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ABSTRACT

Growing interests in RGB-D salient object detection (RGB-D SOD) have been
witnessed in recent years, owing partly to the popularity of depth sensors and the
rapid progress of deep learning techniques. Unfortunately, existing RGB-D SOD
methods typically demand large quantity of training images being thoroughly an-
notated at pixel-level. The laborious and time-consuming manual annotation has
become a real bottleneck in various practical scenarios. On the other hand, current
unsupervised RGB-D SOD methods still heavily rely on handcrafted feature rep-
resentations. This inspires us to propose in this paper a deep unsupervised RGB-D
saliency detection approach, which requires no manual pixel-level annotation dur-
ing training. It is realized by two key ingredients in our training pipeline. First,
a depth-disentangled saliency update (DSU) framework is designed to automati-
cally produce pseudo-labels with iterative follow-up refinements, which provides
more trustworthy supervision signals for training the saliency network. Second, an
attentive training strategy is introduced to tackle the issue of noisy pseudo-labels,
by properly re-weighting to highlight the more reliable pseudo-labels. Extensive
experiments demonstrate the superior efficiency and effectiveness of our approach
in tackling the challenging unsupervised RGB-D SOD scenarios. Moreover, our
approach can also be adapted to work in fully-supervised situation. Empirical
studies show the incorporation of our approach gives rise to notably performance
improvement in existing supervised RGB-D SOD models.

1 INTRODUCTION

The recent development of RGB-D salient object detection, i.e., RGB-D SOD, is especially fueled by
the increasingly accessible 3D imaging sensors (Giancola et al., 2018) and their diverse applications,
including image caption generation (Xu et al., 2015), image retrieval (Ko et al., 2004; Shao & Brady,
2006) and video analysis (Liu et al., 2008; Wang et al., 2018), to name a few. Provided with multi-
modality input of an RGB image and its depth map, the task of RGB-D SOD is to effectively identify
and segment the most distinctive objects in a scene.

The state-of-the-art RGB-D SOD approaches (Li et al., 2021a; Ji et al., 2020b; Chen et al., 2020b;
Li et al., 2020b; 2021b) typically entail an image-to-mask mapping pipeline that is based on the
powerful deep learning paradigms of e.g., VGG16 (Simonyan & Zisserman, 2015) or ResNet50 (He
et al., 2016). This strategy has led to excellent performance. On the other hand, these RGB-D
SOD methods are fully supervised, thus demand a significant amount of pixel-level training anno-
tations. This however becomes much less appealing in practical scenarios, owing to the laborious
and time-consuming process in obtaining manual annotations. It is therefore natural and desirable to
contemplating unsupervised alternatives. Unfortunately, existing unsupervised RGB-D SOD meth-
ods, such as global priors (Ren et al., 2015), center prior (Zhu et al., 2017b), and depth contrast
prior (Ju et al., 2014), rely primarily on handcrafted feature representations. This is in stark contrast
to the deep representations learned by their supervised SOD counterparts, which in effect imposes
severe limitations on the feature representation power that may otherwise benefit greatly from the
potentially abundant unlabeled RGB-D images.

These observations motivate us to explore a new problem of deep unsupervised RGB-D saliency de-
tection: given an unlabeled set of RGB-D images, deep neural network is trained to predict saliency
without any laborious human annotations in the training stage. A relatively straightforward idea is to
exploit the outputs from traditional RGB-D method as pseudo-labels, which are internally employed
∗Corresponding author
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Figure 1: (a) An illustration of deep unsupervised RGB-D saliency detection. ‘Initial label’ is
generated by a traditional method. ‘Baseline’ shows the saliency map generated by saliency network
trained with initial pseudo-labels. ‘Ours’ shows our final results. (b) Efficiency and effectiveness
comparison over a wide range of unsupervised SOD methods on the NLPR benchmark. Promoting
Saliency From Depth: our approach achieves a large-margin improvement over the baseline, by
engaging depth information to improve pseudo-labels in the training process, without introducing
additional computational cost during inference, shown in red arrow.

to train the saliency prediction network (‘baseline’). Moreover, the input depth map may serve as
a complementary source of information in refining the pseudo-labels, as it contains cues of spatial
scene layout that may help in exposing the salient objects. Nevertheless, practical examination re-
veals two main issues: (1) Inconsistency and large variations in raw depth maps: as illustrated in
Fig. 1 (a), similar depth values are often shared by a salient object and its surrounding, making it
very difficult in extracting the salient regions from depth without explicit pixel-level supervision; (2)
Noises from unreliable pseudo-labels: unreliable pseudo-labels may inevitably bring false positive
into training, resulting in severe damage in its prediction performance.

To address the above challenges, the following two key components are considered in our approach.
First, a depth-disentangled saliency update (DSU) framework is proposed to iteratively refine &
update the pseudo-labels by engaging the depth knowledge. Here a depth-disentangled network
is devised to explicitly learn the discriminative saliency cues and non-salient background from raw
depth map, denoted as saliency-guided depth DSal and non-saliency-guided depth DNonSal, respec-
tively. This is followed by a depth-disentangled label update (DLU) module that takes advantage of
DSal to emphasize saliency response from pseudo-label; it also utilizes DNonSal to eliminate the
background influence, thus facilitating more trustworthy supervision signals in training the saliency
network. Note the DSU module is not engaged at test time. Therefore, at test time, our trained
model takes as input only an RGB image, instead of involving both RGB and depth as input and
in the follow-up computation. Second, an attentive training strategy is introduced to alleviate the
issue of noisy pseudo-labels; it is achieved by re-weighting the training samples in each training
batch to focus on those more reliable pseudo-labels. As demonstrated in Fig. 1 (b), our approach
works effectively and efficiently in practice. It significantly outperforms existing unsupervised SOD
methods on the widely-used NLPR benchmark. Specifically, it improves over the baseline by 37%,
a significant amount without incurring extra computation cost. Besides, the test time execution of
our approach is at 35 frame-per-second (FPS), the fastest among all RGB-D unsupervised methods,
and on par with the most efficient RGB-based methods. In summary, our main contributions are as
follows:

• To our knowledge, our work is the first in exploring deep representation to tackle the prob-
lem of unsupervised RGB-D saliency detection. This is enabled by two key components
in the training process, namely the DSU strategy to produce & refine pseudo-labels, and
the attentive training strategy to alleviate the influence of noisy pseudo-labels. It results in
a light-weight architecture that engages only RGB data at test time (i.e., w/o depth map),
achieving a significant improvement without extra computation cost.

• Empirically, our approach outperforms state-of-the-art unsupervised methods on four pub-
lic benchmarks. Moreover, it runs in real time at 35 FPS, much faster than existing unsu-
pervised RGB-D SOD methods, and at least on par with the fastest RGB counterparts.

• Our approach could be adapted to work with fully-supervised scenario. As demonstrated
in Sec. 4.4, augmented with our proposed DSU module, the empirical results of existing
RGB-D SOD models have been notably improved.
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2 RELATED WORK

Remarkable progresses have been made recently in salient object detection (Ma et al., 2021; Xu
et al., 2021; Pang et al., 2020b; Zhao et al., 2020b; Tsai et al., 2018; Liu et al., 2018), where the
performance tends to deteriorate in the presence of cluttered or low-contrast backgrounds. Moreover,
promising results are shown by a variety of recent efforts (Chen et al., 2021a; Luo et al., 2020;
Chen et al., 2020a; Zhao et al., 2022; Desingh et al., 2013; Li et al., 2020a; Liao et al., 2020;
Shigematsu et al., 2017) that integrate effective depth cues to tackle these issues. Those methods,
however, typically demand extensive annotations, which are labor-intensive and time-consuming.
This naturally leads to the consideration of unsupervised SODs that do not rely on such annotations.

Prior to the deep learning era (Wang et al., 2021; Zhao et al., 2020a), traditional RGB-D saliency
methods are mainly based on the manually-crafted RGB features and depth cues to infer a saliency
map. Due to their lack of reliance on manual human annotation, these traditional methods can be
regarded as early manifestations of unsupervised SOD. Ju et al. (Ju et al., 2014) consider the in-
corporation of a prior induced from anisotropic center-surround operator, and an additional depth
prior. Ren et al. (Ren et al., 2015) also introduce two priors: normalized depth prior and the global-
context surface orientation prior. In contrary to direct utilization of the depth contrast priors, local
background enclosure prior is explicitly developed by (Feng et al., 2016). Interested readers may re-
fer to (Fan et al., 2020a; Peng et al., 2014; Zhou et al., 2021) for more in-depth surveys and analyses.
However, by relying on manually-crafted priors, these methods tend to have inferior performance.

Meanwhile, considerable performance gain has been achieved by recent efforts in RGB-based un-
supervised SOD (Zhang et al., 2017; 2018; Nguyen et al., 2019; Hsu et al., 2018a), which instead
construct automated feature representations using deep learning. A typical strategy is to leverage the
noisy output produced by traditional methods as pseudo-label (i.e., supervisory signal) for training
saliency prediction net. The pioneering work of Zhang et al. (Zhang et al., 2017) fuses the out-
puts of multiple unsupervised saliency models as guiding signals in CNN training. In (Zhang et al.,
2018), competitive performance is achieved by fitting a noise modeling module to the noise distri-
bution of pseudo-label. Instead of directly using pseudo-labels from handcrafted methods, Nguyen
et al. (Nguyen et al., 2019) further refine pseudo-labels via a self-supervision iterative process. Be-
sides, deep unsupervised learning has been considered by (Hsu et al., 2018b; Tsai et al., 2019) for
the co-saliency task, where superior performance has been obtained by engaging a fusion-learning
scheme (Hsu et al., 2018b), or utilizing dedicated loss terms (Tsai et al., 2019). These methods
demonstrate that the incorporation of powerful deep neural network brings better feature represen-
tation than those unsupervised SOD counterparts based on handcrafted features.

In this work, a principled research investigation on deep unsupervised RGB-D saliency detection.
is presented for the first time. Different from existing deep RGB-based unsupervised SOD (Zhang
et al., 2017; 2018) that use pseudo-labels from the handcrafted methods directly, our work aims to
refine and update pseudo-labels to remove the undesired noise. And compared to the refinement
method (Nguyen et al., 2019) using self-supervision technique, our approach instead adopts disen-
tangled depth information to promote pseudo-labels.

3 METHODOLOGY

3.1 OVERVIEW

Fig. 2 presents an overview of our Depth-disentangled Saliency Update (DSU) framework. Overall
our DSU strives to significantly improve the quality of pseudo-labels, that leads to more trustworthy
supervision signals for training the saliency network. It consists of three key components. First is a
saliency network responsible for saliency prediction, whose initial supervision signal is provided by
traditional handcrafted method without using human annotations. Second, a depth network and a
depth-disentangled network are designed to decompose depth cues into saliency-guided depth DSal

and non-saliency-guided depth DNonSal, to explicitly depict saliency cues in the spatial layout.
Third, a depth-disentangled label update (DLU) module is devised to refine and update the pseudo-
labels, by engaging the learned DSal and DNonSal. The updated pseudo-labels could in turn provide
more trustworthy supervisions for the saliency network. Moreover, an attentive training strategy
(ATS) is incorporated when training the saliency network, tailored for noisy unsupervised learning
by mitigating the ambiguities caused by noisy pseudo-labels. We note that the DSU and ATS are not
performed at test time, so does not affect the inference speed. In other words, the inference stage

In this paper, unsupervised learning refers to learning without using human annotation (Zhang et al., 2017).
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Figure 2: Overview of the proposed method. The saliency network is trained with the iteratively
updated pseudo-labels. The depth network and depth-disentangled network are designed to decom-
pose raw depth into saliency-guided depth DSal and non-saliency-guided depth DNonSal, which
are subsequently fed into the depth-disentangled label update (DLU) module to refine and update
pseudo-labels. The inference stage involves only the black dashed portion.

involves only the black dashed portion of the proposed network architecture in Fig. 2, i.e., only RGB
images are used for predicting saliency, which enables very efficient detection.

3.2 DEPTH-DISENTANGLED SALIENCY UPDATE

The scene geometry embedded in the depth map can serve as a complementary information source
to refine the pseudo-labels. Nevertheless, as discussed in the introduction section, a direct adoption
of the raw depth may not necessarily lead to good performance due to the large value variations and
inherit noises in raw depth map. Without explicit pixel-wise supervision, the saliency model may
unfortunately be confused by nearby background regions having the same depth but with differ-
ent contexts; meanwhile, depth variations in salient or background regions may also result in false
responses. These observations motivate us to design a depth-disentangled network to effectively
capture discriminative saliency cues from depth, and a depth-disentangled label update (DLU) strat-
egy to improve and refine pseudo-labels by engaging the disentangled depth knowledges.

3.2.1 DEPTH-DISENTANGLED NETWORK

The depth-disentangled network aims at capturing valuable saliency as well as redundant non-salient
cues from raw depth map. As presented in the bottom of Fig. 2, informative depth feature FDepth

is first extracted from the depth network under the supervision of raw depth map, using the mean
square error (MSE) loss function, i.e., ld,1. The FDepth is then decomposed into saliency-guided
depth DSal and non-saliency-guided depth DNonSal following two principles: 1) explicitly guid-
ing the model to learn saliency-specific cues from depth; 2) ensuring the coherence between the
disentangled and original depth features.

Specifically, in the bottom right of Fig. 2, we first construct the spatial supervision signals for the
depth-disentangled network. Given the rough saliency prediction Salpred from the saliency network
and the raw depth map Dmap, the (non-)saliency-guided depth masks, i.e., DLabel

Sal and DLabel
NonSal,

can be obtained by multiplying Salpred (or 1− Salpred) and depth map Dmap in a spatial attention
manner. Since the predicted saliency may contain errors introduced from the inaccurate pseudo-
labels, we employ a holistic attention (HA) operation (Wu et al., 2019) to smooth the coverage area
of the predicted saliency, so as to effectively perceive more saliency area from depth. Formally, the
(non-)saliency-guided depth masks are generated by:

DLabel
Sal = Ψmax(FG(Salpred, k), Salpred)⊗Dmap, (1)

DLabel
NonSal = Ψmax(FG(1− Salpred, k), 1− Salpred)⊗Dmap, (2)

where FG(·, k) represents the HA operation, which is implemented using the convolution operation
with Gaussian kernel k and zero bias; the size and standard deviation of the Gaussian kernel k are
initialized with 32 and 4, respectively, which are then finetuned through the training procedure;
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Figure 3: The internal inspections of the proposed DSU. It is observed that the updated label exhibits
more reliable saliency signals than initial pseudo-label.

Ψmax(·, ·) is a maximum function to preserve the higher values from the Gaussian filtered map and
the original map; ⊗ denotes pixel-wise multiplication.

Building upon the guidance of DLabel
Sal and DLabel

NonSal, F
Depth is fed into D-Sal CNN and D-NonSal

CNN to explicitly learn valuable saliency and redundant non-salient cues from depth map, generat-
ing DSal and DNonSal, respectively. The loss functions here (i.e., lSal and lNonSal) are MSE loss.
Detailed structures of D-Sal and D-NonSal CNNs are in the appendix. To further ensure the co-
herence between the disentangled and original depth features, a consistency loss, lcon, is employed
as:

lcon =
1

H×W×C

H∑
i=1

W∑
j=1

C∑
k=1

∥FDepth
i,j,k , F̃Depth

i,j,k ∥2, (3)

where F̃Depth is the sum of the disentangled FDepth
Sal and FDepth

NonSal, which denotes the regenerated
depth feature; H , W and C are the height, width and channel of FDepth and F̃Depth; ∥·∥2 represents
Euclidean norm. Here, F̃Depth is also under the supervision of depth map, using MSE loss, i.e., ld,2.

Then, the overall training objective for the depth network and the depth-disentangled network is as:

Ldepth =
1

5N

N∑
n=1

(lnd,1 + lnd,2 + lnSal + lnNonSal + λlncon), (4)

where n denotes the nth sample in a mini-batch with N training samples; λ is set to 0.02 in the
experiments to balance the consistency loss lcon and other loss terms. As empirical evidences in
Fig. 3 suggested, comparing to the raw depth map, DSal is better at capturing discriminative cues
of the salient objects, while DNonSal better depicts the complementary background context.

In the next step, the learned DSal and DNonSal are fed into our Depth-disentangled Label Update,
to obtain the improved pseudo-labels.

3.2.2 DEPTH-DISENTANGLED LABEL UPDATE

To maintain more reliable supervision signals in training, a depth-disentangled label update (DLU)
strategy is devised to iteratively refine & update pseudo-labels. Specifically, as shown in the upper
stream of Fig. 2, using the obtained Salpred, DSal and DNonSal, the DLU simultaneously highlights
the salient regions in the coarse saliency prediction by the sum of Salpred and DSal, and suppresses
the non-saliency negative responses by subtracting DNonSal in a pixel-wise manner. This process
can be formulated as:

Stemp = Sali,jpred +Di,j
Sal −Di,j

NonSal

∣∣∣∣
i∈[1,H];j∈[1,W ]

. (5)

To avoid the value overflow of the obtained Stemp (i.e., removing negative numbers and normalizing
the results to the range of [0, 1]), a thresholding operation and a normalization process are performed
as:

SN =
Si,j
n −min(Sn)

max(Sn)−min(Sn)
,where Sn =

{
0, if Si,j

temp < 0

Si,j
temp, others

, i ∈ [1, H]; j ∈ [1,W ], (6)

where min(·) and max(·) denote the minimum and maximum functions. Finally, a fully-connected
conditional random field (CRF (Hou et al., 2017)) is applied to SN , to generate the enhanced
saliency map Smap as the updated pseudo-labels. The empirical result of the proposed DSU step is
showcased in Fig. 3, with quantitative results presented in Table 4. These internal evidences suggest
that the DSU leads to noticeable improvement after merely several iterations.
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3.3 ATTENTIVE TRAINING STRATEGY

When training the saliency network using pseudo-labels, an attentive training strategy (ATS) is pro-
posed to tailor for the deep unsupervised learning context, to reduce the influence of ambiguous
pseudo-labels, and concentrate on the more reliable training examples. This strategy is inspired by
the human learning process of understanding new knowledge, that is, from general to specific under-
standing cycle (Dixon, 1999; Peltier et al., 2005). The ATS alternates between two steps to re-weigh
the training instances in a mini-batch.

To be specific, we first start by settling the related loss functions. For the nth sample in a mini-batch
with N training samples, we define the binary cross-entropy loss between the predicted saliency
Salnpred and the pseudo-label Sn

map as:

ln = −(Sn
map · logSalnpred + (1− Sn

map) · log(1− Salnpred)). (7)

Then, the training objective for the saliency network in current mini-batch is defined as an attentive
binary cross-entropy loss Lsal, which can be represented as follows:

Lsal =
1∑N

n=1 αn

N∑
n=1

(αn · ln), αn =

{
1, step one,∑i̸=n

i∈N eli∑
i∈N eli

, step two,
(8)

where αn represents the weight of the nth training sample at current training mini-batch.Camera-ready
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Figure 4: Analysis of the proposed attentive train-
ing strategy, when evaluated on NJUD testset. The
‘backbone’ refers to the saliency network trained
with initial pseudo-labels.

The ATS starts from a uniform weight for each
training sample in step one to learn general
representations across a lot of training data.
Step two decreases the importance of ambigu-
ous training instances through the imposed at-
tentive loss; the higher the loss value, the less
weight an instance is to get.

In this paper, we define step one and two as a
training round (2τ epochs). During each train-
ing round, the saliency loss Lsal and depth loss
Ldepth are optimized simultaneously to train
their network parameters. The proposed DLU
is taken at the end of each training round to up-
date the pseudo-labels for the saliency network;
meanwhile, DLabel

Sal and DLabel
NonSal in Eqs.1 and

2 are also updated using the improved Salpred. This allows the network to make efficient use of the
updated pseudo labels. As suggested by Fig. 4 and Table 3, the use of our attentive training strategy
leads to more significant error reduction compared with the backbone solely using uniform weight
or attentive weight for each instance. Besides, when our DSU and the attentive training strategy are
both incorporated to the backbone, better results are achieved.

4 EXPERIMENTS AND ANALYSES

4.1 DATASETS AND EVALUATION METRICS

Extensive experiments are conducted over four large-scale RGB-D SOD benchmarks. NJUD (Ju
et al., 2014) in its latest version consists of 1,985 samples, that are collected from the Internet and
3D movies; NLPR (Peng et al., 2014) has 1,000 stereo images collected with Microsoft Kinect;
STERE (Niu et al., 2012) contains 1,000 pairs of binocular images downloaded from the Internet;
DUTLF-Depth (Piao et al., 2019) has 1,200 real scene images captured by a Lytro2 camera. We
follow the setup of (Fan et al., 2020a) to construct the training set, which includes 1,485 samples
from NJUD and 700 samples from NLPR, respectively. Data augmentation is also performed by
randomly rotating, cropping and flipping the training images to avoid potential overfitting. The
remaining images are reserved for testing.

Here, five widely-used evaluation metrics are adopted: E-measure (Eξ) (Fan et al., 2018), weighed
F-measure (Fw

β ) (Margolin et al., 2014), F-measure (Fβ) (Achanta et al., 2009), Mean Absolute
Error (MAE or M) (Borji et al., 2015), and inference time(s) or FPS (Frames Per Second).

Implementation details are presented in the Appx A.3. Source code is publicly available.

6

https://github.com/jiwei0921/DSU


Published as a conference paper at ICLR 2022

DUT: 0107; 0718; 1377;
NJUD: 001144_left;  
NLPR: 2_07-11-17; 9_12-47-12; 10_03-27-39; 10_12-31-31
STERE:  image_left992; image_left971; 835; 577; 369; 

Image CDCPDepth GT Ours DeepUSPS DCMC SE LHM DSR BSCA RBDACSD
Figure 5: Qualitative comparison with unsupervised saliency detection methods. GT denotes ground-truth.

Table 1: Quantitative comparison with unsupervised SOD methods. ‘Backbone’ refers to the saliency feature
extraction network (Wu et al., 2019) adopted in our pipeline, i.e. the one without the two proposed key
components. The RGB-based methods are specifically marked by †. UnSOD is shorthand for unsupervised
SOD. We also provide the results of existing fully supervised methods that can be referenced in Table 8.

*
Inference NJUD NLPR STERE DUTLF-Depth
Time(s)↓ Eξ ↑ Fw

β ↑ Fβ ↑ M ↓ Eξ ↑ Fw
β ↑ Fβ ↑ M ↓ Eξ ↑ Fw

β ↑ Fβ ↑ M ↓ Eξ ↑ Fw
β ↑ Fβ ↑ M ↓

H
an

dc
ra

fte
d

U
nS

O
D

RBD† (Zhu et al., 2014) 0.189 .684 .387 .556 .256 .765 .388 .590 .211 .730 .443 .610 .223 .733 .447 .619 .222
MST† (Tu et al., 2016) 0.030 .670 .291 .436 .281 .762 .257 .491 .199 .681 .312 .447 .269 .678 .254 .401 .279

BSCA† (Qin et al., 2015) 2.665 .756 .446 .623 .216 .745 .376 .554 .178 .803 .497 .676 .179 .808 .479 .682 .181
DSR† (Li et al., 2013) 0.376 .739 .436 .594 .196 .757 .451 .545 .120 .785 .486 .645 .165 .797 .478 .640 .164
ACSD (Ju et al., 2014) 0.718 .790 .448 .696 .198 .751 .327 .547 .171 .793 .425 .661 .200 .250 .210 .188 .668

DES (Cheng et al., 2014) 7.790 .421 .241 .165 .448 .735 .259 .583 .301 .673 .383 .592 .297 .733 .386 .668 .280
LHM (Peng et al., 2014) 2.130 .722 .311 .625 .201 .772 .320 .520 .119 .772 .360 .703 .171 .767 .350 .659 .174

GP (Ren et al., 2015) 12.98 .730 .323 .666 .204 .813 .347 .670 .144 .785 .371 .710 .182 - - - -
CDB (Liang et al., 2018) 0.600 .752 .408 .650 .200 .810 .388 .618 .108 .808 .436 .713 .166 - - - -

SE (Guo et al., 2016) 1.570 .780 .518 .735 .164 .853 .578 .701 .085 .825 .546 .747 .143 .730 .339 .474 .196
DCMC (Cong et al., 2016) 1.210 .796 .506 .715 .167 .684 .265 .328 .196 .832 .529 .743 .148 .712 .290 .406 .243

MB (Zhu et al., 2017a) - .643 .369 .492 .202 .814 .574 .637 .089 .693 .455 .572 .178 .691 .464 .577 .156
CDCP (Zhu et al., 2017b) 5.720 .751 .522 .618 .181 .785 .512 .591 .114 .797 .596 .666 .149 .794 .530 .633 .159

D
ee

p
U

nS
O

D USD† (Zhang et al., 2018) 0.0180 .768 .565 .630 .163 .786 .536 .580 .119 .796 .572 .670 .146 .795 .545 .650 .157
DeepUSPS† (Nguyen et al., 2019) 0.0292 .771 .576 .647 .159 .809 .622 .639 .088 .806 .632 .682 .124 .798 .573 .654 .149

Backbone 0.0286 .759 .510 .627 .186 .760 .479 .570 .126 .794 .555 .666 .158 .798 .512 .644 .167
∆ gains - ↑5% ↑17% ↑15% ↓27% ↑16% ↑37% ↑31% ↓48% ↑8% ↑22% ↑16% ↓37% ↑7% ↑27% ↑18% ↓36%

Ours 0.0286 .797 .597 .719 .135 .879 .657 .745 .065 .857 .678 .774 .099 .854 .650 .763 .107

4.2 COMPARISON WITH THE STATE-OF-THE-ARTS

Our approach is compared with 15 unsupervised SOD methods, i.e., without using any human anno-
tations. Their results are either directly furnished by the authors of the respective papers, or gener-
ated by re-running their original implementations. In this paper, we make the first attempt to address
deep-learning-based unsupervised RGB-D SOD. Since existing unsupervised RGB-D methods are
all based on handcrafted feature representations, we additionally provide several RGB-based meth-
ods (e.g., USD and DeepUSPS) for reference purpose only. This gives more observational evidences
for the related works. These RGB-based methods are specifically marked by † in Table 1.

Quantitative results are listed in Table 1, where our approach clearly outperforms the state-of-the-
art unsupervised SOD methods in both RGB-D and RGB only scenarios. This is due to our DSU
framework that leads to trustworthy supervision signals for saliency network. Furthermore, our
network design leads to a light-weight architecture in the inference stage, shown as the black dashed
portion in Fig. 2. This enables efficient & effective detection of salient objects and brings a large-
margin improvement over the backbone network without introducing additional depth input and
computational costs, as shown in Fig. 1 and Table 1. Qualitatively, saliency predictions of competing
methods are exhibited in Fig. 5. These results consistently proves the superiority of our method.

4.3 ANALYSIS OF THE EMPIRICAL RESULTS

The focus here is on the evaluation of the contributions from each of the components, and the
evaluation of the obtained pseudo-labels as intermediate results.

Effect of each component. In Table 2, we conduct ablation study to investigate the contribution of
each component. To start with, we consider the backbone (a), where the saliency network is trained
with initial pseudo-labels. As our proposed ATS and DSU are gradually incorporated, increased
performance has been observed on both datasets. Here we first investigate the benefits of ATS by
applying it to the backbone and obtaining (b). We observe increased F-measure scores of 3% and
5.8% on NJUD and NLPR benchmarks, respectively. This clearly shows that the proposed ATS can
effectively improve the utilization of reliable pseudo-labels, by re-weighting ambiguous training
data. We then investigate in detail all components in our DSU strategy. The addition of the entire
DSU leads to (f), which significantly improves the F-measure metric by 11.3% and 23.5% on each
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of the benchmarks, while reducing the MAE by 22.4% and 41.9%, respectively. This verifies the
effectiveness of the DSU strategy to refine and update pseudo-labels. Moreover, as we gradually
exclude the consistency loss lcon (row (e)) and HA operation (row (d)), degraded performances
are observed on both datasets. For an extreme case where we remove the DLU and only maintain
CRF to refine pseudo-labels, it is observed that much worse performance is achieved. These results
consistently demonstrate that all components in the DSU strategy are beneficial for generating more
accurate pseudo-labels.

Table 2: Ablation study of our deep unsupervised RGB-D SOD pipeline,
using the F-measure and MAE metrics.

Index Model Setups
NJUD NLPR

Fβ ↑ M ↓ Fβ ↑ M ↓
(a) Backbone 0.627 0.186 0.570 0.126
(b) (a) + attentive training strategy 0.646 0.174 0.603 0.112
(c) (b) + CRF 0.674 0.160 0.663 0.093
(d)

DSU strategy
(b) + DSU (w/o lcon&HA) 0.703 0.141 0.716 0.074

(e) (b) + DSU (w/o lcon) 0.712 0.137 0.735 0.068
(f) (b) + DSU (Ours) 0.719 0.135 0.745 0.065

We also display the visual ev-
idence of the updated pseudo-
labels obtained from the DSU
strategy in Fig. 6. It is shown
that the initial pseudo-labels un-
fortunately tend to miss impor-
tant parts as well as fine-grained
details. The application of CRF
helps to filter away background
noises, while salient parts could still be missing out. By adopting our DSU and attentive training
strategy, the missing parts could be retrieved in the updated pseudo-labels, with the object silhouette
also being refined. These numerical and visual results consistently verify the effectiveness of our
pipeline in deep unsupervised RGB-D saliency detection.

Table 3: Analyzing attentive training strategy (ATS) with different set-
tings. ‘Setting 1’ is backbone + uniform weight + DSU, and ‘Setting
2’ is backbone + attentive weight + DSU. The last four columns show
backbone + ATS + DSU with different alternation interval τ .

*
Analysis of the ATS Ours Analysis of the interval τ
Setting 1 Setting 2 τ = 3 τ = 1 τ = 5 τ = 10

NJUD Fβ ↑ 0.695 0.707 0.719 0.711 0.712 0.687
M ↓ 0.148 0.142 0.135 0.143 0.138 0.147

NLPR Fβ ↑ 0.706 0.737 0.745 0.742 0.739 0.698
M ↓ 0.071 0.067 0.065 0.069 0.066 0.073

Detailed analysis of the ATS.
The influence of the attentive
training strategy (ATS) is stud-
ied in detail here. The error
reduction curves in Fig. 4 have
shown that the use of ATS could
lead to greater test error reduc-
tion compared with the backbone
that uses uniform weight or at-
tentive weight for each instance. When combining the ATS with the DSU strategy as shown in
Table 3, the ATS also enables the network to learn more efficiently than using uniform weight or
attentive weight alone, by comparing ‘Ours’ with ‘Setting 1’ and ‘Setting 2’. In addition, we discuss
the effect of different alternation intervals τ in ATS. As listed in Table 3, the larger or smaller interval
leads to inferior performance due to the insufficient or excessive learning of saliency models.

Table 4: Internal mean absolute errors, each is evaluated
between current pseudo-labels and the corresponding true
labels (only used for evaluation purpose) during the train-
ing process.

Pseudo-label Update Initial Update 1 Update 2 Update 3 Update 4

Mean absolute error 0.162 0.124 0.117 0.116 0.116

Table 5: Comparison of different pseudo-label generation
variants. ‘CRF’ refers to fully-connected CRF. ‘OTSU’
represents the standard Otsu image thresholding method.

Label Accuray Eξ ↑ Fw
β ↑ Fβ ↑ M ↓

Initial pseudo-label 0.760 0.526 0.614 0.162
Initial pseudo-label + CRF 0.763 0.578 0.634 0.144

Our DSU 0.792 0.635 0.708 0.116
Depth map 0.419 0.284 0.164 0.414

Depth map + OTSU 0.465 0.398 0.429 0.332

6_06-59-23; 7_07-04-59; 10_09-50-19; 12_03-56-24; 12_04-09-57; 000615_left ; 000615_left；000659_left；
000817_left； 001109_left；

Image GTInitial +CRF Update 1 Update 2

Figure 6: Visual examples of the intermedi-
ate pseudo-labels used in our approach. ‘Initial’
shows the initial pseudo-labels generated by tra-
ditional handcrafted method. ‘+CRF’ refers to
the pseudo-labels after applying fully-connected
CRF. Update 1&2 represent the updated pseudo-
labels produced in our pipeline over two training
rounds. ‘GT’ means the ground truth, used for
reference purpose only.

Analysis of pseudo-labels. We analyze the quality of pseudo-labels over the training process in Ta-
ble 4, where the mean absolute error scores between the pseudo-labels at different update rounds and
the ground-truth labels are reported. It is observed that the quality of pseudo-labels is significantly
improved during the first two rounds, which then remains stable in the consecutive rounds. Fig. 6
also shows that the initial pseudo-label is effectively refined, where the updated pseudo-label is close
to the true label. This provides more reliable guiding signals for training the saliency network.
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Comparison of different pseudo-label variants. In Table 5, we investigate other possible pseudo-
label generation variants, including, initial pseudo-label with CRF refinement, raw depth map, and
raw depth map together with OTSU thresholding (Otsu, 1979). It is shown that, compared with the
direct use of CRF, our proposed DSU is able to provide more reliable pseudo-labels, by disentangling
depth to promote saliency. It is worth noting that a direct application of the raw depth map or together
with an OTSU adaptive thresholding of the depth map, may nevertheless lead to awful results. We
conjecture this is because of the large variations embedded in raw depth, and the fact that foreground
objects may be affected by nearby background stuffs that are close in depth.

Table 6: Discussion on different pseudo-label updating settings.

Different Pseudo-label Updating Setups
NJUD NLPR

Fβ ↑ M ↓ Fβ ↑ M ↓
(a) DSU w/o DNonSal 0.698 0.143 0.715 0.072
(b) DSU using DLabel

Sal , DLabel
NonSal 0.691 0.154 0.707 0.079

(c) DSU using DSal, DNonSal (Ours) 0.719 0.135 0.745 0.065

Is depth-disentanglement necessary?
In our DSU, we disentangle the raw
depth map into valuable salient parts as
well as redundant non-salient areas to
simultaneously highlight the salient re-
gions and suppress the non-salient neg-
ative responses. To verify the necessity
of depth disentanglement, we remove the DNonSal branch in the depth-disentangled network and
only use the DSal to update pseudo-labels in DLU. Empirical results in Table 6 reveal that removing
DNonSal (row (a)) leads to significant inferior performance when comparing with the original DSU
(row (c)), which proves the superiority of our DSU design.

How about using raw depth labels in DSU? We also consider to directly utilize the raw disen-
tangled depth labels, i.e., DLabel

Sal and DLabel
NonSal, to update pseudo-labels in DSU. However, a direct

adoption of the raw depth labels does not lead to good performance, as empirically exhibited in
Table 6 (b). The DSU using raw labels performs worse compared to our original DSU design in row
(c). This is partly due to the large value variations and intrinsic label noises in raw depth map as
discussed before. On the other hand, benefiting from the capability of deep-learning-based networks
to learn general representations from large-scale data collections, using DSal and DNonSal in our
DSU strategy is able to eliminate the potential biases in a single raw depth label. Visual evidences
as exhibited in the 4th-7th columns of Fig. 3 also support our claim.

4.4 APPLICATION TO FULLY-SUPERVISED SETTING

Table 7: Applying our DSU to existing fully-
supervised RGB-D SOD methods.

*
NJUD NLPR

Fβ ↑ M ↓ Fβ ↑ M ↓
DMRA (Piao et al., 2019) 0.872 0.051 0.855 0.031

+ Our DSU 0.893 0.044 0.879 0.026

CMWN (Li et al., 2020c) 0.878 0.047 0.859 0.029
+ Our DSU 0.901 0.041 0.882 0.025

FRDT (Zhang et al., 2020f) 0.879 0.048 0.868 0.029
+ Our DSU 0.903 0.038 0.901 0.023

CPD (Wu et al., 2019) 0.873 0.045 0.866 0.028
+ Our DSU 0.909 0.036 0.907 0.022

To show the generic applicability of our approach,
a variant of our DSU is applied to several cutting-
edge fully-supervised SOD models to improve
their performance. This is made possible by re-
defining the quantities DLabel

Sal = SGT ⊗Dmap and
DLabel

NonSal = (1 − SGT ) ⊗ Dmap, with SGT being
the ground-truth saliency. Then the saliency net-
work (i.e., existing SOD models) and the depth-
disentangled network are retrained by SGT and
the new DLabel

Sal and DLabel
NonSal, respectively. After

training, the proposed DLU is engaged to obtain
the final improved saliency. In Table 7, we report
the original results of four SOD methods and the new results of incorporating our DSU strategy on
two popular benchmarks. It is observed that our supervised variants have consistent performance im-
provement comparing to each of existing models. For example, the average MAE score of four SOD
methods on NJUD benchmark is reduced by 18.0%. We attribute the performance improvement to
our DSU strategy that can exploit the learned DSal to facilitate the localization of salient object
regions in a scene, as well as suppress the redundant background noises by subtracting DNonSal.
More experiments are presented in the Appx A.2.

5 CONCLUSION AND OUTLOOK
This paper tackles the new task of deep unsupervised RGB-D saliency detection. Our key insight is
to internally engage and refine the pseudo-labels. This is realized by two key modules, the depth-
disentangled saliency update in iteratively fine-tuning the pseudo-labels, and the attentive training
strategy in addressing the issue of noisy pseudo-labels. Extensive empirical experiments demon-
strate the superior performance and realtime efficiency of our approach. For future work, we plan to
extend our approach to scenarios involving partial labels.
Acknowledgement. This research was partly supported by the University of Alberta Start-up Grant, UAHJIC
Grants, and NSERC Discovery Grants (No. RGPIN-2019-04575).
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A APPENDIX
In this appendix, we first elaborate on the evaluation metrics used in this paper, in Appx A.1. Then, more
details and experiments of our DSU are presented in Appx A.2, including the detailed structures of D-Sal
and D-NonSal CNNs, more experiments on unsupervised and fully-supervised scenarios, and other pseudo-
label initialization. These empirical results consistently demonstrate the effectiveness and scalability of our
approach. In Appx A.3, we illustrate on the implementation details of our unsupervised pipeline. In Appx A.4,
we discuss the potential limitations which can be addressed in the near future. In Appx A.5, we additionally
conduct some interesting experiments to further verify the efficiency of our method. Finally, in Appx A.6, we
investigate several potential directions that deserve further exploration.

A.1 EVALUATION METRICS

We adopt four widely-used metrics in SOD to evaluate the performance of saliency models, i.e., E-measure,
F-measure, weighted F-measure and MAE. The lower the MAE, the better. For other metrics, the higher score
is better. Concretely, F-measure is an overall performance measurement and is computed by the weighted
harmonic mean of the precision and recall:

Fβ =
(1 + β2)× Precision×Recall

β2 × Precision+Recall
, (9)

where β2 is set to 0.3 to emphasize the precision (Achanta et al., 2009). We use different fixed [0, 255]
thresholds to compute the F-measure metric. Weighted F-measure (Fw

β ) (Margolin et al., 2014) is its weighted
measurement. MAE (M) (Borji et al., 2015) represents the average absolute difference between the predicted
saliency map and ground truth. It is used to calculate how similar a normalized saliency maps S ∈ [0, 1]W×H

is compared to the ground truth G ∈ [0, 1]W×H :

MAE =
1

W ×H

W∑
x=1

H∑
y=1

|S(x, y)− G(x, y)|, (10)

where W and H denote the width and height of S, respectively. Enhanced-alignment measure (Eξ) (Fan
et al., 2018) is proposed based on cognitive vision studies to capture image-level statistics and their local pixel
matching information, as in

Eξ =
1

W ×H

W∑
i=1

H∑
j=1

ϕs(i, j), (11)

where ϕs(·) is the enhanced-alignment matrix (Fan et al., 2018), which reflects the correlation between S and
G after subtracting their global means.

A.2 MORE ANALYSES ON THE PROPOSED DSU

Detailed structures. The detailed structures of the D-Sal CNN and D-NonSal CNN are illustrated in Fig. 7.
The ‘Conv 3×3’ represents a convolutional layer with the kernel size of 3.

Visual results for unsupervised RGB-D SOD models. More visual comparisons with unsupervised RGB-D
saliency models are shown in Fig. 8, where our unsupervised pipeline generates promising saliency prediction
that is close to true label.
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Figure 7: Detailed structure of D-Sal and D-NonSal
CNNs in DSU. BN means batch normalization opera-
tion.

Comparison with current state-of-the-art RGB-
D SOD methods under fully-supervised scenario.
As discussed in Sec. 4.4 of the main text, our
method can boost the performance of existing SOD
models greatly, by applying DSU to existing meth-
ods. In this section, we further compare our fully-
supervised variant of DSU with 25 existing state-of-
the-art RGB-D saliency models. We adopt the same
feature-extraction backbone (Wu et al., 2019) as in
DCF (Ji et al., 2021a) to build the saliency network
in the DSU framework. Numerical results in Table 8
and visual results in Fig. 9 consistently show the su-
periority and scalability of our method.

Pseudo-label Initialization. We investigate other
initial pseudo-labels (e.g., DCMC (Cong et al.,
2016)), to further verify the effectiveness of our pro-
posed method. The superior performance is also observed, by comparing backbone with ours: 0.167 vs. 0.146
on NJUD, 0.119 vs. 0.084 on NLPR, 0.142 vs. 0.119 on STERE and 0.146 vs. 0.128 on DUTLF-Depth, using
MAE metric.
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A.3 IMPLEMENTATION DETAILS

The proposed deep unsupervised pipeline is implemented with PyTorch and trained using a single Tesla P40
GPU. Both Saliency and Depth Networks employ the same saliency feature extraction backbone (CPD (Wu
et al., 2019)), which is equipped with the encoder of ResNet-50 (He et al., 2016), with initial parameters pre-
trained in ImageNet (Krizhevsky et al., 2012). All training & testing images are uniformly resized to the size
of 352× 352. Throughout training, the learning rate is set to 1× 10−4, and the Adam optimizer is used with a
mini-batch size of 10. Our approach is trained in an unsupervised manner, i.e., without any human annotations,
where initial pseudo-labels are the outputs of handcrafted RGB-D saliency method CDCP (Zhu et al., 2017b).
As for the proposed attentive training strategy, its alternation interval is set to 3, amounting to 2τ = 6 epochs
in a training round. During inference, our approach directly predicts saliency maps based on an RGB image,
without accessing any depth map.

A.4 LIMITATION AND DISCUSSION

As demonstrated in this paper, our deep unsupervised RGB-D saliency detection approach achieves an appealing
trade-off between detection accuracy and human annotation consumption. However, due to the lack of accurate
pixel-level annotations, the model still fails to comprehensively detect the fine-grained details, i.e., the edges
of salient objects. To tackle this challenge, a doable solution is to introduce auxiliary edge constraint. For
example, the edge detection loss can be employed to low-level features of the model, which forces the model
to produce discriminative features highlighting object details (Zhang et al., 2020b; Liu et al., 2019). The edge
maps can be generated by classical Canny operator (Canny, 1986) in an unsupervised manner. Hopefully
this could encourage more inspirations and contributions to this community and further pave the way for its
booming future.

Image Depth GT Ours DCMC CDCP SE LHM MB

Figure 8: Qualitative comparison with unsupervised RGB-D SOD models. GT means ground-truth.
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Table 8: Quantitative results of fully-supervised RGB-D saliency detection methods. The best results
are highlighted in boldface. When evaluating the newly released DUTLF-Depth dataset, the specific
setup used by (Piao et al., 2019) is adopted to make a fair comparison.

Method
NJUD NLPR STERE DUTLF-Depth

Eξ ↑ Fw
β ↑ Fβ ↑ M ↓ Eξ ↑ Fw

β ↑ Fβ ↑ M ↓ Eξ ↑ Fw
β ↑ Fβ ↑ M ↓ Eξ ↑ Fw

β ↑ Fβ ↑ M ↓
CTMF (Han et al., 2017) .864 .732 .788 .085 .869 .691 .723 .056 .841 .747 .771 .086 .884 .690 .792 .097
DF (Qu et al., 2017) .818 .552 .744 .151 .838 .524 .682 .099 .691 .596 .742 .141 .842 .542 .748 .145
PCA (Chen & Li, 2018) .896 .811 .844 .059 .916 .772 .794 .044 .887 .801 .826 .064 .858 .696 .760 .100
TANet (Chen & Li, 2019) .893 .812 .844 .061 .916 .789 .795 .041 .893 .804 .835 .060 .866 .712 .779 .093
PDNet (Zhu et al., 2019) .890 .798 .832 .062 .876 .659 .740 .064 .880 .799 .813 .071 .861 .650 .757 .112
MMCI (Chen et al., 2019) .878 .749 .813 .079 .871 .688 .729 .059 .873 .757 .829 .068 .855 .636 .753 .113
CPFP (Zhao et al., 2019) .895 .837 .850 .053 .924 .820 .822 .036 .912 .808 .830 .051 .814 .644 .736 .099
DMRA (Piao et al., 2019) .908 .853 .872 .051 .942 .845 .855 .031 .923 .841 .876 .049 .927 .858 .883 .048
SSF (Zhang et al., 2020e) .913 .871 .886 .043 .949 .874 .875 .026 .921 .850 .867 .046 .946 .894 .914 .034
A2dele (Piao et al., 2020) .897 .851 .874 .051 .945 .867 .878 .028 .915 .855 .874 .044 .924 .864 .890 .043
JL-DCF (Fu et al., 2020) - - - - .954 .882 .878 .022 .919 .857 .869 .040 .931 .863 .883 .043
S2MA (Liu et al., 2020) - - - - .938 .852 .853 .030 .907 .825 .855 .051 .921 .861 .866 .044
UCNet (Zhang et al., 2020a) - - - - .953 .878 .890 .025 .922 .867 .885 .039 .903 .821 .856 .056
FRDT (Zhang et al., 2020f) .917 .862 .879 .048 .946 .863 .868 .029 .925 .858 .872 .042 .941 .878 .902 .039
D3Net (Fan et al., 2020a) .913 .860 .863 .047 .943 .854 .857 .030 .920 .845 .855 .046 .847 .668 .756 .097
HDFNet (Pang et al., 2020a) .915 .879 .893 .038 .948 .869 .878 .027 .925 .863 .879 .040 .934 .865 .892 .040
CMWNet (Li et al., 2020c) .910 .855 .878 .047 .940 .856 .859 .029 .917 .847 .869 .043 .916 .831 .866 .056
DANet (Zhao et al., 2020c) - - - - .949 .858 .871 .028 .914 .830 .858 .047 .925 .847 .884 .047
PGAR (Chen & Fu, 2020) .915 .871 .893 .042 .955 .881 .885 .024 .919 .856 .880 .041 .944 .889 .914 .035
ATSA (Zhang et al., 2020c) .921 .883 .893 .040 .945 .867 .876 .028 .919 .866 .874 .040 .947 .901 .918 .032
BBSNet (Fan et al., 2020b) .924 .884 .902 .035 .952 .879 .882 .023 .925 .858 .885 .041 .833 .663 .774 .120
HAINe (Li et al., 2021a) .921 .887 .898 .038 .956 .890 .891 .024 .925 .871 .883 .040 .938 .883 .906 .038
RD3D (Chen et al., 2021b) .918 .889 .900 .037 .956 .894 .890 .022 .926 .877 .885 .038 .949 .908 .914 .031
DSA2F (Sun et al., 2021) .923 .889 .901 .039 .950 .889 .897 .024 .927 .877 .895 .038 .949 .908 .924 .032
DCF (Ji et al., 2021a) .924 .893 .902 .035 .957 .892 .891 .021 .927 .873 .885 .039 .952 .909 .926 .030
Ours (fully supervised) .926 .894 .909 .036 .957 .897 .907 .022 .927 .882 .895 .037 .951 .911 .918 .031

Image Depth GT Ours DCF DSA2F HAINet BBSNet S2MA UCNet FRDT
Figure 9: Qualitative comparison of fully-supervised RGB-D SOD methods. Obviously, our fully-
supervised variant infers more appealing saliency maps compared to existing SOTA models, includ-
ing DCF (Ji et al., 2021a). DSA2F (Sun et al., 2021), HAINet (Li et al., 2021a), BBSNet (Fan et al.,
2020b), S2MA (Liu et al., 2020), UCNet (Zhang et al., 2020a) and FRDT (Zhang et al., 2020f).
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A.5 ADDITIONAL ANALYSIS

In this paper, our DSU design achieves appealing trade-off between model performance and complexity since
our method has additional benefits of not introducing extra test-time cost and not relying on the depth map
during the inference stage, as shown in Table 1 and Fig. 1. Meanwhile, our method can be easily adapted to
integrate useful depth cues by engaging the proposed DSU and DLU. In Table 9, we conduct an interesting
experiment, comparing the model performance, inference speed, FLOPs and parameter number, when using
only RGB stream versus using RGB and depth simultaneously during inference. It is observed that introduc-
ing depth information can further improve the model performance, but at the same time, it will lead to the
decrease of inference speed, and the increases of FLOPs and parameters. These results further demonstrate the
effectiveness and efficiency of our DSU design.

Table 9: Quantitative results of our DSU when using only RGB stream versus using RGB and depth
simultaneously during inference.

Model Complexity Model Performance (NLPR)
Speed↑ FLOPs↓ Parameters↓ Eξ↑ Fw

β ↑ Fβ↑ M↓
Our lightweight design (only using RGB) 35 FPS 17.87 G 47.85 MB 0.879 0.657 0.745 0.065

with additional depth (using RGB and depth) 21 FPS 45.16 G 96.53 MB 0.885 0.670 0.762 0.062

A.6 FUTURE DIRECTION

In this paper, we make the earliest effort to explore deep unsupervised learning in RGB-D SOD, which is
demonstrated to achieve appealing performance without involving any human annotations during training. To
our best knowledge, this is the first such attempt in RGB-D SOD. Meanwhile, we also investigate several
potential directions for future research as follows.

(1) Exploring on the utilization of depth. The lack of explicit pixel-level supervision brings new challenge to
the RGB-D SOD task, that is, inconsistency and large variations in raw depth maps. In this paper, we address
it from two aspects. For depth variations between salient objects and background (i.e., possible inter-class
variance), a depth-disentangled network is designed to learn the discriminative saliency cues and non-salient
background from raw depth map. For variance within salient objects (i.e., possible intra-object variance), we
use thresholding and normalization operations to remove illegal numbers, and apply CRF to smooth the updated
pseudo-labels in DLU. One promising future direction is that we can include some post-processing operations
to make highlighted region on the “depth-revealed saliency map” uniform before using it to update pseudo-
labels. Here we provide an extended experiment in Table 10, where we smooth the inconsistent depth using a
new CRF before feeding it to the DLU. This results in higher performance benefiting from more uniform depth.
We believe more dedicated algorithm is worth exploring in future work to deal with inconsistent depth.

Table 10: Ablated experiment on the utilization of depth.
NLPR NJUD

Eξ↑ Fw
β ↑ Fβ↑ M↓ Eξ↑ Fw

β ↑ Fβ↑ M↓
Our DSU framework 0.879 0.657 0.745 0.065 0.797 0.597 0.719 0.135

Our DSU using saliency-guided depth with CRF 0.885 0.661 0.751 0.064 0.799 0.603 0.724 0.133

(2) Exploring on alleviating noise in unsupervised learning. Noisy problem has always been a universal and
inevitable problem for unsupervised learning. In this paper, the proposed ATS strategy is able to alleviate this
problem by properly re-weighting to reduce the influence of the ambiguous pseudo-label during training. One
promising future direction is that we can design new algorithms to model the uncertainty regions and train the
saliency network with partial BCE loss to alleviate the noisy issue of pseudo-labels.

(3) Exploring on generating high-quality pseudo-labels. In our paper, a depth-disentangled saliency update
(DSU) framework is designed to automatically produce pseudo-labels with iterative follow-up refinements,
which is able to provide more trustworthy supervision signals for training the saliency network. For future work,
we can explore other algorithms to generate high-quality pseudo-labels, for example, 1) imposing contrastive
loss (e.g., using superpixel candidates with ROI pooling to construct contrastive pairs) to enlarge the feature
distance between foreground and background; 2) involving partially labeled scribbles to help generate more
accurate pseudo-labels.

(4) Exploring on more fine-grained disentangled framework. In this paper, we design a depth-disentangled
saliency update framework to decompose depth information into saliency-guided and non-saliency-guided
depths to promote saliency, motivated by the nature of the class-agnostic binary salient object segmentation

19



Published as a conference paper at ICLR 2022

task. It is worthy exploring in the future to design more fine-grained disentangled framework. For example, in
addition to the saliency-guided depth and non-saliency-guided depth, we can additionally model the ‘not sure’
regions by learning an uncertainty map (using well-designed new algorithms such as Monte Carlo Dropout (Gal
& Ghahramani, 2016)). The learned uncertainty map, which reveals the ‘not sure’ regions, can engage in the
pseudo-label training process to mitigate the noises of uncertain pseudo-labels, using partial BCE loss.

(5) Exploring on more applications. SOD is useful for a variety of downstream applications including image
classification (Chen et al., 2021c; Bi et al., 2021; 2022; Ning et al., 2021a;c), light-field data (Zhang et al.,
2019; 2020d), medical image processing (Zhao et al., 2021b; Ji et al., 2021b; 2020a; Yao et al., 2021b;a; Ning
et al., 2021b; 2020), and video analysis (Zhang et al., 2021; Zhao et al., 2021a), etc. This is benefiting from
its generic mechanism to highlight class-agnostic objects in a scene. For unsupervised RGB-D SOD, it can be
regarded as a pre-task or prior to effectively improve the performance of target task (e.g., weakly supervised
semantic segmentation, action recognization), and avoid more laborious efforts.

As discussed above, we summarize five potential research directions for deep unsupervised RGB-D salient
object detection. Hopefully this could encourage more inspirations and contributions to this community.

20


	Introduction
	Related Work
	Methodology
	Overview
	Depth-disentangled Saliency Update
	Depth-disentangled Network
	Depth-disentangled Label Update

	Attentive Training Strategy

	Experiments and Analyses
	Datasets and Evaluation Metrics
	Comparison with the State-of-the-arts
	Analysis of the Empirical Results
	Application to Fully-supervised Setting

	Conclusion and Outlook
	Appendix
	Evaluation Metrics
	More Analyses on the proposed DSU
	Implementation Details
	Limitation and Discussion
	Additional Analysis
	Future Direction


