑣𝑎 (𝑇 )𝑺𝐵 (𝑇 − 1)

+
∑︁
𝑣𝑏

𝑣𝑏𝑺𝐴 (𝑇 − 1)𝑩𝑣𝑏 (𝑇 ) .
(18)

The detailed proof is provided in the supplementary materials.

According to Theorem 4.2, the output𝑶 (𝑇 ) can be obtained through
the process illustrated in Figure 2. The main power consumption in

this process occurs during the matrix product calculation of 𝑲 (𝑇 )
using spike matrices, which can be implemented through accumula-

tions. Since each position of the input matrix has only one effective

threshold at each time, it limits the total number of input spikes,

thereby restricting the total number of operations. Combined with

the sparsity of spikes, this reduces power consumption at each time

step while achieving lossless conversion.

4.3 Multi-Threshold Neuron
4.3.1 Problem of Consumption and Latency.

If we only use the Expectation Compensation Module, neuron

communication will remain in a floating-point format. As discussed

in Section 5.5, most of the network’s power consumption occurs

in the linear and matrix product layers. To reduce the network’s

energy consumption, we introduce spiking neurons before each

linear layer and matrix product layer. Thus, we can significantly

reduce the network’s power consumption by adopting spiking com-

munication.

However, if we only use one threshold, no matter how set, it will

result in excessively high firing rates or high inference latency. The

findings in Section 5.4 demonstrate the importance of having large

and small thresholds in the Transformer.

4.3.2 The Proposed Solution: Multi-Threshold Neuron.

Neuron Neuron 

...

...

Layer 

MT Neuron 

Layer Layer Layer 

MT Neuron 

Figure 4: Left: Original connection in ANN. Right: Parallel
Parameter normalization of MT neuron in SNN. The MT
Neuron extends one connection to 2𝑛 channels. At each time,
only one of the 2𝑛 channels can emit a spike.

To tackle the challenges of high power consumption and latency,

we propose a Multi-Threshold Neuron (MT neuron).

This neuron model has additional thresholds built upon the base

threshold, allowing it to process more information in a single time

step. The MT neuron is characterized by parameters including

the positive and negative base thresholds, represented as 𝜃1 and

−𝜃2, respectively, and the number of thresholds denoted as 2𝑛.

We can refer to 𝜆𝑙𝑝 as the 𝑝-th threshold value of the MT neuron

corresponding to index 𝑝 .

𝜆𝑙
1
= 𝜃𝑙

1
, 𝜆𝑙

2
= 2𝜃𝑙

1
, ..., 𝜃𝑙𝑛 = 2

𝑛−1𝜃𝑙
1
,

𝜆𝑙𝑛+1 = −𝜃𝑙
2
, 𝜆𝑙𝑛+2 = −2𝜃𝑙

2
, ..., 𝜆𝑙

2𝑛 = −2𝑛−1𝜃𝑙
2
,

(19)

As shown in Figure 3, the dynamic of MT neurons is described by:

𝐼 𝑙𝑗 (𝑡) = 𝐹
𝑙
𝑗 (𝒔

𝑙−1
,1 (𝑡), ..., 𝒔𝑙−1,2𝑛 (𝑡)), (20)

𝑚𝑙𝑗 (𝑡) = 𝑣
𝑙
𝑗 (𝑡 − 1) + 𝐼 𝑙𝑗 (𝑡), (21)

𝑠𝑙𝑗,𝑝 (𝑡) = 𝑀𝑇𝐻𝜃1,𝜃2,𝑛 (𝑚
𝑙
𝑗 (𝑡)) (22)

𝑥𝑙𝑗 (𝑡) =
∑︁
𝑝

𝑠𝑙𝑗,𝑝 (𝑡)𝜆
𝑙
𝑝 , (23)

𝑣𝑙𝑗 (𝑡) =𝑚
𝑙
𝑗 (𝑡) − 𝑥

𝑙
𝑗 (𝑡) . (24)

The variables 𝐼 𝑙
𝑗
(𝑡),𝑠𝑙

𝑗
(𝑡),𝑥𝑙

𝑗
(𝑡),𝑚𝑙

𝑗
(𝑡) and 𝑣𝑙

𝑗
(𝑡) respectively repre-

sent the input, output, postsynaptic potential, and the membrane

potential before and after spikes of the 𝑗-th neuron in the 𝑙-th layer

at time 𝑡 . Meanwhile, 𝐹 is a linear or nonlinear function of this layer.

The function𝑀𝑇𝐻𝜃1,𝜃2,𝑛 (𝑥) can be described using the following

piecewise function:

𝑀𝑇𝐻𝜃1,𝜃2,𝑛 (𝑥) :

𝜆𝑙𝑛 − 𝜆𝑙
1

2
≤𝑥 : 𝑠𝑙

𝑗,𝑛
(𝑡) = 1,

𝜆𝑙
𝑛−1 −

𝜆𝑙
1

2
≤𝑥 < 𝜆𝑙𝑛 − 𝜆𝑙

1

2
: 𝑠𝑙

𝑗,𝑛−1 (𝑡) = 1,

... ...
𝜆𝑙
1

2
≤𝑥 < 𝜆𝑙

2
− 𝜆𝑙

1

2
: 𝑠𝑙

𝑗,1
(𝑡) = 1,

𝜆𝑙
𝑛+1
2

≤𝑥 <
𝜆𝑙
1

2
: 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑠𝑙

𝑗,𝑝
(𝑡) = 0,

𝜆𝑙
𝑛+2 −

𝜆𝑙
𝑛+1
2

≤𝑥 <
𝜆𝑙
𝑛+1
2

: 𝑠𝑙
𝑗,𝑛+1 (𝑡) = 1,

... ...

𝜆𝑙
2𝑛

− 𝜆𝑙
𝑛+1
2

≤𝑥 < 𝜆𝑙
2𝑛−1 −

𝜆𝑙
𝑛+1
2

:𝑠𝑙
𝑗,2𝑛−1 (𝑡) = 1,

𝑥 < 𝜆𝑙
2𝑛

− 𝜆𝑙
𝑛+1
2

: 𝑠𝑙
𝑗,2𝑛

(𝑡) = 1.

(25)
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The results of experiments presented in Section 5.4 indicate that

although this neuron has multiple thresholds, most of the spikes it

generated are concentrated in 𝜃1 and −𝜃2. The spikes generated by

other thresholds are minimal, which reduces energy consumption

and inference latency.

4.3.3 Parallel Parameter normalization for MT Neuron.
Spike neurons communicate with each other by producing an

output spike of either 0 or 1. As for function 𝐹 in Figure 3.

If 𝐹 is a Matrix Product-EC function, we only need to send spikes

𝑠𝑙 (𝑡) to 𝐹 as 𝑨𝑣𝑎 (𝑡) or 𝑩𝑣𝑏 (𝑡).
If 𝐹 is a general nonlinear EC function, we will integrate spike

output by 𝐼 𝑙
𝑗
(𝑡) = 𝐹 𝑙

𝑗
(∑𝑝 𝒔

𝑙−1
,𝑝 (𝑡)𝜆𝑙−1𝑝 ).

If 𝐹 is a linear function, 𝐼 𝑙
𝑗
(𝑡) can be expressed by

𝐼 𝑙𝑗 (𝑡) =
∑︁
𝑖

𝑤𝑙𝑖 𝑗ANN𝑥
𝑙−1
𝑖 (𝑡) =

∑︁
𝑖

𝑤𝑙𝑖 𝑗ANN

∑︁
𝑝

𝑠𝑙−1𝑖,𝑝 (𝑡)𝜆𝑙−1𝑝 (26)

A parallel parameter normalization method is proposed to support

spike communication between MT neurons in a linear layer. This

method extends the ANN weight to 2n weights in the SNN corre-

sponding to 2n thresholds of MT neurons, as shown in Figure 4.

We update these weights using the following formula:

𝑊 𝑙
SNN,𝑝 =𝑊 𝑙

ANN

𝜆𝑙−1𝑝

𝜆𝑙
1

(27)

Here, we divide an extra variable 𝜆𝑙
1
to equilibrate parameter size.

Let’s set 𝜂𝑙 =
𝜃𝑙
2

𝜃𝑙
1

. This brings the neuron to an equivalent form,

which is as follows:

𝐼 𝑙𝑗 (𝑡) =
∑︁
𝑖,𝑝

𝑤𝑙𝑖 𝑗SNN,p𝑠
𝑙−1
𝑖,𝑝 (𝑡) (28)

𝜃1,𝑛𝑒𝑤 = 1, 𝜃2,𝑛𝑒𝑤 = 𝜂 (29)

Based on the above discussion, we name this method: Expecta-

tion Compensation and Multi-Threshold(ECMT). The overall con-

version algorithm can be summarized in Algorithm 1.

5 EXPERIMENTAL RESULTS
In this section, we first evaluate the proposed method’s perfor-

mance on the ImageNet dataset. Then, we compare our methodwith

state-of-the-art SNN training and ANN-SNN conversion methods.

Additionally, we perform ablation experiments on Multi-Threshold

Neurons. Finally, we analyze the power consumption of the SNNs

converted by our method.

5.1 Experimental Setup
We convert pre-trained Vision Transformer including the ViT-S/16,

ViT-B/16, ViT-L/16 with 224 resolution [42], and the EVA model

[16] on Imagenet1k dataset [8]. For all Multi-Threshold Neurons,

we set 𝑛 to 8 for ViT-S/16, ViT-B/16, ViT-L/16 and 6 for EVA. And

we set threshold percent 𝑝 to 99. A more detailed setup can be found

in supplementary materials.

5.2 Experimental results on different model
Based on the provided data, Table 1 compares performance met-

rics for various architectures. The analysis shows that our SNN

Algorithm 1 The conversion method using Expectation Compen-

sation Module and Multi-Threshold Neuron(ECMT)

Input: Pre-trained Transformer ANN model 𝑓ANN (𝑾 ); Dataset D;
Time-step T to test dataset; Threshold percent p.

Output: SNN model 𝑓SNN (𝑾 , 𝜽1, 𝜽2, 𝒗)
1: step1: Obtain the base thresholds 𝜽1 and 𝜽2
2: for length of Dataset 𝑫 do
3: Sample minibatch data from 𝑫
4: Run the data on 𝑓ANN and static the activation values before

linear and matrix product module at p% and (1-p%), setting

them as 𝜽1 and −𝜽2 respectively.
5: end for
6: step2: Converted to SNN model

7: for module m in 𝑓ANN .Module do
8: if m is Linear Module then
9: Add a Multi-Threshold Neuron before m

10: else if m is Matrix Product then
11: replace m by two Multi-Threshold Neurons followed by a

Matrix Product EC Module

12: else if m is Other Nonlinear Module then
13: replace m by an EC Module

14: end if
15: end for
16: Set the base thresholds of MT neurons to corresponding 𝜽1,−𝜽2

and set the initial membrane potential 𝒗 to 0.

17: 𝑓SNN = Parallel Parameter normalization(𝑓ANN)

18: return 𝑓SNN

approach can achieve comparable accuracies to traditional ANNs

with few time steps. Notably, there is only a 1% drop in accuracy ob-

served relative to their ANN counterparts at T=10 for ViT-S/16, T=8

for ViT-B/16, T=6 for ViT-L/16, and as early as T=4 for EVA. This

trend highlights the efficiency of our conversion strategy, especially

within the larger models.

Taking a closer look at the EVA model, our method achieves an

impressive 88.60% accuracy at just T=4, with a negligible 1% accu-

racy degradation while using only 35% of the energy required by the

equivalent ANN model. These results demonstrate our approach’s

effectiveness and suggest its potential for significant energy sav-

ings without substantially compromising accuracy, particularly in

complex and larger-scale model architectures.

5.3 Comparison with the State-of-the-art
Our experiments on the ImageNet1k dataset have pushed the fron-

tiers of neural network efficiency and accuracy. Table 2 provides

a compelling narrative of our progress. Our method is unique in

that it facilitates the conversion of Transformer models into SNNs,

and it stands out for its computational frugality and high accuracy

yield. This marks a significant stride over previous state-of-the-art

methodologies.

Firstly, our method is designed to be more efficient than direct

training approaches. Instead of starting from scratch, we leverage

large pre-trained models to economize on computational efforts

and achieve higher accuracy levels than traditional methods. This

approach demonstrates our ability to capitalize on the intrinsic
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Table 1: Accuracy and energy consumption ratio of ECMT(Ours) on ImageNet1k dataset

Arch. Accuracy/Energy Original (ANN)

Ours (SNN)

T=1 T=2 T=4 T=6 T=8 T=10 T=12

ViT-S/16

Acc. (%) 78.04 0.17 10.66 62.85 73.22 76.03 77.07 77.41

Energy ratio 1 0.06 0.15 0.37 0.59 0.82 1.03 1.25

ViT-B/16

Acc. (%) 80.77 0.24 20.89 69.98 77.81 79.40 80.12 80.38

Energy ratio 1 0.04 0.12 0.30 0.48 0.66 0.84 1.01

ViT-L/16

Acc. (%) 84.88 3.62 75.38 83.20 84.32 84.60 84.68 84.71

Energy ratio 1 0.04 0.12 0.27 0.43 0.58 0.74 0.89

EVA

Acc. (%) 89.62 2.49 84.08 88.60 89.23 89.40 89.45 89.51

Energy ratio 1 0.06 0.15 0.35 0.55 0.74 0.93 1.13

Table 2: Comparison between the proposed method and previous works on ImageNet1k dataset

Method Type Arch. Param. (M) T Accuracy (%)

Spikingformer[54] Direct Training Spikingformer-4-384-400E 66.34 4 75.85

Spike-driven Transformer[48] Direct Training Spiking Transformer-8-768* 66.34 4 77.07

Spikeformer[29] Direct Training Spikeformer-7L/3×2×4 38.75 4 78.31

RMP[18] CNN-to-SNN VGG-16 138 4096 73.09

SNM[44] CNN-to-SNN VGG-16 138 64 71.50

TS[9] CNN-to-SNN VGG-16 138 64 70.97

QFFS[27] CNN-to-SNN VGG-16 138 4(8) 72.10(74.36)

QCFS[3] CNN-to-SNN

ResNet-34 21.8 64 72.35

VGG-16 138 64 72.85

SRP[20] CNN-to-SNN

ResNet-34 21.8 4(64) 66.71(68.61)

VGG-16 138 4(64) 66.46(69.43)

MST[45] Transformer-to-SNN Swin-T(BN) 28.5 128(512) 77.88(78.51)

STA[25] Transformer-to-SNN ViT-B/32 86 32(256) 78.72(82.79)

ECMT(Ours) Transformer-to-SNN

ViT-S/16 22 8(10) 76.03(77.07)

ViT-B/16 86 8(10) 79.40(80.12)

ViT-L/16 307 4(8) 83.20(84.60)

EVA 1074 4(8) 88.60(89.40)

efficiencies of pre-trained networks and apply them successfully to

SNNs.

Secondly, our technique surpasses the CNN-to-SNN conversion

methods in every aspect. Remarkably, even with the ViT-S/16 model

at just 8 time steps, we have achieved an accuracy of 76.0%, which

outperforms the highest accuracy metrics achieved in previously

published CNN-to-SNN works. This highlights the effectiveness of

our conversion protocol and confirms its superiority in translating

CNN architectures into their spiking counterparts.

Finally, compared to the Swin-T(BN) transformer-to-SNN con-

version method mentioned in [45], our approach does not require

specific transformer structures for SNN training. Instead, it enables

the direct conversion of mainstream ViT models. When compared

to the transformer-to-SNN conversion method in [25], our method

can decrease overall energy consumption while requiring extremely

lower latency. Based on the above discussion, our process ensures

quick turnaround and achieves accuracy within 10 temporal steps.

We conducted experiments using four different models, ViT-S/16,

ViT-B/16, ViT-L/16, and EVA, and found that the accuracies achieved

at time steps 8, 8, 4, and 4, respectively, were as follows: 76.03%,

79.4%, 83.2%, and 88.6%. The EVA model, in particular, performed

exceptionally well at reduced time steps, indicating the robustness

of our method and its potential to set new benchmarks in SNN

performance.

5.4 The Effect of Multi-Threshold Neuron
To verify the effectiveness of the Multi-Threshold Neuron, we con-

ducted an experiment to explore the model by varying the number

of thresholds in the neurons. We denoted the number of thresholds

as 2𝑛 and experimented with 𝑛 = 4, 𝑛 = 6, and 𝑛 = 8. Our re-

sults, depicted in Figure 5, illustrate that as the value of 𝑛 increases,
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Figure 5: Accuracy under different number and size of thresh-
olds on ViT-S/16, 2𝑛 denotes the number of thresholds.
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Figure 6: Firing rate at different thresholds

more large thresholds are included. This suggests that having large

thresholds is crucial for enhancing performance.

We raised the base threshold to investigate further while keep-

ing 𝑛 = 8. This enabled us to examine the impact of discarding

smaller thresholds. Our findings were precise: models that lacked

small thresholds performed much worse than those with both large

and small thresholds. Therefore, our results suggest that having a

complete range of threshold sizes is crucial for achieving optimal

model performance.

We also increased the base threshold to investigate further while

keeping 𝑛 = 8. This allowed us to study the effect of smaller thresh-

olds by their omission. The results were precise: models without

small thresholds performed worse than those with both large and

small thresholds. Our results showed that both large and small

thresholds are crucial for the model. This emphasizes the need for

a larger 𝑛 to achieve low-latency and high-accuracy conversion.

Additionally, we measured the firing rates of spikes associated

with each threshold when 𝑛 was set to 8. The outcomes are pre-

sented in Figure 6, which shows that the majority of spikes cluster

around the base thresholds, while the spikes generated by other

thresholds are minimal. This indicates that adding thresholds con-

sumes less energy but significantly reduces the inference latency.

5.5 Energy Estimation
In order to determine the energy consumption of the SNNs, we

begin by calculating the theoretical computational complexity for

each module presented in the EVA model, as detailed in Table 3.

Table 3: Theoretical calculation dimensions and actual nu-
merical results of different modules, with image patches
𝑁 = 577, channels 𝐶 = 1408, self-attention heads 𝑁ℎ = 16, and
MLP hidden layer channels 𝐶ℎ = 6144.

Module

Computation

Complexity Results (M)

LayerNorm 1 𝑁 ∗𝐶 0.81

Linear 𝑞𝑘𝑣 𝑁 ∗𝐶 ∗ 3𝐶 3431.65

Matrix Product 𝑞, 𝑘 𝑁ℎ ∗ 𝑁 ∗ (𝐶/𝑁ℎ)2 71.49

Softmax 𝑁ℎ ∗ 𝑁 ∗ 𝑁 5.33

Matrix Product 𝑠, 𝑣 𝑁ℎ ∗ 𝑁 ∗ 𝑁 ∗ (𝐶/𝑁ℎ) 468.76

Linear out 𝑁 ∗𝐶 ∗𝐶 1143.88

LayerNorm 2 𝑁 ∗𝐶 0.81

MLP Linear 1 𝑁 ∗𝐶 ∗𝐶ℎ 4991.48

GELU 𝑁 ∗𝐶ℎ 3.54

MLP Linear 2 𝑁 ∗𝐶ℎ ∗𝐶 4991.48

We then employ the formula presented in [36] to estimate the

energy consumption of SNNs, as detailed in Equation (30):

𝐸SNN

𝐸ANN
=
𝑀𝐴𝐶𝑠SNN ∗ 𝐸MAC +𝐴𝐶𝑠SNN ∗ 𝐸AC

𝑀𝐴𝐶𝑠ANN ∗ 𝐸MAC

. (30)

Here we set 𝐸MAC = 4.6𝑝 𝐽 and 𝐸AC = 0.9𝑝 𝐽 according to [22].

The original network performs most of its computation in linear

and matrix product layers. Our method enables us to implement

linear transformations of spikes entirely using accumulations and

matrix products primarily using accumulations. As a result, we can

estimate the number of multiply operations (𝑀𝐴𝐶𝑠SNN) to be zero.

We evaluated the total energy consumption ratio of our method

compared to the original ANNs, and the results are summarized in

Table 1. Our method reaches a high accuracy of 88.60% using only

4 time steps, with a marginal loss of 1% compared to the original

ANNs, while consuming only 35% of the energy.

6 CONCLUSION AND DISCUSSION
In this paper, we propose a novel method for converting pretrained

Vision Transformers to SNNs with reduced latency. This approach

diverges from previous approaches focusing on converting CNNs

to SNNs or directly training SNNs, our method converts pre-trained

ViTs to SNNs in a low latency. It replaces various modules with

a combination of Expectation Compensation Modules and Multi-

Threshold Neurons, achieving significantly higher accuracy on the

ImageNet dataset with very low latency compared to previous

conversion methods. Moreover, the converted models exhibit sub-

stantially less energy consumption than the original ANN ViTs. Our

method bridges the performance gap between SNNs and ANNs,

paving the way for ultra-high-performance SNNs.

However, our current method still requires a small amount of

multiplication and cannot use accumulations for implementation

alone. Future work may focus on finding alternative solutions for

non-linear modules to eliminate the remaining multiplications. This

will make them more suitable for conversion and pave the way for

further exploration of the conversion from Transformers to SNNs.
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