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ABSTRACT

The exploration of brain activity and its decoding from fMRI data has been a
longstanding pursuit, driven by its potential applications in brain-computer inter-
faces, medical diagnostics, and virtual reality. Previous approaches have primarily
focused on individual subject analysis, highlighting the need for a more univer-
sal and adaptable framework, which is the core motivation behind our work. In
this work, we propose fMRI-PTE, an innovative auto-encoder approach for fMRI
pre-training, with a focus on addressing the challenges of varying fMRI data di-
mensions due to individual brain differences. Our approach involves transform-
ing fMRI signals into unified 2D representations, ensuring consistency in dimen-
sions and preserving distinct brain activity patterns. We introduce a novel learn-
ing strategy tailored for pre-training 2D fMRI images, enhancing the quality of
reconstruction. fMRI-PTE’s adaptability with image generators enables the gen-
eration of well-represented fMRI features, facilitating various downstream tasks,
including within-subject and cross-subject brain activity decoding. Our contribu-
tions encompass introducing fMRI-PTE, innovative data transformation, efficient
training, a novel learning strategy, and the universal applicability of our approach.
Extensive experiments validate and support our claims, offering a promising foun-
dation for further research in this domain.

1 INTRODUCTION

Deciphering the intricacies of brain activity involves the extraction of meaningful semantics from
intricate patterns of neural activity within the brain, as highlighted by (Parthasarathy et al., 2017;
Horikawa & Kamitani, 2017; Beliy et al., 2019; Shen et al., 2019). When humans are exposed
to visual stimuli, the neural responses in the brain are typically quantified by monitoring changes
in blood oxygenation using functional Magnetic Resonance Imaging (fMRI) (Kwong et al., 1992).
This challenging task aims to unveil and comprehend the neural representations underlying diverse
mental processes, sensory perceptions, and cognitive functions, all of which are inferred from the
intricate dance of neurons and brain regions. Its significance is underscored by its far-reaching
applications in fields such as brain-computer interfaces, medical diagnosis and treatment, and virtual
reality, attracting substantial attention from both scholars and the public alike.

Remarkable endeavors have been undertaken to unravel the intricacies of brain activity through
the decryption of fMRI data. In pursuit of this goal, a prevalent preprocessing strategy involves the
transformation of signals originating from the visual cortex into coherent vectors. Subsequently, two
distinct avenues emerge for the interpretation of fMRI data. One path involves the intricate mod-
eling of the alignment between feature vectors originating from diverse modalities, encompassing
endeavors such as mapping fMRI signals into images (Liu et al., 2023; Gu et al., 2022) or transmut-
ing fMRI data into textual representations (Du et al., 2023; Takagi & Nishimoto, 2023). The other
avenue revolves around the construction of robust generative models, their development meticu-
lously conditioned upon fMRI signals (Chen et al., 2022; Mozafari et al., 2020). Nonetheless, an
imposing challenge looms on the horizon due to the paucity of large-scale fMRI-image pairs, which
impedes the establishment of a robust correlation between fMRI signals and their corresponding vi-
sual stimuli. Consequently, the reconstructed images stemming from neural activity tend to exhibit
a regrettable blend of blurriness and semantic misalignment.
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Furthermore, it is essential to underscore that prior fMRI decoding methodologies have been pri-
marily tailored to individual subjects, rather than addressing the multi-subject aspect, as is the focus
of this paper. This distinction is paramount, as inherent variability amongst individuals, molded
by genetic predispositions, environmental influences, and life experiences, engenders discernible
disparities and nuances in brain architecture (Seghier & Price, 2018). Consequently, fMRI signals
manifest variations in dimensions and responses when juxtaposed across different subjects, even
when they are exposed to identical visual stimuli. This inherent variance renders models trained on
a single subject ill-suited for broader application to others. Notwithstanding some notable strides in
enhancing the faithfulness and semantic coherence of image generation from visual stimuli (Qian
et al., 2023; Chen et al., 2022), these approaches necessitate the arduous task of individually tailoring
models for each subject, thereby substantially curtailing their universality and generalizability.

Therefore, our core idea centers on introducing a large-scale, pre-trained transformer encoder specif-
ically designed for fMRI data, which we refer to as fMRI-PTE. This innovation serves as a versatile
tool capable of understanding brain activity across various subjects. We draw inspiration from the
impressive accomplishments of well-known pre-trained models in deep learning, including BERT
(Devlin et al., 2018), MAE (He et al., 2022), and GPT (Radford et al., 2018), which have excelled in
comprehending and applying knowledge across a wide range of tasks in computer vision and natural
language processing.

The fundamental principle behind our fMRI-PTE closely aligns with these renowned models, pri-
marily relying on self-supervised learning to distill valuable insights from extensive datasets. These
insights can be seamlessly applied to various tasks or fine-tuned to suit specific goals. However,
it is essential to note that while pre-trained models have been highly successful in effective repre-
sentation learning, their application to decoding brain activity from fMRI data remains relatively
unexplored, with only a few attempts in this direction. A noteworthy example is the innovative strat-
egy introduced by (Chen et al., 2022), which involves masked brain modeling aimed at obtaining a
robust self-supervised representation of fMRI signals. It is important to note that these pre-trained
models often require additional fine-tuning on an individual basis to align with the intricate biologi-
cal nuances governing the generation of visual stimuli. In this paper, our primary goal is to develop
a more universally applicable foundational model tailored specifically for fMRI signals. This en-
deavor strives to establish a clear and widely applicable connection between brain activities and
visual stimuli, transcending individual subject boundaries.

Based on the insights above, we introduce fMRI-PTE, a straightforward auto-encoder approach tai-
lored for pre-training with a vast dataset of over 40,000 fMRI subjects. Its primary goal is to address
the challenge arising from variations in fMRI data dimensions due to individual brain differences.
To accomplish this, we propose an innovative method to transform fMRI signals into unified rep-
resentations. Initially, we convert individual native-space fMRI data into a common anatomically
aligned group surface space. Additionally, we project cortical activation flatmaps onto 2D brain
activation images, as illustrated in Figure 1. This novel fMRI representation not only maintains con-
sistent dimensions across individuals but also preserves the distinct patterns of brain activity among
them. This 2D representation facilitates the efficient training of foundation models, building upon
the advancements in deep learning communities. In contrast to representing fMRI data as 1D vec-
tors, these brain activity surface maps convey richer visual semantics and explicitly capture spatial
information about neural signals within the brain’s structure.

Furthermore, we introduce a novel learning strategy for pre-training 2D fMRI images, which possess
distinct characteristics compared to natural images. Notably, we observe that differences in brain
surface images manifest in the activity texture, encompassing both low and high-frequency signals.
Unlike natural images, they exhibit less spatial redundancy, which can lead to blurring in local
regions when employing masked autoencoding, as depicted in Figure 3.

Specifically, our fMRI-PTE utilizes self-supervised learning through autoencoders to reconstruct
input fMRI signals. Consequently, fMRI-PTE is designed to encode the original fMRI signals by
compressing high-dimensional data into a low-dimensional space and then reconstructing them to
their original form. We introduce a two-stage learning approach, focusing on reconstruction and
compression, to enhance the quality of the reconstruction process.

Equipped with adaptable image generators, fMRI-PTE empowers us to generate well-represented
fMRI features, facilitating brain activity decoding through feature alignment or conditional genera-
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tion paradigms. Importantly, we can extend our capabilities to cross-subject brain activity decoding,
offering an improved benchmark with superior generalization performance. Additionally, this en-
ables the analysis of similarities and differences in brain function across individuals. Thus, we envi-
sion fMRI-PTE serving as an effective foundational framework supporting subsequent downstream
tasks and inspiring further research in this domain.

We summarize our contributions outlined as follows: 1) Introduction of fMRI-PTE: We propose
fMRI-PTE, an auto-encoder approach designed for fMRI pre-training, addressing the challenge of
dimension variations in fMRI data due to individual brain differences. 2) Innovative Data Transfor-
mation: We introduce an innovative approach to transform fMRI signals into unified representations
by projecting them onto 2D brain activation images, maintaining consistency in dimensions across
individuals while preserving distinct brain activity patterns. 3) Efficient Training: The 2D repre-
sentation facilitates efficient training of foundation models, leveraging prior advancements in deep
learning communities, making it suitable for both within-subject and cross-subject brain activity
decoding. 4) Novel Learning Strategy: We propose a novel learning strategy for pre-training 2D
fMRI images, acknowledging their distinct characteristics compared to natural images. This strategy
enhances the quality of reconstruction. 5) Universal Applicability: fMRI-PTE’s adaptability with
image generators empowers the generation of well-represented fMRI features, facilitating various
downstream tasks, and cross-subject brain activity decoding. Extensive experiments validate and
support our claims.

2 RELATED WORK

Foundation models for neuroscience. Foundation models have garnered considerable attention for
their exceptional generalization abilities, as evidenced by their success in various domains (Bom-
masani et al., 2021; Devlin et al., 2018; Brown et al., 2020; Yuan et al., 2021; Yu et al., 2022).
However, their application in neuroscience remains relatively uncharted territory. Recent efforts by
Chen et al. (2022; 2023) have involved pre-training masked autoencoders on data from over 1000
subjects, followed by fine-tuning for visual decoding tasks. Nevertheless, the limited sample size
constrains their potential for broader generalization. Furthermore, their pre-training focus solely
on visual Regions Of Interest (ROIs), limiting their versatility for other applications. In contrast,
Caro et al. (2023) harnessed masked autoencoders with large-scale fMRI data from the UK Biobank
(UKB) and Human Connectome Project (HCP), showcasing their utility in clinical variable predic-
tion and future brain state prediction. However, the use of parcel data in their pre-training phase
lacks the granularity required for fine-grained tasks. A similar challenge of information loss is en-
countered by Thomas et al. (2022), and Ye & Pandarinath (2021), who, despite adopting a setting
akin to BERT for training transformers on neural population data from monkeys, have not demon-
strated significant generalization to human fMRI data as our work.

Inter-subject neural decoding. The exploration of inter-subject information decoding has been
a subject of extensive investigation across diverse data modalities and decoding tasks (Roy et al.,
2020; Wei et al., 2021; Zubarev et al., 2019; Halme & Parkkonen, 2018; Richiardi et al., 2011;
Wang et al., 2020). However, the persisting limitations stemming from the scarcity of training
data and considerable subject variability leave room for improvements in inter-subject decoding
performance. Raz et al. (2017) have made efforts to establish robust decoding models using multiple
runs of video fMRI data for coarse audio and visual feature decoding. Nonetheless, their algorithms
impose constraints on their ability to effectively model subject and stimulus variability. Recent
endeavors have turned to deep learning techniques in pursuit of enhanced inter-subject decoding,
but they continue to grapple with the challenge of limited training data (Roy et al., 2020; Wei et al.,
2021). In a different vein, Bazeille et al. (2021) have proposed the use of functional alignment to
bolster inter-subject decoding. Nevertheless, the practical challenges associated with data sharing
for alignment persist in many scenarios.

3 FMRI-PTE

Having thoroughly examined the motivation and challenges outlined above, we now formally in-
troduce fMRI-PTE, a straightforward auto-encoder approach tailored for fMRI pre-training. This
method involves encoding the initial fMRI signals into a condensed lower-dimensional space and
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Figure 1: Pipeline for training and application of fMRI-PTE model.

subsequently decoding them to reconstruct the original signals. Serving as a foundational model,
its primary purpose is to acquire cohesive representations applicable to diverse individuals, facilitat-
ing the use of compressed features in cross-subject downstream tasks. The comprehensive pipeline
of our proposed fMRI foundation model is self-explanatory and meticulously depicted in Figure 1,
while additional intricacies of our design are elaborated upon below.

3.1 UNIFIED REPRESENTATIONS FOR FMRI SIGNALS

Anterior Anterior

Dorsal

Ventral

Figure 2: Visual cortical ROIs.

Our pre-training dataset draws from resting-state fMRI data
sourced from UK Biobank (Miller et al., 2016), and to ensure
data uniformity, we harnessed pre-processed image data gener-
ated through an image-processing pipeline developed and exe-
cuted on behalf of UK Biobank (Alfaro-Almagro et al., 2018).
This extensive dataset comprises approximately 39,630 sub-
jects for training, with an additional 1,000 subjects held in re-
serve for validation, each contributing a single session com-
prising 490 volumes. In a contribution to the research com-
munity, we will make the processed codes and dataset publicly
available, fostering future research in this burgeoning field.

Diverging from conventional approaches that flatten fMRI
voxels into 1D signals, we adopted a novel strategy that pre-
serves the spatial relationships of voxels within each hemi-
sphere. Leveraging surface fMRI data, we transformed this
information into 2D images. For the resting-state fMRI data
from UK Biobank, our process began with the conversion of
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time series data from MNI volume space to 32k fs LR surface space (Glasser et al., 2013). Sub-
sequently, for each frame within the time series, we applied z-scoring to the values across every
vertex within the session. These z-scored values were then meticulously mapped onto 2D images
with dimensions of 1023× 2514 through the use of pycortex (Gao et al., 2015).

In the case of NSD, our methodology involved an initial conversion of GLM results from the ”be-
tas fithrf GLMdenoise RR” version in fsaverage space to 32k fs LR space. Subsequent within-
session z-scoring was applied before rendering the data into 1023× 2514 2D images.

Our approach also involved the selection of early and higher visual cortical ROIs, comprising a total
of 8,405 vertices, as per the HCP-MMP atlas (Glasser et al., 2016) in the 32k fs LR space. These
ROIs encompassed regions such as “V1, V2, V3, V3A, V3B, V3CD, V4, LO1, LO2, LO3, PIT, V4t,
V6, V6A, V7, V8, PH, FFC, IP0, MT, MST, FST, VVC, VMV1, VMV2, VMV3, PHA1, PHA2,
PHA3”, as illustrated in Figure 2.

Furthermore, in the NSD, we optimized the training dataset by averaging repetitive fMRI trials
involving the same images. This approach yielded a training dataset that featured distinct visual
stimuli tailored to individual subjects, while the testing dataset was characterized by stimuli shared
across all subjects, thereby facilitating robust cross-subject analyses and research.

3.2 AUTOENCODERS FOR FMRI COMPRESSION

The primary objective of the autoencoders is to compress the inherently high-dimensional fMRI sig-
nals into a more manageable, low-dimensional feature space, facilitating their utilization in down-
stream tasks across diverse individuals. However, traditional autoencoders struggle with two signifi-
cant challenges: 1) Preserving High-Frequency Signals: The application of a high compression ratio
often results in the loss of critical high-frequency signals during the reconstruction process. These
high-frequency signals play a pivotal role in revealing the intricate patterns, regions, and directional
aspects of signal activation. 2) Spatial Interaction Across Brain Regions: The signals originating
from distinct regions of the brain surface can exhibit complex interactions and collaborations across
spatial dimensions, adding another layer of complexity to the reconstruction process. To address
these challenges, we introduce an innovative two-stage learning approach encompassing reconstruc-
tion and compression.

3.2.1 QUANTIZED RECONSTRUCTION STAGE

In the initial reconstruction stage, we employ a symmetrical architecture comprising an encoder (E)
and a decoder (D). This encoder’s structure draws inspiration from VQGAN (Esser et al., 2021)
and consists of five blocks that iteratively reduce the resolution of the input surface image. Each
block incorporates stacked residual layers to extract deep features. Notably, in this first stage, we
predominantly leverage convolution layers to harness their ability to capture local patterns, including
both high- and low-frequency signals within localized regions. Importantly, the features are passed
from the encoder to the decoder with minimal loss, enabling us to focus primarily on the quality of
reconstruction during the first stage. This approach significantly enhances our capacity to accurately
reconstruct high-frequency signals.

To further optimize the extracted features from E , we apply vector quantization (Esser et al., 2021).
This prepares the features for integration with transformers in the second stage, which we will in-
troduce shortly. The objective function encompasses a combination of perceptual loss (Zhang et al.,
2018), adversarial loss (Goodfellow et al., 2020), reconstruction loss, and commitment loss (Van
Den Oord et al., 2017). This multifaceted loss framework ensures the fidelity of the reconstructed
signals while preserving essential details, making our approach highly effective in capturing the
nuances of brain activity.

3.2.2 TRANSFORMER COMPRESSION

The second stage of our approach employs an autoencoder structure, strategically positioned within
the first stage. As depicted in Fig. 1, this stage takes quantized feature indices as inputs and focuses
on reconstructing the original indices following compression. The quantization step relieves us of
the burden of reconstructing image textures, instead allowing us to delve into learning the intricate
correlations among different indices. This is where the strength of transformer-like architectures
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shines, as they transcend the confines of local receptive fields and excel at modeling long-range
dependencies.

In this context, the encoder E2 adopts a ViT (Dosovitskiy et al., 2021) architecture but operates
on index embeddings, each supplemented with positional information to contextualize its location
within the surface image.

The output features from encoder E2, denoted as f ∈ RL0×C0 , undergo further compression via
a mapper layer M, transforming them into f̃ ∈ RL1×C1 . Here, L and C represent batch size,
the number of tokens, and feature dimensions. The mapper layer M can be realized either as a
compact network (e.g., reducing the number of tokens before feature dimension reduction) or as a
slice operation (e.g., retaining only the [CLS] token embedding).

Moving to the decoder D2, it consists of stacked transformer blocks, resembling the MAE decoder
(He et al., 2022), albeit with a 100% mask ratio. To initialize, we introduce a sequence of [MASK]
tokens, represented as [tm, tm, · · · , tm] ∈ RL0×C0 , followed by the inclusion of the compressed
feature f̃ as a conditioning element. We seamlessly align the feature dimensions between f̃ and tm
without the need for an additional fully-connected layer.

The transformer architecture incorporates bi-directional attention, enabling interactions both within
tokens and between conditions and tokens. Towards the end of the decoder, we discard the condi-
tioning component, leaving behind the remaining tokens for the prediction of their corresponding
target indices. Training the second stage entails computing the cross-entropy loss by comparing
predicted probabilities against ground-truth indices, ensuring that our model effectively captures the
intricate relationships among these indices.

3.2.3 TRAINING STRATEGY AND BEYOND

In alignment with previous pre-training paradigms, we harness self-supervised learning to train our
fMRI foundation model, leveraging the reconstruction of input fMRI signals. While we share a
kinship with transformer-based models in the pursuit of modeling long-range dependencies, our
proposed fMRI-PTE distinguishes itself through its unique merits and innovations.

Our key contribution lies in the design of a two-stage autoencoder, strategically engineered to expe-
dite model convergence and introduce a unified foundation model tailored to cross-individual fMRI
signals. Unlike VQGAN (Esser et al., 2021), fMRI-PTE possesses the capability to compress fMRI
signals into a compact low-dimensional space (e.g., 1 dimension), thereby serving as a pre-trained
model primed for enhancing a spectrum of downstream tasks, such as brain activity decoding.

In contrast to models like MAE (He et al., 2022) and MBM (Chen et al., 2022), our approach retains
the dual functionality of both encoder and decoder. This duality affords us the versatility to employ
the model for feature representation learning from cross-individual fMRI signals via the encoder or
for the generation of surface images of fMRI signals.

4 EXPERIMENTAL RESULTS

4.1 DATASETS AND SETTINGS

UK Biobank (UKB) (Miller et al., 2016). It is a large-scale biomedical database and research re-
source, containing in-depth genetic and health information from half a million UK participants. We
use the resting-state fMRI from UKB as pre-training dataset. Our study made use of pre-processed
image data generated by an image-processing pipeline developed and run on behalf of UKB(Alfaro-
Almagro et al., 2018). There are about 39, 630 subjects used for training and 1, 000 subjects held
out for validation and every subject has one session of 490 volumes.

Natural Scenes Dataset (NSD) (Allen et al., 2022). It is collected from 8 subjects, each of which
is asked to view complex natural images from COCO dataset (Lin et al., 2014). We use fMRI-image
pairs from NSD to evaluate models. We averaged repetitive fMRI trials of the same images. The
training dataset was curated by utilizing distinct visual stimuli specific to individual subjects, while
the testing dataset consisted of stimuli that were shared across all subjects (i.e., 982 images). We
evaluate models using the testing sets from subjects 1, 2, 5 and 7.
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Table 1: Quantitative analysis of cross-subject fMRI Reconstruction. All models are trained on
UKB dataset and directly evaluated on four subjects of NSD (i.e., 1, 2, 5 and 7). Average results are
reported. The subscript represents the dimension of the compression feature.

METHOD Pearson’s ↑ SSIM ↑ MSE ↓
MAE (He et al., 2022) 0.8439 ± 0.006 0.6642 ± 0.018 0.0314 ± 0.001
MBM (Chen et al., 2022) 0.7372 ± 0.016 0.6229 ± 0.010 0.0699 ± 0.002
LEA (Qian et al., 2023) 0.8524 ± 0.005 0.8098 ± 0.009 0.0296 ± 0.001
Upper Bound 0.8547 ± 0.004 0.7938 ± 0.005 0.0262 ± 0.001
fMRI-PTE 0.8546 ± 0.004 0.7937 ± 0.006 0.0263 ± 0.001

To investigate the efficacy of fMRI foundation models, we first measure the quality of reconstructed
surface images with inputs. The quantitative metrics include Peasrson Correlation Coefficient (Pear-
son’s) (Cohen et al., 2009), Structural Similarity Index Metric (SSIM) (Wang et al., 2004) and Mean
Square Error (MSE). Then, we use the extracted features from fMRI foundation model to facilitate
the downstream task of brain decoding. Similar to Brain-Diffuser (Ozcelik & VanRullen, 2023), we
present several low-level and high-level metrics to measure the fidelity and accuracy of the gener-
ated images from fMRI signals. Concretely, the low-level metrics focus on the similarity of shallow
features and contours (e.g., PixCorr, SSIM and AlexNet), while the high-level metrics leverage deep
features from CLIP (Radford et al., 2021) and Inception (Szegedy et al., 2016).

Implemental Details. All experiments are implemented with the PyTorch toolkit. For the first
stage of reconstruction, the encoder E1 and decoder D1 have the symmetric structure with 5 blocks,
containing the same [1, 1, 2, 2, 4] residual layers as (Esser et al., 2021). We initialize them with
pre-trained weights from ImageNet datasets (Deng et al., 2009). During training, we adopt Adam
optimizer with β1 = 0.5, β2 = 0.9. The initial learning rate is set to 3e − 5. We manually drop
the learning rate by half once, and the total training iteration is about 600K. For the second stage
of compression, both encoder E2 and decoder D2 have stacks of transformer blocks to improve the
capacity. They are designed with the depth of 24, 2048 feature dimensions and 16 multi-heads in
self-attention layers. We instantiate the mapper layer with two fully-connected layer, to compress
the feature dimension from 257 × 1024 to 77 × 768. AdamW optimizer with hyperparameters
β1 = 0.9, β1 = 0.95, and a batch size of 384 are used for training. We apply a linear learning rate
schedule to first rain the model from scratch with 10, 000 training subjects from UKB dataset for
200K iterations. Then, we fine-tune it with all training subjects for the remaining 600K iterations,
which takes about 6 days with 8 NVIDIA A100 GPUs. During inference, we can successfully extract
well-represented features for arbitrary fMRI signals across different individuals. The compressed
features can be further aligned with semantic information (e.g., image features) to perform brain
activity decoding. Moreover, our encoder can adapt to either stable diffusion (SD) (Rombach et al.,
2022) or MaskGIT (MG) (Chang et al., 2022) to decode.

4.2 CROSS-SUBJECT EVALUATION

We initially assess the effectiveness of our fMRI-PTE across a diverse set of subjects, presenting
a novel benchmark that holds greater significance and presents heightened challenges compared
to within-subject evaluations. Achieving robust performance necessitates models to proficiently
decode valid semantic information from fMRI signals, transcending the mere fitting of data distribu-
tions from a single individual. In this context, we engage in two typical experiments, encompassing
cross-subject fMRI reconstruction and decoding.

4.2.1 FMRI RECONSTRUCTION AND ABLATION

Settings and Baselines. To assess the quality of our reconstructed images, we benchmark our
model against several self-supervised methods, which include a masked autoencoder (MAE) (He
et al., 2022), an fMRI pre-training model (MBM) (Chen et al., 2022), and an fMRI reconstruction
model (LEA) (Qian et al., 2023). To ensure equitable comparisons, we made slight adjustments to
these baseline models to achieve a similar number of parameters. All models underwent training
on the UKB dataset for an equivalent number of iterations before being directly evaluated on four
subjects from the NSD dataset.

Results Analysis. In Table 1, we present the averaged results from four subjects. The upper bound
in the table reflects the remarkable outcomes achieved by our initial stage reconstruction autoen-
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Figure 3: Visualizations of cross-subject fMRI reconstruction on NSD dataset.

Table 2: Quantitative results of one-to-one cross-subject brain decoding on NSD dataset. All
models are trained on one individual and then tested on another. ‘LR’ represents the baseline of
linear regression.

METHOD
7 → 1 5 → 2 1 → 5 2 → 7

AlexNet ↑ CLIP ↑ AlexNet ↑ CLIP ↑ AlexNet ↑ CLIP ↑ AlexNet ↑ CLIP ↑
MinD-Vis (Chen et al., 2022) 59.67% 56.71% 62.47% 57.03% 59.96% 55.71% 62.56 % 57.06%
LEA (Qian et al., 2023) 70.39% 60.89% 70.61% 61.75% 68.47% 63.80% 68.89% 61.45%
LR (Gifford et al., 2023) 62.42% 59.62% 58.45% 57.21% 65.49% 61.99% 60.70% 57.87%
fMRI-PTE(SD) 64.15% 63.68% 64.19% 62.84% 68.36% 65.71% 65.46% 62.73%
fMRI-PTE (MG) 72.82% 63.21% 73.08% 63.44% 70.05% 65.47% 70.36% 62.56%

coder. Our innovative two-stage learning approach empowers our fMRI-PTE method to consistently
outperform competitors across all three key metrics. Impressively, this superior performance is
achieved alongside a remarkable compression ratio of 78%, effectively reducing feature dimensions
from 257 × 2048 to 77 × 768. It is noteworthy that both MAE and MBM, which employ a similar
masked autoencoding strategy, yield less favorable results. This divergence could be attributed to
the reduced spatial redundancy inherent in brain surface images compared to natural images, neces-
sitating more extensive training efforts. Comprehensive quantitative results are visualized in Fig. 3
and Fig. 7 (bigger figure in Appendix). While LEA exhibits a slight advantage over our method in
terms of SSIM, it tends to generate blurrier images, primarily emphasizing low-frequency signals.
This distinction is prominently depicted in Fig. 7 (Appendix), highlighting our findings.

4.2.2 BRAIN ACTIVITY DECODING AND ABLATION

Settings and Baselines. Previous studies are principally based on single individual evaluation, thus
fail to perform cross-subject brain decoding. For a fair comparison, we take MinD-Vis (Chen et al.,
2022) and LEA (Qian et al., 2023) as our primary baselines and re-train them by replacing fMRI
vectors with our pre-processed surface images. Both baselines are published recently and only
use the vision modality. Two settings are considered here for evaluation: (1) one-to-one: models
trained on each individual are tested on the corresponding testing set; (2) many-to-one: Samples
from several subjects are used to align fMRI and image features only. Once done, models trained on
UKB dataset are directly tested on the testing set from one unknown subject.

Result Analysis. We provide a comprehensive analysis of our results in Tables 2 and 3, Figures 6 and
5. Several noteworthy observations emerge: (1) Our fMRI-PTE method excels in terms of ensuring
the semantic consistency of decoded stimuli images. (2) Despite employing masked autoencoding
for fMRI signals and leveraging powerful diffusion models for image generation, MinD-Vis experi-
ences a pronounced performance decline, as clearly indicated in Table 2. This outcome is entirely
understable, as MinD-Vis was not originally designed for the cross-subject task at hand. In contrast,
fMRI-PTE showcases exceptional generalization prowess. Notably, for the second setting, MinD-
Vis is omitted from the comparison in Table 3, highlighting its constrained utility in this context.
(3) LEA, employing a comparable pipeline with our approach, utilizing ridge regression for align-
ment, falls behind significantly, highlighting the effectiveness of our fMRI pre-trained encoder. (4)
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Table 3: Quantitative results of many-to-one cross-subject brain decoding on NSD dataset. All
models are trained on UKB dataset. ‘257 → 1’ denotes we use fMRI-image pairs of three subjects
(Sub-2, Sub-5 and Sub-7) from NSD dataset to align features of fMRI and images, and so on for
other settings. It is implemented by ridge regression for all models, and do not tune other parameters.
‘LR’ represents the baseline of linear regression.

METHOD
257 → 1 157 → 2 127 → 5 125 → 7

AlexNet ↑ CLIP ↑ AlexNet ↑ CLIP ↑ AlexNet ↑ CLIP ↑ AlexNet ↑ CLIP ↑
LEA (Qian et al., 2023) 72.32% 64.52% 71.96% 65.01% 68.17% 65.97% 69.80% 64.21%
LR (Gifford et al., 2023) 67.04% 63.34% 66.26% 64.03% 66.02% 63.12% 62.45% 60.77%
fMRI-PTE (SD) 70.95% 68.96% 69.95% 69.08% 69.13% 67.77% 68.28% 65.93%
fMRI-PTE (MG) 76.66% 66.83% 76.45% 68.15% 72.88% 67.46% 72.63% 65.30%

Table 4: Quantitative analysis of within-subject brain decoding on NSD dataset. Four subjects
(Sub-1, Sub-2, Sub-5 and Sub-7) are selected as the testing set. Models are trained and tested on
each individual. ‘LR’ represents the baseline of linear regression. Average results are reported.

METHOD M Low-Level High-Level
PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Inception ↑ CLIP ↑ EffNet-B ↓ SwAV ↓

Mind-Reader V&T - - - - 78.20% - - -
SD-Brain V&T - - 83.00% 83.00% 76.00% 77.00% - -
BrainCLIP V&T - - - - 79.70% 89.40% - -
Cortex2Image V .150 .325 - - - - .862 .465
MinD-Vis V .080 .220 72.12% 83.15% 78.77% 76.17% .854 .491
LEA V .119 .111 77.41% 87.36% 82.31% 80.80% .851 .445
BrainCLIP V - - - - 73.30% 83.60% - -
LR V .060 .250 69.05% 78.72% 76.04% 79.01% .863 .524
fMRI-PTE (SD) T .067 .257 71.67% 83.22% 80.29% 82.02% .852 .513
fMRI-PTE (MG) V .131 .112 78.13% 88.59% 84.09% 82.26% .837 .434

Lastly, we present ’LR’ as a baseline using linear regression, where we serialize pixels of the surface
map (excluding the background) as vectors of fMRI signals and regress them to the image space for
brain decoding. This can be seen as a variant of our fMRI-PTE, albeit without the fMRI pre-trained
encoder. The results from both tables collectively emphasize the clear superiority of our proposed
methodology.

4.3 WITHIN-SUBJECT EVALUATION

Settings and Baselines. As a standard setting for brain activity decoding, models are trained in-
dividually on each subject. We compare our methods with several competitors, including Mind-
Reader (Lin et al., 2022), SD-Brain (Takagi & Nishimoto, 2023), Cortex2Image (Gu et al., 2022),
MinD-Vis (Chen et al., 2022), LEA (Qian et al., 2023), BrainCLIP(Liu et al., 2023). Among them,
we primarily conduct discussions with methods that only use the vision modality.

Result Analysis. Table 4 reports averaged results of four testing subjects on NSD dataset. First,
fMRI-PTE achieves remarkable performance with regard to both low-level and high-level metrics.
Some of them even surpass methods which additionally use the text modality. It significantly demon-
strates the effectiveness and universality of our method. Second, our model achieves higher perfor-
mance than LEA and LR on most of metrics, which clearly indicates the ability of our method
to extract discriminative features for fMRI signals. Third, we visualize decoded images in Fig. 4
(Appendix), further supporting the quantitative results and conclusions described above.

5 CONCLUSION

In this paper, we introduce fMRI-PTE, a specialized tool designed for fMRI signals. It tackles
the challenge of varying data dimensions caused by individual differences in brain structure. By
converting fMRI signals into a consistent 2D format and using a unique two-step learning approach,
we improve the quality of fMRI pre-training. This flexibility, combined with image generators,
results in well-defined fMRI features. These features make it easier to decode brain activity within
and across individuals. Our contributions, such as data transformation and efficient training methods,
have been thoroughly tested in experiments. The positive results provide a strong basis for further
exploration in this field.
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Armin Thomas, Christopher Ré, and Russell Poldrack. Self-supervised learning of brain dynamics
from broad neuroimaging data. Advances in Neural Information Processing Systems, 35:21255–
21269, 2022.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

12



Under review as a conference paper at ICLR 2024

Qi Wang, Bastien Cagna, Thierry Chaminade, and Sylvain Takerkart. Inter-subject pattern analysis:
A straightforward and powerful scheme for group-level mvpa. NeuroImage, 204:116205, 2020.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

Xiaoxi Wei, Pablo Ortega, and A Aldo Faisal. Inter-subject deep transfer learning for motor imagery
eeg decoding. In 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER),
pp. 21–24. IEEE, 2021.

Joel Ye and Chethan Pandarinath. Representation learning for neural population activity with neural
data transformers. arXiv preprint arXiv:2108.01210, 2021.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui
Wu. Coca: Contrastive captioners are image-text foundation models. arXiv preprint
arXiv:2205.01917, 2022.

Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng Gao, Houdong Hu,
Xuedong Huang, Boxin Li, Chunyuan Li, et al. Florence: A new foundation model for computer
vision. arXiv preprint arXiv:2111.11432, 2021.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

Ivan Zubarev, Rasmus Zetter, Hanna-Leena Halme, and Lauri Parkkonen. Adaptive neural network
classifier for decoding meg signals. NeuroImage, 197:425–434, 2019.

13



Under review as a conference paper at ICLR 2024

6 APPENDIX
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Figure 4: Visualizations of within-subject fMRI reconstruction on NSD dataset.
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Figure 5: Visualizations of many-to-one cross-subject fMRI reconstruction on NSD dataset.
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Figure 6: Visualizations of one-to-one cross-subject fMRI reconstruction on NSD dataset.
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