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ABSTRACT

Recent work increasingly adopts AI for Science (AI4S) models to replace expensive
PDE solvers as simulation environments for reinforcement learning (RL), enabling
faster training in complex physical control tasks. However, using approximate sim-
ulators introduces modeling errors that affect the learned policy. In this paper, we
introduce a unified ε-N framework that quantifies the minimal computational cost
N∗(ε) required for an AI4S model to ensure that tabular RL can estimate the value
function with unbiasedness, with probability at least 1− δ. This characterization
allows us to connect surrogate accuracy, grid resolution, and RL policy quality
under a shared probabilistic language. We analyze how the discretization levelK of
AI4S and RL space governs both PDE surrogate error and RL lattice approximation
error, and we employ spectral theory and Sobolev estimates to derive optimal grid
strategies that minimize total cost while preserving learning fidelity. Our theory
reveals that different systems – such as ODE- and PDE-governed environments –
require different allocations of effort between physical simulation and RL optimiza-
tion, which is consistent with the empirical results. Overall, our framework offers
a principled foundation for designing efficient, scalable, and cost-aware AI4S-RL
systems with provable learning guarantees.

1 INTRODUCTION

Reinforcement learning (RL) for PDE-constrained control promises transformative impact in domains
such as fusion energy (Degrave et al., 2022) and climate modeling (Feng et al., 2025). Yet a
fundamental obstacle remains: high-fidelity PDE simulations are far too costly to support the millions
of interactions demanded by RL. A natural remedy is to replace PDEs with AI surrogates, but this
introduces a critical and largely unexplored question: how should the resolution of the surrogate
be coordinated with the RL agent’s discretization so as to minimize total computational cost
while preserving policy accuracy?

Classical RL theory assumes stochastic transition noise that vanishes under repeated sampling (Sutton
et al., 1998; Azar et al., 2017), and robust RL extends this to worst-case distributional uncertainty (Der-
man et al., 2021; Agarwal & Zhang, 2022). In contrast, AI4S surrogates incur deterministic errors
stemming from spatial discretization, temporal integration, and boundary approximation. Such errors
do not average out with more data and can systematically bias policy learning. In a cart-pole system, if
the surrogate discretization does not adequately capture the upright equilibrium, the learned controller
will consistently overshoot; regardless of how fine the RL action resolution is, policy accuracy is
ultimately constrained by the surrogate’s resolution. Intuitively, minimizing regret under a fixed
computational budget requires balancing the grid resolution of the AI4S surrogate with the decision
resolution of the RL system.

To address this trade-off, we introduce a framework that explicitly models discretization-induced bias.
By sampling multiple trajectories from perturbed initial conditions within observation uncertainty
bounds, we recast deterministic surrogate errors as a statistical inference problem. This structured
sampling bridges numerical analysis in AI4S with RL learning theory, enabling principled resolution
coordination between surrogates and agents. We focus on tabular RL to establish a necessary
condition for learnability, providing a resolution lower bound that guarantees feasibility and guides
hyperparameter design for deep RL in AI4S systems.
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Contributions. We introduce the ε-N framework that quantifies the minimal number of surrogate
calls N required to achieve ε-accurate value estimation with confidence 1 − δ, assuming optimal
resolution allocation between AI4S simulation and RL exploration. Our analysis reveals that this
optimization problem exhibits surprising complexity: optimal resolution ratios follow non-obvious
fractional scaling laws (e.g., ∆tr = (∆tw)

1/3 for tokamak control, where ∆tr is the discrete timestep
in the RL domain and ∆tw is that in the AI4S/World domain), have exponential sensitivity to system
dynamics, and vary significantly across different physical systems. We provide:

1. Resolution coupling theory: Our ρ–K analysis shows that the forward prediction error ρ scales
as O(1/Hr + 1/Kd) in the high-resolution regime, where Hr is the RL’s temporal resolution
(inverse decision frequency), K is the ratio of physical grid cells to RL states, and d is the spatial
dimension of PDE system. This result quantifies how the resolutions of both the AI4S surrogate
and the RL agent jointly determine the learning quality.

2. Closed-form optimal allocations: We derive system-specific expressions for the optimal reso-
lution ratio K∗ that minimize computational cost. For instance, K∗ = (7/4 · exp(1/λ1))1/3 for
tokamak plasma control and K∗ = 2 · exp(1/λ1) for cart-pole systems, where λ1 denotes the
dominant modal growth rate of the PDE dynamics.

3. Empirical validation: Experiments confirm that both tabular RL and DQN exhibit the predicted
non-monotonic sensitivity to resolution, with off-optimal parameter choices requiring computa-
tional cost scaling as approximately N1.6 relative to the optimal N to reach the same accuracy.
Moreover, there exists an optimal grid ratio K and an optimal balance between Hr and Hw, and
these values are found to be relatively consistent across different learning algorithms.

Related Literature. Our work lies at the intersection of reinforcement learning (RL) theory and
scientific computing. On the RL side, the tabular literature has established Probably Approximately
Correct (PAC) bounds that characterize sample complexity (Sutton et al., 1998; Azar et al., 2017;
Dann et al., 2017). Extensions to function approximation further reveal how this complexity depends
on structural properties such as Bellman rank and eluder dimension (Jin et al., 2020; Wang et al.,
2020; Jin et al., 2021). A key limitation of these analyses is their reliance on stochastic transition
dynamics, where errors are assumed to average out. This assumption breaks down in scientific
computing surrogates, where deterministic discretization errors introduce systematic, resolution-
dependent biases. While robust RL frameworks (Derman et al., 2021; Agarwal & Zhang, 2022; Shi
et al., 2023; Kwon et al., 2021) address model uncertainty through worst-case optimization, they
primarily target irreducible stochastic noise. In contrast, our focus is on structured numerical biases,
which we exploit to derive principled resolution–sample trade-offs.

On the scientific computing side, recent advances in neural solvers have accelerated PDE simulations
by orders of magnitude. Neural operators (Li et al., 2020; Lu et al., 2021; Kovachki et al., 2023)
and physics-informed neural networks (Raissi et al., 2019; Karniadakis et al., 2021) have enabled
breakthroughs in weather prediction (Bi et al., 2023), turbulence modeling (Kochkov et al., 2021), and
plasma control (Degrave et al., 2022). Although operator learning admits error bounds (Kovachki et al.,
2023), prior work rarely investigates how surrogate resolution affects downstream RL performance.
Classical PDE control methods rely on adjoints and Pontryagin’s principle (Pontryagin, 2018), and
recent applications of RL to PDEs (Farahmand et al., 2017; Han et al., 2018) typically assume access
to true dynamics or ignore surrogate errors.

2 PRELIMINARIES

Notation. We study a hybrid system where an RL agent interacts with an AI4S surrogate approxi-
mating a PDE-governed environment. A comprehensive notation table is provided in Appendix A
with key notations:

• Subscripts r and w denote RL and physical world parameters respectively.

• K = ∆xr/∆xw is the ratio of spatial resolutions between the RL and AI4S domains, where
∆xr is the spatial grid size in the RL domain and ∆xw is that in the AI4S domain.

• Hr and Hw denote the temporal discretization (time-step size) of the RL agent and the AI4S
surrogate, respectively.
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• ε, δ are the target accuracy and confidence levels.

AI4S Surrogate Errors. AI4S models approximate PDE solvers through neural operators. For a
PDE solution operator G : f 7→ u approximated by surrogate Gθ, the error decomposes as:

∥G(f)− Gθ(f)∥L2 ≤ C1H
s + C2X

d (2.1)

where H is temporal discretization, X is spatial resolution ratio, and s, d are parameters determined
by the dimension and property of the underlying PDE solver.

Probably Approximately Correct (PAC) Learning in Tabular RL. We define an episodic Markov
Decision Process (MDP) as M = (S,A, P,R,H), where S is a finite state space with |S| = S, A
is a finite action space with |A| = A, P is an unknown transition kernel, R : S ×A → [0, 1] is the
reward function, and H is the episode horizon. For clarity, we omit the subscript r here; in later
sections, we will use r to distinguish RL parameters from those of the underlying physical system.

We call that an algorithm is PAC-MDP if for any ε, δ ∈ (0, 1), with probability at least 1−δ, it outputs
a policy π̂ satisfying V ∗

1 (s0) − V π̂
1 (s0) ≤ ε after at most poly(S,A,H, 1/ε, log(1/δ)) episodes.

A classical result in tabular RL settings is that the UCB-VI algorithm Azar et al. (2017) achieves
PAC-MDP guarantee with sample complexity

Nepisodes = Õ
(

SAH3

ε2 log 1
δ

)
,where Õ hides logarithmic factors.

3 EMPIRICAL MOTIVATION: RESOLUTION COORDINATION IN AI4S-RL

Before developing our theoretical framework, we first empirically demonstrate that an optimal
discretization scale exists in AI4S–RL systems. This balance between surrogate and agent resolutions
follows a scaling relation across grids.

We utilize the simulated Cart-Pole environment, which is tractable for exhaustive search yet represen-
tative of continuous dynamical systems. We establish two distinct experimental settings to bridge
theory and practice. First, we employ Tabular Value Iteration on the exact physics engine to serve as
a theoretical oracle. Second, to strictly emulate the AI4S workflow where learned dynamics replace
expensive solvers, we train Deep Q-Networks (DQN) within a surrogate environment governed by a
pre-trained neural network. Across both settings, we vary the temporal resolution ratio logHw

Hr and
the spatial resolution ratio K, measuring the sample complexity required to achieve a value function
error below 1%. Full experimental details are provided in Appendix C.5.3.

Figures 1 and 2 show that sample complexity does not improve monotonically with resolution.
Instead, both methods exhibit similar optima: tabular RL at (K = 1.5, logHw

Hr = 1/3), and
Q-learning at (K = 2.0, logHw

Hr = 1/2). Off-optimal parameter choices require computational
cost scaling as approximately N1.6 relative to the optimal N in order to reach the same accuracy.

These findings highlight that conventional hyperparameter search strategies (e.g., grid or binary
search) are ineffective in this setting: resolution parameters span multiple orders of magnitude,
making brute-force exploration prohibitively expensive in high-dimensional PDE systems. This
motivates the development of a theoretical framework that predicts optimal resolution trade-offs from
system properties, rather than relying on empirical tuning.

4 ERROR PROPAGATION AND RESOLUTION COORDINATION IN AI4S-RL
SYSTEMS

In this section, we develop a theoretical framework that predicts optimal resolution trade-offs from
system properties. In Section 4.1, we show that the discretization of the AI4S surrogate itself
determines whether the RL agent can converge to PAC guarantees. In Section 4.2, we analyze how
the interaction between AI4S and RL discretization affects the convergence rate of the state transition
matrix, using a magnetohydrodynamic (MHD) tokamak as a representative example. Building on
these error models, Section 4.3 investigates the trade-off between the computational costs of surrogate
construction and RL training. We derive the optimal resource allocation strategy—specifically the
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Figure 1: Sample complexity heatmap for the
Cart-Pole system under tabular RL, showing non-
monotonic dependence on resolution parameters.
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Figure 2: Sample complexity heatmap for the
Cart-Pole system under Q-Learning, revealing
algorithm-specific optimal configurations.

discretization resolutions—that minimizes the total cost required to achieve a PAC guarantee. Finally,
in Section 4.4, we compute the optimal discretization and computational cost in four real-world
systems to validate the framework.

4.1 SPECTRAL ANALYSIS OF ERROR AMPLIFICATION IN PDE-GOVERNED AI4S SYSTEMS

In AI4S systems governed by physical laws (e.g., PDEs), predictions are obtained by evolving the
current state y0 through a deterministic solver f under action a, yielding y1 = f(y0, a). However, y0
is only observed up to grid size ∆y, so the predicted next state lies in the range:

[ymin
1 , ymax

1 ] :=

[
min

∥∆y0∥≤∆y
f(y0 +∆y0, a), max

∥∆y0∥≤∆y
f(y0 +∆y0, a)

]
, (4.1)

where ∆y0 is the measurement uncertainty in practice.

If the interval [ymin
1 , ymax

1 ] spans more than two full grid cells of PDE systems, the next state cannot
be uniquely identified, and PAC guarantees are unattainable. In contrast, if the interval covers only a
single full grid cell (with any additional coverage being partial), repeated sampling of the initial state
allows us to estimate the next PDE state with arbitrarily high confidence. The convergence rate of
this estimation is summarized in Theorem 1.

Theorem 1 (Sample Complexity for δ-Confidence Classification). Consider repeated forward
predictions from perturbed initial states, where the predicted frequency is the empirical probability of
the next state falling into a given grid cell. Let p denote the predicted frequency with which the true
next state falls into the correct grid cell, and let q = p

(j)
max denote the maximum predicted frequency

among all competing cells. To resolve the correct cell with confidence at least 1− δ, the number of

forward predictions required is bounded by n = O

(
log(1/δ)

minj

(
∆y(j)−p

(j)
max

)2

)
Proof in Appendix C.1.1.

Remark 1 (Time-Step Constraint for State Separability). Consider the solution operator ft(y0) of a
nonlinear PDE with Fréchet derivative Dft(y0). For observation perturbations η with ∥η∥ ≤ ∆y,
the perturbation propagates as Dft(y0)[η] =

∑
k η̂kγk(t)ψk(t) where γk(t) > 0 are modal gain

factors. Classification-cell separability requires supk γk(t) < 1, implying a time-step constraint
∆t < infk γ

−1
k (1).

Proof in Appendix C.1.2.

From Theorem 1, when the two largest cell frequencies ∆y(j) and p(j)max are close, where (∆y(j) −
p
(j)
max)2 → 0 and n = O

(
log(1/δ)

(∆y(j)−p
(j)
max)2

)
→ ∞, so PAC is unattainable. Remark 1 shows that
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smaller ∆t enlarges the frequency gap (∆y(j) − p
(j)
max), while if ∆t > 1/λ1, perturbations exceed

∆y and cell frequencies equalize, destroying state separability, where λ1 := maxk{Re(λk)} denotes
the dominant modal growth rate (i.e., the largest real part of the eigenvalues) of the system’s Fréchet
linearization, representing the intrinsic instability. Hence the constraint ∆t ≲ 1/λ1 is necessary
for PAC guarantees. We note that defining λ1 as the global maximum is primarily for theoretical
parsimony; utilizing a step-specific local growth rate in practice would not fundamentally alter the
complexity analysis.

4.2 ERROR COUPLING BETWEEN RL AND PDE SPACES IN AI4S SYSTEMS

In Section 4.1, we showed that the intrinsic dynamics and temporal discretization of the physical
system determine whether PAC guarantees are achievable, and computed the sample complexity to
reach PAC when possible.

In this section, we extend the analysis to mismatched discretizations between the RL and PDE spaces.
Each RL action ar must be lifted to the PDE space for forward evolution, and the resulting physical
state projected back for RL. These projections introduce errors, which may be amplified near PDE
boundaries by nonlinear operators. Since RL actions often operate directly on boundaries (e.g.,
controlling droplet interfaces in tokamaks to avoid wall contact, or shaping fluid boundaries around an
aircraft wing to increase lift), boundary accuracy is crucial. In MHD systems with droplet interfaces,
the trace theorem implies that poor boundary approximation further enlarges these errors. To clarify
the relationship between the two spaces, we define two discretization structures:

• RL space: (Hr, Sr, Ar), representing the agent’s temporal discretization, state discretization,
and action resolution.

• PDE space: (Hw, Sw, Aw), representing the physical system’s temporal discretization, state
resolution, and control parameter resolution.

Figure 3: Illustration of Error Propagation in a Tokamak Machine RL controlling System.

MHD System As a representative case, in this section we focus on a magnetohydrodynamic (MHD)
tokamak, which enables real-time magnetic control to sustain plasma droplet confinement without
wall contact (Degrave et al., 2022; Ding et al., 2024). We assume full observation of the MHD fluid
and magnetic field, and conduct numerical validation based on realistic tokamak configurations.

Figure 3 illustrates the governing PDEs, interface tracking methods, and control structure involved in
the RL-based regulation of the droplet. The reward signal for reinforcement learning is defined as the
minimum distance between the plasma droplet and the tokamak boundary, and the control actions
correspond to adjustments of the magnetic field via coil currents. These equations define the error
sources and discretization structure that form the basis for our multi-resolution analysis.

5
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We assume continuous control over the magnetic field via time-dependent coil currents Icoil(t),
enabling real-time adjustments to maintain droplet suspension without wall contact. Reinforcement
learning algorithms adapt these control inputs based on observations of the droplet boundary and
plasma dynamics. Key physical variables—including the magnetic field B, current density J, density
ρ, velocity field v, and interface function ϕ—are continuously monitored and regulated to optimize
positioning and stability.

Interface Error Propagation via Control-Boundary Coupling In tokamak control, RL agents
manipulate boundary magnetic coils to suspend plasma droplets away from walls. This indirect
control—propagating from boundaries through multiple physical fields to the interface—introduces
compounding errors. We first analyze single-equation timestep errors, then demonstrate their coupling
across the full system.

The control-to-interface coupling follows a hierarchical propagation path:

RL action ar
projection−−−−−→ ∆aw

boundary−−−−−→ B|∂Ω
curl−−→ J

Lorentz−−−−→ v
advection−−−−−→ ϕ (4.2)

where each arrow represents a potential error amplification point. The magnetic field B controlled at
the boundary generates current density J = ∇×B, which produces Lorentz forces that drive the
velocity field v, ultimately advecting the interface level set ϕ.

At each stage, discretization errors accumulate. The RL action ar must be mapped to physical control
parameters aw, introducing projection error O(∆ar −∆aw). Magnetic field boundary conditions
suffer from reduced regularity, yielding ∥B−Bh∥L2(∂Ω) = O(∥∆xp,bd∥1/2) by the trace theorem.
These control errors then propagate nonlinearly into the velocity field as ∆v = O(∆a

1/2
w ), affecting

the entire flow dynamics.

The droplet interface evolves according to the level set equation ∂ϕ
∂t + v · ∇ϕ = 0. Under forward

Euler time discretization and central spatial differences, the local truncation error per PDE timestep k
becomes τ (k) = O(∆tw) +O(∥∆xp,int∥).
However, incorporating the velocity perturbations from boundary control and the reduced regularity
at interfaces, the complete per-step interface error is:

∆
(k)
ϕ = O(∆tw)︸ ︷︷ ︸

temporal

+O(∥∆xp,int∥)︸ ︷︷ ︸
spatial interior

+O(∆a1/2w )︸ ︷︷ ︸
control

+O(∥∆xp,bd∥1/2)︸ ︷︷ ︸
boundary

+O(∆a1/2w · ∥∆xp,bd∥1/2)︸ ︷︷ ︸
coupled

(4.3)

In the following paragraph, we will couple this error with contributions from other governing
equations to enable a comprehensive analysis.

Refined Total Error Decomposition with Time-Scale Separation By extending the interface
error structure discussed previously, we generalize the analysis to a broader class of PDE-based
surrogate environments (details in Supplementary Information). Over a single RL step, the total
prediction error can be decomposed as:

∆total = C1∥∆xr,int∥︸ ︷︷ ︸
RL (interior space)

+C2∥∆xr,bd∥1/2︸ ︷︷ ︸
RL (boundary space)

+ C3∆a
1/2
r︸ ︷︷ ︸

RL (action space)

+C4∆tr︸ ︷︷ ︸
RL (time)

+ C5
∆tr
∆tw

(
∥∆xp,int∥+∆a1/2w + ∥∆xp,bd∥1/2 +∆a1/2w · ∥∆xp,bd∥1/2

)
︸ ︷︷ ︸

PDE surrogate error (space + action + boundary), amplified by time scale separation

.
(4.4)

To ensure that the RL transition kernel remains distinguishable under observation uncertainty ∆y, we
impose the condition ∆total = O(∆y). This leads to the following resolution matching constraints
between RL and AI4S components:

∥∆xr,int∥ ∼ ∥∆xp,int∥ ∼ ∆a1/2r ∼ ∆a1/2w ∼ ∆tr ∼ ∆y,

∥∆xr,bd∥ ∼ ∥∆xp,bd∥ ∼ ∆y2, ∆tw ≪ ∆y.
(4.5)

This decomposition makes explicit how discretization scales in the RL and AI4S pipelines must be
jointly selected to ensure unbiased value estimation. In particular, the term ∆tr/∆tw highlights how

6
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fine-scale physical errors can be amplified over coarser RL horizons, motivating resolution-aware
control design.

In Section 4.1, we analyzed how to approximate the RL transition kernel under observation noise ∆y.
Here, we incorporate numerical errors from the AI4S prediction and define ρ as the misclassification
rate after one RL–to–AI4S projection and back. Concretely, let p(c∗) denote the possibly that the true
next physical state given one observed state falls into the correct grid cell c∗ after (i) projecting the
observed PDE state into the RL grid, (ii) selecting the truncated optimal RL action, and (iii) mapping
this action back to the PDE. Then ρ := 1− p(c∗),which quantifies the probability that one RL–PDE
interaction fails to preserve grid-level consistency.

From Eq. 4.4 and 4.5, total numerical error ∆total ∼ C1

K3∆y ∼ C1

K3∆tr, and letting the RL temporal
resolution be Hr = 1/∆tr (we also use this further on as a unit for calculating total computational
cost), the total error rate is:

ρ = 1− ∆y

λ1∆y/Hr +∆y +∆total
= 1− 1

λ1/Hr + 1 + C1/K3
. (4.6)

Hence, in the high-resolution limit (when Hr and K3 are large) ρ = O
(

1
Hr

+ 1
K3

)
, showing that

finer RL temporal resolution and AI4S spatial refinement both reduce the forward projection error
rate at inverse polynomial rates.

From more general analysis on PDE scales, we could get:
Theorem 2 (ρ-K Analysis for d-Dimensional Systems). For a d-dimensional PDE system, the
forward projection error rate is: ρ = 1 − 1

λ1/Hr+1+C1/Kd , where the numerical error scales as
∆total ∼ C1K

−d∆y from spatial discretization. In the high-resolution limit:

ρ = O
(

1
Hr

+ 1
Kd

)
.

Proof in Appendix C.1.4.

4.3 OPTIMAL COMPUTATIONAL COST ALLOCATION BETWEEN RL AND AI4S

To translate these PAC-possible AI4S-RL analysis into practical system design guidance, this section
establishes a computational resource allocation framework for AI4S-RL systems.Since AI4S models
are generally trained under fixed computational budgets, we aim to derive how their discretization
parameters—denoted as Hw, Sw, Aw—can be aligned with the RL-side parameters Hr, Sr, Ar to
ensure computational and statistical consistency.

On the physical side, computational cost scales as Hw · Sw · Aw. For tabular RL, classical UCB-
VI methods require a sample complexity of O(H4

rSrAr) for value function convergence without
any assumptions on transition smoothness. Based on our transition identifiability analysis, an
improved bound of O(HrSrAr · log(1/δ)

minj

(
∆y(j)−p

(j)
max

)2 ) is achievable when the transition matrix is

known up to statistical confidence δ, reducing the RL problem to dynamic programming. From our
ρ-K analysis, we approximate p(j)max ≲ ρ∆y ∼ 1

Hr
∆y, leading to a refined sample complexity of

O
(
H3

rSrAr · log(1/δ)
)
, which we adopt in the remainder of this section.

We then align RL and AI4S computational costs via the relation HwSwAw = H3
rSrAr. From the

interface and grid-based error analysis in Section 4.2 for MHD system, and the temporal resolution
bound in Section 4.1, we discretize the physical space in three spatial dimensions (x, y, z), where:
Ar = O(Aw) = O(x2w), Sr = O(Sw) = O(x6w), Hr = O(H

1/3
w ), Hw = O(xw) ≲ 1

λ1
. This

constraint also respects CFL stability conditions for fluid systems.

By substituting these scaling relations into our cost-balancing equation, we can express the total
computational cost as a function of the resolution ratio K, leading to the following theorem.
Theorem 3 (Optimal Resolution with System-Dependent Scaling). For a physical system subject
to projection error with state space scaling Sr ∼ Kα and action space scaling Ar ∼ Kβ , the com-
putational balance condition H3

rSrAr ∼ HwSwAw ensures equivalence between the RL surrogate
resolution and the underlying PDE world resolution. Minimizing the overall computational costs,
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Cost(K) = H3
rK

α+β ·
(
log(1/δ)

ε2

)
·

(
1

1− 1
Hr

− 1
Kd

)2

(4.7)

yields optimal resolution ratio between RL and AI4S space:

K∗ =

(
α+ β + 2d

(α+ β)(1−H−1
r )

)1/d

≈
(
α+ β + 2d

α+ β

)1/d

· exp
(

1

dλ1

)
(4.8)

when Hr ≳ λ1 ≫ 1.

Proof in Appendix C.1.5.
Remark 2 (Impact of Actuation Topology). The scaling exponents derive from the Trace Theorem
based on the control location. Boundary-actuated systems (e.g., tokamak) require quadratic refine-
ment due to boundary regularity loss, yielding α = 2d and β = 2da. Conversely, interior-actuated
systems (e.g., heat sequencing) follow standard volumetric scaling with α = d and β = da. where
d denotes the physical spatial dimension and da the action dimension. This distinction dictates the
optimal resolution K∗ and the cost disparities shown in Table 1.

4.4 THEORETICAL ANALYSIS ACROSS PHYSICAL SYSTEMS

Building on our theoretical framework, we now evaluate how surrogate discretization, spectral
response, and RL precision jointly affect sample complexity across four representative AI4S-RL
systems: (1) Tokamak plasma control, (2) Turbulent airfoil regulation, (3) Teppanyaki heat sequencing,
and (4) Cart-pole stabilization (Details in Supplementary). Figure 4 illustrates their discretized state
spaces.

Figure 4: State space discretization for four
AI4S-RL systems.

100 101 102 103

1

1

2

3

4

5

K
*

Optimal K *  vs 1

Tokamak Control
Airfoil Control
Teppanyaki Plate
Cart-Pole System

Figure 5: Log-scale plot of K∗ vs. modal growth λ1.

We adopted an ε–N perspective: to ensure value function estimation within error ε and confidence
1− δ, how many AI4S–RL transitions N are required, given surrogate discretization and physical
uncertainty? Based on our analysis, we can now systematically achieve optimal resolution allocation
under (ε, δ) accuracy constraints through a unified framework that integrates error normalization,
identifiability analysis, and closed-form cost expressions—thereby minimizing the total computational
cost of AI4S-RL systems while ensuring reliable policy estimation.

Table 1 summarizes scaling relations and optimal resolution ratios. Systems with strong boundary
observability (e.g., tokamak, airfoil) require quadratic scaling in state-action discretization relative
to mesh resolution, while low-dimensional systems tolerate aggressive upsampling without cost
explosion. Figure 5 shows how the optimal K∗ saturates with increasing λ1, especially in high-
dimensional PDEs. In contrast, ODE-based systems benefit more directly from higher surrogate
resolution.
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Our theoretical framework provides insights into the empirical results from Section 3. For tabular
RL, the observed optimum at (K = 1.5, logHw

Hr = 1/3) requires 103.65 ≈ 4500 samples, while
the worst configuration at (K = 2.5, logHw

Hr = 2) needs 104.66 ≈ 46000 samples—a 10-fold
increase. This translates to computational cost scaling approximately as N1.6 when deviating from
optimal parameters, consistent with our claim in the abstract. Q-learning achieves its minimum
at (K = 2.0, logHw

Hr = 1/2) with only 102.65 ≈ 450 samples, demonstrating that function
approximation can effectively exploit state similarity to reduce sample complexity by an order of
magnitude.

Table 1: Optimal Resolution Matching and Computation Cost Across Systems under ε error of value
function estimation and 1− δ confidence level

System Resolution Scaling Computational Cost Optimal K∗

Tokamak Control
Ar = O(Aw) = O(x2w)
Sr = O(Sw) = O(x6w)

Hr = H
1/3
w · O(xw) < 1/λ1

H9
rK

8

ε2
· log(1/δ)

(1− 1
Hr

− 1
K3 )2

(
7

4

)1/3

· exp
(

1

3λ1

)

Airfoil Control
Ar = O(Aw) = O(x2w)
Sr = O(Sw) = O(x4w)

Hr = H
1/3
w · O(xw) < 1/λ1

H7
rK

6

ε2
· log(1/δ)

(1− 1
Hr

− 1
K2 )2

(
5

3

)1/2

· exp
(

1

2λ1

)

Teppanyaki Plate
Ar = O(Aw) = O(xw)
Sr = O(Sw) = O(x2w)

Hr = H
1/3
w · O(xw) < 1/λ1

H4
rK

3

ε2
· log(1/δ)

(1− 1
Hr

− 1
K2 )2

(
7

3

)1/2

· exp
(

1

2λ1

)

Cart-Pole System
Ar = O(Aw) = O(xw)
Sr = O(Sw) = O(xw)

Hr = H
1/3
w · O(xw) < 1/λ1

H2
rK

2

ε2
· log(1/δ)

(1− 1
Hr

− 1
K )2

2 · exp
(

1

λ1

)

These results suggest that systems with high spectral amplification yield diminishing returns from
AI4S refinement unless RL granularity is co-optimized. Our ε–N framework thus provides a
principled tool for balancing simulation fidelity and RL efficiency under finite compute budgets.

4.5 EMPIRICAL VALIDATION ON PDE-GOVERNED CONTROL: TEPPANYAKI HEAT
SEQUENCING

While the Cart-Pole experiments in Section 3 successfully demonstrate resolution trade-offs, they
rely on a low-dimensional ODE system with learned dynamics. To rigorously validate our theoretical
predictions in high-dimensional PDE environments with continuous state-action spaces, we conduct a
comprehensive study on a two-dimensional control problem: multi-item heat sequencing on a teppa-
nyaki cooking surface. This environment is governed by the canonical two-dimensional heat diffusion
equation ∂T/∂t = α∇2T +Q(x, t), representing a broad class of parabolic PDEs encountered in
AI4S applications (thermal management, plasma diffusion, etc.) (details in Appendix E).

The control task requires simultaneously cooking three food items at distinct temperatures using
two heat sources, posing challenges for policy learning under discretization constraints. We train
Proximal Policy Optimization (PPO) agents across a Cartesian product of spatial resolution ratios K
and temporal resolution parameters loghw

(hr), yielding 25 experimental configurations as detailed
in Figure 6. All experiments run on identical hardware (Intel Xeon Gold 6530, NVIDIA RTX 4090).
Complete environment specifications, PPO hyperparameters, and convergence criteria are provided
in Appendix E.

Figure 6 illustrates the comprehensive experimental results on the Teppanyaki thermal control task.
Panels (a) and (b) present the environment setup: the agent regulates distributed heat sources to
manage non-stationary diffusion dynamics for precise multi-object temperature tracking. Panel
(c) displays ε-N scaling curves for all 23 qualified configurations, where color denotes temporal
resolution y and intensity indicates spatial resolution K. Panels (d), (e), and (f) show CPU, GPU, and
total computational cost heatmaps across the (K, y) configuration space. Configurations at K = 8.0
(marked ”R.I.”) fail to converge, validating that excessive coarsening violates learnability conditions.
The optimal configuration (K∗ = 6, loghw

(hr) = 1/3) achieves minimum total cost, confirming that
Theorem 3 provides effective guidance for deep RL hyperparameter selection.
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b. Teppanyaki Environment c. ε-N Scaling Curvesa. Optimal Control results

d. GPU Computational Cost                                        e. CPU Computational Cost                                     f.Total Computational Cost

Figure 6: Experimental analysis of the Teppanyaki PDE control task. (a) The analytical optimal
control solution serves as a performance oracle, illustrating the precise temperature tracking required.
(b) Visualization of the simulation environment and the governing MHD/heat diffusion equations.
(c-e) ε-N scaling curves (top) with CPU/GPU computational cost decomposition heatmaps (bottom),
demonstrating the non-monotonic resolution-efficiency trade-off.

5 CONCLUSION AND LIMITATIONS

This work presents a unified theoretical framework for analyzing RL in surrogate-based physical
environments governed by PDEs. By integrating spectral discretization theory with PAC sample
complexity bounds from tabular RL, we establish how surrogate resolution, physical dynamics, and
RL precision jointly influence the number of episodes required for accurate policy learning.

We propose the ε–N framework to characterize the minimal RL–AI4S interaction cost under fixed
accuracy and confidence requirements. Through analysis of surrogate-induced error propagations,
and optimal resolution trade-off, we derive system-specific cost scaling laws and identify spectral
regimes where surrogate refinement provides diminishing returns. Empirical validation across four
representative AI4S-RL systems confirms that spectral growth rate, boundary observability, and
dimensionality all play critical roles in determining learning efficiency.

Several assumptions in our analysis warrant further investigation. First, our analysis focuses on
tabular RL for theoretical tractability and to isolate physical discretization errors, establishing a
necessary condition for learnability that applies to any algorithm. While our experiments with DQN
and PPO confirm that these resolution trade-offs govern the primary performance trends even in
deep RL, rigorously extending our mathematical bounds to function approximation settings remains
an open direction. Second, we treat surrogate models as fixed and externally trained; adaptive
refinement or active error correction within the RL loop could further improve performance. Finally,
our framework focuses on deterministic discretization errors. While real-world neural surrogates also
introduce approximation and generalization errors, our analysis establishes a theoretical baseline ,
isolating the resolution trade-off as a fundamental constraint.

Overall, this work provides a principled foundation for evaluating and co-designing AI4S surrogates
and RL policies in resource-constrained scientific applications.
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A TABLE OF NOTATIONS

The following table provides a reference for the key symbols and notations used throughout this
paper.

Symbol Description
General Reinforcement Learning (RL) Parameters
S,A The finite sets representing the state space and action space.
H The horizon, representing the length of an episode.
|S|, |A| The size of the state and action spaces.
ε The desired error tolerance for value function estimation.
δ The confidence parameter.
V π(s) The value function of a policy π at state s.
V ∗ The optimal value function.
π∗, π̂ The optimal policy and the learned policy, respectively.
P, P̂ The true and the empirically estimated state transition kernels.

N
The sample complexity.
The overall computational cost is treated as a function of N in our ε-N analysis.

AI4S-RL Framework Parameters
Sr, Ar, Hr The scale of the state space, action space, and horizon in the RL domain.
Sw, Aw, Hw The scale of the state space, action space, and horizon in the AI4S domain.
∆tr,∆tw The discrete timesteps in the RL and AI4S/World domains, respectively.
∆xr,∆xw The spatial grid resolution in the RL and AI4S/PDE domains.
K The Resolution Ratio, defined as K = ∆xr/∆xw.
K∗ The optimal resolution ratio that minimizes computational cost.
y0,∆y0 An initial state and the measurement uncertainty in practice.
∆y The grid cell size.
∆total The total numerical error accumulated in one RL-AI4S interaction step.
ρ The forward projection error rate in the AI4S-RL system.

PDE and Spectral Analysis Parameters
λ1 The dominant (largest real part) eigenvalue of the linearized PDE operator.
L(y0) The Fréchet-linearized operator of the PDE system around a state y0.
ϕk The k-th orthonormal basis function.
γk(t) The modal gain factor for the k-th mode at time t.
ψk(t) The propagated mode shape for the k-th mode at time t.

Mathematical Spaces and Operators
Hs(Ω) The Sobolev space of order s over a domain Ω.
Lp(Ω) The Lebesgue space of p-integrable functions over a domain Ω.
∇,∆ The gradient and Laplacian operators, respectively.
|| · ||V The norm in a vector space V .
Df(y)[η] The Fréchet derivative of an operator f at point y applied to a perturbation η.

B SAMPLE COMPLEXITY IN REINFORCEMENT LEARNING

In this section, we provide an explanation of sample complexity in reinforcement learning. In our
setting, the next-state information required by the reinforcement learning process is provided by a
PDE-based physical space. We assume that this physical space satisfies the property of probabilistic
determinability of the future state, meaning that, as long as repeated experiments are sufficiently
performed, the next state can be identified with probability at least one. We present a detailed
explanation of the probabilistic determinability of the future state.
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B.1 DIRECTIONAL PERTURBATION IN A NONLINEAR DYNAMICAL SYSTEM

To understand uncertainty propagation in complex dynamical systems, consider a nonlinear system
governed by a PDE-based evolution operator f(y0, a), where y0 is the initial state and a denotes
system parameters or external inputs. We focus on a single dimension (or component) of the system
state, say y(i), and analyze how small perturbations in the initial condition affect the predicted future
value y(i)1 . Suppose that we do not observe y0 exactly, but only a perturbed version y0 +∆y0, where
∥∆y0∥ ≤ ∆y reflects measurement uncertainty or modeling noise. A natural question arises:

What is the possible range of future values y(i)1 under this uncertainty?

A conventional linearized approximation assumes that the system’s response to perturbations is
symmetric and smooth around y0. Under this assumption, we may apply a first-order Fréchet
expansion

f(y0 +∆y0, a) ≈ f(y0, a) +Df(y0)[∆y0],
and estimate the extreme values via projection onto the steepest ascent and descent directions.
However, for highly nonlinear systems, this linear treatment is inadequate—particularly when the
system exhibits directional sensitivity, i.e.,

f(y0 + η, a)− f(y0, a) ̸= f(y0 − η, a)− f(y0, a).

To capture such asymmetry and nonlinear amplification, we adopt a variational formulation. Let the
system’s response to a perturbation path η be described by a nonlinear variational functional:

I[η] =
∫ 1

0

L(y0 + sη, η̇, s) ds,

where L is a nonlinear Lagrangian that encodes the local effect of the perturbation path η and its
derivative η̇ over time or space. The structural asymmetry of the system implies: I[η] ̸= I[−η],
highlighting that perturbations in opposite directions produce asymmetric responses.

We define the extremal range of the future value y(i)1 as the solution to the following constrained
nonlinear variational optimization:

y
(i),max
1 = f (i)(y0) + sup

∥η∥≤∆y

{∫
M
F (i)[y0, η(x),∇η(x)] dµ(x)

}
,

y
(i),min
1 = f (i)(y0) + inf

∥η∥≤∆y

{∫
M
F (i)[y0, η(x),∇η(x)] dµ(x)

}
,

(B.1)

where F (i) denotes the nonlinear directional sensitivity of the system output with respect to the i-th
component, and µ(x) is a measure over the spatial domain M.

Remark B.1. While this formulation is presented for a single component y(i), it naturally generalizes
to the full system state vector. This variational perspective offers a principled and scalable method
for quantifying directional uncertainty in nonlinear, asymmetric dynamical systems, with broad
applicability to PDE-based forecasting, control, and decision-making.

As illustrated in Figure B.1, in the ODE case, the three blue points represent the lower bound, true
value, and upper bound of the observed state respectively, resulting from observation noise. Since
substituting different observed states into the control equation yields different next-step predicted
states, the three purple points correspond to the lower bound, true value, and upper bound of the
next-step state.

We define a prediction to be correct if it falls into the same grid cell as the true next-step state. This
correct cell is represented by the purple box. Predictions that fall into other grid cells are considered
incorrect.

The PDE example in Figure B.1 illustrates how observation noise in the initial state propagates to
the next time step. Here, we show the evolution over a single time step. The red dashed rectangle
represents the range of the observed initial state induced by observation noise. The use of a rectangular
region stems from modeling the perturbation δy using the L∞ norm, which captures worst-case
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Figure B.1: A visual explanation of the probabilistic determinability of the future state.

uncertainty across all spatial dimensions. Under the assumption that the PDE solution operator is
continuous with respect to the initial state in an appropriate Banach space, the open mapping theorem
ensures that the reachable set of next-step states is also a topologically open and smooth manifold
segment.

To further characterize the image of this noisy initial set under PDE evolution, we adopt a variational
framework. Specifically, we consider a scalar output functional F [y] , and examine its extremal
values under admissible perturbations δy ∈ U , where U ⊂ Ty0M is a local uncertainty set defined
on the tangent space of the solution manifold at y0.

Let the PDE solution operator be denoted y(t) = St[y0], where y0 is the initial condition and y(t)
is the state at time t. For a scalar output functional F [y] (e.g., wave peak or energy), our goal is to
evaluate how F [S∆t[y0]] varies under perturbations δy ∈ U ⊂ Ty0

M, where U is a norm-bounded
uncertainty set on the tangent space of the state manifold at y0.

Formally, the extremal values of the output functional under admissible perturbations are given by
the variational optimization:

Fmax = sup
δy∈U

F [S∆t[y0 + δy]],

Fmin = inf
δy∈U

F [S∆t[y0 + δy]].

This general variational formulation allows for full nonlinear and directional sensitivity to be incor-
porated. However, to derive computable approximations and gain insight into asymmetry, we next
truncate the variation up to second order.

As an illustrative example, consider the one-dimensional wave equation:

∂2t y = c2∂2xy, y(x, 0) = y0(x), ∂ty(x, 0) = 0.

Let the output functional be the solution at a fixed point and time: F [y] = y(x∗,∆t). We expand the
perturbed output F [y0 + δy] to second order:

F [y0 + δy] = F [y0] +

∫ L

0

K(x)δy(x) dx+
1

2

∫∫
[0,L]2

H(x, x′)δy(x)δy(x′) dx dx′ +O(∥δy∥3),

where K(x) is the first-order influence kernel, and H(x, x′) is the second-order interaction kernel.

The first-order term is linear and sign-symmetric: it leads to the same magnitude of change whether
δy is positive or negative. However, the second-order term breaks this symmetry. In particular, it
captures nonlinear amplification and asymmetry: F [y0 + δy]− F [y0] ̸= − (F [y0 − δy]−F [y0]),
because the second-order term remains positive under sign reversal.
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Under the constraint ∥δy∥L∞ ≤ ε, we then compute bounds:

Fmax = F [y0] + sup
∥δy∥∞≤ε

{∫
K(x)δy(x) dx+

1

2

∫∫
H(x, x′)δy(x)δy(x′) dx dx′

}
,

Fmin = F [y0] + inf
∥δy∥∞≤ε

{∫
K(x)δy(x) dx+

1

2

∫∫
H(x, x′)δy(x)δy(x′) dx dx′

}
.

(B.2)

This example demonstrates how second-order variational expansion serves as a concrete realization
of the general nonlinear variational framework. It explicitly captures the directional asymmetry and
curvature of the functional response to perturbations, which are essential features of PDE-governed
systems with uncertain initial conditions.

B.2 SAMPLING SCHEME FOR IDENTIFYING THE TRUE DISCRETE CELL

In this section, we analyze how a sampling strategy can be designed to identify the correct discrete
cell that the system state should evolve into, and how the scale of such a cell should be chosen.

In real-world systems, perturbations ∆y typically originate from measurement noise or numerical
rounding errors, and are therefore inevitable. Nevertheless, it is reasonable to assume that the true
state lies within a neighborhood of size ∆y/2 around the observed value. Based on this fact, we
propose a local sampling strategy: perturbations are generated around the observed value within this
neighborhood, and their evolution over one time step is computed via numerical PDE solvers. The
resulting predicted outcomes are then statistically analyzed to infer the most probable cell in which
the true state lies.

In the ideal noiseless case, such a sampling scheme causes predicted outcomes to concentrate within
the correct cell. As the number of samples increases, the probability of correctly identifying the target
cell converges to one.

This idea naturally supports the integration of physical knowledge into reinforcement learning. By
repeatedly sampling perturbations around the initial state and propagating them through the physical
model, we can estimate the state transition probability matrix with high confidence. This effectively
transforms the reinforcement learning problem from a model-free setting to a dynamic programming
problem with known transitions. In contrast, without such sampling, the system dynamics remain
unknown, and exploration-based algorithms must be employed to estimate both the model and the
optimal policy.

To ensure probabilistic determinability of the future state, we impose the following criterion: the
number of predicted samples that fall into the correct cell must exceed that of any incorrect cell.
Specifically, if the predicted uncertainty spans the correct cell and its two immediate neighbors,
and if the correct cell is slightly larger in volume than its neighbors, then the correct cell can be
statistically identified with high confidence. However, if one of the neighboring cells (e.g., the upper
cell) is significantly larger than the others, then it becomes necessary to ensure that the number of
predicted samples falling into the correct cell still exceeds those falling into the largest competing
cell. This places stricter constraints on the acceptable error magnitude ∆y, or alternatively, requires
more samples to suppress statistical variance.

To improve sampling efficiency, we further propose a variationally-derived optimal importance
sampling strategy. When the goal is to estimate the expected value of a functional output F(y0 + δy),
importance sampling theory shows that the optimal sampling distribution p∗(δy) should satisfy
p∗(δy) ∝ |F(y0 + δy)| · ρ(δy), where ρ(δy) is the base distribution of uncertainty. In the small-
perturbation regime, we expand F(y0 + δy) using a second-order Taylor approximation:

F(y0 + δy) ≈ F(y0) + ⟨∇F , δy⟩+ 1

2
δy⊤Hδy,

leading to the approximate optimal sampling density p∗(δy) ∝
∣∣⟨∇F , δy⟩+ 1

2δy
⊤Hδy

∣∣. Accord-
ingly, we define a sampling weight function: w(δy) :=

∣∣⟨∇F , δy⟩+ 1
2δy

⊤Hδy
∣∣, which can be used

to guide sampling toward directions with the most significant influence on the predicted outcome.
This minimizes estimation variance and achieves optimal sampling efficiency. The resulting scheme
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can be interpreted as a physics-informed importance sampling strategy, grounded in variational
sensitivity analysis and importance sampling theory.

We now quantify how many samples are needed to reliably identify the correct discrete cell when using
the optimal importance sampling strategy described previously. Specifically, we define the dominant
cell as the cell that receives the largest number of predicted samples under a given sampling scheme.
LetC∗ denote the true (correct) cell andCj denote any competing cell. Let π∗ := P[F(y0+δy) ∈ C∗]
and πj := P[F(y0+δy) ∈ Cj ], where δy ∼ p∗(δy) ∝ |F(y0+δy)| ·ρ(δy) is the optimal importance
sampling distribution.

Theorem B.1 (Sample Complexity for Correct Cell Dominance). Let K be the total number of
cells, and let δ ∈ (0, 1) be the desired confidence level. Assume that ∆ := π∗ − πmax > 0, where
πmax = maxj ̸=C∗ πj . Then, in order for the correct cell C∗ to receive the largest number of samples
with probability at least 1− δ, it suffices to sample:

N ≥ 8

∆2
· log

(
2(K − 1)

δ

)
samples from the optimal importance sampling distribution p∗(δy).

Proof. Let nC∗ ∼ Binomial(N, π∗) and nj ∼ Binomial(N, πj) for each j ̸= C∗. To ensure that
nC∗ > nj , we use a union bound and Chernoff-type large deviation inequality. The error probability
that any incorrect cell receives more samples than C∗ is bounded as:

P (∃j ̸= C∗ : nj ≥ nC∗) ≤ 2(K − 1) · exp
(
−N∆2

8

)
.

Setting the right-hand side less than or equal to δ yields the desired bound on N .

This result shows that the sample complexity scales inversely with the square of the gap ∆ =
π∗ − πmax between the correct cell and the nearest competitor, and logarithmically with the number
of cells and the inverse failure probability. This quantifies how distinguishable the correct cell is
under the importance sampling distribution. The smaller the margin ∆, the more samples are needed
to overcome statistical uncertainty.

However, to preserve generality and narrative consistency, we adopt a uniform sampling strategy in
the main analysis to estimate sample complexity, which differs from the optimal importance sampling
scheme only by a constant-factor overhead.

B.3 PROBLEM FORMULATION

We consider two distinct scenarios concerning the availability of transition dynamics. These two
cases correspond to two different learning regimes, each with its own complexity characteristics.

In the following analysis, we quantify the sample complexity under both settings. Based on
Lemma B.1 and Theorem B.2, we derive two different orders of sample complexity. The bound in
Lemma B.1 captures the general case without prior knowledge of the transition dynamics. In contrast,
Theorem B.2 establishes the bound under our setting, where the transition matrix is known through
repeated sampling from the PDE-based physical space.

Therefore, if no sampling is performed in the physical space, the problem remains a standard MDP,
and exploration is required to learn the model. However, if sufficient sampling is carried out in
the PDE domain, the problem effectively becomes a dynamic programming task, and the sample
complexity is driven by the cost of interaction with the physical model, resulting in a tighter bound.
In the main body of the paper, we adopt the sample complexity bound given by Theorem B.2. In
the following, we present several standard assumptions commonly used in the conventional MDP
framework.

Markov Decision Problems We consider episodic reinforcement learning in finite-horizon MDPs
defined by < S,A, P,R,H >, where S and A are the finite sets of states and actions, P is the state
transition distribution, the function R is a real-valued function which is deterministic and belongs to
the interval [0, 1], and the horizon H is the length of the episode. We denote by P (·|x, a) and R(x, a)
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the probability distribution over the next state and the immediate reward of taking action a at state x,
respectively.

The agent interacts with the environment in a sequence of episodes. Specifically, the agent follows
a policy π : S × [H] → A, which maps each state and time step to an action. The value function
V π
h : S → R represents the expected cumulative reward from step h to H under policy π, starting

from state x at time h. Under the previously defined MDP setting, there always exists an optimal
policy π∗ attaining the optimal value function V ∗

h (x) ≜ supπ V
π
h (x) for all x ∈ S and h ∈ [H].

Each policy π induces a transition kernel Pπ
h (y|x) ≜ P (y|x, π(x, h)) and reward function

rπh(x) ≜ R(x, π(x, h)). For any function V : S → R, we define the transition operators:
(Pπ

h V )(x) ≜
∑

y∈S P
π
h (y|x)V (y). The Bellman operator for policy π is defined as (T π

h V )(x) ≜
rπh(x) + (Pπ

h V )(x).

We assume that the reward function r is known to the agent but the transition kernel p is unknown
(Under the no-sampling setting). The question we study is how many episodes does a learning agent
follow a policy π that is not ϵ-optimal, i.e., V ∗

M − ϵ > V π
M , with probability at least 1 − δ for any

chosen accuracy ϵ and failure probability δ.

B.4 FULL ANALYSIS OF SAMPLE COMPLEXITY BOUND

In this section, we systematically analyze the PAC sample complexity of reinforcement learning
under two different assumptions regarding the transition probability matrix. We begin by examining
the classical setting where the transition dynamics are entirely unknown. Lemma B.1 provides a
baseline PAC bound in this setting, and reveal how the total sample complexity arises from key error
components, including estimation error, exploration bonuses, and confidence adjustments.

Building on this foundation, we then analyze how our proposed setting—where additional structure
or prior knowledge is introduced—modifies the learning process. In particular, Lemmas B.2 and
B.3 show how specific components in the original analysis are tightened or avoided, leading to an
improved sample complexity bound.
Theorem B.2 (PAC Bound under our setting). Assume the transition dynamics of the MDP are
known up to statistical confidence level δ, reducing the reinforcement learning problem to dynamic
programming. Let the correct classification cell have predicted frequency p = ∆y(j), and let the
most probable competing cell have frequency q = p

(j)
max. Then the number of forward predictions

required to identify the correct classification cell with probability at least 1− δ satisfies

n = O

HSA · log(1/δ)

minj

(
∆y(j) − p

(j)
max

)2
 .

Furthermore, we derive a refined bound on the sample complexity n = O
(

SAH3

ε2 · log(1/δ)
)
.

We also present in Lemma B.1 the PAC bound of the classical UCB-VI algorithm under the setting
where the state transition probability matrix is entirely unknown.The detailed algorithmic procedure
of UCB-VI can be found in (Azar et al., 2017).
Lemma B.1. For any 0 < ϵ, δ ≤ 1, the following holds. With probability at least 1− δ, the algorithm
UCB − V I produces a sequence of policies πk, that yield at most O

(
SAH3

ε2 log 1
δ

)
episodes where

V ∗
1:H(s0)− V πk

1:H(s0) > ϵ. This results in a total runtime for sampling of O
(

SAH4

ε2 log 1
δ

)
.

Proof. Lemma B.1 characterizes the PAC bound of the UCB-VI algorithm, a result that has been
rigorously established and thoroughly analyzed in prior work (see Azar et al. (2017)). To facilitate
our later analysis, we provide a concise overview of the proof from Azar et al. (2017), with particular
emphasis on the error decomposition framework and the core techniques used to bound individual
error components.

Let V = {Vk,h ≥ V ∗
h , ∀k, h} denote the event where all computed value estimates are optimistic

upper bounds of the optimal value function. Azar et al. (2017) show that V holds with probability
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at least 1 − δ under standard induction arguments with appropriate bonus functions. Define the
approximation errors wk,h = Wk,h(xk,h) and w̃k,h = W̃k,h(xk,h), where Wk,h = V ∗

h − V πk

h and
W̃k,h = Vk,h − V πk

h . Then, under the event V , the following error decomposition holds:

wk,h ≤ w̃k,h = O

(
H−1∑
i=h

(
Mk,i + 2

√
LM̄k,i + bonusk,i + Ek,i

))
,

where Mk,h = PπkWk,h+1(xk,h) − Wk,h+1(xk,h+1) is a martingale difference term.
M̄k,i is the quantity resulting from applying Bernstein’s inequality to control the term[
(P̂π

h − Pπ
h )(Vh+1 − V ∗

h+1)
]
(xh) and is also a martingale difference. bonusk,i represents the bonus

function for UCB-VI at step i under episode k. Ek,h
def
= (P̂πk

k − Pπk)V ∗
h+1(xk,h) is the estimation

error of the optimal value function at the next state. In addition, L here is a logarithmic factor
depending on H , S, A, and the confidence level δ, which does not affect the polynomial complexity
of the bound.

Based on the above statement, we observe that the UCB-VI algorithm decomposes the total error
into four components: Mk,i, M̄k,i, bonusk,i, and Ek,i. In Table B.2, we summarize the order of
magnitude and the bounding techniques for each of these four error terms. The detailed proof process
can be found in (Azar et al., 2017). Therefore, the cumulative value error over all episodes and
timesteps satisfies

∑
k,h wk,h = O

(
HL

√
SAT

)
, where T = KH is the total number of steps

collected across K episodes, each of length H . This implies:∑
k,h

wk,h = O
(
HL

√
SAKH

)
= O

(
H3/2L

√
SAK

)
.

Suppose in the worst-case scenario, all of the first K episodes are not ε − optimal before an
ε− optimal policy is learned, then we require:

Kbad · ε ≤
∑
k,h

wk,h = O
(
H3/2L

√
SAKbad

)
⇒ Kbad ≤ O

(
H3L2SA

ε2

)
= O

(
SAH3

ε2
log

1

δ

)
.

To derive the total sample complexity, we note that sampling one episode and updating the respective
variables has O(H) runtime. Thus, the total runtime across all Kbad episodes is O (H ·Kbad) =

O
(

SAH4

ε2 log 1
δ

)
. This establishes the total sample complexity required to ensure that the learned

policy is ε-optimal with high probability.

Table B.2: Error decomposition in UCB-VI and bounding techniques
Error Term Magnitude Bounding Technique∑

k,hMk,h O(H
√
TL) Azuma’s inequality (martingale bound)∑

k,h M̄k,h O(
√
TL) Azuma’s inequality (martingale bound)∑

k,hEk,h O(H
√
LSAT ) Chernoff-Hoeffding inequality + pigeonhole principle∑

k,h bonusk,h O(HL
√
SAT ) Optimistic bonus design + pigeonhole principle

Remark B.2. Based on Table B.2 , we have essentially clarified the analytical procedure through
which the UCB-VI algorithm derives its sample complexity bound. Based on this, we highlight the key
difference between our setting and UCB-VI, and the core improvement introduced in our approach.

UCB-VI characterizes sample complexity by bounding the discrepancy between the empirical transi-
tion probability matrix obtained from sampling and the true transition dynamics.
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In contrast, our setting introduces a notion of the probabilistic determinability of future state, which
allows us to exploit multiple samples from the PDE-based physical space to ensure that the transition
probability matrix in the RL formulation is fully known.

As a result, the increase in sample size in our framework pertains to the sampling process in the
PDE-based physical space. The complexity of this sampling process can then be transferred to the
RL domain, ultimately yielding a refined bound on sample complexity.

In Lemma B.2, we provide the sampling requirement needed to resolve the correct cell with probability
at least 1− δ.

Lemma B.2 (Sample Complexity for δ-Confidence Classification). Let the cell of correct classifica-
tion have predicted frequency p = ∆y(j), and let the most probable incorrect (competing) cell have
frequency q = p

(j)
max. To resolve the correct cell with confidence at least 1− δ, the number of forward

predictions required satisfies

n = O

 log(1/δ)

minj

(
∆y(j) − p

(j)
max

)2
 .

Proof. Without loss of generality, we consider a randomly selected dimension j as an example.Let
p = ∆y(j) be the probability mass of the correct cell in dimension j, and let q = p

(j)
max be the

maximum probability mass of any competing cell.

Suppose we sample n i.i.d. trajectories, and let p̂ denotes the empirical frequencies of the correct
cell. We wish to ensure that with high probability (at least 1− δ), |p̂− p| < |p−q|

2 , so that the correct
classification cell is selected.

Let ϵ = |p−q|
2 . Applying Hoeffding’s inequality to p̂ gives:

Pr (|p̂− p| ≥ ϵ) ≤ 2 exp(−2nϵ2) ⇒ Pr

(
|p̂− p| ≥ |p− q|

2

)
≤ 2 exp(−2n(

|p− q|
2

)2).

Then enforce 2 exp
(
−2n

(
p−q
2

)2) ≤ δ ⇒ n ≥ 2 log(2/δ)
(p−q)2 .

This gives the number of samples n needed to distinguish between the correct and competing cells
with probability at least 1− δ. To guarantee correct classification across all dimensions j, we must

take the worst-case (smallest gap) over all j, yielding: n = O

(
log(1/δ)

minj

(
∆y(j)−p

(j)
max

)2

)
as stated.

Furthermore, Lemma B.3 provides the order of the total sample complexity under our setting.

Lemma B.3 (Refined Sample Complexity under Known Transitions). Assume the transition dynamics
of the MDP are known up to statistical confidence level δ, reducing the reinforcement learning problem
to dynamic programming. Let the correct classification cell have predicted frequency p = ∆y(j),
and let the most probable competing cell have frequency q = p

(j)
max. Then the number of forward

predictions required to identify the correct classification cell with probability at least 1− δ satisfies

n = O

HrSrAr ·
log(1/δ)

minj

(
∆y(j) − p

(j)
max

)2
 .

Furthermore, by applying the ρ − K relationship discussed in the main text, which states that
∆p(j) ∼ ρ∆y(j) ∼ 1

Hr
∆y(j), we derive a refined bound on the sample complexity:

n = O
(
H3

rSrAr · log(1/δ)
)
.
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Proof. Without loss of generality, consider a randomly selected dimension j. Let p = ∆y(j) be the
predicted frequency of the correct classification cell, and let q = p

(j)
max denote the predicted frequency

of the most likely competing cell in dimension j.

Since the transition matrix is assumed to be known up to confidence δ, the reinforcement learning
task reduces to a dynamic programming problem. Assume we sample n independent forward
trajectories and let p̂ be the empirical frequency of the correct cell. To confidently resolve the correct
classification, we want the empirical estimate to satisfy |p̂− p| < |p−q|

2 with probability at least 1− δ.
Let ϵ = |p−q|

2 .According to Lemma B.2, we have n ≥ 2 log(2/δ)
(p−q)2 .

At each step in the reinforcement learning process, every state-action pair requires the number of
samples derived above to guarantee correct classification with high confidence. Applying a union
bound over all such points yields a total sample complexity of:

n = O
(
HrSrAr ·

log(1/δ)

minj(p− q)2

)
.

Furthermore, we have: p − q ∼ O
(

1
Hr

)
, thus 1

(p−q)2 = O(H2
r ). Substituting this into the

earlier bound yields: n = O
(
H3

rSrAr · log(1/δ)
)

as claimed.

Remark B.3. Based on Lemma B.1 and Theorem . B.2, we derive two different orders of sample
complexity. However, we also leave open the possibility for further refinement. In particular, building
upon the analytical framework presented above, future research may explore combining our treatment
of transition uncertainty with recent developments on PAC bounds in robust MDPs, potentially
yielding tighter complexity guarantees.

C DETAILED ANALYSIS OF THE FOUR REPRESENTATIVE AI4S-RL
ENVIRONMENTS

In this section, building on the theoretical framework proposed in the main text, we provide a
detailed analysis of how surrogate discretization, spectral response, and reinforcement learning
precision jointly affect sample complexity across four representative AI4S-RL systems: (1) Tokamak
plasma control, (2) Turbulent airfoil regulation, (3) Teppanyaki heat sequencing, and (4) Cart-pole
stabilization. The first three environments are PDE-based systems, while the fourth represents
a typical ODE-based system. Notably, the first two environments are characterized as systems
with strong boundary observability. Therefore, by conducting a detailed discussion of these four
environments, we analyze how different environmental characteristics and underlying equation types
influence the outcomes and properties of optimal resolution matching and computational cost, thereby
enhancing the generality of our conclusions.

C.1 THEORETICAL PRELIMINARIES AND PROOFS

Before proceeding to the detailed analysis of each environment, this subsection provides several
general settings and supplementary explanations for key lemmas and conclusions referenced in the
main text. In addition, Appendix D provides a collection of classical results from functional analysis
and PDE theory that underpin the error analysis.

C.1.1 PROOF OF THEOREM 1

Theorem C.3 (Sample Complexity for δ-Confidence Classification). Consider repeated forward
predictions from perturbed initial states, where the predicted frequency is the empirical probability of
the next state falling into a given grid cell. Let p denote the predicted frequency with which the true
next state falls into the correct grid cell, and let q = p

(j)
max denote the maximum predicted frequency

among all competing cells. To resolve the correct cell with confidence at least 1− δ, the number of
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forward predictions required is bounded by

n = O

 log(1/δ)

minj

(
∆y(j) − p

(j)
max

)2
 (C.1)

Proof. We proceed under the fundamental assumption of state distinguishability, which ensures that
the propagation of initial uncertainty is sufficiently bounded. This allows for the correct classification
cell to be identified, as repeated sampling from the input perturbation ball will generate predicted
states that form a distinct cluster primarily within that cell.

The problem can thus be framed as a statistical task: we perform n independent trials (forward
predictions) to identify the cell with the highest success probability, p, from its closest competitor,
which has probability q. Let Xi be the indicator random variable for the i-th prediction falling
into the correct cell. The empirical frequency of the correct cell, p̂ = 1

n

∑n
i=1Xi, is the sample

mean of these variables, with an expected value Consider n independent forward predictions, each
obtained by sampling a perturbation ∆y0 uniformly from the ball {∥∆y0∥ ≤ ∆y} and computing
ỹ1 = f(y0 +∆y0, a). Let Xi be the indicator random variable for the i-th prediction falling into the

correct cell: Xi =

{
1 if ỹ(i)1 falls in the correct cell
0 otherwise

. The empirical frequency of the correct cell is:

p̂ = 1
n

∑n
i=1Xi. By construction, E[Xi] = p and Xi ∈ [0, 1].

Since X1, X2, . . . , Xn are independent and bounded random variables with Xi ∈ [0, 1], Hoeffding’s
inequality states: Pr(|p̂ − p| ≥ ϵ) ≤ 2 exp(−2nϵ2) for any ϵ > 0. To distinguish the correct cell
from competing cells, we need p̂ to be closer to p than to q. This is achieved if: |p̂ − p| < |p−q|

2 .
Setting ϵ = |p−q|

2 = p−q
2 (since p > q by assumption), we get:

Pr

(
|p̂− p| ≥ p− q

2

)
≤ 2 exp

(
−2n

(
p− q

2

)2
)

For the classification to succeed with confidence at least 1− δ, we require:

Pr

(
|p̂− p| ≥ p− q

2

)
≤ 2 exp

(
−2n

(
p− q

2

)2
)

≤ δ

Taking logarithms and solving for n: n ≥ 2 log(2/δ)
(p−q)2 . When multiple dimensions are involved, we

need to ensure correct classification across all dimensions j. Taking the worst-case scenario (smallest
gap):

n ≥ max
j

2 log(2/δ)

(∆y(j) − p
(j)
max)2

=
2 log(2/δ)

minj(∆y(j) − p
(j)
max)2

In terms of asymptotic complexity (Big-O notation), the constant factors can be absorbed, yielding
the final result:n = O

(
log(1/δ)

minj(∆y(j)−p
(j)
max)2

)
. This completes the proof of the sample complexity

bound.

C.1.2 MODAL GROWTH RATE AND STATE SEPARABILITY

In AI4S-RL, agents interact with high-dimensional physical systems, where observations are often
contaminated with sensor noise or state perturbations. A key concern is whether such uncertainty
grow through the system’s nonlinear dynamics and cause classification ambiguity in the predicted
future state.

To ensure robustness of the learning process, we must guarantee that small observation errors do
not cause the predicted future state f(y0 +∆y0) to cross classification boundaries. This leads to the
formulation of Lemma S.3, which characterizes sufficient conditions for achieving classification-cell
separability.
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Lemma S.3 (Fourier-Mode Separability via Fréchet Spectral Amplification). Let ft(y0) be the
solution operator of a nonlinear PDE with Fréchet derivative Dft(y0) acting on a Hilbert space
H. Suppose the observation perturbation η ∈ H, with ∥η∥ ≤ ∆y, admits a Fourier expansion
η =

∑
k η̂kϕk, where {ϕk} is an orthonormal basis for H.

Assume the Fréchet derivative propagates each mode as Dft(y0)[ϕk] = γk(t)ψk(t) for some gain
factor γk(t) > 0 . Then classification-cell separability is guaranteed if: supk γk(t) < 1, which
implies ∥Dft(y0)[η]∥ < ∆y. Consequently, the maximal admissible time step ∆t satisfies:

∆t < Csystem := inf
k
γ−1
k (1).

Proof. Let η =
∑

k η̂kϕk ∈ H be the perturbation with norm ∥η∥ ≤ ∆y, where {ϕk} is an
orthonormal basis. Since Dft(y0) is linear, then we have:

Dft(y0)[η] =
∑
k

η̂k · Dft(y0)[ϕk] =
∑
k

η̂k · γk(t) · ψk(t).

Now take the squared norm:

∥Dft(y0)[η]∥2 =

∥∥∥∥∥∑
k

η̂k · γk(t)

∥∥∥∥∥
2

≤
(
sup
k
γk(t)

2

)
·
∑
k

|η̂k|2 = sup
k
γk(t)

2 · ∥η∥2.

Therefore,
∥Dft(y0)[η]∥ ≤ sup

k
γk(t) · ∥η∥ ≤ sup

k
γk(t) ·∆y.

To ensure ∥Dft(y0)[η]∥ < ∆y, it suffices that supk γk(t) < 1.

The spectral separability condition established in Lemma S.3 applies broadly to a wide class of
PDE-governed systems. In general, when the system dynamics are governed by a nonlinear evolution
equation, local behavior around state y0 can be analyzed through Fréchet linearization, yielding a
time-dependent linear operator Dft(y0). By decomposing initial observation perturbations η ∈ H
into orthonormal modal components and tracking the amplification of each mode under the action of
Dft(y0), we obtain a spectral characterization of uncertainty propagation over time.

C.1.3 RELATING MODAL GAIN γk(t) TO THE LEADING EIGENVALUE λ1

In the framework discussed in the previous section, each mode experiences a gain factor γk(t),
which reflects the sensitivity of the system to perturbations in that direction. When the maximal gain
supk γk(t) remains below unity, the propagated perturbation stays within the classification boundary,
ensuring separability and decision consistency. This condition naturally induces a system-dependent
constraint on temporal resolution: the RL decision step size must be sufficiently high to resolve the
most unstable direction in the spectral space. In practice, this analysis enables principled derivation
of time-step bounds for a variety of AI4S-RL environments, thereby enabling robust policy learning
grounded in physical dynamics.

Remark C.4. In nonlinear dynamical systems governed by PDEs, the rigorous characterization of
forward perturbation growth should ideally be expressed in terms of the Fréchet-mode amplification
factors γk(t), as introduced in Lemma S.3. These quantities measure the directional sensitivity of the
solution operator ft along each Fourier mode ϕk, through the relation Dft(y0)[ϕk] = γk(t)ψk(t),
where ψk(t) denotes the propagated mode shape. However, to simplify the analysis and maintain
consistency across sections, we adopt the leading eigenvalue λ1 of the linearized system operator
L(y0) as a surrogate for modal growth, particularly in the computation of time resolution bounds
and error propagation rates. The relationship between λk and γk(t) can be made explicit under the
assumption of locally linearized evolution:

δyk(t) = η̂ke
λktϕk ⇒ γk(t) ∝ eλkt.

For sufficiently small t, Taylor expansion yields: γk(t) ≈ 1 + λkt+O(t2), so that supk γk(t) ∝ λ1.
Therefore, replacing supk γk(t) with λ1 in our main analysis introduces no change in asymptotic
error scaling.
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C.1.4 PROOF OF THEOREM 2

Theorem C.4 (ρ-K Analysis for d-Dimensional Systems). For a d-dimensional PDE system, the
forward projection error rate is:

ρ = 1− 1

λ1/Hr + 1 + C1/Kd
(C.2)

where the numerical error scales as ∆total ∼ C1K
−d∆y from spatial discretization. In the high-

resolution limit:

ρ = O
(

1

Hr
+

1

Kd

)
(C.3)

Proof. The forward projection error rate, ρ, is defined as the fractional deviation from a perfect
prediction. Conceptually, this is one minus the ratio of the ideal state-cell size to the total spread of
the predicted state under all sources of error. Let the ideal cell size be represented by the baseline
observation uncertainty, ∆y.

ρ = 1− Ideal Cell Size
Total Error Spread

= 1− ∆y

Total Error Spread

The total error spread is the linear superposition of three primary components identified in the text:

1. Intrinsic Error Growth (∆intrinsic): The amplification of the initial uncertainty ∆y by the
system’s dynamics over a single RL time step ∆tr = 1/Hr. This is governed by the leading
eigenvalue λ1, yielding ∆intrinsic =

λ1

Hr
∆y.

2. Baseline Observation Uncertainty (∆obs): The inherent noise floor of the system, which is ∆y.

3. Numerical Surrogate Error (∆num): The total error from discretization, ∆total, which the theorem
states scales as ∆total ∼ C1K

−d∆y. This scaling arises from the resolution matching conditions,
where the dominant contribution to error that depends on the resolution ratio K is the spatial
discretization of the underlying PDE in a d-dimensional space.

Summing these components and canceling the ∆y term yields the first result of the theorem:

ρ = 1− 1
λ1

Hr
+ 1 + C1K−d

The high-resolution limit is defined as the case where Hr → ∞ and K → ∞. To analyze the
behavior of ρ in this limit, we first rearrange the expression:

1− ρ =
1

1 + λ1

Hr
+ C1K−d

Let x = λ1

Hr
+ C1K

−d. In the high-resolution limit, as Hr → ∞ and K → ∞, it is clear that
x → 0. We can therefore use the first-order Taylor series expansion for the function f(x) = 1

1+x

around x = 0. Substituting our expression for x: 1− ρ ≈ 1−
(

λ1

Hr
+ C1K

−d
)

. Then we obtain the

approximate expression for ρ: ρ ≈ λ1

Hr
+ C1K

−d. Since λ1 and C1 are constants for a given system,
the asymptotic behavior of ρ is captured by Big-O notation as:

ρ = O
(

1

Hr
+

1

Kd

)
This completes the proof of the second part of the theorem.
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C.1.5 PROOF OF THEOREM 3

Theorem C.5 (Optimal Resolution with System-Dependent Scaling). For a physical system with
state space scaling Sr ∼ Kα and action space scaling Ar ∼ Kβ , under the computational balance
condition H3

rSrAr ∼ HwSwAw, minimizing the computational cost

Cost(K) = H3
rK

α+β ·
(
log(1/δ)

ε2

)
·

(
1

1− 1
Hr

− 1
Kd

)2

(C.4)

yields optimal resolution:

K∗ =

(
α+ β + 2d

(α+ β)(1−H−1
r )

)1/d

≈
(
α+ β + 2d

α+ β

)1/d

· exp
(

1

dλ1

)
(C.5)

when Hr ≳ λ1 ≫ 1.

Proof. The total computational cost is given by:

Cost(K) = H3
rK

α+β · log(1/δ)
ε2

·

(
1

1− 1
Hr

− 1
Kd

)2

To find the minimum, we differentiate with respect to K. Since the prefactor H3
r
log(1/δ)

ε2 is inde-

pendent of K, we focus on g(K) = Kα+β ·
(
1− 1

Hr
− 1

Kd

)2
. To simplify the calculation, we use

logarithmic differentiation ln g(K) = (α+ β) lnK + 2 ln
(
1− 1

Hr
− 1

Kd

)
.

Differentiating both sides with respect to K: g′(K)
g(K) = α+β

K − 2d

Kd+1(1− 1
Hr

− 1

Kd )
. At the optimal point

K∗, we have g′(K∗) = 0, which gives:

α+ β =
2d+ α+ β

(K∗)d
(
1− 1

Hr

)

Then (K∗)d = α+β+2d

(α+β)(1− 1
Hr

)
. Taking the d-th root K∗ =

(
α+β+2d

(α+β)(1−H−1
r )

)1/d

.

We now analyze the expression for K∗ in the limit where Hr ≳ λ1 ≫ 1. This implies that x = H−1
r

is a small positive value. We can rewrite the expression for K∗ as:

K∗ =

(
2d+ α+ β

α+ β

)1/d

·
(
1−H−1

r

)−1/d

We focus on the second term, (1 − H−1
r )−1/d. Using the generalized binomial approximation,

(1 − x)a ≈ 1 − ax for small x, where x = H−1
r and a = −1/d:

(
1−H−1

r

)−1/d ≈ 1 + 1
dHr

.
For large λ1, the argument of the exponential is small. Using the first-order Taylor approximation
ey ≈ 1 + y for small y:

(
1−H−1

r

)−1/d ≈ exp
(

1
dλ1

)
. Substituting this back gives the final

approximate form for the optimal resolution:

K∗ ≈
(
2d+ α+ β

α+ β

)1/d

· exp
(

1

dλ1

)
This completes the proof.
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C.2 TOKAMAK PLASMA CONTROL

C.2.1 ENVIRONMENT DESCRIPTION

In this task, we study a magnetically confined plasma system involving the control of a droplet-like
plasma structure within a tokamak device. The objective is to manipulate the external magnetic field
to maintain stable confinement of the plasma droplet and prevent wall contact (Degrave et al., 2022).

The governing dynamics are modeled by a coupled magnetohydrodynamic system with deformable
interface dynamics, comprising the following equations:

∂ρ

∂t
+∇ · (ρv) = 0 (Continuous equation)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ J×B+ µ∇2v + Fsurface (Momentum equation)

∂B

∂t
= ∇× (v ×B) + η∇2B (Magnetic field control equation)

∂ϕ

∂t
+ v · ∇ϕ = 0 (Deformation of the droplet’s interface)

σκ = γsurface (Boundary conditions)

Here, ρ is the plasma density, v is the velocity field, p is the pressure, B is the magnetic field, and
J = ∇×B is the current density. The term µ is the dynamic viscosity, η is the magnetic resistivity,
and Fsurface represents interface forces. The function ϕ is a level-set representation of the droplet
interface, and its advection governs shape deformation. The final equation enforces curvature-related
surface force balance, where σ is the surface tension coefficient, κ is the local curvature, and γsurface
represents surface forcing.

The spatial domain is discretized using a structured mesh aligned with the tokamak cross-section.
A schematic of the cross-sectional mesh layout is shown in Figure C.2. The state space includes
grid-sampled values of ρ,v,B, ϕ, and other derived quantities such as vorticity and magnetic energy.
Control is applied via a discrete set of actions adjusting time-varying coil currents Icoil(t), which
shape the confinement field. At each decision step, the reinforcement learning agent selects a control
signal that reshapes the magnetic confinement field.

The reward function is defined as the negative of the minimum distance between the plasma droplet
and the tokamak boundary, promoting stable suspension and avoiding wall contact. The long-term
objective is to maintain the droplet within the desired confinement region while suppressing shape
instabilities and maximizing equilibrium duration.

Figure C.2: Structured mesh layout of the tokamak poloidal cross-section.
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C.2.2 ERROR COUPLING BETWEEN RL AND PDE SPACES IN AI4S SYSTEMS

In this section, we analyze the sources and scales of error introduced in AI4S systems, especially the
bidirectional projection between the RL space and the PDE-based physical space. As discussed in the
main text and lemma S.3, for systems with observation noise, achieving an unbiased estimation of the
RL transition kernel imposes a lower bound on the temporal resolution of the RL system, which is
determined by the intrinsic dynamics of the underlying physical process. Based on this property, we
couple the errors in the RL space and the physical space, and ultimately derive an expression for the
total system error. Then through a ρ−K analysis, we reveals the key factors that govern the overall
numerical error of the AI4S system.

We begin by introducing key notations to distinguish between two discretization structures:

The RL space is characterized by (Hr, Sr, Ar), denoting the RL decision horizon, state discretization,
and action granularity. The physical (PDE) space is represented by (Hw, Sw, Aw), corresponding to
the physical evolution horizon, spatial resolution, and control parameter resolution in the underlying
PDE model.

Without loss of generality, we assume that the spatial grid resolution satisfies ∆x = ∆y. Accordingly,
we define ∆xp,int as the spatial grid spacing inside the PDE-based surrogate environment, and ∆xp,bd
as the spatial spacing along the domain boundary. Similarly, ∆xr,int and ∆xr,bd denote the interior
and boundary grid resolutions within the RL environment, respectively.

Let the reinforcement learning policy operate on a coarse temporal scale, issuing actions every ∆tr
seconds, while the physical system evolves at a much finer resolution ∆tw ≪ ∆tr. Consequently,
each RL control interval consists of Nt = ∆tr/∆tw internal PDE integration steps. The total
prediction error associated with a single RL-AI4S step is then the cumulative result of local errors
incurred at each fine-grained PDE time step.

We now analyze the composition of prediction error in AI4S systems. During each RL interaction
cycle, the observed state must be projected from the RL space to the PDE space, evolved forward
under the PDE dynamics, and then projected back into the RL space. This bi-directional mapping
introduces two distinct projection errors, both of which may be amplified near domain boundaries
due to the nonlinear characteristics of the governing equations.

Therefore, the total error consists of three main components: discretization error intrinsic to the RL
space,numerical integration error accumulated within the PDE solver and coupling error caused by
the nontrivial projections between RL and PDE spaces.

Fine-Grained Surrogate Error in PDE-Based Surrogate Environments. We now analyze the
surrogate error incurred at each fine-grained PDE step within the AI4S framework. This local error,
denoted as ∆(k)

ϕ , arises from three primary sources: discretization in the spatial domain, imprecision
in the control action, and interpolation near the physical boundary.

We consider the level-set PDE that governs the evolution of an interface function ϕ: ∂ϕ
∂t +v ·∇ϕ = 0,

where ϕ = ϕ(x, t) is the level-set function and v = v(x, t) is the velocity field. This PDE is
discretized in time using a forward Euler method and in space using central differences.

The numerical scheme used to evolve ϕ at a single time step is: ϕn+1
i −ϕn

i

∆tw
+ vi · ∇hϕ

n
i = 0, where

∇hϕ
n
i is the discrete approximation of the gradient at grid point xi and time tn, computed using

central differences.

We now analyze the error introduced by this scheme, which is defined as the residual obtained by
substituting the exact solution ϕ(x, t) into the numerical scheme.

Temporal truncation error: Applying the Taylor expansion of ϕ(x, t) in time at point xi gives:

ϕn+1
i = ϕni +∆tw

∂ϕ

∂t

∣∣∣∣n
i

+
∆t2w
2

∂2ϕ

∂t2

∣∣∣∣n
i

+O(∆t3w).

The finite difference approximation of the time derivative becomes:
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ϕn+1
i − ϕni
∆tw

=
∂ϕ

∂t

∣∣∣∣n
i

+
∆tw
2

∂2ϕ

∂t2

∣∣∣∣n
i

+O(∆t2w).

To establish the temporal truncation error, we consider the second-order Taylor expansion of the
level-set function ϕ(x, t) in time at a fixed spatial point xi. In accordance with the physical model of
tokamak plasma dynamics, the underlying equations exhibit parabolic-type behavior with smooth
forcing and magnetic confinement fields. As such, we assume the solution ϕ(x, t) possesses sufficient
temporal regularity.

In particular, we assume ϕ ∈ C2([0, T ]× Ω), which ensures that the second-order time derivative is
uniformly bounded. That is, there exists a constant C > 0 such that:

∣∣∣∂2ϕ
∂t2 (x, t)

∣∣∣ ≤ C, ∀(x, t) ∈
ΩT . Under this regularity assumption, the finite difference approximation of the time derivative yields
a local truncation error of the form: τtime = O(∆tw), where the hidden constant depends on the
supremum of

∣∣∂2ϕ/∂t2∣∣.
Spatial truncation error: We consider the approximation of the spatial gradient ∇ϕ using central
differences on a uniform grid with spacing ∆x = ∆y = h. For a function ϕ ∈ H1(Ω), we focus on
the discrete gradient approximation defined as: ∂hϕ

∂x

∣∣∣
i
:= ϕ(xi+1)−ϕ(xi−1)

2h .

To evaluate the truncation error, we apply the first-order Taylor expansion ϕ(xi±1) = ϕ(xi) ±
hϕ′(xi) +O(h2). Substituting into the difference formula yieldsϕ(xi+1)−ϕ(xi−1)

2h = ϕ′(xi) +O(h),

which implies ∂hϕ
∂x

∣∣∣
i
= ∂ϕ

∂x

∣∣∣
i
+O(h). A similar result holds for the y-component. Combining both

components, we obtain the discrete gradient ∇hϕ = ∇ϕ+O(h), which holds pointwise under the
assumed regularity.

In the context of PDE-based surrogate environments, the spatial truncation error depends on the
local grid region under consideration. Specifically, if we focus on the interior of the domain where
the solution is sufficiently regular, the central difference approximation yields: ∇hϕ = ∇ϕ +
O(∥∆xp,int∥). However, near the boundary or interface, the regularity of ϕ is reduced due to physical
or geometric discontinuities. In such cases, the interpolation error is governed by the trace theorem,
and satisfies only: ∥ϕ− ϕh∥L2(∂Ω) = O(∥∆xp,bd∥1/2). For further details on the trace theorem and
its implications for boundary error analysis, see Appendix D.

Action-induced control error: In our system, the velocity field v, which governs the evolution of
the plasma interface, is not directly actuated but indirectly induced through a cascade of physical
interactions governed by the magnetohydrodynamic (MHD) equations. Specifically, the control input
aw corresponds to the current applied to external boundary coils. The discretization of the action
space introduces finite-resolution perturbations ∆aw, which in turn cause quantization-induced errors
in the boundary actuation.

The control-to-interface influence chain is as follows:

∆aw → B|∂Ω → J = ∇×B → v → ϕ.

The applied control signal perturbs the boundary magnetic field B|∂Ω through electromagnetic models
such as the Biot–Savart law or magnetic vector potentials δB|∂Ω = O(∆aw). The magnetic field
B evolves under the time-dependent induction equation ∂B

∂t = ∇ × (v × B) + η∇2B. This is a
nonlinear parabolic PDE, where the diffusion term η∇2B dominates the short-time behavior. Over a
single control step, we can approximate the system as quasi-static and neglect the time derivative,
resulting in −η∇2B ≈ ∇ × (v × B). Under this elliptic approximation, boundary disturbances
introduced by ∆aw propagate into the interior via the smoothing effect of the Laplacian. By elliptic
regularity and the trace theorem, we obtain: δB|Ω = O(∆a

1/2
w ).

The momentum dynamics are governed by the MHD Navier–Stokes equation:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ J×B+ µ∇2v + Fsurface,
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where the Lorentz force J×B is the dominant actuator of plasma motion. Since J = ∇×B, both
δB and δJ scale as O(∆a

1/2
w ). This yields a force perturbation:

δFLorentz = δJ×B+ J× δB = O(∆a1/2w ),

and correspondingly a sublinear response in velocity: ∆v = O(∆a
1/2
w ).

Final per-step surrogate error: We now summarize the local surrogate error incurred in the
discretized interface evolution governed by:∂ϕ∂t + v · ∇ϕ = 0. Each term introduces a distinct
approximation error: The time derivative ∂tϕ is discretized by forward Euler, incurring O(∆tw)
truncation error. The spatial gradient ∇ϕ is computed via finite differences, contributing O(∥∆xp,int∥)
in the interior and O(∥∆xp,bd∥1/2) near boundaries. The velocity field v is perturbed by action
discretization, with induced error O(∆a

1/2
w ).

Substituting these into the PDE gives:

ϕn+1 − ϕn

∆tw
+ (v +O(∆a1/2w )) ·

(
∇ϕ+O(∥∆xp,bd∥1/2)

)
,

yielding the total local surrogate error per step as:

∆
(k)
ϕ = O(∆tw) +O(∥∆xp,int∥) +O(∆a1/2w ) +O(∥∆xp,bd∥1/2) +O(∆a1/2w · ∥∆xp,bd∥1/2).

One-Step Prediction Error in RL-Based Control Environments. In the AI4S control framework,
the RL agent interacts with a PDE-based simulator by issuing a discretized action ar based on an
observed state sr, which itself is a downsampled or filtered version of the true PDE state y ∈ Y . The
PDE system then evolves the dynamics over a time horizon ∆tr and returns a new state s′r. The
surrogate prediction error in this interaction arises from discretization of state and action inputs and
integration-induced temporal accumulation.

RL observation error as truncation error in PDE-Based environments: In PDE-based reinforce-
ment learning environments, the agent does not observe the full continuous physical state y(x) ∈ Rd,
but rather a discretized version sr ∈ Rd, obtained via sampling or interpolation over a coarse spatial
mesh. This introduces a spatial offset between the actual physical location x and the evaluation point
x̃ used in downstream PDE computation: ∥x− x̃∥ ≤ ∥∆xr,int∥. Such an offset mimics the numerical
behavior of spatial truncation errors in classical finite difference schemes.

Consider a PDE used for control computation in the simulator:∂ϕ∂t + v · ∇ϕ = 0, the derivative ∇ϕ is
evaluated not at the true point x, but at x̃. The following analysis parallels our earlier fine-grained
sruuogate error in PDE-based surrogate environments , from which we conclude that the truncation
error induced by RL’s observation of the state scales as O(∥∆xr,int∥).

Similarly, near the domain boundary ∂Ω, the solution ϕ ∈ H1(Ω) typically lacks full smoothness.
By the trace theorem, the restriction of ϕ to the boundary lies in the fractional Sobolev space: ϕ|∂Ω ∈
H1/2(∂Ω). Consequently, interpolation errors on the boundary are governed by lower regularity,
yielding ∥ϕ− ϕh∥L2(∂Ω) = O(∥∆xr,bd∥1/2), which mirrors the O(h1/2) rate of convergence found
in boundary discretization analysis of finite difference schemes.

In summary, the state observation errors in RL, when incorporated into the PDE solver, act as implicit
spatial discretization errors. Their scaling matches classical truncation theory:

∆state =

{
O(∥∆xr,int∥), for interior evaluation,
O(∥∆xr,bd∥1/2), for boundary evaluation.

Action discretization error: The agent selects an action ar from a discretized control space, which
governs the boundary actuation of the PDE system. The true control variable a is approximated by ar,
with finite resolution ∆ar. This discretization introduces quantization error in the applied boundary
signal.

Similar to our earlier fine-grained surrogate error analysis in PDE-based environments, we observe
that this control mismatch propagates through the MHD system in a nonlinear and spatially diffused
manner. The resulting perturbation in the velocity field—responsible for evolving the system
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state—scales sublinearly with respect to the action resolution: ∆ar ⇒ δv = O(∆a
1/2
r ). This

velocity perturbation directly enters the PDE dynamics and contributes to the overall one-step
prediction error in the RL loop.

Temporal integration error: During each RL step of duration ∆tr, the PDE simulator executes
Nt = ∆tr/∆tw fine-grained steps with timestep ∆tw. At each substep, the forward Euler integration
induces local truncation error:τ (n)t = O(∆tw), so that the cumulative integration error over one RL
step becomes:

∑Nt

n=1 τ
(n)
t = O(∆tr).

Summing all contributions, the one-step surrogate prediction error in RL space satisfies:

∆RL = C1∥∆xr,int∥︸ ︷︷ ︸
State (interior)

+C2∥∆xr,bd∥1/2︸ ︷︷ ︸
State (boundary)

+ C3∆a
1/2
r︸ ︷︷ ︸

Action resolution

+ C4∆tr︸ ︷︷ ︸
Temporal propagation

.

Refined Total Error Decomposition with Time-Scale Separation. Based on our previous analysis
of surrogate error in both the PDE and RL components, we now integrate all sources of discretization
and numerical error into a unified framework. Over a single RL step, the total prediction error can be
decomposed as follows:

∆total = C1∥∆xr,int∥︸ ︷︷ ︸
RL (interior space)

+C2∥∆xr,bd∥1/2︸ ︷︷ ︸
RL (boundary space)

+ C3∆a
1/2
r︸ ︷︷ ︸

RL (action space)

+C4∆tr︸ ︷︷ ︸
RL (time)

+ C5
∆tr
∆tw

(
∥∆xp,int∥+∆a1/2w + ∥∆xp,bd∥1/2 +∆a1/2w · ∥∆xp,bd∥1/2

)
︸ ︷︷ ︸

PDE surrogate error (space + action + boundary), amplified by time scale separation

.
(C.6)

To ensure that the learned RL transition kernel remains robust under observation uncertainty ∆y,
we require that: ∆total = O(∆y). This constraint implies a resolution matching condition across all
discretization dimensions. Specifically, we obtain the following asymptotic scaling relations:

∥∆xr,int∥ ∼ ∥∆xp,int∥ ∼ ∆a1/2r ∼ ∆a1/2w ∼ ∆tr ∼ ∆y,

∥∆xr,bd∥ ∼ ∥∆xp,bd∥ ∼ ∆y2, ∆tw ≪ ∆y.
(C.7)

ρ-K Analysis. We now turn to the analysis of the error rate associated with predicting the next state
in AI4S environments based on an RL agent’s current observation and action. Specifically, we define
a prediction error event as one where the next predicted state fails to fall within the correct discretized
RL state cell. Accordingly, we define the relative prediction error rate as: ρ = 1− ∆y

Total Prediction Error ,
where ∆y is the size of the RL spatial grid. In a three-dimensional state space, it corresponds to the
cube of the grid length.

The total prediction error in the system arises from a combination of three interrelated sources. First,
observation noise introduces inherent uncertainty, stemming from either partial observability or sensor
imprecision within the reinforcement learning environment. Second, numerical surrogate error which
quantified earlier in Equation equation C.6 captures the discretization-induced inaccuracies originating
from both the RL and PDE components. Finally, the intrinsic growth of initial perturbations, as
detailed in Lemma S.3, contributes an additional error term due to the modal amplification behavior
of the MHD system; specifically, this leads to a forward-propagated uncertainty of order λ1∆y/Hr,
where λ1 denotes the leading eigenvalue and Hr is the RL planning horizon.

Now we further quantify the numerical surrogate error based on the resolution matching relations
previously derived. Given the grid refinement ratio K := ∆xr/∆xp, which compares the spatial
resolution of the PDE environment to that of the RL environment, and considering the combined
error impact across three dimensions in state space, we obtain: ∆total ∼ C1

K3∆y
(j). Substituting all

three error components into the definition of ρ, we obtain:

ρ = 1− ∆y

λ1∆y/Hr +∆y +∆total
= 1− 1

λ1/Hr + 1 + C1/K3
.

So in the limit of high-resolution settings, i.e., when Hr and K are large, we obtain ρ =

O
(

1
Hr

+ 1
K3

)
.
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C.2.3 OPTIMAL COMPUTATIONAL COST ALLOCATION BETWEEN RL AND AI4S

In this section, building on the previous analysis of error scaling, we provide a detailed explanation
of how to align the discretization parameters of reinforcement learning and AI4S models to achieve
optimal computational efficiency.

It is evident that higher fidelity in the physical model leads to more accurate predictions, which
in turn accelerates convergence to the optimal policy in RL. However, since AI4S simulators are
typically executed under fixed computational budgets, it is crucial to ensure that the computational
load in the RL loop is of the same order as that of the AI4S module. Our objective is to minimize
total computational cost by optimally distributing resolution between the two systems.

According to Lemma B.1, the sample complexity or computational cost of the RL component
can be expressed as CostRL = O

(
H3

rSrAr·log(1/δ)
ε2

)
. Meanwhile, the computational cost of the

AI4S physical simulator is governed by its spatiotemporal resolution, and can be approximated by:
CostAI4S = O(HwSwAw).

To ensure computational consistency, we aim to align these quantities. This alignment is further
guided by the theoretical result in Lemma S.3, where the RL horizonHr is constrained by the intrinsic
dynamics of the PDE system: Hr ≲ 1

λ1
, where λ1 is the dominant growth rate in the linearized MHD

system.

Based on the resolution matching conditions derived earlier, we assume the following scalings:

Ar = O(Aw) = O(x2w), Sr = O(Sw) = O(x6w), Hr = H1/3
w · O(xw).

Here, xw denotes the effective resolution of the AI4S spatial grid. The scaling Sr = O(x6w) arises
from both the intrinsic dimensionality of the state space and the additional resolution requirements
near the domain boundary. In tokamak plasma systems, the physical state space is inherently three-
dimensional. Under uniform discretization, this implies that the number of internal state variables
scales as O(x3w).

Besides, near the boundary ∂Ω, the PDE solution often exhibits reduced regularity—formally, if
y ∈ H1(Ω), then its restriction to the boundary lies in the fractional Sobolev space H1/2(∂Ω),
as stated by the trace theorem. This lower regularity implies that to maintain the same level of
approximation accuracy at the boundary, the spatial grid must be refined further. In particular, the
resolution must be squared in order to compensate for the smoothness loss, effectively contributing
an additional factor of O(x3w) from the boundary region.

The total RL cost then becomes:

CostRL ∝ HrSrAr · log(1/δ)
(∆y(j) − p

(j)
max)2

≈ H9
rK

8

ε
·

(
1

1− 1
Hr

− 1
K3

)2

, (C.8)

Our goal is to find the optimal refinement ratio K∗ that minimizes this cost expression. Formally, we
solve the following optimization problem:

min
K>0

C(K) :=
H9

rK
8

ε
·

(
1

1− 1
Hr

− 1
K3

)2

.

To find the stationary point, we differentiate C(K) with respect to K and set the derivative to zero:
dC
dK = 0. Denote α := 1 − 1

Hr
, then C(K) ∝ K8

(
1

α− 1
K3

)2
. Taking logarithmic derivative:

d logC
dK = 8

K − 2 · 3
K4(α− 1

K3 )
. Setting this derivative to zero and solving yields the optimal K∗:

K∗ =
(

7
4(1− 1

Hr
)

)1/3
. So in the high-resolution regime where Hr ≫ 1, we approximate:

K∗ ≳

(
7

4(1− 1
λ1
)

)1/3

≈
(
7

4
e1/λ1

)1/3

.
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C.3 TURBULENT AIRFOIL REGULATION

C.3.1 ENVIRONMENT DESCRIPTION

In this task, we study an unsteady aerodynamic system involving the control of a turbulent airfoil
flow field. The objective is to regulate the pitching angle of the airfoil to manipulate the surrounding
flow structure and ultimately maximize lift (Portal-Porras et al., 2022).

The governing equations for the fluid dynamics are the two-dimensional incompressible Navier-Stokes
equations:

∂u

∂t
+ (u · ∇)u = −∇p+ ν∆u

where u(x, y, t) = (u(x, y, t), v(x, y, t)) is the velocity vector field,(p(x, y, t) denotes the pressure,ν
is the kinematic viscosity,∇ is the gradient operator, and ∆ is the Laplacian operator.

The system is also subject to the incompressibility constraint: ∇ · u = 0. These equations define the
error sources and discretization structure that form the basis for our multi-resolution analysis.

In this environment, we adopt a structured grid discretization for the spatial domain, employing an
O-grid topology that conforms to the geometry of the airfoil. As illustrated in Figure C.3.a, the mesh
is progressively refined near the surface of the airfoil to accurately resolve the boundary layer. The
state space is thus defined over this discretized grid . The action space is discretized into a finite set
of pitch angle increments. At each time step, the RL agent selects a discrete action corresponding
to a rotation of the airfoil about its chord line. The reward function is constructed based on the
instantaneous lift coefficient, with the overall objective of maximizing its long-term average.

Figure C.3: Visualization of Discretization Structures in Different Control Environments.

C.3.2 ERROR COUPLING BETWEEN RL AND PDE SPACES IN AI4S SYSTEMS

Since the state space of the turbulent airfoil flow field also features a division between interior and
boundary regions, we adopt an analysis framework analogous to that used for the tokamak device to
analyze the composition of prediction error in AI4S systems.

Fine-Grained Surrogate Error in Airfoil Flow Environments. We now analyze the surrogate
error incurred at each fine-grained PDE step within AI4S framework.In airfoil flow control tasks, the
dynamics are governed by the two-dimensional incompressible Navier–Stokes equations: ∂u

∂t + (u ·
∇)u = −∇p+ ν∆u. This PDE is discretized in time using a forward Euler method and in space
using central differences.

Temporal truncation error: Using the Taylor expansion at time tn, we write:

un+1 = un +∆tw
∂u

∂t

∣∣∣∣n +
1

2
∆t2w

∂2u

∂t2

∣∣∣∣n +O(∆t3w).
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Then the numerical derivative satisfies:

un+1 − un

∆tw
=
∂u

∂t

∣∣∣∣n +
1

2
∆tw

∂2u

∂t2

∣∣∣∣n +O(∆t2w),

which implies a local truncation error of O(∆tw) provided u ∈ C2.

Spatial truncation error: For a function u ∈ H1(Ω), we focus on the numerical approximation
of the convective term (u · ∇)u and the diffusive term ν∆u, which appear in the Navier-Stokes
momentum equation: ∂u

∂t + (u · ∇)u = −∇p+ ν∆u. For the convective term, take one component
u(x, t), and use central differences to approximate:u∂u

∂x

∣∣
xi

≈ u(xi) · u(xi+1)−u(xi−1)
2h . Since the

function u ∈ H1(Ω), the accuracy of the Taylor expansion is limited to O(h2). Applying Taylor
expansion, we obtain:u(xi+1)−u(xi−1)

2h = u′(xi) +O(h), which leads to: u(xi) · u(xi+1)−u(xi−1)
2h =

u(xi)u
′(xi) +O(h).

For the viscous diffusion term, the Laplacian ∆u is approximated using second-order central
differences: ∂2u

∂x2

∣∣∣
xi

≈ u(xi+1)−2u(xi)+u(xi−1)
h2 , and similarly in the y-direction. From Taylor expan-

sion: u(xi+1)−2u(xi)+u(xi−1)
h2 = u′′(xi) +O(h). Hence, the Laplacian approximation also introduces

an error of O(h).

Therefore, both nonlinear convective and diffusive terms yield local discretization errors that can be
bounded as:

(u · ∇h)u = (u · ∇)u+O(∥∆xp,int∥), ∆hu = ∆u+O(∥∆xp,int∥).

On or near the airfoil surface ∂Ω, the velocity field u may possess only H1 regularity. By the trace
theorem, its restriction belongs to: u|∂Ω ∈ H1/2(∂Ω), and the numerical interpolation error along
the boundary grid satisfies: ∥u− uh∥L2(∂Ω) = O(∥∆xp,bd∥1/2).
Action-induced control error: In airfoil flow control, boundary actuation modifies wall velocities.
Suppose this control is discretized with resolution ∆aw. The boundary perturbation in velocity is:
δu|∂Ω = O(∆aw). Because the viscous diffusion equation governs short-time dynamics: ∂u

∂t =

ν∆u, we model the induced field internally by elliptic smoothing, yielding: δu|Ω = O(∆a
1/2
w ).

Final surrogate error per step: Combining the above terms, the total local surrogate error per PDE
step in the airfoil flow simulator is:

∆(k)
u = O(∆tw) +O(∥∆xp,int∥) +O(∆a1/2w ) +O(∥∆xp,bd∥1/2).

One-Step Prediction Error in RL-Controlled Airfoil Environments. Based on our earlier sur-
rogate error decomposition for tokamak systems, we now analyze the one-step prediction error
in RL-based control of unsteady airfoil flow. The underlying dynamics are governed by the 2D
incompressible Navier-Stokes equations: ∂u

∂t +(u ·∇)u = −∇p+ν∆u. In this setting, the RL agent
selects an action ar based on an observed state sr, which is a spatially discretized and possibly noisy
version of the continuous flow field u. The PDE simulator uses ar to modify boundary conditions,
evolves the fluid state over a macro timestep ∆tr, and returns the next observed state s′r.

RL observation error as truncation error: Due to spatial discretization, the observation sr deviates
from the true field u(x) by at most the grid resolution: ∥x − x̃∥ ≤ ∥∆xr,int∥. This offset behaves
analogously to a spatial truncation error in finite difference schemes. As previously analyzed, for
smooth internal flow:∆int

state = O(∥∆xr,int∥). Near the airfoil surface, where boundary layers reduce
regularity, trace theorem implies: ∥u− uh∥L2(∂Ω) = O(∥∆xr,bd∥1/2).
Action discretization error: The discretized control signal ar influences boundary actuation. Finite
resolution ∆ar introduces quantization error, which affects boundary velocity: δu|∂Ω = O(∆ar).

Via the viscous smoothing governed by ν∆u, this error diffuses into the interior: δu|Ω = O(∆a
1/2
r ).

Temporal integration error: Each RL step of length ∆tr consists of Nt = ∆tr/∆tw fine-scale
Euler updates with local error O(∆tw). Total accumulation yields:

∑Nt

n=1 τ
(n)
t = O(∆tr).
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Final surrogate error: Combining all contributions, we obtain the total RL one-step prediction
error:

∆RL = C1∥∆xr,int∥︸ ︷︷ ︸
State (interior)

+C2∥∆xr,bd∥1/2︸ ︷︷ ︸
State (boundary)

+ C3∆a
1/2
r︸ ︷︷ ︸

Action resolution

+ C4∆tr︸ ︷︷ ︸
Temporal integration

.

Refined Total Error Decomposition with Time-Scale Separation. Based on our prior analysis of
surrogate errors in both PDE and RL components, we now present a unified decomposition of all
numerical and discretization errors. Over a single RL step, the total prediction error can be expressed
as:

∆total = C1∥∆xr,int∥︸ ︷︷ ︸
RL (interior space)

+C2∥∆xr,bd∥1/2︸ ︷︷ ︸
RL (boundary space)

+ C3∆a
1/2
r︸ ︷︷ ︸

RL (action space)

+C4∆tr︸ ︷︷ ︸
RL (time)

+ C5
∆tr
∆tw

(
∥∆xp,int∥+∆a1/2w + ∥∆xp,bd∥1/2

)
︸ ︷︷ ︸

PDE surrogate error amplified by time-scale separation

.
(C.9)

To maintain robustness of the RL transition kernel under observation uncertainty ∆y, we impose
the constraint: ∆total = O(∆y). This leads to the following resolution matching conditions across
discretization components:

∥∆xr,int∥ ∼ ∥∆xp,int∥ ∼ ∆a1/2r ∼ ∆a1/2w ∼ ∆tr ∼ ∆y,

∥∆xr,bd∥ ∼ ∥∆xp,bd∥ ∼ ∆y2, ∆tw ≪ ∆y.
(C.10)

ρ-K Analysis. We now turn to the analysis of the error rate associated with predicting the next state
in AI4S environments based on an RL agent’s current observation and action. We define the relative
prediction error rate as: ρ = 1− ∆y

Total Prediction Error , where ∆y is the size of the RL spatial grid. In a
two-dimensional state space, it corresponds to the square of the grid length. Similar to the previous
analysis, the total prediction error comprises three key components: observation noise, numerical
surrogate error, and intrinsic growth of initial perturbation.

Now we further quantify the numerical surrogate error based on the resolution matching relations
previously derived. Considering the combined error impact across two dimensions in state space, we
obtain: ∆total ∼ C1

K2∆y
(j). Substituting all three error components into the definition of ρ, we obtain:

ρ = 1− ∆y

λ1∆y/Hr +∆y +∆total
= 1− 1

λ1/Hr + 1 + C1/K2
.

So in the limit of high-resolution settings, i.e., when Hr and K are large, we obtain: ρ =

O
(

1
Hr

+ 1
K2

)
. The subsequent results on optimal computational cost allocation are summarized in

Table 1 of the main text. As this involves only straightforward calculations and scaling arguments,
we omit detailed elaboration here.

C.4 TEPPANYAKI HEAT SEQUENCING

C.4.1 ENVIRONMENT DESCRIPTION

In this task, we study a two-dimensional heat transfer system representing a teppanyaki cooking
surface. The goal is to use reinforcement learning to control the heat distribution across the iron plate
to ensure the fastest and most uniform cooking of food.

The thermal evolution of the plate is governed by the two-dimensional heat diffusion equation:

∂T (x, y, t)

∂t
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
+Q(x, y, t),

where T (x, y, t) denotes the temperature at spatial position (x, y) and time t; α is the thermal
diffusivity coefficient, determined by the material of the iron plate; Q(x, y, t) represents the external
heat source, which can be actively controlled by the agent at each grid cell (Koehler et al., 2024).
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The spatial domain is discretized using a uniform Cartesian grid. Each grid cell corresponds to
a controllable heating unit, allowing the RL agent to adjust the local heat input. As shown in
Figure C.3.b. The action space is discretized into finite heating levels for each control unit. The
overall objective is to optimize heating strategies that ensure efficient thermal convergence within the
shortest possible time.

C.4.2 ERROR COUPLING BETWEEN RL AND PDE SPACES IN AI4S SYSTEMS

Unlike the previously introduced two environments, the teppanyaki setting adopts a uniform Cartesian
grid discretization for the spatial domain. As a result, there is no distinction between interior and
boundary regions, and no precision loss due to boundary regularity degradation. In the following,
we adopt an analysis framework analogous to that used for the tokamak device to examine the
composition of prediction error in AI4S systems.

Fine-Grained Surrogate Error in Teppanyaki Heat Diffusion Environment. We now analyze
the local surrogate error incurred in each fine-grained PDE step under the teppanyaki heat diffusion
setting. The governing equation for the temperature field T (x, y, t) over the iron plate is the two-
dimensional heat diffusion equation: ∂T

∂t = α∆T +Q(x, y, t), where α is the thermal diffusivity and
Q is the external heating source, modulated by the control input.

Temporal truncation error: We discretize the temporal derivative using the forward Euler scheme:
Tn+1
i,j −Tn

i,j

∆tw
= α∆hT

n
i,j + Qn

i,j , where ∆hT
n
i,j is the discrete Laplacian at grid point i, j. Applying

Taylor expansion, the numerical derivative satisfies:
Tn+1

i,j −Tn
i,j

∆tw
=
∂T

∂t

∣∣∣∣n
i,j

+
1

2
∆tw

∂2T

∂t2

∣∣∣∣n
i,j

+O(∆t2w),

which implies a local truncation error of O(∆tw) provided T ∈ C2. We obtain the temporal
truncation error:τtime = O(∆tw).

Spatial truncation error: The Laplacian operator is approximated by central differences:

∆T ≈ Ti+1,j − 2Ti,j + Ti−1,j

(∆x)2
+
Ti,j+1 − 2Ti,j + Ti,j−1

(∆y)2
.

Assuming T ∈ H1(Ω), the second-order spatial derivatives exist in the weak sense, but due to
limited regularity we expect that: ∆hT = ∆T +O(∥∆xp∥). This yields a spatial truncation error:
τspace = O(∥∆xp∥).
Action-induced control error: In this environment, control is implemented by adjusting the external
heat source term Q(x, y, t) in the heat diffusion equation. Let the continuous control signal be
denoted by a(t), and suppose it is discretized with resolution ∆aw into a piecewise constant control
aw(t). Assuming that the mapping from the control input to the heat source is linear , we obtain:
Q(x, y, t) = Q̄(x, y, t) + δQ(x, y, t), where Q̄ is the nominal source corresponding to aw(t), and
the perturbation in the source is: δQ(x, y, t) = f(δa) = O(∆aw).

Since the heat equation is linear inQ, the perturbation inQ propagates linearly to the temperature field.
Hence, the resulting temperature deviation induced by control discretization satisfies: δT = O(∆aw).

Total per-step surrogate error. Combining all error sources, the total surrogate error in the tempera-
ture prediction per PDE step is: ∆(k)

T = O(∆tw) +O(∥∆xp∥) +O(∆aw).

One-Step Prediction Error in RL-Controlled Heat Diffusion Environments. In the teppanyaki
plate task modeled by the heat diffusion equation, the RL agent interacts with a PDE simulator by
issuing a discretized action ar and observing a discretized temperature field sr, which is derived from
the true temperature field T (x, y, t) through uniform spatial sampling. The simulator then evolves
the system over a time step ∆tr and returns an updated observation s′r. The one-step prediction error
in this process arises from three main sources: state observation error, action discretization error, and
temporal integration error.

RL observation error: The observed state sr is obtained by projecting the continuous temperature
field T (x, y, t) onto a coarsely discretized uniform Cartesian grid. This introduces a spatial obser-
vation error due to the offset between the true location (x, y) and its discrete representation x̃, ỹ.
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Assuming T ∈ H1(Ω), this interpolation or sampling procedure introduces first-order truncation
error: ∥T (x, y)−T (x̃, ỹ)∥ = O(∥∆xr,int∥). This matches classical interpolation theory over uniform
grids and reflects the interior spatial error due to limited resolution in RL’s perception of the state.

Action discretization error: The action space is discretized with resolution ∆ar. The true continuous
control a is approximated by its discretized counterpart ar, and thus the perturbation in the heat source
term Q(x, y, t) is: δQ(x, y, t) = Q(a) − Q(ar) = O(∆ar). Since the heat diffusion equation is
linear in Q, this error translates directly to a temperature deviation of the same order: δT = O(∆ar).

Temporal integration error: The PDE simulator advances the solution over a time horizon ∆tr
using Nt = ∆tr/∆tw steps of the forward Euler scheme. Each substep incurs a local truncation
error: τ (n)t = O(∆tw), yielding a total accumulated temporal error:

∑Nt

n=1 τ
(n)
t = O(∆tr).

Combining the above components, the total one-step prediction error induced by RL interaction with
the PDE simulator in the heat diffusion system is given by:

∆RL = C1∥∆xr,int∥︸ ︷︷ ︸
State observation

+ C2∆ar︸ ︷︷ ︸
Action discretization

+ C3∆tr︸ ︷︷ ︸
Temporal integration

.

This decomposition forms the basis for analyzing the interaction fidelity and prediction uncertainty
of RL agents in physical systems governed by parabolic PDEs like heat diffusion.

Refined Total Error Decomposition with Time-Scale Separation. Based on our prior analysis of
surrogate errors in both PDE and RL components, we now present a unified decomposition of all
numerical and discretization errors. Over a single RL step, the total prediction error can be expressed
as:

∆total = C1∥∆xr∥︸ ︷︷ ︸
RL (state space)

+ C2∆ar︸ ︷︷ ︸
RL (action discretization)

+ C3∆tr︸ ︷︷ ︸
RL (temporal propagation)

+ C4
∆tr
∆tw

(∥∆xp∥+∆aw)︸ ︷︷ ︸
PDE surrogate error, scaled by time resolution

.

(C.11)

To ensure the error stays below the acceptable uncertainty level ∆y, we require: ∆total = O(∆y).
This yields the following matching constraints for all discretization parameters:

∥∆xr∥ ∼ ∥∆xp∥ ∼ ∆ar ∼ ∆aw ∼ ∆tr ∼ ∆y, with ∆tw ≪ ∆y. (C.12)

ρ-K Analysis. We now analyze the prediction error rate in the heat diffusion AI4S environment.
We define a prediction error event as one in which the AI4S simulator’s output state does not fall
within the correct discretized cell of the RL state space. This gives rise to a relative prediction error
rate: ρ = 1 − ∆y

Total Prediction Error , where ∆y is the size of the RL spatial grid. In a two-dimensional
spatial domain (as in heat diffusion over a cooking surface), ∆y corresponds to the square of the grid
length. The total prediction error contains the following components: observation noise, numerical
surrogate error and intrinsic error propagation. Over an RL planning horizon Hr, the error grows
diffusively at rate λ1, yielding an error amplification:λ1∆y/Hr.

Substituting all components into the definition of ρ, we obtain:

ρ = 1− ∆y

λ1∆y/Hr +∆y + C1∆y/K2
= 1− 1

λ1/Hr + 1 + C1/K2
.

So in the limit of high-resolution settings, i.e., when Hr and K are large, we obtain: ρ =

O
(

1
Hr

+ 1
K2

)
. The subsequent results on optimal computational cost allocation are summarized in

Table 1 of the main text. As this involves only straightforward calculations and scaling arguments,
we omit detailed elaboration here.
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C.5 CART-POLE STABILIZATION

C.5.1 ENVIRONMENT DESCRIPTION

In this task, we consider the classic inverted pendulum control problem, where the objective is to
apply a horizontal force to a cart in order to maintain a pendulum in an upright and stable position.

The state of the system is represented by a 4-dimensional vector: x =
[
x ẋ θ θ̇

]⊤
, where x

denotes the position of the cart, ẋ the velocity of the cart, θ the angle of the pendulum from the
vertical (positive clockwise), and θ̇ the angular velocity of the pendulum. The schematic of the
discretization of position and angle in the inverted pendulum environment is shown in Figure C.3.c .

The control input is a horizontal force u(t) ∈ [−Fmax, Fmax], which we discretize for reinforcement
learning purposes. The agent selects actions from this discretized control space to influence the
system dynamics. The physical parameters governing the system include: M : the mass of the cart,
m: the mass of the pendulum, l: the length from the pivot to the center of mass of the pendulum, g:
gravitational acceleration.

Using the Lagrangian formalism, the nonlinear dynamics of the system can be derived as (Nagendra
et al., 2017):

θ̈ =
g sin θ − cos θ

(
u+mlθ̇2 sin θ

M+m

)
l
(

4
3 − m cos2 θ

M+m

)

ẍ =
u+ml

(
θ̇2 sin θ − θ̈ cos θ

)
M +m

These equations define the state transition model and control response of the inverted pendulum
system. The reinforcement learning agent interacts with this environment by issuing discrete actions
at fixed time intervals, aiming to stabilize the pendulum around the upright position. The reward
function is typically defined to penalize deviations from the vertical orientation.

C.5.2 ERROR COUPLING BETWEEN RL AND PDE SPACES IN AI4S SYSTEMS

Unlike the previous three environments, the control dynamics in the inverted pendulum environment
are governed by an ordinary differential equation (ODE) system. But the error analysis procedure
remains analogous to that used in the earlier cases. In the following, we analyze the composition of
prediction error for the inverted pendulum environment.

Fine-Grained Surrogate Error in Inverted Pendulum Environments. We now analyze the
surrogate error incurred at each integration step in the inverted pendulum system. Since the dynamics
are governed by ordinary differential equations (ODEs), the error sources are reduced to: temporal
discretization, state observation through interpolation, and action quantization. We focus on the
position variable x(t) of the cart and quantify its one-step prediction error.

Temporal truncation error: The ODE describing the cart’s horizontal motion is: ẍ = f(x, u),

where u ∈ [−Fmax, Fmax] is the external force and x = [x, ẋ, θ, θ̇]⊤ is the state vector.

Using forward Euler integration for both velocity and position: ẋn+1 = ẋn + ∆twẍ
n, xn+1 =

xn +∆twẋ
n, the local truncation error from Taylor expansion becomes: xn+1 = xn +∆twẋ

n +
∆t2w
2 ẍn +O(∆t3w). Then the numerical derivative satisfies: xn+1−xn

∆tw
= ẋn + 1

2∆twẍ
n +O(∆t2w).

From the expression of ẍ in the inverted pendulum dynamics, we know that ẍn is bounded. Hence,
we obtain the temporal truncation error: τtime = O(∆tw).

State discretization error : The state is often represented in a coarsely discretized state space.
Suppose the cart’s true position x ∈ R is approximated by a discrete cell center x̃. Using linear
interpolation or nearest-neighbor projection, the induced error is: |x − x̃| = O(∥∆xp∥), which
propagates into the dynamics via the nonlinear function f(x, u). Assuming Lipschitz continuity of f ,
this implies: ∆state

x = O(∥∆xp∥).
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Action-induced control error: The control force u is discretized into a finite set, and the applied
value uw approximates the true value with resolution ∆a. The dynamics respond linearly to changes
in u, as seen from the equation for ẍ, so: ∆action

x = O(∆aw).

Final per-step surrogate error: Summing all components, the total one-step surrogate error in
predicting the cart position is: ∆(k)

x = O(∆tw) +O(∥∆xp∥) +O(∆aw).

One-Step Prediction Error in RL-Based Inverted Pendulum Control. In this task, we analyze
the surrogate prediction error that arises when an RL agent interacts with the dynamical system of an
inverted pendulum. The dynamics are governed by a nonlinear second-order ordinary differential
equation (ODE), and we focus our analysis on the position variable x(t), which is affected by both
control input and physical evolution. The prediction error consists of three major sources: temporal
discretization, spatial resolution (observation) error, and control discretization error.

Temporal integration error: The ODE simulator advances the solution over a time horizon ∆tr
using Nt = ∆tr/∆tw steps of the forward Euler scheme. Each substep incurs a local truncation
error: τ (n)t = O(∆tw), yielding a total accumulated temporal error:

∑Nt

n=1 τ
(n)
t = O(∆tr).

Observation-induced spatial error: Suppose the RL agent does not access the true continuous state
x(tn), but instead receives a quantized observation x̃(tn), derived from uniform discretization over
spatial grid resolution ∆xr. In one-dimensional observation with linear interpolation or rounding,
the state projection satisfies: |x(tn)− x̃(tn)| ≤ 1

2∆xr. This discrepancy is formally equivalent to a
spatial interpolation error and yields a spatial state uncertainty: τstate = O(∆xr).

Action discretization error: The control input u is issued from a discretized action set ar ∈ Ar, such
that: u(tn) = ū(tn) + δu(tn), δu = O(∆ar), where ū(tn) is the true continuous control signal
and δu is the discretization mismatch. From the expression of ẍ, this control deviation contributes
linearly to the evolution of position through: δxn+1 = ∆trδẋ

n+1 = ∆t2r · δu
M+m = O(∆ar). We

treat time as a fixed constant when integrating the accumulated effect of the action, rather than
considering it as an error term.

Total error: Combining the above contributions from temporal, spatial, and control discretization
errors, the one-step prediction error in the inverted pendulum environment satisfies:

∆pendulum = C1∆xr︸ ︷︷ ︸
State resolution

+ C2∆ar︸ ︷︷ ︸
Action resolution

+ C3∆tr︸ ︷︷ ︸
Temporal integration

.

Refined Total Error Decomposition with Time-Scale Separation. Based on our previous analysis
of surrogate error in both the ODE and RL components, we now integrate all sources of discretization
and numerical error into a unified framework. Over a single RL step, the total prediction error can be
decomposed as follows:

∆total = C1∥∆xr∥︸ ︷︷ ︸
RL (state space)

+ C2∆ar︸ ︷︷ ︸
RL (action discretization)

+ C3∆tr︸ ︷︷ ︸
RL (temporal propagation)

+ C4
∆tr
∆tw

(∥∆xp∥+∆aw)︸ ︷︷ ︸
PDE surrogate error, scaled by time resolution

.

(C.13)

To ensure that the learned RL transition kernel remains robust under observation uncertainty ∆y,
we require that: ∆total = O(∆y). This constraint implies a resolution matching condition across all
discretization dimensions. Specifically, we obtain the following asymptotic scaling relations:

∥∆xr∥ ∼ ∥∆xp∥ ∼ ∆ar ∼ ∆aw ∼ ∆tr ∼ ∆y, with ∆tw ≪ ∆y. (C.14)

ρ-K Analysis. We now analyze the prediction error rate in the cart-pole environment. The total
prediction error contains the following components: observation noise, numerical surrogate error and
intrinsic error propagation. Over an RL planning horizon Hr, the error grows diffusively at rate λ1,
yielding an error amplification: λ1∆y/Hr. Substituting all components into the definition of ρ, we
obtain:

ρ = 1− ∆y

λ1∆y/Hr +∆y + C1∆y/K
= 1− 1

λ1/Hr + 1 + C1/K
.
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Since there is no notion of state grids in the inverted pendulum environment and all state discretizations
are first-order, the order of K is one. So in the limit of high-resolution settings, i.e., when Hr and
K are large, we obtain: ρ = O

(
1
Hr

+ 1
K

)
. The subsequent results on optimal computational

cost allocation are summarized in Table 1 of the main text. As this involves only straightforward
calculations and scaling arguments, we omit detailed elaboration here.

C.5.3 EMPIRICAL COMPARISON OF TABULAR RL AND DEEP Q-LEARNING

We designed an experiment to test our theoretical findings on different learning algorithms. Using a
data-driven inverted pendulum (CartPole), we compared the sample complexity of Tabular RL and
Q-Learning. This comparison was performed under various discrete observation resolutions.

Experimental Setup The CartPole system consists of a cart moving along a horizontal track with a
hinged pole on top. The agent’s goal is to apply horizontal forces to maintain the pole in an upright
position. We adopt a two-stage workflow: (i) a neural network dynamics model is trained from offline
simulation data, and (ii) this learned model serves as the environment for RL training.

Reward Function To provide smooth learning signals and mitigate oscillations, we employ a shaped
reward function:

rt =

{
1− α|θt| − β|θ̇t| if |θt| ≤ 12◦ and |xt| ≤ 2.4

0 otherwise
(C.15)

where θt and θ̇t are the pole angle and angular velocity, respectively. The coefficients α, β > 0
penalize deviation from the vertical and excessive oscillation. An episode terminates with zero reward
if the pole falls or the cart leaves the track.

Learning Methods We train two agents under identical discretized observation resolutions:

• Tabular RL: Implemented using the value iteration algorithm, with environment dynamics
derived from physics-based simulation and interpolated to the RL observation space, without
neural network approximation.

• Q-Learning: Implemented using a Deep Q-Network (DQN) with discretized state and
action spaces.

Performance is measured by the number of samples required to achieve a value function error below
1% and the corresponding wall-clock runtime on a single NVIDIA RTX 4090 GPU.

Results The detailed experimental results are presented in Table C.3 and Table C.4. The results show
that Q-Learning is significantly more sample-efficient than tabular RL, which is expected due to the
generalization capability of the neural network. However, both methods show a clear sensitivity to
the resolution parameters Hr and K. Optimal performance is not achieved at the highest or lowest
resolutions but rather at an intermediate point, which is consistent with our theoretical analysis. For
tabular RL, the optimal configuration is found at K = 1.5 and logHw

Hr = 1/3. For Q-Learning,
the optimum shifts to K = 2.0 and logHw

Hr = 1/2, suggesting that DQN can better leverage a
higher-fidelity physical model. These results strongly support our central claim that even for deep
RL methods, the resolutions of the physical simulation and the RL algorithm must be carefully
coordinated to achieve optimal performance.

D FUNCTIONAL ANALYSIS TOOLS FOR PDE ERROR AND LIMIT ANALYSIS

In this section, we provide a collection of classical results from functional analysis and PDE theory
that underpin the error analysis, convergence behavior, and design of discretization schemes in AI4S-
RL environments governed by PDEs (Evans, 1998; E, 2011). These tools help quantify how physical
solution properties interact with discretized approximations, especially under limited regularity,
complex boundaries, and dynamic state evolution.

D.1 MOTIVATION: WHY DISCRETE FORMATS AND FUNCTION SPACES MATTER IN AI4S-RL

In PDE-governed AI4S-RL tasks, control and prediction rely on the accurate approximation of
continuous state evolution. However, neural networks or other function approximators inherently
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Table C.3: Cart-Pole System: Sample Complexity log10(N) for Tabular RL to Achieve Value
Function Error < 0.01.

logHw
Hr K=1.0 K=1.5 K=2.0 K=2.5

1/8 4.51(4.58/4.45) 4.50(4.53/4.46) 4.51(4.57/4.44) 4.54(4.61/4.48)
1/6 4.26(4.32/4.19) 4.25(4.31/4.18) 4.26(4.30/4.23) 4.29(4.36/4.23)
1/5 4.10(4.17/4.04) 4.09(4.13/4.06) 4.10(4.16/4.03) 4.14(4.21/4.08)
1/4 3.91(3.98/3.85) 3.90(3.94/3.87) 3.91(3.95/3.88) 3.94(4.01/3.88)
1/3 3.77(3.81/3.74) 3.65(3.71/3.58) 3.74(3.80/3.67) 3.88(3.95/3.82)
1/2 3.95(4.02/3.89) 3.83(3.87/3.80) 3.92(3.99/3.86) 4.06(4.13/3.99)
1 4.25(4.29/4.22) 4.13(4.20/4.07) 4.22(4.26/4.19) 4.36(4.42/4.29)
2 4.55(4.62/4.49) 4.43(4.47/4.40) 4.52(4.59/4.46) 4.66(4.72/4.59)

Table C.4: Cart-Pole System: Sample Complexity log10(N) for Q-Learning to Achieve Value
Function Error < 0.01.

logHw
Hr K=1.0 K=1.5 K=2.0 K=2.5

1/8 3.20(3.26/3.13) 2.95(3.01/2.88) 2.82(2.86/2.79) 2.90(2.97/2.84)
1/6 3.05(3.11/2.98) 2.80(2.84/2.77) 2.72(2.78/2.65) 2.80(2.86/2.73)
1/5 2.90(2.94/2.87) 2.75(2.81/2.68) 2.68(2.72/2.65) 2.75(2.82/2.69)
1/4 2.80(2.87/2.74) 2.70(2.74/2.67) 2.67(2.73/2.61) 2.72(2.76/2.69)
1/3 2.78(2.85/2.72) 2.69(2.73/2.66) 2.66(2.72/2.59) 2.71(2.78/2.65)
1/2 2.75(2.79/2.72) 2.67(2.73/2.60) 2.65(2.69/2.62) 2.67(2.74/2.61)
1 2.85(2.91/2.78) 2.78(2.82/2.75) 2.78(2.85/2.72) 2.82(2.86/2.79)
2 3.10(3.17/3.04) 2.95(2.99/2.92) 2.93(2.98/2.87) 3.00(3.07/2.94)

operate over discrete representations. Therefore, the error between the true PDE solution and the
learned approximation depends not only on the architecture but also on how the discretization aligns
with the analytical properties of the solution. Tools from functional analysis allow us to assess:

• How regular or irregular the true solution is (e.g., near boundaries or under shocks);

• How the discretization grid or function basis must adapt to preserve convergence;

• How stability and generalization are affected by boundary singularities and approximation
limitations.

The following theorems provide essential insights into these questions and can be naturally organized
along a logical chain used in theoretical PDE analysis:

• Start with basic control over functions via gradients (Poincaré Inequality),

• Link smoothness to representability and generalization (Sobolev Embedding),

• Ensure PDE well-posedness (Lax-Milgram),

• Connect numerical approximations to best approximants (Céa’s Lemma),

• Use compactness to show convergence under refinement (Rellich-Kondrachov),

• Extend to temporal-spatial regularity (Aubin-Lions),

• Analyze boundary effects (Maximum Principle, Trace Theorem),

• Control physical evolution through energy bounds (Energy Estimates).

The materials presented in this section are well-established results in computational mathematics
and are not original contributions by the authors. Our aim is to provide readers—particularly those
interested in the error analysis of PDE-based surrogates—with an introductory overview of the
foundational knowledge in this field. We emphasize concepts essential for understanding boundary
error behavior in PDEs, especially those involving the trace theorem, which is repeatedly applied
throughout this paper.
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D.2 CORE THEOREMS AND THEIR ROLES

1. Poincaré Inequality. Let u ∈ H1
0 (Ω) on a bounded domain Ω ⊂ Rd. Then:

∥u∥L2(Ω) ≤ C∥∇u∥L2(Ω).

Interpretation: This inequality ensures that if the gradient of a function is small, then the function
itself must also be small in the L2 sense. It captures how global behavior can be controlled through
local derivatives. Use: In AI4S-RL systems, this inequality provides the foundation for energy-based
bounds, helping ensure that learned control policies do not cause unbounded or physically unrealistic
growth in system states during training or rollout (Evans, 1998).

2. Sobolev Embedding Theorem. For sufficiently smooth domains and appropriate s, Hs(Ω) ↪→
Lp(Ω) or Ck(Ω).
Interpretation: This theorem allows one to infer integrability or continuity from Sobolev space
membership, linking smoothness to spatial regularity. Use: In AI4S-RL, this theorem helps justify the
use of neural approximators, showing under what conditions a function learned in a weak (Sobolev)
sense can be expected to generalize as a strong or continuous function (Evans, 1998).

3. Lax-Milgram Theorem. Given a bounded, coercive bilinear form a(·, ·) on a Hilbert space V ,
the variational problem:

a(u, v) = f(v), ∀v ∈ V,

has a unique solution u ∈ V .
Interpretation: This theorem guarantees that weak formulations of PDEs are well-posed under mild
assumptions. Use: It is critical for framing AI4S-RL problems involving constrained learning, such
as solving inverse or control problems governed by PDEs. Ensures the existence and uniqueness of
target states (Evans, 1998).

4. Céa’s Lemma. Let u solve the variational problem and uh ∈ Vh ⊂ V be the approximation.
Then:

∥u− uh∥V ≤ C

α
inf

vh∈Vh

∥u− vh∥V .

Interpretation: This lemma asserts that the best possible error of a numerical approximation is
bounded proportionally by the best projection error. Use: In AI4S-RL, this guides the choice of rep-
resentation spaces (e.g., basis functions, neural network architectures) and ensures that approximate
policies or value functions can converge quasi-optimally (Hou, 2003).

5. Rellich–Kondrachov Compactness Theorem. If Ω is bounded and un is bounded in H1(Ω),
then a subsequence converges strongly in L2(Ω).
Interpretation: This compactness result ensures that bounded sequences of approximate solutions
have strongly convergent subsequences. Use: It provides a theoretical foundation for showing
convergence of learned policies or solutions in AI4S-RL as the discretization or model resolution is
refined (Evans, 1998).

6. Aubin–Lions Lemma. Let X0 ↪→ X ↪→ X1 be Banach spaces with compact embedding. If un
is bounded in Lp(0, T ;X0) and ∂tun is bounded in Lq(0, T ;X1), then un is relatively compact in
Lp(0, T ;X).
Interpretation: This lemma bridges temporal and spatial regularity, ensuring strong convergence
when time derivatives and spatial norms are controlled. Use: Vital in PDE-driven RL settings with
temporal evolution. For instance, it helps demonstrate that learned state sequences from policy
iteration converge to true continuous dynamics (Lions, 1969).

7. Maximum Principle. Let u solve an elliptic or parabolic PDE with suitable structure. Then:

max
Ω̄

u = max
∂Ω

u.

Interpretation: This principle ensures that solution extremums occur on boundaries, preserving
physical constraints. Use: In AI4S-RL, this is crucial when dealing with bounded domains and
enforcing reward shaping or physical limits. Helps constrain exploration near boundary zones (Majda
& Bertozzi, 2002).
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8. Energy Estimates. Multiply a PDE by u or ∂tu, integrate over space-time, and derive:

E(t) =

∫
Ω

(
|∂tu|2 + |∇u|2

)
dx is bounded or decaying.

Interpretation: These estimates show that system energy either remains bounded or decreases over
time. Use: Critical for stability analysis of RL agents in physical systems. Ensures that learned
dynamics don’t lead to energy blow-up or unrealistic oscillations (E, 2011; Majda & Bertozzi, 2002).

9. Trace Theorem. For u ∈ H1(Ω), its restriction to the boundary ∂Ω satisfies:

γ(u) := u|∂Ω ∈ H1/2(∂Ω).

Interpretation: Functions in Sobolev spaces lose half a derivative when restricted to boundaries.
Use: This loss of smoothness explains why control near boundaries is harder in AI4S-RL systems
and why special handling is needed in boundary-constrained reward or control definitions (Evans,
1998).

D.3 LINKING THEORY TO PRACTICE

These tools collectively help answer: How should one discretize state, design control inputs, and
construct reward functionals when the solution is only partially smooth, or when boundary behavior
dominates the error? Trace and Poincaré help identify when boundary refinement is necessary;
Sobolev embedding and Rellich-Kondrachov justify the use of compact approximators; Lax-Milgram
and Céa give the mathematical foundation for why value function approximators can converge.
Understanding and incorporating these results into the AI4S-RL model design allows for principled
control over generalization, robustness, and physical consistency in the learning loop.

E EXPERIMENTAL DETAILS: TEPPANYAKI THERMODYNAMIC CONTROL
MODEL

E.1 PROBLEM FORMULATION AND PHYSICAL MODEL

E.1.1 PHYSICAL SYSTEM DESCRIPTION

We construct a teppanyaki temperature control simulation based on the two-dimensional unsteady
heat conduction partial differential equation. The computational domain is a uniform square metal
plate Ω = [0, 1] × [0, 1] m2. The system is equipped with Hs = 2 power-adjustable heat sources.
These sources are fixed at spatial positions x(1)

s = (0.25, 0.5) and x
(2)
s = (0.75, 0.5). The control

variables are the heating powers Pj(t) ∈ [0, 1000] W for each source.

Three dishes are placed on the plate. Each dish i is modeled as a square region Di ⊂ Ω with side
length Ld = 0.1 m. Their geometric centers are located at x(1)

d = (0.4, 0.5), x(2)
d = (0.5, 0.5),

and x
(3)
d = (0.6, 0.5). The target temperatures are {70, 80, 90}°C, and the cooking durations are

{50, 55, 60} seconds. The control objective is to minimize the average temperature deviation of all
dishes within their cooking windows over a total duration of Ttotal = 60 seconds.

The regional average temperature of dish i at time t is defined as:

T̄i(t) =
1

|Di|

∫∫
Di

T (x, t) dx (E.1)

The global loss function is defined as the cumulative mean squared error:

J =

∫ Ttotal

0

Nd∑
i=1

I[0,tcooki ](t) ·
(
T̄i(t)− T target

i

)2
dt (E.2)

Here I[0,tcooki ](t) is a time indicator function. This function ensures that temperature errors are
computed only during the dish placement period.
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E.1.2 GOVERNING EQUATIONS

The spatiotemporal evolution of the temperature field T (x, t) follows the two-dimensional inhomoge-
neous heat conduction equation:

∂T

∂t
= α∇2T +Q(x, t), x ∈ R2, t > 0 (E.3)

where α = 5× 10−4 m2/s is the thermal diffusivity coefficient. The boundary condition adopts an
infinite domain assumption: lim|x|→∞ T (x, t) = T∞. The initial condition is set to the ambient
temperature T (x, 0) = T∞ = 20°C. The heat source term Q(x, t) is constructed by superposing Hs

Gaussian-distributed heating elements:

Q(x, t) =

Hs∑
j=1

Pj(t)

ρcp · 2πσ2
exp

(
−|x− x

(j)
s |2

2σ2

)
(E.4)

Here σ = 0.05 m is the effective radius of each heat source. The material properties are density
ρ = 7850 kg/m3 and specific heat capacity cp = 460 J/(kg·K).

E.2 MULTI-RESOLUTION REINFORCEMENT LEARNING ENVIRONMENT

E.2.1 SPATIOTEMPORAL DISCRETIZATION SCHEME

We employ a high-precision uniform Cartesian grid to partition the physical domain Ω for bottom-
layer physical evolution computation. The physical grid spacing is set to ∆xphy = 0.025 m. This
corresponds to Nphy × Nphy = 40 × 40 grid cells. The physical time step is ∆tphy = 1/450 s
≈ 0.0022 s. This satisfies the CFL stability condition for explicit finite difference schemes.

The coarsening degree of the RL observation space is controlled by parameter K ≥ 1. The RL grid
size is Nrl = ⌊Nphy/K⌋ with grid spacing ∆xrl = K ·∆xphy. Spatial coarsening is implemented
through regional averaging:

T
(i,j)
rl =

1

K2

K−1∑
p=0

K−1∑
q=0

T
(Ki+p,Kj+q)
phy (E.5)

where T (i,j)
phy represents the temperature values on the physical grid. These values are obtained by

evaluating the analytical solution at the corresponding spatial coordinates (i∆xphy, j∆xphy).

The RL decision time step ∆trl is determined by parameter y = loghw
(hr), where hw =

Ttotal/∆tphy is the temporal horizon at the physical layer and hr = hyw is the horizon at the
RL layer. This design constructs a hierarchical simulation structure. The underlying physical envi-
ronment evolves H = ⌊∆trl/∆tphy⌋ micro-steps for each decision executed by the agent. Different
combinations of parameters K and y define 25 experimental configurations. The trade-off between
sample efficiency and computational complexity across these configurations is the core focus of this
study.

E.2.2 STATE-ACTION-REWARD MECHANISM

The system state s consists of the global temperature field Trl ∈ RNrl×Nrl on the coarsened grid at the
current time, along with the normalized remaining cooking time t̃i for each food item. Parameter K
defines the coarse-graining degree of observations. Temperature readings are discretized at intervals
of ∆Tdisc = 2◦C × K. As K increases, the agent faces dual challenges of spatial information
blurring (pixelation) and temperature quantization noise. These factors significantly intensify partial
observability of the environment. The action space degrades correspondingly with the state space.
Power adjustment of the two heat sources is modeled as discrete actions. The adjustment granularity
is directly coupled to K through the minimum power increment ∆P = 50 W ×K. This coupling
causes the number of selectable power levels to decrease significantly as K increases. Coarse grids
correspond to coarse control, which aligns with physical intuition.

To ensure consistency and physical meaning of the reward function across different time steps ∆trl,
we adopt a continuous integration form based on physical micro-steps. Within the k-th RL decision
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step, the instantaneous reward rk is computed as the cumulative temperature error over all physical
micro-steps in that period:

rk =

H∑
h=1

[
−

Numd∑
i=1

I[0,tcooki ](tk,h) ·
(T̄i(tk,h)− T target

i )2

T 2
scale

]
·∆tphy (E.6)

where H = ⌊∆trl/∆tphy⌋ is the number of physical micro-steps within a single RL step, and
Tscale = 50◦C is the normalization constant. Through this approach, the cumulative reward R =∑
rk remains an unbiased approximation of the original continuous control objective equation E.2,

regardless of variations in RL decision frequency. This design guarantees fairness in computational
cost comparisons across different experimental groups.

E.3 TRAINING ALGORITHM AND CONVERGENCE CRITERIA

E.3.1 PPO ALGORITHM IMPLEMENTATION

We adopt Proximal Policy Optimization (PPO) as the core training algorithm, considering the mixed
characteristics of continuous state space and discrete action space in this problem. Compared to
off-policy algorithms, PPO constrains policy update step sizes through clipped objective functions.
This mechanism effectively prevents policy oscillations in complex non-stationary thermodynamic
environments and ensures training robustness. Both the policy network (Actor) and value network
(Critic) employ multi-layer perceptron (MLP) architectures with the global state vector s as input.
The hyperparameters are set as follows: learning rate 3 × 10−4, discount factor γ = 0.99, and
Generalized Advantage Estimation (GAE) parameter λ = 0.95. Training proceeds synchronously
across 8 parallel environments with GPU-accelerated gradient updates.

E.3.2 CONVERGENCE CRITERIA

To fairly compare sample efficiency across different resolution configurations (K, y), we adopt a
relative convergence criterion. Training is considered converged and terminated when the agent
achieves the preset performance threshold in three consecutive evaluations, where each evaluation
is based on the average over 10 complete episodes. The specific threshold is set to a theoretically
derived optimal control baseline (see Section ?? for the physical environment setup). This threshold
setting ensures that computational cost comparisons across configurations are meaningful under
comparable performance levels.

E.4 EXPERIMENTAL CONFIGURATION AND RESULTS

The experiment covers spatial resolution ratios K ∈ {1.0, 2.0, 4.0, 6.0, 8.0} and temporal resolution
parameter y = loghw

(hr) ∈ {1/8, 1/6, 1/4, 1/3, 1/2}, totaling 25 configuration points. Each con-
figuration is trained with five random seeds until reaching the convergence criterion. All experiments
are executed on the same hardware platform (Intel Xeon Gold 6530, NVIDIA RTX 4090, 256 GB
RAM).

E.4.1 ε–N SCALING ANALYSIS

To validate the theoretical ε–N scaling predictions, we analyze complete scaling curves for all 25
resolution configurations. Here, ε denotes the suboptimality gap defined as ε = R∗ −Rcurrent, where
R∗ is the optimal policy reward derived from the analytical solution. The variable N represents
training steps.

Panel (c) of Figure 6 shows ε–N scaling curves for all 23 configurations that successfully reach the
convergence threshold. Different colors represent temporal resolution y values, while color intensity
indicates spatial resolution K (darker shades for smaller K, lighter for larger K). Shaded regions
illustrate the performance range across different K values within each temporal resolution group.
Vertical dashed lines mark the mean convergence step for each y, revealing clear separation between
temporal resolution groups: finer temporal resolution (smaller y) requires fewer training steps to
converge.
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E.4.2 COMPUTATIONAL COST DECOMPOSITION

A key contribution of our experimental analysis is the rigorous decomposition of total computational
cost into its constituent components. In AI4S reinforcement learning systems, computational re-
sources are consumed by two fundamentally different processes: (1) physical simulation on CPU,
which involves solving or evaluating PDE-based environment dynamics, and (2) neural network
operations on GPU, which includes policy inference and gradient-based training updates.

This decomposition is critical because CPU and GPU computational costs scale differently with
resolution parameters. CPU costs are dominated by the complexity of the physical solver, which
depends on grid resolution and time step constraints imposed by numerical stability. GPU costs
are primarily determined by the number of RL training iterations required for convergence, which
depends on the effective state-action space size and the difficulty of credit assignment under different
temporal horizons.

Panels (d), (e), and (f) of Figure 6 present heatmaps showing the CPU, GPU, and total computational
costs respectively across all 25 configurations. Several important observations emerge from this
decomposition:

CPU-GPU trade-off structure. The CPU and GPU cost landscapes exhibit distinct patterns. CPU
costs tend to increase with finer temporal resolution (smaller loghw

(hr)) due to the larger number of
physical simulation steps required. GPU costs show more complex dependence on both spatial and
temporal parameters, reflecting the interplay between state space complexity and horizon length in
the RL training dynamics.

Non-additive composition. The total cost is not simply the sum of CPU and GPU costs in logarithmic
scale. The relative contribution of each component varies significantly across the configuration space.
At fine resolutions, CPU costs dominate due to expensive physical simulations. At coarse resolutions,
GPU costs become relatively more significant as the RL algorithm struggles with reduced observability
and must compensate through additional training iterations.

Optimal configuration identification. The optimal configuration (K = 6.0, loghw
(hr) = 1/3)

achieves the minimum total cost by balancing these competing effects. This configuration provides
sufficient resolution for the agent to learn effective control policies while avoiding the computational
overhead of unnecessarily fine discretization.

E.4.3 COMPUTATIONAL COST SUMMARY

For each configuration, the logical interaction count Ntotal recorded by environment destructors
is combined with the sampling multiplier Msample(K,∆t) measured from post-training sampling
experiments (see Section E.5). The equivalent total computational cost is reconstructed in units of
log10(FLOPstotal). Detailed numerical data with confidence intervals are presented in Table E.5.

Table E.5: Equivalent Total Computational Cost (log10(FLOPstotal)) with Confidence Intervals
loghw

(hr) K = 1 K = 2 K = 4 K = 6 K = 8

1/8 17.77± 0.29 17.74± 0.35 17.72± 0.26 17.77± 0.14 R.I.
1/6 17.59± 0.42 17.60± 0.29 17.65± 0.21 17.65± 0.41 R.I.
1/4 17.59± 0.26 17.56± 0.13 17.50± 0.17 17.54± 0.19 17.81± 0.27
1/3 17.64± 0.17 17.59± 0.22 17.41± 0.20 17.27± 0.22 17.69± 0.10
1/2 17.60± 0.15 17.70± 0.19 17.58± 0.20 17.36± 0.08 18.00± 0.08

Note: Values represent log10(FLOPstotal) with standard deviation computed from five random seeds.
Both the logical interaction count Ntotal during training and the statistical sampling multiplier Msample
are comprehensively considered. Configurations marked R.I. (Resolution Insufficient) fail to reach the
performance threshold due to excessive discretization coarseness. Specifically, K = 8.0 corresponds
to only 5× 5 RL observation grids and action resolution of ∆P = 400 W (with merely 3 selectable
levels: 0 W, 400 W, 800 W). Under this granularity, the agent cannot achieve fine temperature control.
The optimal configuration (K = 6.0, loghw

(hr) = 1/3) is highlighted in bold, corresponding to
the lowest equivalent computational complexity of 1017.27±0.22 FLOPs. This result confirms the
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theoretical prediction that both excessively coarse and excessively fine discretization lead to efficiency
losses.

To ensure the reliability of our conclusions, we conducted extensive statistical analysis across multiple
random seeds. Each configuration was trained with five independent random seeds, controlling for
variations in network initialization, environment stochasticity, and optimization trajectory. The
confidence intervals reported in Table E.5 and visualized in Figure 6 represent the standard deviation
of the total computational cost across these runs.

E.5 COMPUTATIONAL COST RECONSTRUCTION METHODOLOGY

To ensure that experimental conclusions generalize to real AI4S scenarios where numerical PDE
solvers must be used, we adopt a computational cost reconstruction approach. The core challenge
is that directly recording the CPU/GPU execution time for every state transition during training is
complex and implementation-dependent. Specifically, each invocation of the environment’s physics
computation (via destructor calls for object lifecycle management) may require vastly different
convergence iterations depending on local condition numbers of the linear systems or nonlinear
solver states at different grid cells. Recording these fine-grained execution times would require
instrumenting every grid cell’s solver, which is impractical for large-scale experiments.

Instead, we adopt a two-stage approach: first, we complete the full PPO training for all 25 resolution
configurations and record only the logical interaction count Ntotal via destructor counters in the
environment core class. This count reflects the sample complexity of the RL algorithm itself,
independent of the underlying physics solver implementation. Second, after training converges, we
perform a post-hoc sampling study to estimate the computational multiplier that would be required in
real scenarios using numerical solvers.

Specifically, we randomly select a representative subset of state-action pairs encountered during
converged policy execution. For each selected state, we perform Monte Carlo sampling within the
observation uncertainty range [x−∆y/2,x+∆y/2] to measure the frequency distribution of the
next state falling into different grid cells. According to Theorem 1 in the main text, the number of
samples Msample(K,∆t) required to statistically distinguish the correct target grid with confidence
1− δ depends on the classification margin:

Msample(K,∆t) = O
(

log(1/δ)

minj(∆p(j))2

)
(E.7)

where ∆p(j) is the probability gap between the dominant grid cell and its closest competitor in
dimension j.

We then estimate the per-sample computational cost Csolver(K) for a single PDE solver call at
resolution K. For explicit finite difference methods with grid size Nphy/K and CFL-constrained
time step, this cost scales as Csolver(K) ∼ (Nphy/K)d per time step, where d is the spatial dimension.
The final reconstructed total cost is:

FLOPstotal(K,∆t) = Ntotal ×Msample(K,∆t)× Csolver(K) (E.8)

This reconstruction methodology ensures that reported computational costs honestly reflect what
would be required in real AI4S applications using numerical solvers, while still enabling efficient
large-scale hyperparameter searches during the training phase. The sampling multiplier Msample
accounts for the statistical overhead of state disambiguation under observation noise, and the solver
cost Csolver accounts for the grid-resolution-dependent computational burden. Similar reconstruction
can be applied to GPU costs by estimating the per-operation GPU FLOPs and memory bandwidth
utilization, which typically differ from CPU costs by implementation-specific constants but follow
the same scaling laws.

The physical environment observations in our experiments are obtained from the analytical solution
of the two-dimensional heat diffusion equation equation E.3 in free space. According to linear PDE
theory, the temperature field evolution can be expressed through spatiotemporal convolution of the
Green’s function (heat kernel) with the heat source term:

T (x, t) = T∞ +

∫ t

0

∫∫
R2

G(x, t; ξ, τ)Q(ξ, τ) dξ dτ (E.9)
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where the heat kernel G(x, t; ξ, τ) = 1
4πα(t−τ) exp

(
− |x−ξ|2

4α(t−τ)

)
describes the diffusion pattern of a

unit point source in infinite space.
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