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ABSTRACT

Most Graph Neural Networks are based on the principle of message-passing,
where all neighboring nodes exchange messages with each other simultaneously.
We want to challenge this paradigm by introducing the Flood and Echo Net, a
novel architecture that aligns neural computation with the principles of distributed
algorithms. In our method, nodes sparsely activate upon receiving a message,
leading to a wave-like activation pattern that traverses the graph. Through these
sparse but parallel activations, the Net becomes more expressive than traditional
MPNNs which are limited by the 1-WL test and also is provably more efficient
in terms of message complexity. Moreover, the mechanism’s ability to generalize
across graphs of varying sizes positions it as a practical architecture for the task
of algorithmic learning. We test the Flood and Echo Net on a variety of synthetic
tasks and find that the algorithmic alignment of the execution improves general-
ization to larger graph sizes. Moreover, our method significantly improves gener-
alisation and correct execution in terms of graph accuracy on the SALSA-CLRS
benchmark.

1 INTRODUCTION

The message-passing paradigm has become the cornerstone of graph learning, with Message Passing
Neural Networks (MPNNs) emerging as a dominant framework. In these networks, nodes iteratively
update their states by simultaneously exchanging messages with all neighboring nodes, providing the
necessary flexibility to process arbitrary graph topologies. However, this simple procedure requires
a considerable amount of compute, as in every round, messages have to be sent over all edges.
Moreover, all nodes throughout the entire graph have to update their state. Even though it might
be that the majority of the nodes do not play an active part in the computation and should maintain
their current state, resulting in unnecessary computations. This phenomenon is potentially amplified
if the network is applied to larger graphs, as the number of rounds usually has to be increased in
order to capture non local interactions between nodes. We challenge this paradigm and instead base
the mechanism on another principle, an algorithm design pattern commonly found in distributed
computing. We focus on the mechanism’s ability to generalize to larger graph instances which we
evaluate in the context of neural algorithmic reasoning on graphs.

We propose a new execution framework, the Flood and Echo Net (FE Net). While still rooted in
message-passing, our approach employs a distinct message exchange strategy inspired by the flood-
ing and echo algorithmic design pattern from the field of distributed computing. The computation
unfolds in two phases, initiated by a single origin node. First, messages are propagated away from
the origin towards the rest of the graph. In this flooding part nodes only send messages to nodes
that are farther away from the origin. Once all nodes have received a message, the propagation flow
reverses. Now, nodes only send messages to neighbors closer to the origin, starting with the nodes
that are farthest away. This process creates a wave-like activation pattern that expands equally in
all directions before returning to the origin, as illustrated in Figure 1. This unique activation pattern
forms the core of the FE Net offering a more structured and algorithmically aligned computation at
the level of message exchange.

A key feature of the FE Net’s execution is its sparse yet highly parallel activation pattern. At each
timestep, only a subset of nodes – those equidistant from the origin – are active, either sending
messages outward or echoing them back. This approach enables the computation to involve the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: The FE Net propagates messages in a wave-like pattern throughout the entire graph.
Starting from an origin (orange), messages are sent towards its neighbors and then continuously
“flooded” outwards (blue). Once the farthest nodes are reached, the flow reverses, and messages are
“echoed” back (red) toward the origin. Throughout the computation, only a small subset of nodes
is active at any given time, passing messages efficiently throughout the entire graph. Moreover, the
mechanism naturally generalizes to graphs of larger sizes.

entire graph while significantly reducing the number of messages exchanged to do so. Crucially,
the FE Net operates directly on the original graph topology, avoiding higher-order computations.
This simplicity not only preserves and leverages the graph’s inherent structure but also ensures the
model’s scalability to larger and more complex graphs. We find that compared to regular MPNNs,
the FE Net offers three distinct advantages that are of interest for graph learning: improved message
complexity, enhanced expressivity, and a natural way to generalize the computation to larger graph
sizes.

Standard MPNNs exchange information with their one-hop neighborhood in each round, sending
O(m) messages in total along all edges. In contrast, an entire phase of a FE Net also exchanges
O(m) messages, but crucially, it updates node states using information beyond the immediate local
neighborhoods. This method not only improves message complexity but also enhances expressive-
ness. By implicitly leveraging graph distance information, the FE Net’s expressiveness goes beyond
the 1-WL test.

Finally, as the main application of the proposed method, we address the challenge of neural algo-
rithmic reasoning on graphs, where models must generalize learned algorithms across much larger
graph sizes. When MPNNs are applied to graphs of larger sizes, they must usually adapt and scale
the number of rounds to retain the same relative field of perception. In comparison, the execution
of the FE Net can generalize to graphs of larger sizes more naturally as the computation inherently
involves the entire graph. We hypothesize that the algorithmic alignment of the underlying mecha-
nism makes the FE Net particularly well-suited for algorithm learning. To validate this, we test our
method on a diverse set of algorithmic problems, including SALSA-CLRS - a benchmark specifi-
cally designed to evaluate scalable algorithmic reasoning on graphs. Our results demonstrate that the
FE Net significantly enhances the ability to generalize learned algorithms to larger graph instances.
Thus, the algorithmic alignment on the level of message passing offers a promising new direction
for the field of graph learning and specifically for algorithmic reasoning on graphs.

We outline our main contributions as follows:

• We introduce the FE Net, a new execution framework aligned with principles of distributed
algorithm design. The computation follows a special node activation pattern, which allows
it to facilitate messages more efficiently throughout the graph.

• We provide theoretical insights that through this alternative computation flow, the FE Net is
more expressive than common MPNNs and more efficient in terms of message complexity.

• We demonstrate that the algorithmic alignment of the architecture is beneficial for size
generalization in graph algorithm learning. This finding is empirically validated through
extensive experiments on a variety of synthetic tasks and the SALSA-CLRS benchmark.
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2 RELATED WORK

Originally proposed by Scarselli et al. (2008), Graph Neural Networks have seen a resurgence
with applications across multiple domains (Veličković et al., 2017; Kipf & Welling, 2016; Neun
et al., 2022). Notably, this line of research has gained theoretical insights through its connection
to message-passing models from distributed computing (Sato et al., 2019; Loukas, 2020; Papp &
Wattenhofer, 2022a). This includes strengthening existing architectures to achieve maximum ex-
pressiveness (Xu et al., 2018; Sato et al., 2021) or going beyond traditional models by changing the
graph topology (Papp et al., 2021; Alon & Yahav, 2021b). In this context, multiple architectures
have been investigated to combat information bottlenecks in the graph (Alon & Yahav, 2021a), i.e.
using graph transformers (Rampasek et al., 2022). Note that our work is orthogonal to this, as we
focus on message-passing on the original graph topology. Moreover, we investigate how specific
information can be exchanged throughout the entire graph, which might be challenging even if no
bottleneck is present. Similarly, higher order propagation mechanisms (Zhang et al., 2023b; Maron
et al., 2020; Zhao et al., 2022) have been proposed to tackle this issue or gain more expressiveness.
While some of these approaches also incorporate distance information, this usually comes at the cost
of higher-order message-passing. Whereas our work emphasizes a simple execution mechanism on
the original graph topology. In recent work, even the synchronous message-passing among all nodes
has been questioned (Martinkus et al., 2023; Faber & Wattenhofer, 2023), giving rise to alternative
neural graph execution models.

How GNNs can generalize across graph sizes (Yehudai et al., 2021) and their generalization capabil-
ities for algorithmic tasks, attributed to their structurally aligned computation (Xu et al., 2020) has
been of much interest. This has led to investigations into the proper alignment of parts of the archi-
tecture (Dudzik & Veličković, 2022; Engelmayer et al., 2023; Dudzik et al., 2023). A central focus
has been on neural algorithmic reasoning, the study how such networks can learn to solve algorithms
(Veličković et al., 2022; Ibarz et al., 2022; Minder et al., 2023; Bohde et al., 2024; Numeroso et al.,
2023; Georgiev et al., 2024). Moreover, the ability to extrapolate (Xu et al., 2021) and dynamically
adjust the computation in order to reason when confronted with more challenging instances remains
a key aspect (Schwarzschild et al., 2021; Grötschla et al., 2022; Tang et al., 2020).

3 FLOOD AND ECHO NET

The fields of distributed computing and graph learning share a fundamental connection through their
use of message-passing-based computation. Despite some differences, the equivalence between cer-
tain models in these domains has been established (Papp & Wattenhofer, 2022a). This enables the
direct translation of results such as theoretical bounds on width, number of rounds, and approxima-
tion ratios from the field of distributed computing to the study of GNNs (Sato et al., 2019; Loukas,
2020). Furthermore, research has demonstrated that the alignment of neural network architectures
with their underlying learning objectives can significantly enhance both performance and sample
complexity (Xu et al., 2020; Dudzik & Veličković, 2022). This synergy between distributed com-
puting and GNNs raises an intriguing question: can we leverage additional insights from the dis-
tributed computing community to advance graph learning? Motivated by this potential, we propose
the Flood and Echo Net (FE Net), a novel execution framework that directly incorporates design
patterns from distributed algorithms. To illustrate the differences of our method, let us first review
the conventional MPNN approach. Whenever we refer to an MPNN throughout this paper, we will
refer to a GNN that operates on the original graph topology and exchanges messages in the following
way:

atv = AGGREGATEk({{xt
u | u ∈ N(v)}})

xt+1
v = UPDATE(xt

v, a
t
v)

In this traditional approach, all nodes exchange messages simultaneously with all their neighbors in
every round. We challenge this paradigm by taking inspiration from a design pattern called flooding
and echo (Chang, 1982), a common building block in distributed algorithms (Kuhn et al., 2007).
This pattern introduces a two-phase process: first, messages are broadcast (flooded) throughout
the entire graph (Dalal & Metcalfe, 1978), and then information is gathered back (echoed) from
all nodes. This approach allows for more structured and potentially more efficient information
propagation encompassing the entire graph.
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Algorithm 1 Flood and Echo Net

1: D ← distances(G, origin)
2: maxD← max(D)
3: x← Encoder(x)
4: for t = 1 to phases do
5: for d = 1 to maxD do flooding
6: x[d]← FConvt(d− 1→ d)
7: x[d]← FCrossConvt(d→ d)
8: end for
9: for d = maxD to 1 do echo

10: x[d]← ECrossConvt(d→ d)
11: x[d− 1]← EConvt(d→ d− 1)
12: end for
13: x← Update(x)
14: end for
15: x← Decoder(x)

Figure 2: On the left, an algorithm describing the FE Net. First, the distances are pre-computed to
activate and update the proper nodes. The convolutions a→ b send messages from nodes at distance
a to nodes at distance b, with only the nodes at distance b updating their state, indicated by x[b]. On
the right, an illustration of a single phase of a FE Net. At every update step, only a subset of nodes
is active and changes its state. The origin is the top node of the graph, and the blue arrows depict
the information flow in the flooding, while the red arrows represent the echo part. Note that during
a single phase activates all nodes in the graph, regardless of the graph size, while sending only a
constant number of messages across each edge.

The Flood and Echo Net aligns its computation flow directly with the flooding and echo design
pattern. The process begins at an origin node and proceeds through T phases, each comprising a
flooding and an echo part. Figure 2 provides a pseudo-code outline of the FE Net algorithm. Initially,
nodes are partitioned based on their distance from the origin, then the T phases are executed. During
the flooding phase, messages propagate outward from the origin. We iterate through distances in
ascending order, using two types of convolutions: FConv, which sends messages from nodes at
distance d− 1 to nodes at distance d. Crucially, only nodes at distance d update their state (denoted
as x[d]), and FCrossConv, which exchanges messages between nodes at the same distance d. In the
subsequent echo phase, the message flow reverses and is echoed back towards the origin. Now we
iterate through distances in descending order, again using two types of convolutions: ECrossConv
for updating nodes at the same distance, and EConv for sending messages from nodes at distance
d to nodes at distance d − 1, updating the latter. Note that usually, only a subset of nodes, which
are located at the same distance, are activated simultaneously. Therefore, FE Net can make use of a
sparse but parallel activation pattern that propagates throughout the entire graph. Figure 2 provides
a visual illustration of a complete phase, with colors indicating active edges and updated nodes. For
a more in-depth discussion of the FE Net, including a comparison with regular MPNNs and their
computation tree, we refer to Appendix A.

Modes of Operation The computation of the FE Net starts from an origin node. This allows for
different usages of the proposed method. In the following, we outline three different strategies,
which we will refer to as different modes of operations: fixed, random and all. Across all modes of
operation, once the origin is chosen, the same flooding and echo parts are executed to compute node
embeddings. These embeddings are then directly utilized for node classification tasks; for graph
classification, we aggregate the final predicted class probabilities of the individual nodes.

In the fixed mode, the origin is given or defined by the problem instance, i.e. by a marked source
node specific to the task. In contrast, the random mode selects an origin uniformly at random from
all nodes. In the all mode, we execute the FE Net once for every node. In every run, we keep only
the node embedding for the chosen origin. This can be seen as a form of ego graph prediction (Zhao
et al., 2021a) for each node. Although computationally more expensive, it could also be used for
efficient inference on tasks where only a subset of nodes is of interest.
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4 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of the Flood and Echo Net. While the FE Net is
based on message-passing over the original graph topology, its unique propagation mechanism sets
it apart from conventional message-passing GNNs. Our analysis focuses on two critical aspects: ex-
pressiveness and message complexity. We demonstrate that the FE Net not only matches but exceeds
the expressiveness of regular MPNNs, surpassing the limitations of the 1-WL test. Furthermore, we
show that through the sparse activation of nodes the FE Net achieves improved efficiency in terms
of message complexity. This enables it to solve certain tasks with significantly fewer messages than
traditional MPNNs. The complete proofs of these theoretical insights are contained in Appendix E.

4.1 EXPRESSIVENESS

Figure 3: Example of two 4-regular graphs which
cannot be distinguished using standard MPNNs as
they are 1-WL equivalent. However, no matter
which starting point is chosen, the FE Net can eas-
ily distinguish between them through the derived
distance to the starting node.

The expressiveness of GNNs is tightly linked
to the Weisfeiler-Lehman (WL) test (Leman
& Weisfeiler, 1968). Most common message-
passing architectures, which work on the
original graph topology without higher-order
message-passing, are typically bounded by the
expressiveness of the 1-WL test (Papp & Wat-
tenhofer, 2022b). First, we show that the FE
Net, despite its distinct operational mechanism,
not only matches the expressiveness of Mes-
sage Passing Neural Networks (MPNNs) but
does so with at most the same number of mes-
sages:

Theorem 4.1. On connected graphs, the Flood
and Echo Net is at least as expressive as any
MPNN . Furthermore, it exchanges at most as
many messages.

However, while MPNNs are limited by the 1-WL test, the FE Net is more expressive. Although it
also exchanges messages solely on the original graph topology, the mechanism can implicitly lever-
age more information to distinguish more nodes through the alignment of the message propagation
with the distance to the origin in the graph.

Theorem 4.2. On connected graphs, Flood and Echo Net is strictly more expressive than 1-WL and,
by extension, standard MPNNs.

This enhanced expressiveness comes from the FE Net’s ability to implicitly leverage additional
information through its unique message propagation strategy. From a single node’s perspective,
the flooding and echo mechanism introduces a notion of edge “direction” relative to the origin.
This allows for differentiation between edges leading towards or away from the origin, or those at
equal distances. This leads to more possibilities to distinguish nodes in the local neighborhood and
leverage non-local information as the wave pattern transitions through the whole graph. At the same
time, the net could ignore this additional directionality information of the edges and simulate the
execution of a standard MPNN. Next to these theoretical insights, we also empirically validate that
the FE Net is more expressive on a variety of datasets which we include in Appendix C.

Theorem 4.3. On connected graphs, an MPNN that is given a uniquely marked node r in the graph
and a sufficient number of rounds is as expressive as a Flood and Echo Net with origin r.

Note, that the FE Net’s design intentionally breaks certain symmetries present in traditional MPNNs
through the introduction of the origin node. Moreover, even though we show equivalence in terms of
expressivity in Theorem 4.3, in the FE Netthere is never a distinguishing of the origin node through
a marking but only through the propagation mechanism. Importantly, our theoretical results hold
regardless of the FE Net operational mode. As seen in Figure 3, no matter the starting point, the
graphs can always be distinguished. The key insight is that the origin gives an ego perspective
of the graph, similar to Identity-aware GNNs (You et al., 2021) or Subgraph GNNs (Zhao et al.,
2021b). However, while these mechansims share similar ideas, our design is distinctly different
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as it leverages this information implicitly and makes changes on the message-passing flow itself.
While this design choice affects the equivariance properties, this symmetry breaking benefits the FE
Net to be algorithmically aligned and leverage additional structural information, contributing to its
enhanced expressiveness and efficiency.

4.2 MESSAGE COMPLEXITY

The FE Net has a significantly advantage regarding the number of messages it needs to exchange
in order to involve the entire graph in its computation. In standard MPNNs, a single round
of message-passing updates all n node states by exchanging messages over all edges. There-
fore, every single round exchanges O(m) messages while propagating information by one hop.
Consequently, if any information needs to be propagated over a distance of D hops, the total
number of node updates is O(Dn) and the total number of exchanged messages is O(Dm).

Figure 4: The top row shows a standard
MPNN from the perspective of a specific
node (orange) with 2 rounds of message-
passing. The arrows denote messages.
When applied to larger graphs, the same
model will have nodes (gray) that lie out-
side of the receptive field and cannot be
part of the computation. The bottom row
shows the flooding phase of an FE Net . It
generalises naturally to larger graphs, in-
volving the entire graph in its computa-
tion. Both models send the same number
of messages in their computations.

The FE Net, in contrast, employs a more efficient
message-passing strategy. During its execution, only a
subset of nodes is active during each timestep, sending
messages either away from or towards the origin. This
key difference results in nodes being sequentially ac-
tivated, with messages passing information throughout
the entire graph instead of only their immediate one-
hop neighborhood. More precisely, in a single phase
of a FE Net, consisting of one flooding followed by
one echo part, each node is activated a constant num-
ber of times, while there are also at most a constant
number of messages passed along each edge. There-
fore, a single phase performs O(n) node updates and
exchanges O(m) messages. Crucially, if information
needs to be exchanged over a distance of D hops, this
can be achieved with a constant number of phases, as
each phase exchanges information throughout the entire
graph. Therefore, it is possible to exchange information
over a distance of D hops using only O(m) messages
compared to O(Dm) messages used by MPNNs.

Lemma 4.4. There exist tasks that Flood and Echo Net
can solve using O(m) messages, whereas no MPNN
can solve them using less than O(nm) messages.

As a consequence of this insight, it follows that there
exist tasks that can be solved more efficiently using the
FE Net. If information must be exchanged throughout
the entire graph, it can be that MPNNs must useO(nm)
messages, while a constant amount of Flood and Echo phases with O(m) messages would suffice.
Moreover, recall that by Theorem 4.1, the FE Net can simulate the execution of other MPNNs
while using, asymptotically speaking, at most the same number of messages. For a more detailed
discussion on the runtime and message complexity, we refer to Appendix G.

5 GENERALIZATION IN ALGORITHMIC TASKS

In this section, we study the task of neural algorithmic reasoning and specifically graph algorithm
learning. The concept of an algorithm is best understood as a sequence of instructions that can
be applied to compute a desired output given the respective input. Algorithms have the inherent
advantage of generalization across their entire domain. If we want to multiply two numbers, we can
easily illustrate and explain the multiplication algorithm using small numbers. However, the same
procedure generalizes, i.e. the algorithm can be used to extrapolate and multiply together much
larger numbers using the same algorithmic steps. Neural algorithmic reasoning aims to grasp these
underlying principles and incorporate them into machine learning architectures. The ultimate aim
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is to combine both domains to get models that can learn the algorithmic principles and generalize
them properly, even for unseen larger inputs.

A key challenge in studying generalization is properly adapting the architecture to larger problem
sizes. Without adjustment, it might be that the amount of compute does not suffice to solve the
task at hand, or in the case of graph tasks, that the required information is no longer located in the
same receptive field, but is farther away. Therefore, a common strategy is to adjust the compute,
or number of rounds, according to the increase of the problem size. The FE Net offers a distinct
alternative on how to generalize to larger graphs compared to regular MPNNs. In fact, during a
single phase, messages propagate throughout the entire graph and can, therefore, be updated using
information beyond the immediate neighborhood. Figure 4 visually highlights the difference of how
an MPNN and a FE Net generalises to larger graph topologies.

Previous work has indicated that changes in the architecture or so-called “algorithmic alignment”
(Engelmayer et al., 2023; Dudzik & Veličković, 2022; Xu et al., 2020) can be beneficial for learning
and generalization. In our work, we propose to incorporate such an alignment on the architectural
level, adjusting the message-passing itself to match the flooding and echo paradigm, an algorithm
design pattern from distributed computing. Therefore, we believe that the FE Net can improve
generalization for algorithm learning.

In the following, we empirically validate our hypothesis on a variety of tasks related to graph algo-
rithm learning. First, we test the architecture on synthetic algorithmic tasks, which allow us both
fine-grained control and theoretical insights into what is needed to solve the tasks at hand. Then,
we proceed to test our method on the more challenging SALSA-CLRS benchmark, which consists
of well-known graph algorithms and is specifically designed to test graph algorithms at scale. One
aspect how the method differs in generalisation is that in MPNNs each node performs more compu-
tations (as the number of rounds is increased to cover the graph). Whereas in the FE Net the number
of phases can remain unchanged. Then, for a single node, there is no change in the computation,
even though from a graph perspective more steps are executed. We believe that this behaviour can
be very helpful for generalising to larger graphs.

5.1 ALGORITHMIC TASKS

Our initial study focuses on three algorithmic tasks PrefixSum, Distance and Path Finding adapted to
the graph domain by Grötschla et al. (2022). In the Distance task, nodes have to infer their distance to
a marked node modulo 2. For the Path Finding task, nodes in a tree have to predict whether they are
part of the path between two given nodes. Finally, in the PrefixSum task, the cumulative sum modulo
2 has to be computed on a path graph. For a more detailed description of the datasets, we refer to
Appendix J.1. Although these tasks may appear simple compared to more elaborate algorithms, their
simplicity enables analysis of the requirements to complete the task, thus providing crucial insights
into the fundamental capabilities of our FE Net architecture. For a more thorough analysis of the FE
Net on the PrefixSum task, including a theoretical analysis of the exchanged information, we refer
to Appendix D.

Corollary 5.1. Let D be the diameter of the graph. In order to correctly solve the Distance, Path-
finding, and PrefixSum tasks, nodes require information that is O(D) hops away.

We evaluate the performance of the different FE Net modes: fixed, random and all. All modes
execute two phases, which results in O(m) messages exchanged per chosen origin. Moreover, we
choose the marked nodes in the tasks for the origin in the fixed mode. Note that the all mode,
requires n executions, one for each node, therefore, we only consider it for graphs of size at most
one hundred. Nevertheless, the other modes can scale more easily and we believe them to be better
suited for the study of algorithm learning. As a baseline comparison, we consider three models
also used later on in the SALSA-CLRS evaluation. Most importantly, their architectures should be
scalable to larger graph sizes and should operate on the original graph topology. We consider GIN
as a representative of a maximal expressive MPNN which executes a fixed number of rounds. More
precisely, five rounds are executed as the model begins to destabilize for more rounds.

Corollary 5.2. Let D be the diameter of the Graph. Every MPNN that correctly solves the Pre-
fixSum, Distance, or Path Finding for all graph sizes n must execute at least O(D) rounds and
exchange O(mD) messages.
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Figure 5: Extrapolation on the PrefixSum task. All models are trained with graphs of size 10 and
then tested on larger graphs. The Flood and Echo models are able to generalize well to graphs 100
times the sizes encountered during training. We report both the node accuracy on the left and the
graph accuracy on the right.

Table 1: Extrapolation experiments on all algorithmic datasets, all models were trained with graphs
of size 10 and then tested on larger graphs of size 100. We compare the different Flood and Echo
models against a regular GIN, which executes L rounds, PGN and RecGNN, which adapts the
number of rounds. The random mode picks a starting node at random, while the fixed mode starts at
a predefined location. The all chooses each node as a start once. We report both the node accuracy
with n() and the graph accuracy with g().

Model MESSAGES PREFIXSUM DISTANCE PATH FINDING
n(10) n(100) g(100) n(10) n(100) g(100) n(10) n(100) g(100)

GIN O(Lm) 0.78 ± 0.01 0.53 ± 0.00 0.00 ± 0.00 0.97 ± 0.01 0.91 ± 0.01 0.04 ± 0.06 0.99 ± 0.01 0.70 ± 0.05 0.00 ± 0.00
PGN O(nm) 0.94 ± 0.12 0.52 ± 0.01 0.00 ± 0.00 0.99 ± 0.01 0.89 ± 0.01 0.01 ± 0.02 1.00 ± 0.00 0.77 ± 0.03 0.00 ± 0.00
RecGNN O(nm) 1.00 ± 0.00 0.93 ± 0.07 0.66 ± 0.31 1.00 ± 0.00 0.99 ± 0.02 0.93 ± 0.15 1.00 ± 0.00 0.95 ± 0.04 0.45 ± 0.33

Flood and Echo all O(nm) 1.00 ± 0.00 1.00 ± 0.01 0.96 ± 0.07 1.00 ± 0.00 0.99 ± 0.03 0.87 ± 0.25 1.00 ± 0.00 0.92 ± 0.05 0.14 ± 0.22

Flood and Echo random O(m) 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 1.00 ± 0.00 0.97 ± 0.04 0.77 ± 0.30 1.00 ± 0.00 0.82 ± 0.01 0.01 ± 0.00
Flood and Echo fixed O(m) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Due to the above corollary, we also consider two recurrent baselines, which adapt the number of
rounds according to the graph size. Therefore, we consider RecGNN Grötschla et al. (2022) and
PGN (Veličković et al., 2020). We scale the number of rounds by 1.2n, where n denotes the number
of nodes in the graph.

In our experimental setup, we train all models on small graphs of size 10 to assess their ability to
learn underlying algorithmic patterns and then evaluate their generalization capabilities on larger
graphs of size 100. From the results in Table 1, we can observe that the baseline using a fixed
number of layers already struggles to fit the training data and deteriorates when tested on larger
instances. Similarly, the performance of PGN drops for larger graphs. The other models exhibit
better generalization, especially the node accuracy remains high. To provide a more comprehensive
evaluation, we also report graph accuracy, which quantifies the proportion of graph instances where
all nodes are correctly classified. This metric offers insights into the models’ ability to maintain
consistent performance across entire graph structures, which is required in order to solve an instance
correctly in algorithmic reasoning. There, we can see that the overall model performance of the
baselines drops compared to the fixed variant of FE Net. Moreover, we can test extrapolation to even
larger instances, as shown in Figure 5. Note that even though the node accuracy for many entries is
quite high, the graph accuracy deteriorates as the graph sizes increase. The contrast between node
and graph accuracies underscores a critical aspect of graph algorithm learning: while models may
perform well on individual node classifications, ensuring correct and consistent performance across
the entire graph becomes increasingly challenging as graphs grow in size. The FE Net ’s seem to
be more robust to this phenomena, especially for the fixed origin variant. This underscores that the
proposed algorithmic alignment is beneficial for size generalization.

We continue our empirical evaluation of the FE Net on more challenging algorithmic tasks. Note,
that the focus of our study lies on the algorithmic alignment of our method, especially in the context
of size generalization. In many real-world graph settings such size generalization might not be
of interest and the usage of standard message-passing might be more suitable to emphasise the
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importance of local relations and features. Therefore, we leave the study how our proposed method
could be adjusted or combined with existing techniques to tackle such challenges to future work.
Instead, we focus on graph algorithm learning, where we expect the applications and effects of the
algorithmic alignment to be more effective.

5.2 SALSA - CLRS

Building on our previous findings, where the FE Net architecture demonstrated strong generaliza-
tion to larger graph instances on simple algorithmic tasks, we now extend our evaluation to more
challenging and complex graph algorithms. Our goal is to assess whether the FE Net can maintain
its performance advantages when faced with more intricate tasks that demand more sophisticated al-
gorithmic techniques. To this end, we employ the SALSA-CLRS benchmark (Minder et al., 2023),
which comprises a diverse set of six graph algorithms derived from the CLRS (Veličković et al.,
2022) collection.

The SALSA-CLRS benchmark is particularly relevant for our study as it emphasizes sparsity and
scalability, two critical aspects in for graph algorithm learning. While it builds upon tasks from the
CLRS-30 benchmark, it is important to clarify why we chose the SALSA-CLRS extension for our
evaluation. The CLRS-30 collection aims to capture a wide range of algorithmic concepts, includ-
ing geometry, sorting, and string tasks, not limited to graphs per se. To provide a unified interface
for these diverse tasks, it employs an abstract graph view using fully connected graphs, enabling
the modeling of relationships and reasoning between objects. This approach facilitates the training
of generalist algorithmic reasoners and has led to suitable architectures such as the triplet reasoner
(Ibarz et al., 2022; Bohde et al., 2024). However, note that these approaches heavily rely on the fully
connected graph structures and are accompanied by processors with higher order computations. Our
setting differs that we focus on graph algorithm learning, where the graph structure is crucial to the
task and carries inherent information. A key aspect of our study is the generalization to substantially
larger graphs, which extends beyond the typical 4x size increase evaluated in the CLRS framework.
While CLRS-30 can accommodate larger tests, its fully connected, dense graph structure and com-
putationally intensive baselines present scalability challenges. Moreover, applying the FE Net on
fully connected graphs would be ineffective, as it relies on leveraging inherent graph structure and
alignment.
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Figure 6: Graph Accuracy on the
SALSA-CLRS benchmark for the BFS
task on Erdős–Rényi graphs. The FE
Net can generalize almost perfectly to
graphs 10 times larger while the base-
lines already have a significant drop in
performance. Moreover, it does not rely
on the number of steps given by the
hints.

In our evaluation, we use the fixed variant of the FE Net
and choose the origin to match the starting node s pro-
vided by the SALSA-CLRS data whenever possible, i.e.
in the Dijkstra or BFS task. Otherwise, we choose the
node with id 0 to be the origin. For all runs of the FE
Net , unless explicitly stated otherwise, we do not use
hints during training and execute a constant number of
phases. Note that compared to the other baselines, the FE
Net, therefore, does not explicitly rely on being given the
number of steps to be executed. All models are trained on
graphs of size at most 16 and then tested on larger graph
sizes. For the number of phases, we conduct a hyper-
parameter search between 1 and 16phases for each task.
In Table 2, we report the mean graph accuracy and stan-
dard deviation across 5 runs. The baseline performances
were taken from Minder et al. (2023), For further de-
tails on the technical setup, we refer to Appendix I. The
FE Net achieves good performance across the algorithms.
Most notably, the BFS and Eccentricity task can benefit
from the algorithmic alignment. This is further under-
lined when we plot the results for BFS in Figure 6. Here,
the FE Net achieves almost perfect scores on graphs up to size 160, while the baselines already
experience a significant drop off. To further investigate the impact of number of phases, we run an
additional ablation on the Dijkstra and MIS task illustrated in Figure 7 and find that the performance
increases when the number of phases is increased. For the complete results, we refer to Appendix I
which also include tests on a variety of different graph distributions.
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Figure 7: On the left side, we illustrate node accuracy for Dijkstra, and on the right side, graph
accuracy for MIS. Adjusting the number of phases can have a positive impact on both node and graph
accuracy. All models are run on Erdős–Rényi graphs for a different amount of phases, Algorithm
Length indicates that the number of phases is set equal to the given algorithm sequence length.

Table 2: We evaluate the FE Net on the SALSA-CLRS benchmark, all models are trained on graphs
of size 16 and then tested on larger graph sizes. We report the graph accuracy over 5 runs on Erdős–
Rényi graphs of different sizes. The FE Net achieves good performance, especially on the BFS and
Eccentricity task on which it exhibits strong generalization.

Task Model 16 80 160 800 1600

BFS FE Net 100.0 ± 0.0 99.7 ± 0.3 96.6 ± 1.7 22.9 ± 12.5 4.4 ± 5.7

GIN(E) 99.4 ± 0.8 84.3 ± 13.9 57.5 ± 15.3 2.2 ± 4.1 0.1 ± 0.2

PGN 100.0 ± 0.0 88.7 ± 5.9 54.9 ± 21.5 0.2 ± 0.1 0.0 ± 0.0

RecGNN 99.9 ± 0.2 87.9 ± 8.8 55.8 ± 24.8 4.6 ± 6.5 0.4 ± 0.6

DFS FE Net 88.9 ± 3.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

GIN(E) 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 18.4 ± 37.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

RecGNN 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Dijkstra FE Net 91.8 ± 0.7 13.2 ± 1.7 0.5 ± 0.2 0.0 ± 0.0 0.0 ± 0.0

GIN(E) 73.4 ± 2.6 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 94.6 ± 1.1 37.8 ± 6.9 5.2 ± 1.9 0.0 ± 0.0 0.0 ± 0.0

RecGNN 81.7 ± 16.1 6.8 ± 6.1 0.3 ± 0.5 0.0 ± 0.0 0.0 ± 0.0

Task Model 16 80 160 800 1600

Eccentricity FE Net 99.9 ± 0.0 99.9 ± 0.1 98.8 ± 0.4 99.5 ± 0.3 81.1 ± 5.4

GIN(E) 57.3 ± 21.2 77.1 ± 17.5 72.3 ± 18.0 51.3 ± 34.2 36.7 ± 17.6

PGN 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 64.6 ± 14.9

RecGNN 75.8 ± 26.2 80.5 ± 35.0 75.0 ± 39.1 72.7 ± 27.9 63.0 ± 24.8

MIS FE Net 98.3 ± 0.5 91.5 ± 2.4 83.8 ± 4.5 27.9 ± 12.5 13.9 ± 9.6

GIN(E) 6.2 ± 3.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 98.8 ± 0.2 89.2 ± 4.6 74.1 ± 10.1 10.7 ± 10.5 2.0 ± 2.5

RecGNN 56.1 ± 13.1 5.5 ± 7.1 0.8 ± 1.6 0.0 ± 0.0 0.0 ± 0.0

MST FE Net 58.5 ± 4.6 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

GIN(E) 43.2 ± 4.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 79.2 ± 4.3 2.0 ± 1.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

RecGNN 56.8 ± 15.9 0.6 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Overall, the FE Net architecture demonstrates strong performance on SALSA-CLRS. While ex-
celling on certain algorithms, FE Net’s effectiveness varies across different tasks. For some algo-
rithms, we observe enhanced performance when increasing the number of executed phases, sug-
gesting a potential adaptation strategy for tasks less naturally aligned with the flooding and echo
paradigm. Notably, even without relying on predetermined step counts or intermediate hints, our
method can achieve superior results on multiple tasks. This improvement extends to graph accu-
racy, underscoring the FE Net’s capacity to enhance generalization. These findings highlight that
the algorithmic alignment on the level of message-passing benefits graph algorithm learning.

6 CONCLUSION

In this work, we challenge the standard message-passing paradigm commonly used in graph learn-
ing and introduce the Flood and Echo Net. Our method aligns its execution to a design pattern
from distributed algorithms where messages are flooded and echoed throughout the entire graph in
a wave-like activation. Through these structured activations of the nodes, the FE Net becomes more
expressive than regular MPNNs. Moreover, our method is more efficient with regard to message
complexity, as it can facilitate messages throughout the graph more easily. Crucially, the execution
of the FE Net naturally generalizes to graphs of larger sizes, which we find to be beneficial in im-
proving generalization in graph algorithm learning. We empirically validate our findings on simple
algorithmic tasks as well as more challenging graph algorithms from the SALSA-CLRS bench-
mark. Our results demonstrate that the algorithmic alignment of the FE Net significantly enhances
performance on multiple algorithms even in the challenging graph accuracy, particularly when gen-
eralizing to larger graphs. These findings underscore our method’s potential to improve performance
through algorithmic alignment on the level of message-passing.
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Petar Veličković, Adrià Puigdomènech Badia, David Budden, Razvan Pascanu, Andrea Banino,
Misha Dashevskiy, Raia Hadsell, and Charles Blundell. The clrs algorithmic reasoning bench-
mark. In International Conference on Machine Learning, pp. 22084–22102. PMLR, 2022.
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A FLOOD AND ECHO NET DEFINITION

Let r be the origin of the computation phase and let d(v) denote the shortest path distance from v to r.
Then, the update rule for of the FE Net looks is defined as follows, assume T phases are executed. At
the beginning of each phase t, the flooding is performed, where the nodes are sequentially activated
one after another depending on their distance towards the root. Each convolution is either from
nodes at distance d to d + 1 (flood), from d + 1 to d (echo) or between nodes at the same distance
(floodcross, echocross). The term x[d] denotes that only nodes at distance d update their state. For
each distance d from 1 to the max distance in the graph the following update is performed:

f t
v = AGGREGATEFlood({{xt

u | d(u) = d− 1, u ∈ N(v)}})
xt+1
v [d] = UPDATEFlood(x

t
v, f

t
v)

fctv = AGGREGATEFloodCross({{xt+1
u | d(u) = d, u ∈ N(v)}})

xt+1
v [d] = UPDATEFloodCross(x

t+1
v , fctv)
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Figure 8: Visualization of the computation executed on the same graph for a regular MPNN and a
FE Net from the perspective of the red node. The top row shows the computation for regular MPNN
both for 1 and 2 layers of message-passing. Note that executing l layers takes into account the l-Hop
neighborhood. On the bottom row, the computation from the perspective of the red node in a FE Net
is shown. Note that the origin of the FE Net is the orange node. The two middle figures illustrate
the updates in the flood and the echo part respectively. Furthermore, the figure on the right shows
the combined computation for an entire phase.

And similarly for each distance d from max distance -1 to 0 the Echo phase

ectv = AGGREGATEEchoCross({{xt
u | d(u) = d+ 1, u ∈ N(v)}})

xt+1
v [d] = UPDATEEchoCross(x

t
v, ec

t
v)

etv = AGGREGATEEcho({{xt+1
u | d(u) = d, u ∈ N(v)}})

xt+1
v [d] = UPDATEEcho(x

t+1
v , etv)

The phase is completed after another update for all nodes.

xt+1
v = UPDATE(xt+1

v )

Note that the node activations are done in a sparse way, therefore, for all updates that take an empty
neighborhood set as the second argument no update is performed and the state is maintained. Fur-
thermore, in practise we did not find a significant difference in performing the last update step, which
is why in the implementation we do not include it. In Figure 8 we outline the differences between
the computation of an MPNN and a FE Net.

B EXTENDED RELATED WORK

A variety of GNNs that do not follow the 1 hop neighborhood aggregation scheme have been unified
under the view of so-called Subgraph GNNs. The work of Zhang et al. (2023a) analyses these
models in terms of their expressiveness and gives the following general definition:
Definition B.1. A general subgraph GNN layer has the form

h
(l+1)
G (u, v) = σ(l+1)(op1(u, v,G, h

(l)
G ), · · · , opr(u, v,G, h

(l)
G )),
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where σ(l+1) is an arbitrary (parameterized) continuous function, and each atomic operation
opi(u, v,G, h) can take any of the following expressions:

• Single-point: h(u, v), h(v, u), h(u, u), or h(v, v);

• Global:
∑

w∈VG
h(u,w) or

∑
w∈VG

h(w, v);

• Local:
∑

w∈NGu (v) h(u,w) or
∑

w∈NGv (u) h(w, v).

We assume that h(u, v) is always present in some opi.

This allows us to capture a more general class of Graph Neural Networks, i.e., the work of Zhang
et al. (2023b), which can incorporate distance information into the aggregation mechanism this
way. Note that the proposed mechanism of the FE Net differs from that of this particular notion of
subgraph GNNs. At each update step, only a subset of nodes is active. This allows nodes to take into
account nodes that are activated earlier, which is not directly comparable to subgraph GNNs where
the node updates still happen simultaneously for the nodes in question.

Another important issue that GNNs often struggle with is the so-called phenomenon of oversquash-
ing (Alon & Yahav, 2021a). In simple terms, if too much information has to be propagated through
the graph using a few edges, a bottleneck occurs, squashing the relevant information together, lead-
ing to information loss and subsequent problems for learning. Recent work of (Giovanni et al., 2023)
theoretically analyses the reasons leading to the oversquashing phenomena and identifies the width
and depth of the network but also the graph topology as key contributors. Note that the proposed FE
Net is not designed to tackle the problem of oversquashing. Rather, it tries to facilitate information
throughout the graph, assuming that there is no inherent (topological) bottleneck. It only affects the
aforementioned depth aspect of the network. However, as outlined by (Giovanni et al., 2023), the
depth is likely to have a marginal effect compared to the graph topology.

The works of Martinkus et al. (2023), namely AgentNet, and Faber & Wattenhofer (2023), who
proposes AMP (Asynchronous Message Passing), also draw inspiration from the field of distributed
computing. Although they share some aspects in their mechanisms, their respective settings differ
quite a bit. In AgentNet, there exist agents which traverse the graph which gives them the possibility
to solve problems on the graph in sublinear time. In contrast, our approach tries to enable commu-
nication throughout the whole graph, especially in the context of different graph sizes. On the other
hand, AMP activates nodes one at a time, benefiting from a similar computational sparsity as our
method. However, note that the FE Net’s execution is more structured. On one side, this leads to
less flexible activation patterns, however, on the other hand, it translates naturally across graph sizes.
Whereas AMP has to additionally learn a termination criteria which must generalize.

C 1-WL EXPRESSIVE EXPERIMENTS

We empirically validate our findings for the FE Net on multiple expressive datasets that go beyond
1-WL. The tasks span both graph and node predictions, which include graphs that have multiple
disconnected components. We test two modes on these datasets. One variant performs an execution
from a single node using the random variant, while the other performs the all mode. Both modes
compute node embeddings and can be used for the node prediction tasks without modification.
Whereas for graph prediction tasks, the sum of all node class predictions is used for the final graph
prediction. Note that the second variant is fairer for comparison against MPNNs, since for some
datasets like Limits-1, Limits-2, and 4-Cycles, the graph is not connected. Therefore, the single
start mode struggles, as it cannot access all components.

In Table 3 we can see that the Flood and Echo all starts manages to almost perfectly solve all
tasks. The single start performs worse in the Limits-1 and Limits-2 due to the lack of access to all
components. The GIN model, as predicted by theory, performs no better than random guessing. The
higher scores in the Triangles and LCC datasets are due to the fact that these datasets are imbalanced.
For an in-depth explanation of the individual datasets, we refer to Appendix J.2. Comparing the
message complexities of the different methods, a GIN with L layers exchanges O(Lm) messages
while the Flood and Echo model either exchanges O(m) or O(nm) messages based on whether it
executes the single or all starts mode.
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Table 3: As the theory predicts, the GIN model cannot go beyond trivial performance. Whereas
both the single and all execution mode go beyond the limits of 1-WL. Note, that the datasets are
imbalanced and can contain multiple components, which can explain the performance of GIN and
the account for the drop of the single mode compared to the all execution.

Model GIN FLOOD AND ECHO single FLOOD AND ECHO all
Train Test Train Test Train Test

Triangles 0.80 ± 0.00 0.78 ± 0.00 0.92 ± 0.00 0.92 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
LCC 0.79 ± 0.00 0.79 ± 0.00 0.92 ± 0.00 0.91 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
4-Cycles 0.49 ± 0.02 0.50 ± 0.00 0.95 ± 0.01 0.95 ± 0.02 1.00 ± 0.00 0.96 ± 0.02
Limits-1 0.50 ± 0.00 0.50 ± 0.00 0.70 ± 0.06 0.80 ± 0.27 1.00 ± 0.00 1.00 ± 0.00
Limits-2 0.50 ± 0.00 0.50 ± 0.00 0.79 ± 0.05 0.90 ± 0.22 1.00 ± 0.00 1.00 ± 0.00
Skip-Circles 0.10 ± 0.00 0.10 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Messages O(Lm) O(m) O(nm)

1 0 0 1 1

1 1 1 0 1

1 0 0 1 1

? ? 0 1 1

1 1 1 1 0

1 1 1 0 1

Figure 9: Visualization of the information exchange in the PrefixSum task when choosing different
origin nodes for FE Net. We can derive theoretical upper bounds for the performance of FE Net
depending on the number of random origin nodes for a single phase. We show that the empirical
performance closely follows the theoretical analysis. This confirms the ability of the FE Net to
distribute the available information throughout the whole graph.

D INFORMATION PROPAGATION

In this section, we analyze the ability of the FE Net to distribute the available information throughout
the whole graph. We use a synthetic algorithmic dataset, the PREFIXSUM task. For this task, we
can provably determine what pieces of information must be gathered for each node to make correct
predictions. If we choose an appropriate origin point, we could easily send the information and solve
the task. However, more interestingly, what happens if we choose a random origin node instead?
Can the Flood and Echo model still distribute the relevant information, even if it does not suffice
to fully solve the task? We derive theoretical upper bounds for the best-performing instance given
the information that theoretically could be available during the execution depending on the number
of origin nodes. Interestingly, even if the full information is not available, the FE Net achieves
performance that closely follows the theoretical upper bound. This showcases the ability of our
proposed method to distribute all available information throughout the whole graph.

PrefixSum Task For this analysis, we use the PrefixSum dataset, which follows the task intro-
duced by Schwarzschild et al. (2021) and was later adapted for the graph setting (Grötschla et al.,
2022). It consists of a path graph, where one end is marked to distinguish left form right. Each node
v independently and uniformly at random gets assigned one bit xv , which is either 1 or 0, chosen
with probability 1

2 each. The task is to compute the prefix sum from left to right modulo 2. There-
fore, the output yv of each node v is the sum of the bits of all nodes to the left yv ≡2 (

∑
i≤v xi).

Note, that in order to correctly predict a node output, it has to take all bits left of it into consideration.
Lemma D.1. In the PrefixSum task, for every node v, the computation of the output ov must be
dependent on all bits of the nodes to its left. If not all bits are considered for the computation, the
probability of a correct prediction is bounded by Pr[ov = yv] ≤ 1

2 .

Note that from this lemma, it immediately follows that to solve the task correctly, information needs
to be exchanged throughout the whole graph. Nodes towards the end of the path must consider
almost all nodes of the graph for their computation.
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Table 4: Information propagation of the FE Net for graphs of size n on the PrefixSum task. As the
number of random origin points s increases, the model can distribute the additional information, as
seen by the increase in accuracy. Moreover, it can do so very effectively as the performance closely
follows the theoretical upper bound.

Model n = 10 n = 100
s = 1 s = 2 s = 3 s = 5 s = 1 s = 2 s = 3 s = 5

THEORETICAL UPPER BOUND 82.00 89.80 93.52 96.91 75.75 84.07 88.23 92.39
FLOOD AND ECHO 81.69 ± 0.51 88.10 ± 2.34 89.99 ± 0.28 93.90 ± 0.23 75.39 ± 0.29 83.43 ± 0.44 87.79 ± 0.34 91.86 ± 0.28

Corollary D.2. The PrefixSum task requires information of nodes that are O(D) hops apart and
therefore must exchange information throughout the entire graph.

From Lemma D.1, we know that nodes can only correctly predict their output if the information of
all nodes left to them is taken into account. Whenever the initial origin of the FE Net is chosen at
one of the ends, this information should be available in either the flooding or echo part. However,
what happens if we choose one of the nodes in the graph at random to be the origin? Then, there will
always be a right side whose predictions are dependent on the computation of the left, which has
not yet been exchanged. An example is depicted in Figure 9. The top row indicates the origin node
(orange) and illustrates the message exchange in the flooding (top arrows) and echo phase (bottom
arrows). The middle row indicates what parts of the graph the purple-marked node can know about
after a single phase. Note that on the right-hand side, it cannot infer the initial features of the two
leftmost nodes. Because of the missing information, the configuration on the right can only correctly
predict the nodes up to the initial origin node.

We can formally derive a theoretical upper bound for the expected number of correctly predicted
nodes depending on n, the number of nodes, and s, the number of origins. For the entire derivation
and formula, we refer to the Appendix.

In Table 4, we can compare the empirical performance of the FE Net with the theoretical upper
bound. Moreover, the measured performance closely follows the theoretical upper bound. The ex-
periment clearly shows that the accuracy of the model strictly increases when more starting nodes are
chosen. This indicates, that the model can make use of the additional provided information. There-
fore, it can effectively incorporate the information and propagate it in a sensible way throughout the
graph.

E PROOFS AND DERIVATIONS

Derivation of E[X]:
Let us assume s starting nodes are chosen uniformly at random and sj denote the index of the j-th
starting nodes. If the beginning is chosen, then all nodes could be classified correctly. Otherwise,
nodes can only be correctly inferred up to t = maxj sj , the starting node farthest to the right. More-
over, the rest of the n− t nodes can only be guessed correctly with probability 1

2 as the cumulative
sum to the left is missing. We can derive the closed-form solution for X , the expected number of
correctly predicted nodes for a perfect solution.

E[X] = Pr[min
j

sj = 1]n+ (1− Pr[min
j

sj = 1])

n∑
i=2

n+maxj sj
2

Pr[max
j

sj = i]

=

(
1−

(
n− 1

n

)s)
n+

(
n− 1

n

)s n∑
i=2

n+ i

2
(Pr[max

j
sj < i+ 1]− Pr[max

j
sj < i])

=

(
1−

(
n− 1

n

)s)
n+

(
n− 1

n

)s n∑
i=2

n+ i

2

((
i− 1

n− 1

)s

−
(
i− 2

n− 1

)s)
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Proof of Theorem 4.1. It has been shown by the work of Xu et al. (2018) that the Graph Isomor-
phism Network (GIN) achieves maximum expressiveness amongst MPNN. In the following, we will
show that a FE Net can simulate the execution of a GIN on connected graphs, therefore matching it
in its expressive power. Let GI be a GIN using a node state vector hk

v of dimension di.

h(k)
v = MLP(k)((1 + ϵ)h(k−1)

v +
∑

u∈N (v)

h(k−1)
u )

Let GF be a FE Net using node state vector q(k)v of dimension df = 2 · di. We partition the vector
q
(k)
v = o

(k)
v || n(k)

v into two vectors of dimension di. Initially, we assume that the encoder gives us
o
(0)
v = h

(0)
v and nv = 0di the zero vector. We now define the updates of flood, floodcross, echo,

and echocross in a special way, that after the flood and echo part o(k)v is equal to h
(k)
v and n

(k)
v is

equal to
∑

u∈N (v) h
(k−1)
u . If this is ensured, the final update in a flood and echo phase can update

q
(k)
v = MLP(k)((1 + ϵ)o

(k−1)
v + n

(k−1)
v ) || 0di , which exactly mimics the GIN update. It is easy to

verify that if we set the echo and flood updates to add the full sum of the o
(k)
v part of the incoming

messages (and similarly half of the sum of the incoming messages during the cross updates) to
n
(k−1)
v the desired property is fulfilled. Moreover, there are at most four messages exchanged over

each edge of the graph. Specifically, four is for cross edges and two is for all other edges. Therefore,
a total ofO(m) messages are exchanged, which is asymptotically the same number of messages GIN
exchanges in a single update step. This enables a single phase of the FE Net to mimic the execution
of a single GIN round. Repeating this process the whole GIN computation can be simulated by the
FE Net.

Therefore, given a GIN network GI of width di, we can construct a FE Net GF of width O(d) that
can simulate one round of GI in a single flood and echo phase using O(m) messages.

Proof of Theorem 4.2. To show that the FE Net goes beyond 1-WL, it suffices to find two different
graphs that are equivalent under the 1-WL test but can be distinguished by a FE Net. Observe
that a FE Net can calculate its distance, in number of hops, to the root for each node. See the
graphs illustrated in Figure 3 for a comparison. On the left is a cycle with 11 nodes, which have
additional connections to the nodes that are at distance two away. Similarly, the graph on the right
has additional connections at a distance of three. Both graphs are four regular and can, therefore,
not be distinguished using the 1-WL test. However, no matter where the starting node for Flood and
Echo is placed, it can distinguish that there are nodes which have distance four to the starting root
in one graph, which is not the case in the other graph. Therefore, FE Net can distinguish the two
graphs and is more expressive than the 1-WL test. Moreover, due to the Theorem 4.1 it matches
the expressiveness of the 1-WL test on connected graphs by a reduction to the graph isomorphism
network.

Proof of Theorem 4.3. We assume we have an MPNN that operates on a connected Graph G and
executes a sufficient number of rounds L. Moreover, the graph has one node q which is uniquely
differentiated from the rest of the nodes. This node will act as the origin node. Assume for now
that each node knows its distance to node q, the maximal distance d of any node to q and the overall
number of rounds that has already passed l′. If this were the case, the MPNN could simulate the FE
Net by appropriately matching the procedure outlined in the pseudocode of Figure 2. Each round
would correspond to one of the convolutions, which can be done as each node knows l′, d and its
own distance to properly emulate the corresponding computation. This simulation can be done as
long as L = O(Td), where T denotes the number of phases of the corresponding FE Net .

Each node can easily keep track of l′ during its execution. Furthermore, an MPNN could derive
the distances and d as follows. Distances are iteratively updated, the marked node marks itself as
distance 0. All other nodes will update their own distance to be the minimum distance of their
neighbors plus one. If a node only has neighbors that are of smaller distance, it will send a “return”
message to its neighbors containing its distance. Once a node has received such a return message
from all its nodes with a higher distance it forwards the maximum of these distances as a return
message itself. The maximum can be easily determined in the aggregation, however, it requires an
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additional (in-between) round where nodes communicate their distance and if they have already sent
such a return message. As the nodes only receive the multiset of messages we have to do such a
check which doubles the number of rounds. Once the node q has received a return message from
each of its neighbors it can determine d. It will send an ”initiate“ message (which will be forwarded
to all nodes), that in c · d steps, the simulation of the FE Net will begin, where c is an appropriate
constant so all nodes will receive the initiate message. Therefore all nodes know their own distance,
d and l′ and can simulate the process as outlined above.

Because the MPNN can simulate the FE Net computation given the described assumptions, it will
be at least as expressive as the FE Net . Further, we already know that the FE Net can simulate
the computation of any MPNN, which includes the described circumstances. Thus, they are equally
expressive, given the uniquely marked node and sufficient number of rounds.

Proof of Lemma 4.4. Consider either one of the PrefixSum, Distance, or Path Finding tasks pre-
sented in Appendix J.1. All of them require information that is O(D) apart and must be exchanged.
It follows that all MPNNs must execute at least O(D) rounds of message-passing to facilitate this
information. Moreover, in these graphs, the graph diameter can be O(n). As in each round, there
are O(m) messages exchanged, MPNNs must use at least O(nm) messages to solve these tasks.
Furthermore, from Lemma E.1, it follows that FE Net can solve the task in a single phase using
O(m) messages.

Proof of Lemma D.1. For the sake of contradiction, assume that not all bits of the nodes to the
left have to be considered for the computation. Therefore, at least one bit at a node u exists,
which is not considered for the computation of ov . We know that all bits x are drawn uni-
formly at random and are independent of each other. Furthermore, we can rewrite the groundtruth
yv ≡2

∑
i≤v xi ≡2 xu +

∑
i≤v,i ̸=u xi ≡2 xu + s as the sum of xu and the rest of the nodes.

From there, it follows that the ground truth is dependent on xu, even if all other bits are known
Pr[yv = 0 | s] = Pr[s = xu] =

1
2 . On the other hand, we know that ov must be completely

determined by the information of the nodes that make up s and cannot change depending on xu.
Therefore, Pr[ov = yv | ov does not consider xu] ≤ 1

2 .

Proof of Corollary D.2. According to Lemma D.1, for each node v to derive the correct prediction,
all xu for nodes u that are left of v have to be considered. Therefore, look at the node r on the very
right end of the path graph. It has to take the bits of all other nodes into consideration. However,
the leftmost bit at node l is n− 1 hops away, which is also the diameter of the graph. Therefore, in
order to solve the PrefixSum task, information has to be exchanged throughout the entire graph by
propagating it for at least O(D) hops.

Proof of Corollary 5.1. For the task PrefixSum, the statement follows from D.2. For the other tasks
we outline the proof as follows: Assume for the sake of contradiction that this is not the case and
only information has to be exchanged, which is d′ = o(D) hops away to solve the task. Therefore, as
both tasks are node prediction tasks, the output of each node is defined by its d′-hop neighborhood.
For both tasks, we construct a star-like graph G, which consists of a center node c and k paths of
length n

k , which are connected to c for a constant k. For the Path Finding task, let the center c be one
marked node, and the end of path j be the other marked node. Consider the nodes xi, i = 1, 2, ..., k
which lie on the i-th path at distance n

2k from c. Note that all xi are n
2k away from both their end

of the path and c the root. Moreover, the diameter of the graph is 2n
k . This means that neither the

end of the i-th path nor the center c will ever be part of the d′hop neighborhood. Therefore, if we
can only consider the d′-hop neighborhood for each xi, they are all the same and as a consequence
will predict the same solution. However, xj lies on the path between the marked nodes while the
other xi’s do not. So they should have different solutions, a contradiction. A similar argument holds
for the Distance task. Again let c be the marked node in the graph and xi for i = 1, 2, ..., k be the
nodes which lie on the i-th path at distance n

2k for even i and n
2k + 1 for odd i. Again, note that the

d′-hop neighborhood of all xi is identical and therefore must compute the same solution. However,
the solution of even xi should be different from the odd xi, a contradiction.
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Proof of Corollary 5.2. From Corollary 5.1 and D.2 it directly follows that information must be
exchanged for at leastO(D) hops to infer a correct solution. As MPNNs only exchange information
one hop and exchange O(m) messages per round, the claim follows immediately.

Lemma E.1. FE Net can facilitate the required information for the PrefixSum, Distance and Path
Finding task in a single phase, which can be executed using O(m) messages.

Proof of Lemma E.1. We will prove that in all three mentioned tasks, there exists a configuration
for a Flood and Echo phase, which can propagate the necessary information throughout the graph
in a single phase. Let the starting point s correspond to the marked node in the graph, or in the
case of the Path Finding, any of the two suffices. First, we consider the PrefixSum task. Note that
in the flooding phase, information is propagated from the start, which is the left end, towards the
right. Therefore, in principle, each bit can be propagated to the right, which suffices to solve the
task according to D.1. For the Distance task, it is necessary that the length of the shortest path
between the root and each node can be inferred. Note that this is exactly the path which is taken by
the flooding messages, therefore, this should be sufficient to solve the task. Similarly, for the Path
Finding task, one phase is sufficient. Note that starting from the leaves of the graph during the echo
phase, nodes can decide that they are not part of the path between the two marked nodes (as only
marked leaves can be part of the path). However, when such a message is received at one of the
marked nodes, they can ignore it and tell their predecessor that they are on the path. This is correct,
as one of the marked ends is at the start of our computation, and this echo message travels from the
other marked end on the to-be-marked path back toward the root. This shows that for each of the
above-mentioned tasks, there exists a FE Net configuration that solves the task in a single phase,
which exchanges O(m) messages.

F MODEL ARCHITECTURE AND TRAINING

The following describes the setup of our experiments for PrefixSum, Path-Finding and Distance. We
use a GRUMLP convolution for all Flood and Echo models and the RecGNN, which is defined in
equation 1. It concatenates both endpoints of an edge for its message and passes it into a GRU cell
(Cho et al., 2014). All models use a hidden node state of 32. We use a multilayer perceptron with
a hidden dimension 4 times the input dimension and map back to the hidden node state. Further,
we use LayerNorm introduced by (Ba et al., 2016). We also adapt the PGN for the experiments
following the implementation by Minder et al. (2023). We concatenate the current, last and original
input in each step and also adapt the number of rounds to be linear in the graphs size by executing
1.2n rounds. For the expressiveness tasks, we perform one phase of Flood and Echo to compute
our node embeddings, while for the algorithmic tasks, we perform two phases of Flood and Echo.
We run for a maximum of 200 epochs, but do an early stop whenever the validation loss does not
increase for 25 epochs. We use the Adam optimizer with an initial learning rate of

xt+1
v = GRUCell

xt
v,

∑
u∈N(v)

ϕ(xt
v||xt

u)

 (1)

In all our experiments, we train our model using the ADAM optimizer Kingma & Ba (2015) with a
learning rate of 4 · 10−4 and batch size of 32 for 200 epochs. We also use a learning rate scheduler
where we decay the learning rate with patience of 3 epochs and perform early stopping if the valida-
tion loss does not decrease for more than 25 epochs. All reported values are reported over the mean
of 5 runs.

The model is implemented in pytorch lightning using the pyg library, and the code will be made
public upon publication.
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G RUNTIME

G.1 RUNTIME COMPLEXITY

We denote n the number of nodes, m the number of edges and D the diameter of the graph. Fur-
thermore, let T be the number of phases for a FE Net and L be the number of layers for an MPNN.

A single round of regular message-passing exchangesO(m) messages. Therefore, executing L such
rounds results in O(L) steps and O(Lm) messages. Note that in order for communication between
any two nodes L has to be in the order of O(D).

A single phase of a FE Net, consisting of one starting node, exchanges O(m) messages and does so
in O(D) steps. Therefore, executing T phases of a FE Net results in O(Tm) messages exchanged
in O(TD) steps. Note, that it is sufficient for T to be constant O(1) in order to communicate
throughout the whole graph and does not necessarily have to be scaled according to the size of the
graph.

The variations fixed and random perform their executions only for a specific single node. Contrary,
the all variation performs such an execution for each of its nodes individually. Therefore, both the
number of messages and the number of steps is increased by a factor of n.

Table A: Runtime on the SALSA-CLRS benchmark on graphs of size 1600. Time reported is mean
time per graph in [ms] over the entire test set. The FE Net (FE-1) performs a single phase, which
generalizes across different graph sizes. Whereas the baseline (PGN) has to rely on the number of
steps dictated by the ground truth algorithm. Across BFS, MIS and Eccentricity the runtime is very
comparable, for DFS, Dijkstra and MST it is much faster - however, a single phase is likely not
sufficient to solve the task. We refer to the performance ablation on the number of rounds. Note that
the main aim of the FE Net is not to have a faster execution, but to leverage a new mechanism other
than standard message passing.

Task Model ER WS DELAUNAY
1600 1600 1600

BFS PGN 40.2 ± 3.0 32.0 ± 2.0 65.1 ± 2.6

FE-1 47.0 ± 2.0 50.1 ± 2.3 97.7 ± 3.6

DFS PGN 22360.4 ± 1107.0 10624.2 ± 247.1 11471.3 ± 8.7

FE-1 44.6 ± 1.8 73.1 ± 6.9 105.5 ± 3.9

Dijkstra PGN 11021.9 ± 384.2 4094.0 ± 96.8 4471.2 ± 23.4

FE-1 49.8 ± 1.2 87.5 ± 7.0 108.2 ± 3.9

Eccentricity PGN 56.8 ± 5.5 62.1 ± 3.7 116.2 ± 3.2

FE-1 40.2 ± 2.1 55.5 ± 2.8 94.7 ± 3.2

MIS PGN 45.7 ± 3.7 27.0 ± 1.2 22.4 ± 1.2

FE-1 40.2 ± 2.6 46.5 ± 2.2 98.1 ± 8.4

MST PGN 9162.6 ± 531.3 4589.2 ± 116.8 4793.6 ± 90.8

FE-1 47.0 ± 2.5 75.8 ± 5.6 106.1 ± 3.8

G.2 MEASUREMENTS

The FE Net is implemented using PyTorch Lightning and PyG, the code will be made publicly
available upon acceptance. The flood and echo are implemented in such a way, that they make use
of the GPU operations provided by PyTorch Geometric by masking out the non-relevant messages.
This precomputation implemented through message-passing on the GPU as well. In Table G we
measure the execution of the forward pass of all models on the PrefixSum task for graphs of size
10, 20, 50, and 100. Each run consists of a 1000 graphs for which we report the mean execution
time per graph and the standard deviation.

Note that we take the exact same setup as in the PrefixSum task. Therefore, GIN always executes
5 layers and its runtime is not really impacted on larger graph. The RecGNN baseline performs
1.2n rounds of message-passing, where n denotes the graph size. As the graphs grow larger, the
runtime increases roughly linear. A similar behaviour can be seen in the random and fixed variations
of the FE Net. Note, that they execute two phases, each consisting of a flooding and echoing part.
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Table B: Graph Accuracy on the SALSA-CLRS benchmark for the FE Net and PGN on ER graphs.
FE-X denotes that the model executes X phases. The FE Net can achieve significant improvements
in graph accuracies on tasks such as BFS or Eccentricity. Furthermore, the performance is greatly
increased on other tasks when the number of phases is increased.

Task Model 16 80 160 800 1600

BFS FE - 1 100.0 ± 0.0 98.7 ± 1.0 87.0 ± 9.3 8.2 ± 7.6 1.3 ± 2.1

FE - 4 100.0 ± 0.0 99.8 ± 0.3 94.3 ± 4.3 17.2 ± 11.1 2.3 ± 3.1

FE - 16 100.0 ± 0.0 99.5 ± 0.8 97.5 ± 2.2 33.9 ± 16.6 7.7 ± 6.7

PGN 100.0 ± 0.0 88.7 ± 5.9 54.9 ± 21.5 0.2 ± 0.1 0.0 ± 0.0

DFS FE - 1 0.9 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

FE - 4 82.1 ± 1.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

FE - 16 51.4 ± 27.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 18.4 ± 37.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Dijkstra FE - 1 74.4 ± 3.7 0.7 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

FE - 4 91.2 ± 1.0 11.7 ± 2.6 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0

FE - 16 91.2 ± 1.6 11.9 ± 3.7 0.3 ± 0.3 0.0 ± 0.0 0.0 ± 0.0

PGN 94.6 ± 1.1 37.8 ± 6.9 5.2 ± 1.9 0.0 ± 0.0 0.0 ± 0.0

Eccentricity FE - 1 99.8 ± 0.1 99.9 ± 0.1 98.9 ± 0.3 99.4 ± 0.2 81.7 ± 9.4

FE - 4 99.9 ± 0.2 99.7 ± 0.5 98.5 ± 1.5 98.6 ± 2.4 73.4 ± 13.5

FE - 16 99.8 ± 0.2 99.5 ± 1.2 98.0 ± 2.1 95.8 ± 7.8 66.9 ± 16.1

PGN 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 64.6 ± 14.9

MIS FE - 1 39.5 ± 1.4 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

FE - 4 90.7 ± 2.7 36.4 ± 8.8 18.3 ± 7.8 0.0 ± 0.0 0.0 ± 0.0

FE - 16 97.9 ± 0.8 89.7 ± 4.9 79.9 ± 9.2 23.1 ± 15.3 12.7 ± 10.2

PGN 98.8 ± 0.2 89.2 ± 4.6 74.1 ± 10.1 10.7 ± 10.5 2.0 ± 2.5

MST FE - 1 18.3 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

FE - 4 53.3 ± 6.0 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

FE - 16 58.5 ± 4.6 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 79.2 ± 4.3 2.0 ± 1.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Table 7: Runtime measurements performed on the PrefixSum task on 1000 graphs per graph size. We
report the mean time per graph in ms and the corresponding standard deviation. All measurements
were performed on a NVIDIA GeForce RTX 3090.

Model Time Measurement [ms]
n(10) n(20) n(50) n(100)

GIN 0.003 ± 0.023 0.003 ± 0.022 0.003 ± 0.027 0.003 ± 0.023
RecGNN 0.008 ± 0.023 0.015 ± 0.022 0.034 ± 0.028 0.066 ± 0.023

Flood and Echo all 0.304 ± 0.025 1.284 ± 0.031 7.995 ± 0.050 31.169 ± 0.168
Flood and Echo random 0.031 ± 0.025 0.066 ± 0.033 0.160 ± 0.042 0.315 ± 0.066
Flood and Echo fixed 0.040 ± 0.025 0.084 ± 0.030 0.212 ± 0.029 0.422 ± 0.029

Therefore, there are about 4n steps of message-passing. Together with the precomputation of the
distances for appropriate masking, this can account for the relative difference in performance. The
all variation of Flood and Echo performs n single executions in a sequential order. It might be
possible to at least partially parallelize these executions. However, as the number of different runs
scales with the number of nodes, we believe that the fixed and random variants of the FE Net are
more suited for the study of extrapolation.

Note that in this specific experiment, the diameter of the graph is n. Due to the way the mechanism
couples the number of iterations to the graph diameter, this is the worst case scenario. Therefore,
we expect the performance ratio compared to RecGNN (which scales the number of iterations to
the graph size) to be upper bounded by our measurements. While the current implementation is
a bit slower compared to the standard MPNNS, due to the GPU support, the performance is still
reasonable and practical for further research. Further, recall that the achieved performance of the
models drastically differ. Moreover, while this is not yet the case for the current implementation,
future implementations could leverage that the set of simultaneously active nodes is much smaller
than the graph itself. This could drastically improve the overall usage of the GPU memory and open
up further applications.
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Table 8: Measurement of the standard deviation of the Flood and Echo random variant. Each model
performs 50 runs over 1000 graphs, we report the node and graph accuracy in percent as well as the
minimum and maximum achieved accuracy for each model instance.

Model PREFIXSUM
n(100) min,max g(100) min,max

Model A 98.78 ± 0.19 (98.28, 99.11) 96.43 ± 0.34 (95.70, 97.20)
Model B 100.00 ± 0.00 (100.00, 100.00) 100.00 ± 0.00 (100.00, 100.00)
Model C 100.00 ± 0.00 (100.00, 100.00) 100.00 ± 0.00 (100.00, 100.00)
Model D 91.37 ± 0.44 (90.40, 92.48) 74.97 ± 0.82 (73.50, 77.40)
Model E 100.00 ± 0.00 (100.00, 100.00) 100.00 ± 0.00 (100.00, 100.00)

G.3 STANDARD DEVIATION OF random VARIATION

By using the random variant, we introduce a certain randomness in the computation, which could
result in different outcomes depending on the chosen origin node.

We measure the deviation of the random variant in the PrefixSum task. Each model performs 50
runs over 1000 graphs, we report the node and graph accuracy in percent as well as the minimum
and maximum achieved accuracy for each model instance. From the results in Table 8, we can see
that there are differences between the models, however, the variance due to the chosen origins within
each model is quite small.

H EXTRAPOLATION

In Table 10 we report the full results for the Path-Finding task and in Table 9 for the Distance task.

Table 9: Extrapolation on the Distance task. All models are trained with graphs of size 10 and then
tested on larger graphs. The Flood and Echo models are able to generalize well to graphs 100 times
the sizes encountered during training. We report both the node accuracy with n() and the graph
accuracy with g().

Model MESSAGES DISTANCE
n(10) g(10) n(100) g(100) n(1000) g(1000)

GIN O(Lm) 0.99 ± 0.01 0.92 ± 0.06 0.70 ± 0.05 0.00 ± 0.00 0.53 ± 0.01 0.00 ± 0.00
PGN O(nm) 1.00 ± 0.00 1.00 ± 0.00 0.77 ± 0.03 0.00 ± 0.00 0.50 ± 0.00 0.00 ± 0.00
RecGNN O(nm) 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.04 0.45 ± 0.33 0.78 ± 0.13 0.00 ± 0.00

Flood and Echo random O(m) 1.00 ± 0.00 1.00 ± 0.00 0.82 ± 0.01 0.01 ± 0.00 0.58 ± 0.01 0.00 ± 0.00
Flood and Echo fixed O(m) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table 10: Extrapolation on the Path-Finding task. All models are trained with graphs of size 10
and then tested on larger graphs. The Flood and Echo models are able to generalize well to graphs
100 times the sizes encountered during training. We report both the node accuracy with n() and the
graph accuracy with g().

Model MESSAGES PATH-FINDING
n(10) g(10) n(100) g(100) n(1000) g(1000)

GIN O(Lm) 0.97 ± 0.01 0.77 ± 0.08 0.91 ± 0.01 0.04 ± 0.06 0.95 ± 0.01 0.00 ± 0.01
PGN O(nm) 0.99 ± 0.01 0.91 ± 0.05 0.89 ± 0.01 0.01 ± 0.02 0.96 ± 0.00 0.00 ± 0.00
RecGNN O(nm) 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.02 0.93 ± 0.15 0.99 ± 0.01 0.79 ± 0.37

Flood and Echo random O(m) 1.00 ± 0.00 1.00 ± 0.00 0.97 ± 0.04 0.77 ± 0.30 0.98 ± 0.02 0.48 ± 0.38
Flood and Echo fixed O(m) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.02 1.00 ± 0.00 0.89 ± 0.13

I SALSA

We follow the training setup from Minder et al. (2023). If not specified otherwise, we run a single
phase of the FE Net using batchsize 8, max aggregation, the AdamW optimizer with an initial
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learning rate around 0.0004 while also reducing the learning rate by a factor of 0.1 if the validation
loss does not decrease for 10 epochs. We employ an early stop if the validation loss does not decrease
for 25 epochs and run the training for at most 100 epochs. All reported mean accuracies are taken
across 5 model run on a NVIDIA GeForce RTX 3090.

The full results for all tasks on all graph distributions is depicted in Table 13 for node accuracy and
in Table 12 for graph accuracy. Further in Tables 14,15,16 and 17 we report the exact figures for the
performance on MIS and Dijkstra if the number of rounds is increased. We test 1, 2, 4, 8 and 16
phases for the selection of the best FE Net model as reported in Table 11.

Table 11: Best performing number of phases for the FE Net on the different tasks of SALSA-CLRS.

ALGORITHMS
BFS DFS Dijkstra Eccentricity MIS MST

Number of Phases 2 8 8 8 8 16

Table 12: We test the FE Net across multiple rounds on the SALSA-CLRS benchmark across six
graph based algorithmic tasks. Flood and Echo - X, denotes that All models are trained on graphs
of size 16 and then tested on larger graphs. We report the graph accuracy on Erdős–Rényi graphs of
different sizes. All numbers are taken across 5 runs.

Task Model ER WS DELAUNAY
16 80 160 800 1600 16 80 160 800 1600 16 80 160 800 1600

BFS Flood and Echo - 1 100.0 ± 0.0 98.7 ± 1.0 87.0 ± 9.3 8.2 ± 7.6 1.3 ± 2.1 100.0 ± 0.0 33.2 ± 11.5 4.6 ± 3.9 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 59.5 ± 15.0 9.6 ± 9.7 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 2 100.0 ± 0.0 99.7 ± 0.3 96.6 ± 1.7 22.9 ± 12.5 4.4 ± 5.7 100.0 ± 0.0 57.7 ± 13.5 13.7 ± 9.7 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 83.6 ± 10.1 21.3 ± 19.2 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 4 100.0 ± 0.0 99.8 ± 0.3 94.3 ± 4.3 17.2 ± 11.1 2.3 ± 3.1 100.0 ± 0.0 54.6 ± 11.3 15.4 ± 10.6 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 79.9 ± 6.1 17.5 ± 14.5 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 8 100.0 ± 0.0 99.0 ± 0.4 90.3 ± 7.0 11.4 ± 9.9 1.4 ± 2.0 100.0 ± 0.0 45.0 ± 10.8 7.5 ± 6.6 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 73.2 ± 11.6 13.1 ± 13.8 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 16 100.0 ± 0.0 99.5 ± 0.8 97.5 ± 2.2 33.9 ± 16.6 7.7 ± 6.7 100.0 ± 0.0 46.3 ± 11.9 13.9 ± 8.3 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 78.2 ± 6.6 21.1 ± 19.3 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 0 100.0 ± 0.0 99.0 ± 1.0 95.0 ± 3.5 17.5 ± 12.3 2.6 ± 2.4 100.0 ± 0.0 42.5 ± 12.6 9.2 ± 8.3 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 69.9 ± 5.9 5.3 ± 2.4 0.0 ± 0.0 0.0 ± 0.0

GIN(E) 99.4 ± 0.8 84.3 ± 13.9 57.5 ± 15.3 2.2 ± 4.1 0.1 ± 0.2 98.0 ± 4.2 5.7 ± 8.7 0.2 ± 0.5 0.0 ± 0.0 0.0 ± 0.0 99.3 ± 1.0 25.1 ± 28.6 0.7 ± 1.4 0.0 ± 0.0 0.0 ± 0.0

PGN 100.0 ± 0.0 88.7 ± 5.9 54.9 ± 21.5 0.2 ± 0.1 0.0 ± 0.0 100.0 ± 0.0 13.1 ± 3.3 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 35.1 ± 8.3 0.3 ± 0.4 0.0 ± 0.0 0.0 ± 0.0

RecGNN 99.9 ± 0.2 87.9 ± 8.8 55.8 ± 24.8 4.6 ± 6.5 0.4 ± 0.6 100.0 ± 0.0 32.5 ± 18.3 1.0 ± 1.2 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 53.4 ± 11.5 1.7 ± 1.2 0.0 ± 0.0 0.0 ± 0.0

BFS (H) GIN(E) 92.5 ± 13.9 59.4 ± 38.3 37.8 ± 37.9 0.9 ± 1.4 0.0 ± 0.1 92.8 ± 12.0 10.2 ± 13.8 0.4 ± 0.7 0.0 ± 0.0 0.0 ± 0.0 85.2 ± 28.9 17.5 ± 17.7 0.2 ± 0.3 0.0 ± 0.0 0.0 ± 0.0

PGN 100.0 ± 0.0 88.1 ± 3.8 66.3 ± 8.7 0.2 ± 0.3 0.0 ± 0.0 100.0 ± 0.0 14.2 ± 3.6 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 26.2 ± 11.5 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0

RecGNN 99.9 ± 0.1 81.7 ± 13.0 49.6 ± 25.2 1.8 ± 2.3 0.0 ± 0.1 99.4 ± 1.3 20.7 ± 13.5 1.3 ± 2.3 0.0 ± 0.0 0.0 ± 0.0 99.9 ± 0.2 18.7 ± 8.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

DFS Flood and Echo - 1 0.9 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 2 14.3 ± 4.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 6.5 ± 5.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 8.6 ± 3.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 4 82.1 ± 1.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 92.0 ± 2.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 63.7 ± 1.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 8 88.9 ± 3.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 81.2 ± 12.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 68.3 ± 3.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 16 51.4 ± 27.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 35.2 ± 31.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 32.1 ± 18.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 0 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

GIN(E) 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 18.4 ± 37.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 9.5 ± 21.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 13.9 ± 29.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

RecGNN 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

DFS (H) GIN(E) 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 19.9 ± 30.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 3.2 ± 7.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 13.8 ± 23.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

RecGNN 4.5 ± 7.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 5.8 ± 11.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Dijkstra Flood and Echo - 1 74.4 ± 3.7 0.7 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 53.4 ± 5.4 1.2 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 67.1 ± 5.1 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 2 84.8 ± 1.1 4.2 ± 1.0 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 71.2 ± 3.2 4.4 ± 0.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 79.7 ± 2.5 1.7 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 4 91.2 ± 1.0 11.7 ± 2.6 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 78.7 ± 2.3 12.3 ± 2.2 0.3 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 87.8 ± 1.2 6.6 ± 1.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 8 91.8 ± 0.7 13.2 ± 1.7 0.5 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 79.0 ± 2.5 13.1 ± 3.5 0.3 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 89.2 ± 1.0 7.3 ± 3.1 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 16 91.2 ± 1.6 11.9 ± 3.7 0.3 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 76.0 ± 5.1 10.5 ± 4.6 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 87.9 ± 1.6 6.3 ± 3.4 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 0 91.0 ± 1.1 10.9 ± 3.6 0.3 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 76.3 ± 4.8 10.9 ± 4.1 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 87.1 ± 2.4 6.0 ± 3.8 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0

GIN(E) 73.4 ± 2.6 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 51.6 ± 3.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 66.6 ± 4.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 94.6 ± 1.1 37.8 ± 6.9 5.2 ± 1.9 0.0 ± 0.0 0.0 ± 0.0 76.4 ± 4.0 17.2 ± 2.8 0.9 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 93.0 ± 1.4 19.2 ± 4.2 0.1 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

RecGNN 81.7 ± 16.1 6.8 ± 6.1 0.3 ± 0.5 0.0 ± 0.0 0.0 ± 0.0 60.4 ± 22.7 8.4 ± 7.4 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 74.4 ± 19.9 4.4 ± 4.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Dijkstra (H) GIN(E) 49.8 ± 10.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 28.7 ± 9.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 40.3 ± 10.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 89.5 ± 1.0 3.3 ± 3.7 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 70.8 ± 2.4 0.4 ± 0.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 87.6 ± 0.7 0.4 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

RecGNN 73.8 ± 1.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 50.9 ± 5.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 66.4 ± 3.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Eccentricity Flood and Echo - 1 99.8 ± 0.1 99.9 ± 0.1 98.9 ± 0.3 99.4 ± 0.2 81.7 ± 9.4 100.0 ± 0.0 88.6 ± 0.8 93.2 ± 6.0 36.2 ± 6.6 29.2 ± 6.0 100.0 ± 0.0 80.8 ± 11.3 73.7 ± 6.6 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 2 99.9 ± 0.1 100.0 ± 0.0 99.1 ± 0.1 99.2 ± 1.4 70.1 ± 15.3 100.0 ± 0.0 87.5 ± 0.4 97.7 ± 1.8 38.7 ± 2.7 25.1 ± 10.7 100.0 ± 0.0 95.3 ± 2.1 72.9 ± 12.6 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 4 99.9 ± 0.2 99.7 ± 0.5 98.5 ± 1.5 98.6 ± 2.4 73.4 ± 13.5 100.0 ± 0.0 88.5 ± 1.8 96.0 ± 4.6 40.4 ± 3.8 22.8 ± 9.3 100.0 ± 0.0 93.5 ± 6.7 73.4 ± 16.3 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 8 99.9 ± 0.0 99.9 ± 0.1 98.8 ± 0.4 99.5 ± 0.3 81.1 ± 5.4 100.0 ± 0.0 87.4 ± 3.1 92.3 ± 7.9 29.7 ± 11.1 20.8 ± 7.2 100.0 ± 0.0 82.7 ± 15.5 54.9 ± 28.5 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 16 99.8 ± 0.2 99.5 ± 1.2 98.0 ± 2.1 95.8 ± 7.8 66.9 ± 16.1 100.0 ± 0.0 88.4 ± 2.2 95.7 ± 2.6 36.5 ± 6.2 29.4 ± 6.2 100.0 ± 0.0 89.1 ± 9.4 69.6 ± 11.6 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 0 99.9 ± 0.1 100.0 ± 0.0 99.4 ± 0.6 99.4 ± 0.6 75.6 ± 11.0 100.0 ± 0.0 88.7 ± 1.3 97.7 ± 1.3 36.9 ± 2.2 30.4 ± 7.2 100.0 ± 0.0 90.8 ± 7.3 66.2 ± 4.8 0.0 ± 0.0 0.0 ± 0.0

GIN(E) 57.3 ± 21.2 77.1 ± 17.5 72.3 ± 18.0 51.3 ± 34.2 36.7 ± 17.6 78.0 ± 18.7 27.6 ± 19.5 3.6 ± 8.0 0.0 ± 0.0 0.0 ± 0.0 84.8 ± 12.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 64.6 ± 14.9 100.0 ± 0.0 93.8 ± 2.1 100.0 ± 0.1 25.6 ± 7.5 5.2 ± 3.3 100.0 ± 0.0 100.0 ± 0.0 76.9 ± 19.8 0.0 ± 0.0 0.0 ± 0.0

RecGNN 75.8 ± 26.2 80.5 ± 35.0 75.0 ± 39.1 72.7 ± 27.9 63.0 ± 24.8 86.7 ± 25.7 60.8 ± 29.1 57.4 ± 38.7 27.6 ± 29.4 15.2 ± 13.7 89.9 ± 19.4 25.2 ± 37.6 8.3 ± 11.9 0.0 ± 0.0 0.0 ± 0.0

Eccentricity (H) GIN(E) 25.3 ± 41.0 23.8 ± 39.0 26.1 ± 36.8 17.1 ± 32.9 16.0 ± 21.7 25.3 ± 42.2 19.0 ± 18.8 18.6 ± 18.9 4.6 ± 8.9 9.8 ± 10.2 24.8 ± 42.5 17.0 ± 12.5 3.0 ± 5.8 0.0 ± 0.0 0.0 ± 0.0

PGN 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 83.0 ± 6.5 100.0 ± 0.0 88.3 ± 1.8 100.0 ± 0.1 34.8 ± 7.2 9.2 ± 4.8 100.0 ± 0.0 99.7 ± 0.3 64.4 ± 14.2 0.0 ± 0.0 0.0 ± 0.0

RecGNN 95.0 ± 6.3 96.6 ± 3.6 95.8 ± 4.6 93.4 ± 10.3 72.1 ± 20.9 99.0 ± 1.2 66.4 ± 22.4 46.2 ± 40.9 14.1 ± 6.3 8.3 ± 4.9 99.6 ± 0.8 51.0 ± 36.0 19.4 ± 11.7 0.0 ± 0.0 0.0 ± 0.0

MIS Flood and Echo - 1 39.5 ± 1.4 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 40.9 ± 0.5 1.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 43.7 ± 0.6 1.0 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 2 47.6 ± 2.1 0.5 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 46.4 ± 1.9 2.8 ± 0.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 48.7 ± 1.9 2.3 ± 0.4 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 4 90.7 ± 2.7 36.4 ± 8.8 18.3 ± 7.8 0.0 ± 0.0 0.0 ± 0.0 92.3 ± 1.8 72.6 ± 5.9 47.3 ± 8.6 3.0 ± 2.5 0.1 ± 0.1 94.5 ± 2.0 69.2 ± 5.4 45.6 ± 6.8 2.0 ± 1.4 0.1 ± 0.1

Flood and Echo - 8 98.3 ± 0.5 91.5 ± 2.4 83.8 ± 4.5 27.9 ± 12.5 13.9 ± 9.6 98.3 ± 0.5 96.4 ± 0.9 88.0 ± 3.3 54.7 ± 10.9 30.5 ± 11.8 98.7 ± 0.5 94.7 ± 1.2 88.5 ± 3.2 52.9 ± 11.7 28.5 ± 14.0

Flood and Echo - 16 97.9 ± 0.8 89.7 ± 4.9 79.9 ± 9.2 23.1 ± 15.3 12.7 ± 10.2 98.3 ± 0.6 95.4 ± 2.5 85.7 ± 6.1 50.5 ± 16.7 28.8 ± 15.9 98.2 ± 0.8 93.6 ± 3.5 87.7 ± 5.5 50.0 ± 15.4 27.8 ± 15.8

Flood and Echo - 0 98.2 ± 0.4 90.9 ± 2.5 83.6 ± 5.2 30.0 ± 12.9 15.9 ± 8.2 98.3 ± 0.5 96.1 ± 1.7 89.0 ± 5.0 59.7 ± 12.9 38.7 ± 15.0 98.9 ± 0.3 95.0 ± 2.1 89.8 ± 3.6 57.3 ± 10.7 34.5 ± 11.9

GIN(E) 6.2 ± 3.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 6.5 ± 2.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 6.1 ± 3.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 98.8 ± 0.2 89.2 ± 4.6 74.1 ± 10.1 10.7 ± 10.5 2.0 ± 2.5 98.1 ± 0.6 84.4 ± 8.4 58.3 ± 14.1 4.6 ± 4.3 0.5 ± 0.6 98.9 ± 0.6 93.9 ± 2.2 87.2 ± 4.9 41.2 ± 8.9 17.4 ± 7.4

RecGNN 56.1 ± 13.1 5.5 ± 7.1 0.8 ± 1.6 0.0 ± 0.0 0.0 ± 0.0 52.6 ± 14.6 9.0 ± 9.8 2.0 ± 2.9 0.0 ± 0.0 0.0 ± 0.0 56.0 ± 13.3 9.6 ± 7.8 1.7 ± 2.2 0.0 ± 0.0 0.0 ± 0.0

MIS (H) GIN(E) 3.3 ± 2.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 4.4 ± 2.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 3.3 ± 2.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 98.6 ± 0.4 88.9 ± 3.1 76.2 ± 7.3 18.0 ± 8.6 5.2 ± 4.3 98.2 ± 0.3 82.2 ± 7.4 54.1 ± 6.6 2.3 ± 1.7 0.1 ± 0.0 98.6 ± 0.4 92.2 ± 2.2 85.1 ± 3.4 40.1 ± 9.1 15.1 ± 6.5

RecGNN 44.1 ± 5.8 2.6 ± 1.5 0.1 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 46.5 ± 5.7 4.2 ± 1.1 0.4 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 46.9 ± 6.2 4.8 ± 1.4 0.3 ± 0.3 0.0 ± 0.0 0.0 ± 0.0

MST Flood and Echo - 1 18.3 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 10.8 ± 2.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 17.5 ± 1.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 2 33.4 ± 6.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 22.6 ± 5.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 35.2 ± 5.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 4 53.3 ± 6.0 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 40.2 ± 6.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 54.8 ± 5.3 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 8 57.5 ± 5.9 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 46.7 ± 6.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 59.3 ± 6.2 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 16 58.5 ± 4.6 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 46.5 ± 6.1 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 59.7 ± 4.3 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 0 57.5 ± 3.4 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 43.8 ± 2.9 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 58.4 ± 1.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

GIN(E) 43.2 ± 4.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 30.0 ± 4.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 43.0 ± 5.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 79.2 ± 4.3 2.0 ± 1.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 73.2 ± 9.1 0.3 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 78.8 ± 4.1 0.6 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

RecGNN 56.8 ± 15.9 0.6 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 44.4 ± 18.0 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 58.7 ± 15.8 0.1 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

MST (H) GIN(E) 29.7 ± 5.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 20.4 ± 5.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 34.6 ± 6.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 69.9 ± 6.1 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 65.7 ± 8.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 72.6 ± 5.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

RecGNN 24.5 ± 7.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 14.8 ± 5.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 26.0 ± 7.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
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Table 13: We test the FE Net across multiple rounds on the SALSA-CLRS benchmark across six
graph based algorithmic tasks. Flood and Echo - X, denotes that All models are trained on graphs
of size 16 and then tested on larger graphs. We report the node accuracy on Erdős–Rényi graphs of
different sizes. All numbers are taken across 5 runs.

Task Model ER WS DELAUNAY
16 80 160 800 1600 16 80 160 800 1600 16 80 160 800 1600

BFS Flood and Echo - 1 100.0 ± 0.0 100.0 ± 0.0 99.9 ± 0.1 99.5 ± 0.2 99.4 ± 0.3 100.0 ± 0.0 97.8 ± 0.6 95.2 ± 1.2 84.5 ± 1.7 83.1 ± 2.4 100.0 ± 0.0 99.2 ± 0.4 96.8 ± 2.0 69.3 ± 6.6 59.5 ± 12.6

Flood and Echo - 2 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.8 ± 0.1 99.7 ± 0.1 100.0 ± 0.0 99.0 ± 0.4 97.4 ± 0.7 88.6 ± 0.6 84.6 ± 0.7 100.0 ± 0.0 99.7 ± 0.2 97.8 ± 1.1 77.0 ± 10.1 65.9 ± 13.2

Flood and Echo - 4 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.7 ± 0.1 99.6 ± 0.1 100.0 ± 0.0 98.8 ± 0.3 97.3 ± 0.7 88.1 ± 1.5 83.9 ± 0.9 100.0 ± 0.0 99.7 ± 0.1 98.1 ± 1.3 76.4 ± 10.2 61.2 ± 8.1

Flood and Echo - 8 100.0 ± 0.0 100.0 ± 0.0 99.9 ± 0.1 99.6 ± 0.1 99.5 ± 0.1 100.0 ± 0.0 98.5 ± 0.4 96.2 ± 1.0 86.6 ± 1.5 83.1 ± 0.7 100.0 ± 0.0 99.5 ± 0.3 97.4 ± 1.6 77.3 ± 10.8 63.6 ± 10.7

Flood and Echo - 16 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.8 ± 0.1 99.7 ± 0.2 100.0 ± 0.0 98.6 ± 0.3 96.6 ± 1.6 86.2 ± 8.0 85.0 ± 1.0 100.0 ± 0.0 99.6 ± 0.1 97.5 ± 2.1 79.2 ± 15.5 68.6 ± 14.5

Flood and Echo - 0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.7 ± 0.2 99.6 ± 0.2 100.0 ± 0.0 98.4 ± 0.4 96.5 ± 1.1 87.8 ± 0.6 83.4 ± 1.0 100.0 ± 0.0 99.4 ± 0.2 96.7 ± 1.1 81.5 ± 16.1 70.3 ± 17.0

GIN(E) 100.0 ± 0.1 99.6 ± 0.4 99.3 ± 0.6 98.0 ± 1.6 98.0 ± 1.5 99.9 ± 0.3 92.9 ± 4.2 86.7 ± 5.5 70.4 ± 10.8 75.3 ± 6.1 100.0 ± 0.1 94.3 ± 5.6 84.6 ± 10.6 52.7 ± 17.2 45.9 ± 15.8

PGN 100.0 ± 0.0 99.8 ± 0.1 99.5 ± 0.3 99.0 ± 0.2 98.9 ± 0.2 100.0 ± 0.0 95.5 ± 0.7 88.7 ± 1.5 75.9 ± 3.3 80.6 ± 0.7 100.0 ± 0.0 98.2 ± 0.7 90.4 ± 4.5 53.6 ± 7.0 40.3 ± 6.5

RecGNN 100.0 ± 0.0 99.8 ± 0.1 99.5 ± 0.3 99.3 ± 0.4 99.2 ± 0.4 100.0 ± 0.0 97.8 ± 1.1 94.2 ± 2.0 82.2 ± 4.7 82.1 ± 2.3 100.0 ± 0.0 98.5 ± 0.8 92.0 ± 5.5 67.1 ± 11.8 55.6 ± 10.0

BFS (H) GIN(E) 98.8 ± 2.4 95.3 ± 9.2 95.1 ± 8.9 86.9 ± 26.1 86.5 ± 27.2 99.2 ± 1.4 83.0 ± 25.0 77.5 ± 24.9 60.6 ± 28.8 64.4 ± 32.4 98.1 ± 4.0 79.5 ± 32.3 68.9 ± 32.6 42.8 ± 16.4 34.2 ± 10.0

PGN 100.0 ± 0.0 99.8 ± 0.1 99.6 ± 0.1 98.7 ± 0.3 98.5 ± 0.3 100.0 ± 0.0 96.1 ± 0.5 90.8 ± 0.8 76.4 ± 1.6 80.6 ± 1.0 100.0 ± 0.0 97.5 ± 0.8 89.4 ± 1.6 53.2 ± 2.4 40.8 ± 3.2

RecGNN 100.0 ± 0.0 99.6 ± 0.2 99.3 ± 0.5 99.0 ± 0.5 98.6 ± 0.6 100.0 ± 0.1 96.7 ± 0.8 92.5 ± 2.0 77.6 ± 3.8 79.3 ± 1.7 100.0 ± 0.0 95.3 ± 2.3 83.6 ± 6.0 51.5 ± 4.1 42.9 ± 5.0

DFS Flood and Echo - 1 68.8 ± 0.9 42.7 ± 0.3 31.1 ± 0.4 28.3 ± 0.4 25.9 ± 0.5 64.7 ± 1.6 19.2 ± 0.3 18.6 ± 0.1 24.4 ± 0.3 22.0 ± 0.2 65.9 ± 0.7 43.6 ± 0.5 40.7 ± 0.5 38.0 ± 0.6 37.7 ± 0.6

Flood and Echo - 2 83.1 ± 2.3 47.4 ± 0.6 35.0 ± 0.8 31.9 ± 0.7 29.5 ± 0.9 83.2 ± 5.4 21.0 ± 0.2 19.8 ± 0.1 24.6 ± 0.3 22.2 ± 0.2 81.0 ± 2.2 48.9 ± 1.0 44.7 ± 0.8 41.3 ± 0.6 40.8 ± 0.6

Flood and Echo - 4 97.9 ± 0.2 53.0 ± 0.3 38.9 ± 0.4 35.0 ± 0.3 32.7 ± 0.3 99.4 ± 0.2 23.9 ± 0.6 20.7 ± 0.2 24.9 ± 0.1 22.3 ± 0.1 95.5 ± 0.2 54.9 ± 0.3 48.6 ± 0.3 43.3 ± 0.5 42.5 ± 0.6

Flood and Echo - 8 98.9 ± 0.3 52.8 ± 0.6 38.2 ± 0.5 33.5 ± 0.5 31.1 ± 0.6 98.4 ± 1.3 24.1 ± 1.0 21.0 ± 0.6 24.1 ± 0.4 21.6 ± 0.4 96.2 ± 0.3 54.3 ± 0.9 46.4 ± 0.7 39.8 ± 0.7 38.9 ± 0.7

Flood and Echo - 16 92.4 ± 4.9 48.8 ± 1.3 35.5 ± 1.1 31.6 ± 1.1 29.1 ± 1.2 89.0 ± 10.1 23.0 ± 0.4 20.7 ± 0.3 23.7 ± 0.6 21.5 ± 0.5 88.8 ± 4.5 49.9 ± 1.4 44.6 ± 1.2 40.6 ± 1.0 40.1 ± 1.0

Flood and Echo - 0 58.6 ± 3.5 38.5 ± 1.9 26.4 ± 1.3 24.2 ± 1.2 21.9 ± 1.1 42.1 ± 3.8 20.6 ± 0.8 19.9 ± 0.5 23.3 ± 0.5 21.2 ± 0.4 56.9 ± 3.8 39.1 ± 1.8 36.4 ± 1.6 34.3 ± 1.4 34.1 ± 1.4

GIN(E) 49.3 ± 8.1 30.6 ± 4.0 19.7 ± 3.9 18.1 ± 3.8 16.5 ± 3.5 29.7 ± 4.9 15.9 ± 0.9 16.8 ± 0.8 22.3 ± 0.6 20.1 ± 0.5 46.7 ± 7.3 28.0 ± 3.1 25.1 ± 3.1 23.4 ± 2.9 23.2 ± 2.9

PGN 74.2 ± 14.0 41.2 ± 3.8 29.9 ± 2.6 27.8 ± 2.1 25.8 ± 2.1 58.8 ± 20.8 17.9 ± 1.7 17.7 ± 0.8 23.6 ± 0.6 21.3 ± 0.6 72.7 ± 13.1 41.7 ± 3.9 38.2 ± 2.8 35.8 ± 2.1 35.4 ± 2.1

RecGNN 33.4 ± 14.5 28.0 ± 6.5 18.7 ± 4.1 18.2 ± 4.4 16.8 ± 4.3 22.7 ± 8.2 15.9 ± 1.5 16.8 ± 1.4 21.5 ± 1.6 19.5 ± 1.4 32.3 ± 14.9 26.8 ± 5.8 25.2 ± 5.3 24.1 ± 5.2 24.0 ± 5.2

DFS (H) GIN(E) 41.5 ± 7.5 30.4 ± 2.3 20.0 ± 3.1 19.5 ± 2.6 17.8 ± 2.5 25.0 ± 3.7 15.8 ± 0.6 16.8 ± 0.4 22.7 ± 0.7 20.6 ± 0.6 39.6 ± 9.1 28.3 ± 3.1 26.1 ± 3.7 25.3 ± 2.9 25.2 ± 2.9

PGN 82.0 ± 9.2 38.4 ± 2.7 26.9 ± 2.5 24.9 ± 2.3 23.1 ± 2.3 57.6 ± 17.6 17.0 ± 1.6 17.2 ± 0.5 22.9 ± 1.3 20.7 ± 1.1 79.9 ± 8.8 38.3 ± 3.9 34.7 ± 3.7 31.9 ± 3.7 31.5 ± 3.7

RecGNN 48.3 ± 19.1 22.8 ± 4.7 13.5 ± 4.6 13.1 ± 4.1 12.0 ± 3.6 35.3 ± 17.7 13.5 ± 2.6 14.7 ± 1.9 19.4 ± 2.1 17.9 ± 1.7 50.2 ± 21.7 21.8 ± 3.2 19.4 ± 3.8 18.7 ± 3.6 18.5 ± 3.5

Dijkstra Flood and Echo - 1 98.1 ± 0.3 89.0 ± 0.8 80.9 ± 0.9 66.2 ± 1.0 61.1 ± 0.9 96.0 ± 0.6 91.1 ± 0.8 88.5 ± 0.9 81.2 ± 1.1 78.4 ± 1.3 97.5 ± 0.5 89.9 ± 1.1 83.8 ± 1.1 70.3 ± 1.9 66.5 ± 2.4

Flood and Echo - 2 98.9 ± 0.1 94.0 ± 0.6 88.9 ± 1.1 78.2 ± 2.0 73.9 ± 2.3 97.9 ± 0.3 94.6 ± 0.4 92.4 ± 0.7 82.5 ± 0.9 78.1 ± 1.4 98.6 ± 0.2 94.1 ± 0.7 89.8 ± 0.9 73.7 ± 1.9 66.4 ± 3.9

Flood and Echo - 4 99.4 ± 0.1 96.4 ± 0.4 93.0 ± 0.7 86.2 ± 1.1 82.6 ± 1.5 98.5 ± 0.2 96.7 ± 0.3 95.1 ± 0.3 87.7 ± 0.8 84.1 ± 1.0 99.2 ± 0.1 96.2 ± 0.4 92.7 ± 0.6 78.7 ± 1.1 71.2 ± 1.8

Flood and Echo - 8 99.4 ± 0.0 96.6 ± 0.3 93.1 ± 0.7 85.4 ± 2.2 81.1 ± 3.0 98.5 ± 0.3 96.8 ± 0.4 95.1 ± 0.7 87.5 ± 1.5 84.3 ± 2.1 99.3 ± 0.1 96.4 ± 0.5 92.9 ± 1.3 78.3 ± 2.6 70.1 ± 2.3

Flood and Echo - 16 99.4 ± 0.1 96.1 ± 0.8 92.1 ± 1.6 84.7 ± 2.4 80.7 ± 2.7 98.3 ± 0.4 96.4 ± 0.6 94.7 ± 0.8 86.3 ± 1.7 82.7 ± 2.0 99.2 ± 0.1 96.0 ± 0.6 92.1 ± 1.0 76.5 ± 2.7 68.8 ± 3.3

Flood and Echo - 0 99.4 ± 0.1 96.1 ± 0.7 92.2 ± 1.2 84.1 ± 2.5 79.8 ± 3.2 98.4 ± 0.4 96.4 ± 0.7 94.2 ± 1.4 85.3 ± 3.6 81.7 ± 4.0 99.2 ± 0.2 95.9 ± 1.0 91.7 ± 2.1 76.4 ± 5.0 69.1 ± 5.8

GIN(E) 98.0 ± 0.2 89.8 ± 1.1 84.3 ± 1.6 75.8 ± 2.2 72.8 ± 2.3 95.4 ± 0.7 85.0 ± 1.4 79.9 ± 1.9 61.4 ± 4.0 52.6 ± 4.1 97.4 ± 0.4 81.6 ± 1.3 70.4 ± 2.6 46.5 ± 3.7 39.9 ± 3.6

PGN 99.6 ± 0.1 98.6 ± 0.3 97.2 ± 0.5 94.1 ± 0.6 92.2 ± 0.7 98.3 ± 0.4 97.1 ± 0.2 95.4 ± 0.3 81.8 ± 1.2 72.5 ± 6.0 99.5 ± 0.1 97.6 ± 0.3 92.4 ± 0.7 62.7 ± 1.2 51.0 ± 3.9

RecGNN 98.5 ± 1.6 86.8 ± 15.4 76.0 ± 22.1 63.7 ± 27.7 60.6 ± 27.7 95.8 ± 4.2 89.2 ± 14.1 83.9 ± 18.9 71.4 ± 20.4 67.3 ± 17.7 98.0 ± 1.9 90.4 ± 9.7 85.0 ± 10.0 60.2 ± 4.4 50.0 ± 3.6

Dijkstra (H) GIN(E) 95.2 ± 1.8 62.4 ± 7.0 53.3 ± 6.2 40.4 ± 8.1 36.9 ± 7.6 91.2 ± 3.5 55.3 ± 9.3 48.1 ± 8.3 38.6 ± 5.2 35.6 ± 4.4 94.2 ± 1.8 54.4 ± 7.8 45.2 ± 5.4 37.2 ± 4.1 36.0 ± 4.1

PGN 99.3 ± 0.1 94.2 ± 2.5 92.0 ± 2.3 87.1 ± 2.7 84.5 ± 3.4 97.8 ± 0.2 85.8 ± 6.0 80.9 ± 7.0 60.5 ± 8.3 52.4 ± 8.3 99.2 ± 0.1 84.9 ± 6.8 72.8 ± 8.9 50.8 ± 4.6 46.4 ± 3.1

RecGNN 98.0 ± 0.1 32.9 ± 21.6 25.0 ± 17.4 17.7 ± 12.2 16.4 ± 10.7 95.5 ± 1.0 36.3 ± 16.4 29.4 ± 16.1 27.3 ± 12.3 26.6 ± 11.7 97.4 ± 0.4 35.6 ± 17.8 29.5 ± 17.0 26.7 ± 14.4 26.3 ± 14.1

Eccentricity Flood and Echo - 1 99.8 ± 0.1 99.9 ± 0.1 98.9 ± 0.3 99.4 ± 0.2 81.7 ± 9.4 100.0 ± 0.0 88.6 ± 0.8 93.2 ± 6.0 36.2 ± 6.6 29.2 ± 6.0 100.0 ± 0.0 80.8 ± 11.3 73.7 ± 6.6 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 2 99.9 ± 0.1 100.0 ± 0.0 99.1 ± 0.1 99.2 ± 1.4 70.1 ± 15.3 100.0 ± 0.0 87.5 ± 0.4 97.7 ± 1.8 38.7 ± 2.7 25.1 ± 10.7 100.0 ± 0.0 95.3 ± 2.1 72.9 ± 12.6 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 4 99.9 ± 0.2 99.7 ± 0.5 98.5 ± 1.5 98.6 ± 2.4 73.4 ± 13.5 100.0 ± 0.0 88.5 ± 1.8 96.0 ± 4.6 40.4 ± 3.8 22.8 ± 9.3 100.0 ± 0.0 93.5 ± 6.7 73.4 ± 16.3 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 8 99.9 ± 0.0 99.9 ± 0.1 98.8 ± 0.4 99.5 ± 0.3 81.1 ± 5.4 100.0 ± 0.0 87.4 ± 3.1 92.3 ± 7.9 29.7 ± 11.1 20.8 ± 7.2 100.0 ± 0.0 82.7 ± 15.5 54.9 ± 28.5 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 16 99.8 ± 0.2 99.5 ± 1.2 98.0 ± 2.1 95.8 ± 7.8 66.9 ± 16.1 100.0 ± 0.0 88.4 ± 2.2 95.7 ± 2.6 36.5 ± 6.2 29.4 ± 6.2 100.0 ± 0.0 89.1 ± 9.4 69.6 ± 11.6 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo - 0 99.9 ± 0.1 100.0 ± 0.0 99.4 ± 0.6 99.4 ± 0.6 75.6 ± 11.0 100.0 ± 0.0 88.7 ± 1.3 97.7 ± 1.3 36.9 ± 2.2 30.4 ± 7.2 100.0 ± 0.0 90.8 ± 7.3 66.2 ± 4.8 0.0 ± 0.0 0.0 ± 0.0

GIN(E) 57.3 ± 21.2 77.1 ± 17.5 72.3 ± 18.0 51.3 ± 34.2 36.7 ± 17.6 78.0 ± 18.7 27.6 ± 19.5 3.6 ± 8.0 0.0 ± 0.0 0.0 ± 0.0 84.8 ± 12.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PGN 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 64.6 ± 14.9 100.0 ± 0.0 93.8 ± 2.1 100.0 ± 0.1 25.6 ± 7.5 5.2 ± 3.3 100.0 ± 0.0 100.0 ± 0.0 76.9 ± 19.8 0.0 ± 0.0 0.0 ± 0.0

RecGNN 75.8 ± 26.2 80.5 ± 35.0 75.0 ± 39.1 72.7 ± 27.9 63.0 ± 24.8 86.7 ± 25.7 60.8 ± 29.1 57.4 ± 38.7 27.6 ± 29.4 15.2 ± 13.7 89.9 ± 19.4 25.2 ± 37.6 8.3 ± 11.9 0.0 ± 0.0 0.0 ± 0.0

Eccentricity (H) GIN(E) 25.3 ± 41.0 23.8 ± 39.0 26.1 ± 36.8 17.1 ± 32.9 16.0 ± 21.7 25.3 ± 42.2 19.0 ± 18.8 18.6 ± 18.9 4.6 ± 8.9 9.8 ± 10.2 24.8 ± 42.5 17.0 ± 12.5 3.0 ± 5.8 0.0 ± 0.0 0.0 ± 0.0

PGN 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 83.0 ± 6.5 100.0 ± 0.0 88.3 ± 1.8 100.0 ± 0.1 34.8 ± 7.2 9.2 ± 4.8 100.0 ± 0.0 99.7 ± 0.3 64.4 ± 14.2 0.0 ± 0.0 0.0 ± 0.0

RecGNN 95.0 ± 6.3 96.6 ± 3.6 95.8 ± 4.6 93.4 ± 10.3 72.1 ± 20.9 99.0 ± 1.2 66.4 ± 22.4 46.2 ± 40.9 14.1 ± 6.3 8.3 ± 4.9 99.6 ± 0.8 51.0 ± 36.0 19.4 ± 11.7 0.0 ± 0.0 0.0 ± 0.0

MIS Flood and Echo - 1 91.3 ± 0.3 87.4 ± 0.2 87.7 ± 0.1 88.1 ± 0.4 87.3 ± 0.2 92.6 ± 0.3 91.9 ± 0.2 91.6 ± 0.2 92.3 ± 0.3 92.0 ± 0.2 92.7 ± 0.1 91.7 ± 0.2 91.4 ± 0.2 91.4 ± 0.2 91.3 ± 0.2

Flood and Echo - 2 93.0 ± 0.2 89.3 ± 0.2 90.0 ± 0.3 89.4 ± 0.2 89.2 ± 0.2 93.9 ± 0.2 93.7 ± 0.1 93.3 ± 0.2 94.0 ± 0.2 93.8 ± 0.2 94.0 ± 0.2 93.4 ± 0.1 93.1 ± 0.2 93.1 ± 0.2 93.0 ± 0.2

Flood and Echo - 4 98.9 ± 0.2 97.3 ± 0.3 97.6 ± 0.3 95.7 ± 0.4 96.8 ± 0.4 99.2 ± 0.1 99.3 ± 0.1 99.2 ± 0.1 99.1 ± 0.1 99.1 ± 0.1 99.4 ± 0.2 99.2 ± 0.1 99.1 ± 0.1 99.1 ± 0.1 99.1 ± 0.1

Flood and Echo - 8 99.7 ± 0.1 99.6 ± 0.1 99.5 ± 0.1 99.1 ± 0.3 99.4 ± 0.2 99.7 ± 0.1 99.9 ± 0.0 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.0 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1

Flood and Echo - 16 99.6 ± 0.1 99.5 ± 0.2 99.4 ± 0.2 98.7 ± 0.4 99.1 ± 0.3 99.7 ± 0.1 99.9 ± 0.1 99.7 ± 0.1 99.8 ± 0.1 99.7 ± 0.1 99.7 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.7 ± 0.1

Flood and Echo - 0 99.7 ± 0.1 99.5 ± 0.1 99.5 ± 0.2 98.9 ± 0.3 99.3 ± 0.2 99.7 ± 0.1 99.9 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.0 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1

GIN(E) 82.2 ± 2.5 81.6 ± 1.9 80.8 ± 2.4 83.6 ± 1.5 80.8 ± 2.5 84.2 ± 2.1 82.0 ± 2.6 82.3 ± 2.4 84.3 ± 1.9 83.4 ± 2.6 82.5 ± 3.2 82.4 ± 3.0 81.5 ± 3.2 80.9 ± 3.7 80.3 ± 4.0

PGN 99.8 ± 0.1 99.6 ± 0.2 99.5 ± 0.2 98.8 ± 0.6 98.9 ± 0.5 99.8 ± 0.1 99.4 ± 0.3 98.8 ± 0.6 95.8 ± 2.6 93.3 ± 4.4 99.9 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.5 ± 0.2 99.3 ± 0.3

RecGNN 93.6 ± 2.2 90.0 ± 2.3 90.1 ± 2.5 87.9 ± 1.9 88.2 ± 2.6 93.3 ± 2.2 92.6 ± 2.6 92.2 ± 2.9 91.8 ± 3.3 91.4 ± 3.5 94.3 ± 2.0 93.4 ± 2.0 93.0 ± 2.5 92.5 ± 3.0 92.1 ± 3.4

MIS (H) GIN(E) 79.9 ± 2.9 79.9 ± 2.2 78.2 ± 2.7 83.4 ± 0.8 79.2 ± 1.6 83.1 ± 1.9 79.5 ± 3.4 79.8 ± 3.3 83.2 ± 2.2 81.8 ± 2.6 80.6 ± 3.1 80.6 ± 3.5 79.8 ± 3.6 78.9 ± 3.7 78.2 ± 3.7

PGN 99.8 ± 0.1 99.4 ± 0.1 99.4 ± 0.2 98.8 ± 0.5 98.9 ± 0.7 99.7 ± 0.1 99.5 ± 0.2 99.1 ± 0.3 98.6 ± 0.8 98.2 ± 1.3 99.8 ± 0.1 99.7 ± 0.1 99.7 ± 0.2 99.4 ± 0.7 99.1 ± 1.2

RecGNN 92.2 ± 0.7 88.7 ± 1.7 88.3 ± 2.8 85.6 ± 3.5 84.7 ± 5.5 92.9 ± 0.5 92.2 ± 1.9 91.8 ± 2.6 90.5 ± 4.3 88.8 ± 6.0 93.5 ± 0.7 92.4 ± 1.4 91.7 ± 2.2 89.8 ± 4.6 88.0 ± 6.5

MST Flood and Echo - 1 86.4 ± 0.2 67.7 ± 0.7 63.4 ± 0.9 53.1 ± 1.0 49.1 ± 1.0 83.0 ± 0.7 69.0 ± 1.0 66.7 ± 1.2 60.7 ± 1.2 62.4 ± 1.2 87.1 ± 0.5 72.7 ± 1.2 68.4 ± 1.2 63.4 ± 1.5 62.5 ± 1.6

Flood and Echo - 2 90.4 ± 1.2 75.8 ± 1.9 72.0 ± 2.1 63.1 ± 2.2 59.4 ± 2.2 87.1 ± 1.8 75.5 ± 1.9 73.5 ± 2.0 68.1 ± 2.6 68.8 ± 2.5 91.1 ± 1.1 78.7 ± 1.2 75.1 ± 1.3 70.7 ± 1.5 69.9 ± 1.5

Flood and Echo - 4 94.0 ± 0.8 82.0 ± 1.3 78.2 ± 1.5 69.1 ± 2.1 65.3 ± 2.4 92.2 ± 1.3 80.6 ± 1.6 77.9 ± 1.8 71.9 ± 2.8 71.0 ± 3.4 94.4 ± 0.7 82.8 ± 1.4 78.6 ± 2.0 72.7 ± 3.4 71.3 ± 3.8

Flood and Echo - 8 94.5 ± 1.0 83.1 ± 1.9 79.1 ± 2.2 70.3 ± 3.1 66.5 ± 3.5 92.8 ± 1.5 81.4 ± 1.2 78.3 ± 1.2 70.9 ± 1.4 68.4 ± 1.6 95.1 ± 0.9 83.2 ± 1.0 78.1 ± 0.6 69.6 ± 1.8 67.1 ± 2.7

Flood and Echo - 16 94.6 ± 0.7 82.0 ± 1.9 77.7 ± 2.1 68.1 ± 2.3 64.1 ± 2.6 93.0 ± 1.0 81.0 ± 1.1 77.6 ± 1.3 70.2 ± 1.6 68.3 ± 1.4 95.2 ± 0.6 82.8 ± 1.2 77.8 ± 1.4 70.2 ± 1.3 68.1 ± 1.2

Flood and Echo - 0 94.5 ± 0.5 83.1 ± 0.9 79.1 ± 1.0 69.8 ± 1.8 65.7 ± 2.0 92.7 ± 0.4 81.5 ± 1.0 78.4 ± 1.2 71.1 ± 2.0 68.9 ± 2.7 95.1 ± 0.2 83.1 ± 0.8 78.2 ± 1.1 70.0 ± 2.8 67.3 ± 4.0

GIN(E) 92.6 ± 0.8 79.1 ± 1.3 77.6 ± 1.7 74.5 ± 2.0 72.9 ± 2.2 89.6 ± 1.4 75.3 ± 1.0 74.4 ± 1.4 73.0 ± 2.4 72.8 ± 2.3 92.8 ± 0.8 77.4 ± 0.6 75.8 ± 1.1 74.8 ± 1.7 74.7 ± 1.7

PGN 97.3 ± 0.4 89.1 ± 1.6 84.6 ± 1.7 75.7 ± 2.0 71.9 ± 2.1 96.8 ± 1.0 82.5 ± 2.4 77.6 ± 2.6 67.4 ± 3.1 65.1 ± 3.3 97.4 ± 0.5 85.2 ± 1.5 78.5 ± 1.4 68.7 ± 1.0 66.8 ± 0.9

RecGNN 94.2 ± 2.3 70.7 ± 27.8 66.6 ± 28.2 58.9 ± 29.0 56.0 ± 28.5 92.8 ± 2.8 67.4 ± 22.9 62.8 ± 23.2 53.5 ± 20.9 52.5 ± 17.1 94.7 ± 2.1 69.9 ± 22.1 62.6 ± 20.9 52.5 ± 13.4 50.6 ± 11.3

MST (H) GIN(E) 89.6 ± 1.7 51.6 ± 4.5 49.5 ± 4.3 45.0 ± 4.2 43.2 ± 4.0 86.0 ± 2.1 54.9 ± 6.2 52.7 ± 6.5 50.9 ± 6.4 54.1 ± 6.9 91.1 ± 1.5 58.4 ± 5.9 56.4 ± 5.6 55.0 ± 5.6 54.9 ± 5.5

PGN 96.4 ± 0.6 79.7 ± 3.8 75.6 ± 4.5 69.5 ± 5.5 66.8 ± 5.1 96.1 ± 1.0 74.5 ± 3.9 72.5 ± 4.5 69.2 ± 4.4 68.8 ± 5.9 96.7 ± 0.5 77.7 ± 4.1 74.3 ± 5.0 71.4 ± 6.5 71.0 ± 6.7

RecGNN 87.5 ± 2.4 29.0 ± 6.7 25.7 ± 6.6 21.3 ± 6.4 20.1 ± 6.3 82.0 ± 4.0 32.0 ± 7.3 29.6 ± 6.0 24.9 ± 7.3 28.8 ± 8.7 88.2 ± 2.1 34.2 ± 8.4 31.9 ± 7.1 28.0 ± 7.2 27.8 ± 7.3

Table 14: Results for the FE Net on the MIS task when the number of rounds is increased. We
report node accuracy, SALSA-CLRS indicates that the number of phases matches the length of the
algorithm trajectory.

Model Task ER WS DELAUNAY
16 80 160 800 1600 16 80 160 800 1600 16 80 160 800 1600

Flood and Echo Net - SALSA-CLRS MIS 99.7 ± 0.1 99.5 ± 0.1 99.4 ± 0.2 98.9 ± 0.3 99.2 ± 0.2 99.8 ± 0.1 99.8 ± 0.0 99.7 ± 0.1 99.7 ± 0.1 99.7 ± 0.1 99.8 ± 0.0 99.8 ± 0.1 99.7 ± 0.0 99.7 ± 0.1 99.7 ± 0.1

Flood and Echo Net - 1 MIS 91.5 ± 0.1 87.5 ± 0.2 87.8 ± 0.1 88.3 ± 0.3 87.4 ± 0.2 92.7 ± 0.2 91.9 ± 0.1 91.6 ± 0.2 92.5 ± 0.3 92.1 ± 0.2 92.9 ± 0.1 91.8 ± 0.1 91.5 ± 0.2 91.5 ± 0.2 91.4 ± 0.2

Flood and Echo Net - 2 MIS 93.1 ± 0.1 89.4 ± 0.1 90.1 ± 0.0 89.5 ± 0.1 89.3 ± 0.1 93.8 ± 0.1 93.8 ± 0.1 93.5 ± 0.0 94.2 ± 0.0 93.9 ± 0.0 94.1 ± 0.1 93.5 ± 0.0 93.2 ± 0.0 93.2 ± 0.0 93.2 ± 0.0

Flood and Echo Net - 4 MIS 93.1 ± 11.6 92.4 ± 8.6 92.3 ± 9.6 92.1 ± 5.4 92.1 ± 7.9 94.4 ± 9.2 93.2 ± 12.2 93.4 ± 11.2 94.8 ± 7.9 94.5 ± 8.5 93.5 ± 11.9 93.6 ± 10.7 93.6 ± 10.6 93.7 ± 10.5 93.7 ± 10.4

Flood and Echo Net - 8 MIS 99.7 ± 0.1 99.6 ± 0.1 99.5 ± 0.2 99.0 ± 0.3 99.3 ± 0.2 99.8 ± 0.1 99.9 ± 0.0 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.9 ± 0.1 99.8 ± 0.0 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1

Flood and Echo Net - 16 MIS 99.7 ± 0.2 99.6 ± 0.1 99.5 ± 0.1 99.2 ± 0.2 99.4 ± 0.1 99.7 ± 0.1 99.9 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1

Table 15: Results for the FE Net on the MIS task when the number of rounds is increased. We
report graph accuracy, SALSA-CLRS indicates that the number of phases matches the length of the
algorithm trajectory.

Model Task ER WS DELAUNAY
16 80 160 800 1600 16 80 160 800 1600 16 80 160 800 1600

Flood and Echo Net - SALSA-CLRS MIS 98.3 ± 0.6 90.0 ± 2.0 81.0 ± 4.4 24.3 ± 10.4 10.9 ± 6.6 98.3 ± 0.7 95.1 ± 1.6 85.6 ± 1.7 48.0 ± 7.4 24.1 ± 7.3 98.8 ± 0.3 93.7 ± 1.2 87.4 ± 1.2 48.6 ± 7.0 24.3 ± 4.7

Flood and Echo Net - 1 MIS 40.4 ± 2.1 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 40.3 ± 2.4 1.0 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 44.1 ± 1.2 1.2 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo Net - 2 MIS 49.1 ± 2.0 0.3 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 46.3 ± 1.6 3.1 ± 0.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 49.1 ± 1.7 2.2 ± 0.5 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo Net - 4 MIS 70.9 ± 40.0 25.0 ± 17.2 11.3 ± 9.0 0.0 ± 0.0 0.0 ± 0.0 70.9 ± 40.0 49.7 ± 33.3 29.6 ± 23.5 1.2 ± 1.2 0.0 ± 0.0 73.0 ± 41.2 46.7 ± 31.4 27.3 ± 21.5 0.9 ± 0.9 0.0 ± 0.0

Flood and Echo Net - 8 MIS 98.5 ± 0.5 90.3 ± 3.6 82.6 ± 5.4 25.1 ± 11.0 12.9 ± 10.6 98.7 ± 0.4 95.9 ± 1.8 86.8 ± 4.0 51.4 ± 12.8 27.5 ± 15.1 99.0 ± 0.4 94.5 ± 1.5 88.7 ± 3.5 52.5 ± 13.1 28.9 ± 17.2

Flood and Echo Net - 16 MIS 98.2 ± 0.6 91.8 ± 2.6 83.6 ± 4.4 33.1 ± 9.6 16.4 ± 8.8 98.2 ± 0.6 95.8 ± 1.6 87.9 ± 3.7 56.2 ± 9.3 33.6 ± 11.5 98.8 ± 0.6 94.8 ± 1.1 88.9 ± 3.2 54.0 ± 10.9 31.5 ± 14.1
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Table 16: Results for the FE Net on the Dijkstra task when the number of rounds is increased. We
report node accuracy, SALSA-CLRS indicates that the number of phases matches the length of the
algorithm trajectory.

Model Task ER WS DELAUNAY
16 80 160 800 1600 16 80 160 800 1600 16 80 160 800 1600

Flood and Echo Net - SALSA-CLRS MIS 99.5 ± nan 97.0 ± nan 93.7 ± nan 86.8 ± nan 83.4 ± nan 98.6 ± nan 96.9 ± nan 95.0 ± nan 85.2 ± nan 79.3 ± nan 99.3 ± nan 96.5 ± nan 92.6 ± nan 72.4 ± nan 61.4 ± nan

Flood and Echo Net - 1 MIS 98.3 ± 0.3 89.0 ± 0.9 80.2 ± 1.1 64.8 ± 1.0 59.5 ± 0.9 96.2 ± 0.6 91.0 ± 0.7 88.1 ± 0.7 76.5 ± 1.4 71.7 ± 2.0 97.8 ± 0.3 90.4 ± 1.3 83.2 ± 1.3 62.6 ± 2.5 56.8 ± 3.6

Flood and Echo Net - 2 MIS 99.0 ± 0.1 93.4 ± 0.2 87.3 ± 0.5 74.4 ± 0.6 69.5 ± 0.5 97.6 ± 0.3 93.8 ± 0.4 91.4 ± 0.4 80.6 ± 1.4 76.4 ± 1.5 98.7 ± 0.2 93.4 ± 0.4 88.2 ± 0.8 72.2 ± 1.0 66.0 ± 1.1

Flood and Echo Net - 4 MIS 99.5 ± 0.0 96.5 ± 0.2 92.8 ± 0.3 85.0 ± 1.1 81.1 ± 1.2 98.6 ± 0.2 96.5 ± 0.3 94.7 ± 0.5 84.9 ± 1.9 80.5 ± 2.3 99.3 ± 0.0 96.1 ± 0.4 92.1 ± 0.6 74.3 ± 1.3 65.4 ± 2.5

Flood and Echo Net - 8 MIS 99.6 ± 0.1 96.7 ± 0.3 93.1 ± 0.4 85.6 ± 1.0 81.6 ± 1.4 98.7 ± 0.2 96.5 ± 0.4 94.5 ± 0.6 83.8 ± 1.9 78.7 ± 2.5 99.3 ± 0.1 95.8 ± 0.6 90.7 ± 1.2 68.7 ± 4.9 59.6 ± 5.5

Flood and Echo Net - 16 MIS 99.5 ± 0.1 96.6 ± 0.4 93.0 ± 0.7 85.2 ± 1.3 81.1 ± 1.7 98.7 ± 0.2 96.6 ± 0.5 94.7 ± 0.9 84.4 ± 2.9 79.7 ± 3.9 99.4 ± 0.1 96.2 ± 0.6 91.5 ± 1.6 72.2 ± 6.4 63.5 ± 7.4

Table 17: Results for the FE Net on the Dijkstra task when the number of rounds is increased. We
report graph accuracy, SALSA-CLRS indicates that the number of phases matches the length of the
algorithm trajectory.

Model Task ER WS DELAUNAY
16 80 160 800 1600 16 80 160 800 1600 16 80 160 800 1600

Flood and Echo Net - SALSA-CLRS MIS 93.1 ± nan 15.5 ± nan 0.7 ± nan 0.0 ± nan 0.0 ± nan 78.8 ± nan 13.9 ± nan 0.6 ± nan 0.0 ± nan 0.0 ± nan 89.9 ± nan 9.8 ± nan 0.0 ± nan 0.0 ± nan 0.0 ± nan

Flood and Echo Net - 1 MIS 76.7 ± 2.7 1.0 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 56.8 ± 4.0 1.4 ± 0.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 71.7 ± 2.7 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo Net - 2 MIS 86.3 ± 1.1 3.7 ± 0.5 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 68.5 ± 2.4 3.5 ± 0.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 81.7 ± 2.3 1.1 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo Net - 4 MIS 92.2 ± 0.6 12.7 ± 1.1 0.4 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 79.4 ± 2.6 11.5 ± 1.9 0.2 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 89.5 ± 0.2 6.6 ± 1.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo Net - 8 MIS 93.4 ± 1.0 14.1 ± 1.7 0.5 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 80.8 ± 2.4 11.2 ± 2.1 0.2 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 90.1 ± 1.5 5.8 ± 1.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Flood and Echo Net - 16 MIS 92.8 ± 1.4 15.2 ± 3.3 0.6 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 80.5 ± 3.2 13.2 ± 3.6 0.3 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 90.1 ± 1.1 8.0 ± 2.3 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0

J DATASETS

J.1 ALGORITHMIC DATASETS

For all the below tasks, we use train set, validation set, and test set sizes of 1024, 100, and 1000,
respectively. The sizes of the respective graphs in the train, validation, and test sets are 10, 20, and
100. Performance on this test set demonstrates the model’s ability to extrapolate to larger graph
sizes. Note that many of the tasks only require the output modulo 2. We reduce the problem to
this specific setting so that all numbers involved in the computation stay within the same range, as
otherwise, the values have to be interpreted almost in a symbolic way, which is very challenging for
learning-based models.

PrefixSum Task (Grötschla et al., 2022) Each graph in this dataset is a path graph where each
node has a random binary label with one marked vertex at one end, which indicates the starting
point. The objective of this task is to predict whether the PrefixSum from the marked node to the
node in consideration is divisible by 2.

Distance Task (Grötschla et al., 2022) In this task every graph is a random graph of n nodes with
a source node being distinctly marked. The objective of this task is to predict for each node whether
its distance to the source node is divisible by 2.

Path Finding Task (Grötschla et al., 2022) In this task the dataset consists of random trees of n
nodes with two distinct vertices being marked separately. The objective of this task is to predict for
each node whether it belongs to the shortest path between the 2 marked nodes.

J.2 EXPRESSIVE DATASETS

Skip Circles (Chen et al., 2023) This dataset consists of CSL(Circular Skip Link) graphs denoted
by Gn,k, which is a graph of size n, numbered 0 to n− 1, where there exists an edge between node

1 1 0 1 0 1, 1 2, 0 2, 0 3, 1 3, 1

Figure 10: Example graph from the PrefixSum task. The left graph represents the input graph with
a binary value associated with each node and the blue node being the starting node. The right graph
represents the ground truth solution, each node contains two values the cumulative sum and the
desired result which is the cumulative sum modulo 2.
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Figure 11: Example graph from the distance task. The green node in the left graph (input graph)
represents the source node, and the remaining nodes are unmarked. On the right graph (ground
truth) all orange nodes are at an odd distance away from the source while the blue nodes are at an
even distance away from the source.

Figure 12: Example graph from the pathfinding task. The left graph represents the input graph,
where the blue nodes are the marked nodes. The right is the corresponding solution, where the path
between the marked nodes is highlighted in green.
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Figure 13: Example graphs from the Skip Circles dataset, namely Gn,5 and Gn,2 on the left and the
right respectively.

(a) Limits 1 (b) Limits 2

Figure 14: Counter-examples which MPNNs cannot distinguish from Garg et al. (2020), they cannot
distinguish among the graphs in each example.

i and node j iff |i − j| ≡ 1 or k (mod n). Gn,k and Gn′,k′ are only isomorphic when n = n′ and
k ≡ ±k′ (mod n). Here, the number of graphs in train, validation, and test are all 10. We can see an
example of this construction in Figure 13.

We follow the setup of Chen et al. (2023) where we fix n = 41 and set k ∈
{2, 3, 4, 5, 6, 9, 11, 12, 13, 16}. Each Gn,k forms a separate isomorphism class, and the aim of the
classification task is to classify the graph into its isomorphism class by the skip cycle length. Since
1-WL is unable to classify these graphs, we can see in table 3 that the GIN model cannot get an
accuracy better than random guessing (10%).

Limits1 and Limits2 (Garg et al., 2020) This dataset consists of two graphs from Garg et al.
(2020) that, despite having different girth, circumference, diameter, and total number of cycles,
cannot be distinguished by 1-WL. For each example, the aim is to distinguish among the disjoint
graphs on the left versus the larger component on the right. The specific constructions can be seen
in Figure 14.

4-Cycles (Loukas, 2020) This dataset introduced by Loukas (2020) originates from a construction
by Korhonen & Rybicki (2017) in which two players Alice and Bob each start with a complete
bipartite graph of p =

√
q nodes which are numbered from 1 to 2p and a hidden binary key with size

being |p2|. The nodes from each graph with the same numbers are connected together. Each player
then uses their respective binary keys to remove edges, each bipartite edge corresponding to a zero
bit is removed and remaining edges are substituted by a path of length k/2− 1, we use k = 4. The
task is to determine if the resulting graph has a cycle of length k. In our implementation the number
of train, validation and test graphs we consider are all 25. For a depiction of the construction refer
to Figure 15.

LLC (Sato et al., 2021) This dataset is comprised of random 3-regular graphs and the task is to
determine for each node its local clustering coefficient (Watts & Strogatz, 1998) which informally is
the number of triangles the vertex is part of. The training and test set are both comprised of a 1000
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1 2 p p+1 p+2 2p

p+1 p+2 2p1 2 p

Figure 15: Example construction of Loukas (2020)
, where k=4.

210

0

0

1

1

1

1

2

Figure 16: The graphs represent an instance from LLC and Triangles dataset respectively. For the
LLC graph(left), each label denotes the ground truth for the graph while for the Triangles(right)
graph, the blue nodes are ones which are a part of a triangle, while the orange nodes are not part of
any triangle.

graphs. The graphs in the train set have 20 nodes, while the graphs in the test set have a 100 nodes
testing extrapolation. An example graph from this dataset can be seen in Figure 16.

Triangles (Sato et al., 2021) This dataset akin to the previous contains random 3-regular graphs
with the same train/test split and graph sizes. The task here is to classify each node as being part of
a triangle or not. An example graph from this dataset can be seen in Figure 16.
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