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Abstract—Most of the standard classification algorithms per-
form poorly when dealing with the case of imbalanced classes
i.e. when there is a class to which the overwhelming majority
of samples belong. There are many approaches that deal with
this problem, among which SMOTE and SMOTE boosting, the
common approach prefers overly simplistic models that lead
to degradation of performance. Recent advances in statistical
learning theory provide more adequate complexity penalties for
weak classifiers, which stem from the Rademacher complexity
terms in the ensemble generalization bounds. By adopting these
advances and introducing a sample weight correction based on
the classification margin at each iteration of boosting we get more
precise models for imbalanced classification problems.

I. INTRODUCTION

Many practical classification problems suffer from severe
class imbalance: the amount of observations that belong to
a major class is significantly higher than the number of
observations that belong to a minor class [1]. In medical
diagnostics the number of patients with a rare condition
is significantly lower than the number of patients without
it [2]. Similar imbalance is observed in malware detection [3],
churn analysis [4], aircraft fault prediction [5] and so on [6],
[7], [8], [9]. Another broad field that contains imbalanced
classification problems is anomaly detection [10], as typically
number of anomalies in the training sample is small, while
correct detection of anomalies is crucial in applications.

Without any modification, classifiers trained to attain high
accuracy are tuned to the objects of major class and thus have
high false-negative rate with respect to the minor class. In
many applications the costs of false-positives are much less
than that of false-negatives, especially in healthcare, where
falsely classifying an ill patient as healthy can have dire
consequences.

It has been observed [11] that common classification algo-
rithms typically perform poorly in imbalanced classification
problems. An anecdotal example of such poor performance
is illustrated in Table I, which compares Gradient Boosting
classifier [12] with SMOTE boosting, which is the state-of-
the-art approach for imbalanced classification [13]. It can
be seen, that on three common imbalanced datasets the F1-
scores obtained using cross-validation are significantly better
for SMOTE boosting than for Gradient Boosting. This example
shows that in a typical imbalanced classification problem
generic approaches can fail to construct classifiers of good
quality.

Another popular idea used in many imbalanced classifica-
tion methods is to augment the training sample by adding

Dataset Gradient boosting SMOTE boosting

yeast3 0.7829 0.8024
pocker-8-9 vs 5 0.1738 0.2855
winequal-red-8 vs 6-7 0.2371 0.3040

TABLE I
F1-SCORES FOR DIFFERENT IMBALANCED DATASETS FOR GRADIENT

BOOSTING AND SMOTE BOOSTING. BEST VALUES ARE IN BOLD.

examples to the sample (Oversampling) or dropping examples
from the sample (Undersampling) in order to level the class
balance in it [14], [15]. One of the most used approaches is
SMOTE [16], which adds new synthetic objects to the training
sample by deriving them from the examples in the minority
class.

A large family of approaches to imbalanced classification
relies on boosting of weak classifiers. Boosting has well
studied theoretical properties [17], [18] and exhibits superior
performance compared to many other algorithms [19]. There
exists a SMOTE-inspired modification of boosting [13], which
does a resampling step before adding a new weak classifier
to the ensemble. For a more detailed review of usage of
ensembles in imbalanced classification see [20] and references
therein.

Advances in development of new boosting schemes rely
on selection of the right term for model complexity penalty,
based on the generalization upper bound and the Rademacher
complexity of weak classifier model class [21]. Recently
the naive upper bound for classification error provided by
Koltchinskii [22] was improved by Cortes et al. and used in
Deep Boosting algorithm, which picks ensemble elements that
minimize the corresponding learning bound at each step of
boosting [23].

In this paper we improve the quality of SMOTE boost-
ing for imbalanced classification problems by enhancing the
procedure with insights from Deep Boosting and introducing
a correction of sampling probability for objects using the
classification margin for boosting algorithms. We also prove an
upper bound for the Rademacher complexity for the SMOTE
oversampling approach and examine how to get better models
with more precise estimates for the Rademacher complexity.

The paper is structures as follows: we begin by describing
the proposed approaches and the related theoretical properties,
and then discuss the results of the numerical experiments
applying the proposed approaches to the typical imbalanced
classification problems. Appendix contains additional experi-
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ments and proofs.

II. ALGORITHMS

We consider an imbalanced binary classification problem:
there is a training sample S = {(xi, yi = y(xi))}ni=1, xi ∈
Rd, yi ∈ {−1, 1}, and the goal is to construct a classifier
f(x) : Rd 7→ {−1, 1} such that f(x) ≈ y(x). Furthermore let
nmaj =

∑n
i=1[yi = −1] be the number of objects in the major

class, and nmin =
∑n
i=1[yi = 1] – the number of objects in the

minor class. Since the problem is imbalanced, the imbalance
ratio IR(S) =

nmaj

nmin
� 1. Let {wxi}ni=1 denote the sample

weights of S.

A. SMOTE boosting

One of the most popular approaches to dealing with imbal-
anced classification problem is SMOTE (Synthetic Minority
Oversampling Technique) [13]. The key idea is to introduce
additional synthetic objects to the minor class. Each new object
is generated through the following steps (see Figure 1 for an
illustration):

1) Pick a random object x from the minor class (y(x) = 1,
(x, y(x)) ∈ S).

2) Uniformly sample one object x′ from the set of the k
nearest neighbours of x ({x(1) , . . . ,x(k)}) within the
same class (y(x(j)) = 1) of the original sample S
(previously generated objects do not contribute to the
synthesis).

3) Synthesize a new object xnew = ax+ (1− a)x′, where
a is a random variate from the uniform distribution over
[0, 1]. Set the sample weight of this object (for training
new weak learner) to wxnew

= awx + (1− a)wx′ .
4) Add the object (xnew, 1) with weight wxnew

to the training
sample.

There are two parameters of the algorithm: the size of the
neighbourhood k and the number of synthetic objects added to
the sample at each step of boosting. The number of synthetic
objects is often derived from the desired resampling ratio
r = IR(S′)

IR(S) , where S′ is the sample S with synthetic samples
generated using SMOTE. The size of the neighbourhood k

and the resampling ratio r are usually chosen through cross-
validation.

To perform boosting on the basis of SMOTE we generate
new synthetic objects before constructing a new weak learner
and select weights for them according to the procedure above.

B. Deep Boosting

Let us consider a family of classifiers H , e.g. the set of
all decision trees with the number of nodes not exceeding m.
The empirical Rademacher complexity of H over a sample S
of size n measures the richness of H in terms of accurately
the best classifier from H correlates with the random noise.
In particular:

R̂S(H) =
1

n
Eσ

[
sup
h∈H

n∑
i=1

σih(xi)

]
,

where σ = {σi}ni=1 are the Rademacher variables: i.i.d. ran-
dom variables taking values in {−1, 1} with equal probability
and independent from the sample S.

The Rademacher complexity of the family H for i.i.d.
samples of size n from a distribution D on (x, y) is

Rn(H) = ES∼Dn

[
R̂S(H)

]
.

We consider an ensemble of the form f(x) =∑T
t=1 αtht(x) with each ht(x) ∈ Hkt and kt ∈ {1, . . . , N}.

Thus the weak classifiers are picked from one of the complex-
ity families H1, . . . ,HN .

We want to bound the theoretical binary misclassification
error R(f) with the ρ-empirical error R̂S,ρ(f), given by

R(f) =
1

n

n∑
i=1

[yi 6= f(xi)] = E(x,y)∼D
[
1yf(x)≤0

]
,

R̂S,ρ(f) = E(x,y)∼S
[
1yf(x)≤ρ

]
.

The theorem below provides an upper bound for the mis-
classification error:

Theorem 1 ([23]): For fixed ρ > 0 for each δ > 0 with
probability at least (1−δ) over the draws of S ∼ Dn for each
f =

∑T
t=1 αtht ∈ F it holds that:

R(f) ≤ R̂S,ρ(f) +
4

ρ

T∑
t=1

αtRn(Hkt)+

+
2

ρ

√
logN

n
+

√
logN

n

⌈
4

ρ2
log

⌈
ρ2n

logN

⌉⌉
+

log 2
δ

2n
.

Essentially, the Deep Boosting minimizes an tractable ap-
proximation of this generalization upper bound, [23].

C. Deep SMOTE boosting

To apply Deep Boosting with SMOTE resampling at each
step for the ensemble construction we need to estimate the
empirical Rademacher complexity R̂S(H) for the family of
weak learners H over the sample S′ generated by the SMOTE
procedure, sec.II-A.
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The following theorem provides an upper bound for the

Rademacher complexity for the family of decision trees with
fixed number of nodes, while similar results can be obtained
for any weak classifier with known VC dimension.

Theorem 2: The Rademacher complexity of a decision tree
for a sample of size n and number of new synthetic objects ñ
can be upper bounded by

Rn(H) ≤
√

(4m+ 2) log2 (d+ 2) log (n+ ñ+ 1)

n+ ñ
,

where m is the number of nodes for decision trees in H and
d is the input dimension.

The proof follows the similar proof in section 4 of [23].
The VC-dimension of Tm,d — a family of all decision trees
with m nodes and input dimension d can be upper bounded
by 2(m+1) log2 (d+ 1), see e.g. [24], [25]. For any class of

functions H it holds that Rn(H) ≤
√

2VC−dim(H) log(n+1)
n .

As we consider a sample of size n + ñ we get the desired
upper bound for the Rademacher complexity.

This modification of the upper bounds of the Rademacher
complexity is naive, because after resampling the new dataset
is no longer i.i.d. It is desirable to further improve the upper
bound for the family of decision trees taking into account
the violation of i.i.d. and imbalanced nature of the resampled
dataset S′.

D. Improvement of Deep Boosting using margin

The classification margin for a boosting algorithm for some
object (x, y) is defined as follows:

M(x, y) =
y
∑T
t=1 αtht(x)∑T
t=1 αt

,

where h1, ..., hT are the base classifiers returned by a boosting
algorithm on the training set.

Margin-based Deep SMOTE boosting differs from common
Deep SMOTE boosting algorithm in that it specifies a new
scheme for sampling minor class objects during the synthesis
of new objects. In Deep SMOTE boosting algorithm a minor
class object for SMOTE is selected in a uniformly random
way among all examples of the minor class: the probability
that an object is chosen is

p(xi) =

{
1
nmin

, if yi = 1,

0, otherwise.

In margin-based Deep SMOTE boosting the selection proba-
bility is based on the classification margin:

p(xi) =

{
M(xi,yi)∑n

j=1[yj=1]M(xj ,yj)
, if yi = 1,

0, otherwise.

Therefore objects from the minor class which are misclassified
and have a strong margin are chosen for SMOTE-synthesis
more often. Due to this adjustment of the selection proba-
bilities, the SMOTE procedure generates more objects in the
general region where the current ensemble has the largest
misclassification error, thereby improving the class balance

and the ensemble performance after this boosting iteration in
the area.

III. EXPERIMENTS

In this section we discuss the results of the numerical
experiments aimed at comparing the proposed Margin-based
Deep SMOTE boosting and common Deep SMOTE boost-
ing algorithms against the state-of-the alternatives: SMOTE
boosting, Deep boosting, AdaBoosting and Gradient boosting
using typical datasets for testing in imbalanced classification
problems.

The code for the Margin-based and common Deep SMOTE
boosting, as well as the Deep boosting algorithms is avail-
able at the Github repository https://github.com/natalikozlo/
margin deep smote. We use xgboost [12] implementation
of the Gradient Boosting and perform standard tuning for
handling of imbalanced classification problems for it.

A. Quality measures

Typically in imbalanced classification problems we want to
increase the recall, given by the ratio TP

TP+FP
, while keeping

Precision, TP
TP+FN

at a fixed level, where TP, TN, FP, and FN

are the number of true positives, true negatives, false positives
and false negatives in the test sample, respectively. This trade-
off in the imbalanced classification problems is better captured
by the F1 score, which is the harmonic mean of Precision and
Recall

F1 score = 2
Precision · Recall
Precision + Recall

.

B. Datasets

We use the following datasets of various input dimension
d, sample size n and imbalanced ratio IR in our experiments:

1) Datasets from KEEL repository [26], which is the most
popular repository for datasets with imbalanced classes.
In this paper we use datasets with relatively high sample
size, which are listed in Table II.

2) Datasets that are often used for benchmarking of imbal-
anced classification algorithms, and that are frequently
used in papers on SMOTE are given in Table III.

3) OCR-17 dataset, which was used for benchmarking in
Deep Boosting algorithm. The dataset was altered by
dropping a significant part of the objects with label “7”,
so as to change the class balance in the training sample
in favour of objects with label “1” (see Table III).

C. Benchmarking of the Deep SMOTE boosting

We compare the following algorithms: AdaBoost, SMOTE
boosting (based on AdaBoost), the Deep boosting and the
Deep SMOTE boosting on datasets from Table III to test
Deep boosting algorithm in combination with SMOTE on
datasets frequently used in papers on SMOTE. The resampling
approaches which generally performed worse than SMOTE
boosting according to experiments in Section A are not tested
here.

The optimal hyperparameters of each algorithm are selected
through grid search with cross-validation. The number of
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Dataset d n IR

yeast-1-2-8-9 vs 7 8 947 30.57
yeast-0-2-5-6 vs 3-7-8-9 8 1004 9.14
winequal-white-3-9 vs 5 11 1482 58.28
yeast6 8 1484 41.40
yeast5 8 1484 32.73
winequal-red-8 vs 6-7 11 855 46.50
yeast4 8 1484 28.10
yeast-0-2-5-7-9 vs 3-6-8 8 1004 9.14
winequal-white-3 vs 7 11 900 44.00
poker-8-9 vs 5 10 2075 82.00
yeast3 8 1484 8.10
page-blocks0 10 5472 8.79
segment0 19 2308 6.02
vehicle0 18 846 3.25

TABLE II
SELECTED DATASETS FROM KEEL REPOSITORY

Dataset d n IR

OCR-17 (imb.) 784 8597 9.14
Mammography 6 11183 2.30
Phoneme 6 5404 2.90
Satimage 36 6435 9.70

TABLE III
DATASETS FOR TESTING OF SMOTE

synthetic objects are picked from [100, 200, 300, 400, 500], the
number of neighbours – from [3, 5, 7, 9], and the depth of trees
vary between 2 and 12. Parameters λ and β for the Deep
Boosting and the Deep SMOTE boosting are selected from
{10−3, 10−4, . . . 10−7}.

The results for the best hyperparameters are provided in
Table IV. Figure 2 depicts the dependence of the F1 score on
number of boosting rounds for the “Phoneme” dataset.

Fig. 2. Dependence of F1-score on number of trees in the ensemble for the
dataset Phoneme

Provided results suggest that the Deep SMOTE boosting
is better than the existing alternatives for imbalanced classi-
fication: it performs better than SMOTE boosting, one of the
best existing approaches to imbalanced datasets, and the Deep
boosting.

Dataset Ada(Boost) AdaSMOTE Deep DeepSMOTE

Mammography 0.6625 0.6687 0.6799 0.6903
Phoneme 0.8436 0.8472 0.8514 0.8608
Satimage 0.5642 0.5923 0.6086 0.6091
OCR-17 (imb.) 0.9833 0.9861 0.9859 0.9916

TABLE IV
COMPARISON OF F1-SCORES FOR DIFFERENT BOOSTING APPROACHES

Dataset Gradient SMOTE SMOTE+Margin

yeast3 0.7829 0.8150 0.8234
page-blocks0 0.8885 0.8914 0.8805
segment0 0.9909 0.9955 0.9970
vehicle0 0.9401 0.9600 0.9556
yeast-1-2-8-9 vs 7 0.3462 0.4291 0.4510
yeast-0-2-5-6 vs 3-7-8-9 0.6008 0.6689 0.6785
winequal-white-3-9 vs 5 0.2381 0.4054 0.4000
yeast6 0.5404 0.6309 0.6324
yeast5 0.7973 0.8521 0.8317
winequal-red-8 vs 6-7 0.2371 0.3632 0.4000
yeast4 0.3964 0.5355 0.5526
yeast-0-2-5-7-9 vs 3-6-8 0.8190 0.8460 0.8557
winequal-white-3 vs 7 0.3333 0.5033 0.5156
poker-8-9 vs 5 0.1738 0.3300 0.3492

TABLE V
COMPARISON OF GRADIENT BOOSTING (GRADIENT), THE DEEP SMOTE
BOOSTING (SMOTE) AND THE MARGIN-BASED DEEP SMOTE BOOSTING

(SMOTE+MARGIN) BY F1 score

D. Introducing margin into the Deep SMOTE boosting

The aim of this set of experiments is to test if the margin-
based selection probabilities improve the resampling procedure
for the Deep SMOTE boosting and to compare it with state-of-
the-art realization of boosting xgboost [12] on imbalanced
datasets from Table II.

The setup is as follows: optimal tree depth is chosen with
grid-search from 3 to 12, the Deep Boosting parameters λ
and β are fixed to 10−6, because these values are nearly the
optimal ones for most problems, and the number of neighbours
k is set to 5 according to the recomendations in the state-of-
the-art. Resampling multiplier r vary from 1.5 to 8.5.

We optimize the hyperparameters for the xgboost by grid-
search over the depth of tress ([3, 12]) and the learning rate
([0.05, 0.1, 0.5, 0.7, 1, 1.5]). We use the logistic regression loss
and logistic regression loss function before logistic transforma-
tion, and we re-weight the sample according to the imbalance
ratio of each dataset. Number of boosting rounds was fixed to
100. To deal with imbalanced classification we vary the max
delta step boosting parameter, as suggested in documentation
of xgboost [12].

Results of cross-validation are presented in Table V. De-
pendence of the F1 score on the resampling multiplier for the
“winequal-white-3 vs 7” is illustrated in Figure 3.

We see that the Margin-based Deep SMOTE boosting is
better than both the Deep SMOTE boosting, which is designed
to tackle imbalanced classification problems, and Gradient
boosting.
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E. Properties of trees in ensembles

Tables VI and VII present properties of the decision trees
in the final ensemble for two datasets: “Mammography” and
“Satimage”. We select the optimal hyperparameters using
cross-validation and compare them across 4 different algo-
rithms: AdaBoost, the SMOTE boosting, the Deep boosting
and the Deep SMOTE boosting. It turns out that the mean
depth of the decision tree is larger for “deep” counterparts
of algorithms: trees constructed with the Deep boosting are
deeper than trees from AdaBoost, and trees from the Deep
SMOTE boosting are generally deeper than trees for the
simple SMOTE boosting. Also “deep” counterparts require
less boosting rounds T (trees in the ensemble), while offering
better F1 scores.

Metric Ada(Boost) SMOTE Deep DeepSMOTE

F1 score 0.6625 0.6687 0.6799 0.6903
T 50 46 13 26
Mean depth 4 4 6.23 10.62
Max depth 4 4 7 12

TABLE VI
PROPERTIES OF TREES IN ENSEMBLES FOR DATASET “MAMMOGRAPHY”

Metric Ada(Boost) SMOTE Deep DeepSMOTE

F1 score 0.5642 0.5923 0.6086 0.6091
T 50 50 42 38
Mean depth 4 8 7.5 8.915
Max depth 4 8 8 12

TABLE VII
PROPERTIES OF TREES IN ENSEMBLES FOR DATASET “SATIMAGE”

IV. CONCLUSION

We introduced two new approaches to tackle the issue of
class imbalance in the binary classification problems: the Deep
SMOTE and the Margin-based Deep SMOTE boosting. These
approaches offer significant improvement of the classification
quality over the state-of-the-art algorithms. The presented

experimental evidence suggests that the main sources of im-
provement are the use of more complex base learners and
the adoption of the margin-based selection probabilities for
SMOTE resampling procedure.

In addition we provide more accurate upper bounds fro
the Rademacher complexity for decision trees, as common
estimates appear to be too loose. Complexity penalties based
on these estimates lead to ensembles of models better suited
for imbalanced classification, as they take into account class
imbalance.
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APPENDIX

COMPARISON OF SMOTE WITH UNDER AND OVER
SAMPLING

Here we compare SMOTE with the classic undersampling
and oversampling techniques for the Deep Boosting ensem-
bles.

For the experiment the depth of the decision trees is chosen
by grid-search over values from 3 to 12. The hyperparameters
λ and β of the Deep Boosting algorithm are 10−6, and the
number of neighbours k fro SMOTE resampling is 5.

Resampling multiplier r is adjusted to keep the imbalance
ratio in the augmented sample in the range 1.5 to 8.5.
• Undersampling: we remove r−1

r nmaj objects of the major
class

• Oversampling: we add (r − 1)nmin objects of the minor
class

• SMOTE: similar to Oversampling.

Dataset SMOTE Oversampling Undersampling

yeast3 0.8052 0.7945 0.7671
page-blocks0 0.8909 0.9115 0.8596
vehicle0 0.9873 0.9744 0.9250
yeast-1-2-8-9 vs 7 0.7273 0.6667 0.6000
yeast-0-2-5-6 vs 3-7-8-9 0.7692 0.8108 0.7568
yeast6 0.8333 0.8571 0.8333
yeast5 0.9474 0.9474 0.8000
winequal-red-8 vs 6-7 0.6667 0.5714 0.4000
yeast4 0.6316 0.6207 0.5714
yeast-0-2-5-7-9 vs 3-6-8 0.9500 0.9268 0.9048

TABLE VIII
F1 score FOR SMOTE, OVERSAMPLING, UNDERSAMPLING

SMOTE is better than Oversampling and Undersampling
approaches. Undersampling is worse almost on every dataset
due to the small size of an updated sample.
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IR 0.5 0.1 0.1 0.1
SMOTE no no yes yes
i.i.d. not i.i.d i.i.d

poker-8-9 vs 5 0.8841 0.9807 0.9065 0.9659
winequal-red-8 vs 6-7 0.7660 0.9360 0.9115 0.9286
winequal-white-3 vs 7 0.7382 0.9222 0.9058 0.9202
yeast-0-2-5-6 vs 3-7-8-9 0.7184 0.9427 0.9157 0.9359
yeast-1-2-8-9 vs 7 0.7263 0.9469 0.9208 0.9378
yeast6 0.6417 0.9217 0.8983 0.9155

TABLE IX
ESTIMATES OF THE RADEMACHER COMPLEXITY

ESTIMATION OF THE RADEMACHER COMPLEXITY

The Rademacher complexity is a lose estimate of the model
complexity, moreover often we need to use some upper bounds
of the Rademacher complexity in applied problems. Also the
Rademacher complexity doesn’t take into account an intrinsic
nature of the data e.g. imbalance of classes or non-i.i.d
distribution of class labels in the sample. In this section we
examine how these two problems affect the accuracy of clas-
sifiers constructed using penalties based on the Rademacher
complexity.

For real datasets we use the following workflow:
1) Select imbalanced ratio IR (0.1 or 0.5)
2) Generate new objects using SMOTE to get the selected

imbalanced ratio.
3) Generate labels for new objects for estimation of the

Rademacher complexity or according to non-i.i.d. nature
of the data: if we have a synthetic object generated from
two objects x, x′, then generate a label for this object
σ according to the labels of x and x′ when estimating
the Rademacher complexity.

So, we consider 4 setups for the experiment: either SMOTE
non-i.i.d generation of labels or i.i.d generation of labels,
and either generation of the Rademacher random variables or
generation of binomial random variables with probability to
get 1 selected using imbalance ratio.

For each case we train trees with different depths (in range
[3, 15]) and select the best depth, to estimate the Rademacher
complexity we generate labels {σi} 100 times.

In Table IX there are Rademacher complexity estimates for
the described 4 cases. We can see that using SMOTE we
increase the modified Rademacher complexity, and for non-
i.i.d. data with synthetic objects the Rademacher complexity
is lower.
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