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Abstract

Adam is a widely used optimizer in neural network training due to its adaptive
learning rate. However, because different data samples influence model updates
to varying degrees, treating them equally can lead to inefficient convergence. To
address this, a prior work proposed adapting the sampling distribution using a
bandit framework to select samples adaptively. While promising, both the original
Adam and its bandit-based variant suffer from flawed theoretical guarantees. In
this paper, we introduce Adam with Combinatorial Bandit Sampling (AdamCB),
which integrates combinatorial bandit techniques into Adam to resolve these issues.
AdamCB is able to fully utilize feedback from multiple samples at once, enhancing
both theoretical guarantees and practical performance. Our regret analysis shows
that AdamCB achieves faster convergence than both Adam and its bandit-based
variant. Numerical experiments demonstrate that AdamCB consistently outperforms
existing Adam-based methods, making it the first to offer both provable guarantees
and practical efficiency for Adam with adaptive batch selection.

1 Introduction

Adam (Kingma & Ba, 2015) is one of the most widely used optimizers for training neural networks,
primarily due to its ability to adapt learning rates. Despite its popularity, the standard version of
Adam and its numerous variants treat each training sample equally by employing uniform sampling
over the dataset. In practice, however, different data samples can influence model updates to varying
degrees. Consequently, simply performing full dataset sweeps with equal weighting may lead to
inefficient convergence and unnecessary computational overhead.

To address these challenges, Liu et al. (2020) introduced a dynamic approach called AdamBS, which
adapts the sampling distribution during training using a multi-armed bandit (MAB) framework. In
this method, each training sample is treated as an arm in the MAB, allowing more important samples
to be selected with higher probability and having a greater influence on model updates. This approach
was intended to improve both the adaptability and efficiency of the optimization process, presenting
a promising direction for further advancements.

However, despite its potential benefits, critical issues remain: the analyses of both the original Adam
method (as identified by Reddi et al. (2018)) and its bandit-based extension, AdamBS (issues newly
discovered in this work), are technically flawed. Thus, the theoretical guarantees provided for the
efficiency and effectiveness of these methods are incorrect (see Sections 2.5.2 and 2.5.3). As a result,
to the best of our knowledge, there is no existing Adam-based method that can adaptively sample
while providing rigorous performance guarantees. This raises a critical question: is it possible to
design an algorithm that adaptively adjusts the sampling distribution while ensuring both provable
guarantees and practical performance improvements?

In this paper, we propose a new optimization method, Adam with Combinatorial Bandit Sampling
(AdamCB), which addresses the fundamental flaws in the analysis of AdamBS by incorporating a
combinatorial bandit approach into the sample selection process. In this approach, batch selection
is formulated as a combinatorial action, where multiple arms (samples) are selected simultaneously.
This combinatorial bandit framework can take advantage of feedback from multiple samples at once,
significantly enhancing the adaptivity of the optimizer. For the first time, we provide provable perfor-
mance guarantees for adaptive batch selection in Adam-based methods, leading to faster convergence
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and demonstrating both theoretical and practical improvements over existing approaches. Our main
contributions are summarized as follows:

• We propose Adam with Combinatorial Bandit Sampling (AdamCB), a novel optimization
algorithm that integrates the Adammethod with a combinatorial bandit approach for sample
selection. To the best of our knowledge, AdamCB is not only the first algorithm to successfully
combine combinatorial bandit techniques with the Adam framework, but also the first to
correctly adapt any bandit techniques to Adam, significantly enhancing its adaptability.

• We provide a rigorous regret analysis of the proposed AdamCB algorithm, demonstrating
that it achieves a sharper regret bound compared to both the original Adam (which uses
uniform sampling) and its bandit-based variant, AdamBS (Liu et al., 2020). Additionally, we
correct the theoretical flaws in the analysis of AdamBS and present a revised regret bound
(see Table 1 for comparisons).

• We perform empirical evaluations across multiple datasets and models, showing thatAdamCB
consistently outperforms existing Adam-based optimization methods in terms of both conver-
gence rate and practical performance. Our results establish AdamCB as the first Adam-based
algorithm to offer both provable convergence guarantees and practical efficiency for bandit-
based Adam optimization methods.

2 Preliminaries

2.1 Notations

We denote by [n] the set {1, 2, . . . n} for a positive integer n. For a vector x ∈ Rd, we denote by
∥x∥ the vector’s Euclidean norm. For two positive sequences {an}∞n=1 and {bn}∞n=1, an = O(bn)
implies that there exists an absolute constant C > 0 such that an ≤ Cbn holds for all n ≥ 1.
Similarly, an = o(bn) indicates that limn→∞

an

bn
= 0.

2.2 Expected Risk and Empirical Risk

Expected Risk. In many machine learning problems, the primary goal is to develop a model with
robust generalization performance. By generalization, we mean that while models are trained on a
finite sample of data points, we aim for them to perform well on the entire population of data. To
achieve this, we focus on minimizing a quantity known as the expected risk. The expected risk is the
average loss across the entire population data distribution, reflecting the model’s anticipated error if
it had access to the complete set of possible data samples. Formally, the expected risk is defined as:

E(x,y)∼P [ℓ(θ;x, y)] :=

∫
ℓ(θ;x, y)dP (x, y) (1)

where θ ∈ Rd is the model parameter, ℓ(θ;x, y) is the loss function that measures the error of the
model on a single data sample (x, y), and P is the true distribution of the data. The gold standard
goal is to find the θ that minimizes the expected risk in Eq.(1), ensuring that the model generalizes
well to all data drawn from P .

Empirical Risk. In practice, however, the true distribution P is typically unknown. Instead, we
only work with a finite dataset D consisting of n samples, which is denoted as D := {(xi, yi)}ni=1.
To approximate the expected risk, we use the empirical distribution P̂ derived from the dataset D.
For this empirical distribution P̂ to be a reliable approximation, we assume that the dataset D is
representative of the true distribution P . This requires that each sample in the dataset D is equally
likely and independently drawn from the true distribution P (i.e., the samples (xi, yi) are i.i.d.
according to P ). The empirical distribution P̂ can be expressed as:

P̂ (x, y;D) = 1

n

n∑
i=1

δ(x = xi, y = yi) (2)

where δ is the Dirac-delta function. With the empirical distribution at hand, the empirical risk is the
average loss over the given finite dataset D. The empirical risk serves as an estimate of the expected
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risk and is formally defined as:

E(x,y)∼P̂ [ℓ(θ;x, y)] :=

∫
ℓ(θ;x, y)dP̂ (x, y;D) = 1

n

n∑
i=1

ℓ(θ;xi, yi). (3)

However, if the dataset is non-uniformly distributed, some samples may be over-represented or under-
represented, leading to a biased estimate of the expected risk. To address this issue, one can use
importance sampling (Katharopoulos & Fleuret, 2018), which adjusts the sample weights to ensure
the empirical risk remains an unbiased estimate of the expected risk.

2.3 Objective Function and Mini-Batches

Objective Function. In the context of optimizing machine learning models, the objective function
f(θ;D) is often the empirical risk shown in Eq.(3). Given a datasetD = {(xi, yi)}ni=1, the objective
function f(θ;D) is defined as, f(θ;D) := 1

n

∑n
i=1 ℓ(θ;xi, yi). As studied in the relevant literature

of Adam optimization (Duchi et al., 2011; Tieleman & Hinton, 2012; Zeiler, 2012; Kingma & Ba,
2015; Dozat, 2016; Reddi et al., 2018), we focus on the problem setting where f is convex (i.e., ℓ is
convex). Then, the goal of the optimization problem is to find a parameter θ∗ ∈ Rd that minimizes
the objective function f(θ;D). This problem is known as empirical risk minimization (ERM):

θ∗ ∈ argmin
θ∈Rd

f(θ;D) .

The gradient of the objective function f with respect to θ is denoted by g := ∇θf(θ;D) = 1
n

∑n
i=1 gi,

where gi := ∇θℓ(θ;xi, yi) is the gradient of the loss based on the i-th data sample in D.

Mini-Batches. When the full dataset D = (xi, yi)
n
i=1 is very large (i.e., large n), computing the

gradient over the entire dataset for each optimization iteration becomes computationally expensive.
To address this, mini-batches—smaller subsets of the full dataset—are commonly used to reduce
computational overhead per iteration. Consider the sequence of mini-batches D1,D2, . . . ,DT ⊆ D
used for training, with corresponding objective functions ft(θ) := f(θ,Dt) for each t ∈ {1, . . . , T}.
LetK be the size of the mini-batchDt for all t, thenDt := {(xJ1

t
, yJ1

t
), (xJ2

t
, yJ2

t
), . . . , (xJK

t
, yJK

t
)},

where Jt := {J1
t , J

2
t , . . . , J

K
t } ⊆ [n] is the set of indices of the samples in the mini-batch Dt. The

objective function ft(θ) for the mini-batch Dt is defined as the expected risk over this mini-batch:

ft(θ) = f(θ;Dt) :=

∫
ℓ(θ;x, y)dP̂ (x, y;Dt) (4)

where P̂ (x, y;Dt) is the empirical distribution derived from the mini-batch Dt. The gradient of the
objective function ft with respect to θ is denoted as gt := ∇θft.

Note that the sequence of mini-batches {Dt}Tt=1 can be selected adaptively. Adaptive selection
involves choosing mini-batches based on results observed during previous optimization steps, poten-
tially adjusting the importance assigned to specific samples. The empirical distribution P̂ (x, y;Dt)
is significantly influenced by the method used to select the mini-batch Dt from the full dataset D.

2.4 Regret Minimization

Cumulative Regret. An online optimization method can be analyzed within the framework of
regret minimization. Consider an online optimization algorithm π that generates a sequence of
model parameters θ1, . . . , θT over T iterations. The performance of π can be compared to the
optimal parameter θ∗ ∈ argminθ∈Rd f(θ;D), which minimizes the objective function over the full
dataset D. The cumulative regret after T iterations is defined as:

Rπ(T ) := E

[
T∑

t=1

f(θt;D)− T · min
θ∈Rd

f(θ;D)

]
(5)

where the expectation is taken with respect to any stochasticity in data sampling and parameter
estimation. For the optimization algorithm π to converge to optimality, we require the cumulative
regretRπ(T ) to grow slower than the number of iterations T , specificallyRπ(T ) = o(T ).
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Online Regret. An alternative notion of regret is the online regret, defined over a sequence of
mini-batch datasets {Dt}Tt=1, or equivalently, over the sequence of functions {ft}Tt=1. Specifically,
the online regret of the optimization algorithm π after T iterations is given by:

Rπ
online(T ) := E

[
T∑

t=1

ft(θt)− min
θ∈Rd

T∑
t=1

ft(θ)

]
(6)

where the expectation is again taken over any stochasticity in the optimization process. It is important
to note that the primary focus should not solely be on minimizing the online regret. An algorithm
might select Dt ⊂ D in a way that allows π to perform well on {Dt}Tt=1, but it may perform poorly
on the full datasetD. Therefore, our ultimate goal remains minimizing the cumulative regretRπ(T ).
Later, in the proof of Theorem 1, we demonstrate how minimizing the cumulative regret Rπ(T ) in
Eq.(5) relates to minimizing the online regretRπ

online(T ) with respect to the sequence {ft}Tt=1.

2.5 Related Work: Adam and Technical Issues in Convergence Guarantees

2.5.1 Adam Optimizer

Adam (Kingma & Ba, 2015) is a widely used first-order gradient-based optimization method that
computes adaptive learning rates for each parameter by using both the first and second moment
estimates of the gradients. In each iteration t, Adam maintains the accumulated gradients mt ←
β1,tmt−1 + (1− β1,t)gt and the accumulated squared gradients vt ← β2vt−1 + (1− β2)g

2
t , where

gt is the gradient at iteration t and g2t represents the element-wise square of gradient gt. The hyper-
parameters β1, β2 ∈ [0, 1) control the decay rates of mt and vt, respectively. Since these moment
estimates are initially biased towards zero, the estimates are corrected as m̂t ← mt/(1 − βt

1) and
v̂t ← vt/(1 − βt

2). The Adam algorithm then updates the parameters using θt ← θt−1 − αt
m̂t√
v̂t+ϵ

,
where ϵ is a small positive constant added to prevent division by zero. The key characteristic of
Adam lies in its use of exponential moving average for both the gradient estimates (first-order) and the
element-wise squares of gradients (second-order). This approach has proven effective for optimizing
deep neural networks. The success of Adam has led to numerous follow-up works, such as Reddi
et al. (2018), Huang et al. (2019), Chen et al. (2020), Alacaoglu et al. (2020), and Chen et al. (2023).

2.5.2 Technical Issues in Adam-based Methods

Despite its widespread use in optimization of neural networks, the original version of Adam fails
to provide convergence guarantees. This issue has been identified and discussed by the previous
literature such as Reddi et al. (2018) and Alacaoglu et al. (2020) (e.g., see Section 3 of Reddi
et al. 2018). Although follow-up Adam-based methods, such as AMSGrad (Reddi et al., 2018), have
attempted to address these technical issues, they still present errors that have not been corrected. For
example, the convergence proofs for these methods often rely on the condition that all components of
the vector√vt+1/(αt+1(1−β1,t+1))−

√
vt/(αt(1−β1,t)) are positive (see the proofs of Theorem

10.5 in Kingma & Ba 2015; Theorem 4 in Reddi et al. 2018). However, such a condition cannot be
met for all iterations, indicating the potential for divergence in these methods. Similar issues exist in
other related works such as Huang et al. (2019) (Lemma A.2), Chen et al. (2020) (Lemma A.1), and
Chen et al. (2023) (Theorem C.10). Further details are provided in Appendix C.

2.5.3 Technical Issues in Adam with Bandit Sampling (Liu et al., 2020)

The most closely related work to ours is Liu et al. (2020), which extends Adam using a bandit
approach, referred to as AdamBS. However, the fundamental convergence issues inherent in Adam-
based methods, as discussed in Section 2.5.2, also affect AdamBS. Furthermore, AdamBS has several
other shortcomings, which we summarize as follows:

• AdamBS unfortunately fails to provide guarantees on convergence despite its claims,
both on the regret bound and on the effectiveness of the adaptive sample selection via the
bandit approach. Specifically, the claimed regret bound in Theorem 1 of Liu et al. (2020) is
incorrect. Specifically, Eq.(7) on Page 3 of the supplemental material of Liu et al. (2020) has
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an error in the formula expansion.1 This technical error is critical to their claims regarding
the convergence rate of AdamBS and its dependence on the mini-batch size K

• Not only are the theoretical results in Liu et al. (2020) incorrect, but their problem setting
is also limited and impractical, even if the analysis were correct. The analysis is based
on the assumption that feature vectors follow a doubly heavy-tailed distribution, which is a
rather strong and restrictive assumption that may not hold in practical scenarios. No analysis
is provided for bounded or sub-Gaussian (light-tailed) distributions, which are commonly
encountered in real-world applications.

• Despite the claim on mini-batch selection of sizeK, their algorithm design leads to possibly
sampling the same sample multiple times in a given mini-batch since the bandit algorithm
utilized and analyzed in their work is based on single action selection (not a combinatorial
bandit). Hence, algorithmically their method does not perform what they have claimed.
Furthermore, because of this reason, their method fails to obtain performance gains with
respect to the mini-batch size K, which is contrary to their claim.

• Numerical evaluations (in Section 5) demonstrate poor performance of AdamBS. Our
numerical experiments across various models and datasets reveal that AdamBS exhibits poor
and inconsistent performance. Furthermore, an independent group previously attempted to
reproduce the results in Liu et al. (2020) but was unable to do so (see Bansal et al. (2022)).

3 Proposed Algorithm: AdamCB

3.1 AdamCB Algorithm

Algorithm 1: Adam with Combinatorial Bandit Sampling (AdamCB)
Input: learning rate {αt}Tt=1, decay rates {β1,t}Tt=1, β2, batch size K, exploration parameter

γ ∈ [0, 1)
Initialize: model parameters θ0, first moment estimate m0 ← 0, second moment estimate

v0 ← 0, v̂0 ← 0, sample weights wi,0 ← 1 for all i ∈ [n]
1 for t = 1 to T do
2 Jt, pt, Snull,t ← Batch-Selection(wt−1,K, γ) (Algorithm 2)
3 Compute unbiased gradient estimate gt with respect to Jt using Eq.(8)
4 mt ← β1,tmt−1 + (1− β1,t)gt
5 vt ← β2vt−1 + (1− β2)g

2
t

6 v̂1 ← v1, v̂t ← max
{

(1−β1,t)
2

(1−β1,t−1)2
v̂t−1, vt

}
if t ≥ 2

7 θt+1 ← θt − αt
mt√
v̂t+ϵ

8 wt ← Weight-Update(wt−1, pt, Jt, {gj,t}j∈Jt
, Snull,t, γ) (Algorithm 3)

We present our proposed algorithm, Adam with Combinatorial Bandit Sampling (AdamCB), which
is described in Algorithm 1. The algorithm begins by initializing the sample weights w0 :=
{w1,0, w2,0, . . . , wn,0} uniformly, assigning an equal weight of 1 to each of n training samples. At
each iteration t ∈ [T ], the current sample weights wt−1 = {w1,t−1, w2,t−1, . . . , wn,t−1} are used to
determine the sample selection probabilities pt := {p1,t, p2,t, . . . , pn,t}, where these probabilities
are controlled with the exploration parameter γ (Line 2). A subset of samples, denoted by Dt ⊆ D,
is chosen based on these probabilities. The set of indices for samples chosen in the mini-batch Dt is
denoted by Jt := {J1

t , J
2
t , . . . , J

K
t } ⊆ [n]. Using this mini-batchDt, an unbiased gradient estimate

gt is computed (Line 3). The algorithm then updates moments estimates mt, vt, and v̂t following
the Adam-based update rules (Lines 4–6). The model parameters θt are subsequently updated based
on these moment estimates (Line 7). Finally, the weights wt−1 are adjusted to reflect the importance
of each sample, improving the batch selection process in future iterations (Line 8).

1Liu et al. (2020) apply Jensen’s inequality to handle the expectation of the squared norm of the sum of
gradient estimates. However, the convexity assumption required to use Jensen’s inequality is not satisfied,
invalidating this step in their proof.
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The following sections describe the detailed process for deriving the sample probabilities pt and
selecting the mini-batch Dt = {(xj , yj)}j∈Jt

from the sample weights wt−1 utilizing our proposed
combinatorial bandit sampling.

3.2 Batch Selection: Combinatorial Bandit Sampling

In our approach, we incorporate a bandit framework where each sample is treated as an arm. Since
multiple samples must be selected for a mini-batch, we extend the selection process to handle
multiple arms. There are two primary methods for sampling multiple arms: with replacement or
without replacement. The previous method, AdamBS (Liu et al., 2020), samples multiple arms with
replacement. In contrast, our proposed method, AdamCB, employs a combinatorial bandit algorithm
to sample multiple arms without replacement, achieved by Batch-Selection (Algorithm 2).

Algorithm 2: Batch-Selection
Input: Sample weights wt−1, batch size K, exploration parameter γ ∈ [0, 1)

1 Set C ← (1/K − γ/n)/(1− γ)
2 if maxi∈[n] wi,t−1 ≥ C

∑n
i=1 wi,t−1 then

3 Let w̄t−1 be a sorted list of {wi,t−1}ni=1 in descending order
4 Set S ←

∑n
i=1 w̄i,t−1

5 for i = 1 to n do
6 Compute τ ← C · S/(1− i · C)
7 if w̄i,t−1 < τ then break, else update S ← S − w̄i,t−1

8 Set Snull,t ← {i : wi,t−1 ≥ τ} and wi,t−1 = τ for i ∈ Snull,t

9 else
10 Set Snull,t ← ∅

11 Set pi,t ← K
(
(1− γ)

wi,t−1∑n
j=1 wj,t−1

+ γ
n

)
for all i ∈ [n]

12 Set Jt ← DepRound(K, (p1,t, p2,t, . . . , pn,t)) (Algorithm 7)
13 return Jt, pt, Snull,t

Weight Adjustment (Lines 2–10). Unlike single-arm selection bandit approach like AdamBS,
where

∑n
i=1 pi,t = 1, because only one sample is selected at a time, AdamCBmust select K samples

simultaneously for a mini-batch. Therefore, it is natural to scale the sum of the probabilities to K,
reflecting the expected number of samples selected in each round.2 Allowing the sum of probabilities
to equal K can lead to individual probabilities pi,t exceeding 1, especially when certain samples
are assigned significantly higher weights due to their importance (or gradient magnitude). To
ensure valid probabilities and prevent any sample from being overrepresented, AdamCB introduces
a threshold τ . If a weight wi,t−1 exceeds τ , the index i is added to a null set Snull,t, effectively
removing it from active consideration for selection. The probabilities of the remaining samples are
adjusted to redistribute the excess weight while ensuring the sum of probabilities remains K.

Probability Computation (Line 11). After adjusting the weights, the probabilities pt for selecting
each sample are computed using the adjusted weights wt−1 and the exploration parameter γ. This
computation balances the need to exploit samples with higher weights (more likely to provide useful
gradients) and explore other samples. The inclusion of K in the scaling ensures that the sum of
probabilities matches the batch size:

∑n
i=1 pi,t = K.

Mini-batch Selection (Line 12). The final selection of K distinct samples for the mini-batch is
performed using DepRound (Algorithm 7), originally proposed by Gandhi et al. (2006) and later
adapted by Uchiya et al. (2010). DepRound efficiently selects K distinct samples from a set of
n samples, ensuring that each sample i is selected with probability pi,t. The algorithm has a
computational complexity of O(n), which is significantly more efficient than a naive approach
requiring consideration of all possible combinations with a complexity of at least

(
n
K

)
.

2If the sum of probabilities were constrained to 1, the algorithm would need to perform additional rescaling
or sampling adjustments. Instead, directly setting

∑n
i=1 pi,t = K aligns the probability distribution with the

batch-level selection requirements.
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3.3 Computing Unbiased Gradient Estimates

Given the mini-batch data Dt = {(xj , yj)}j∈Jt
from Algorithm 2, and since pt is a probability over

the full dataset D, and Dt is sampled according to pt, we employ an importance sampling technique
to compute the empirical distribution P̂ for Dt:

P̂ (x, y;Dt) :=
1

K

∑
j∈Jt

δ(x = xj , y = yj)

npj,t
(7)

where δ is the Dirac-delta function. This formulation ensures that the empirical distribution P̂ for
the mini-batch Dt closely approximates the original empirical distribution P̂ (x, y;D) defined over
the full dataset D, as expressed in Eq.(2). According to the empirical distribution P̂ (x, y;Dt) in
Eq.(7), the online objective function ft corresponding to the mini-batch Dt (as defined in Eq.(4))
can be computed as

ft(θ) = f(θ;Dt) =

∫
ℓ(θ;x, y)dP̂ (x, y;Dt) =

1

K

∑
j∈Jt

ℓ(θ;xj , yj)

npj,t
.

This implies that the gradient gt = ∇θft(θ) obtained from the mini-batch Dt at iteration t is
computed as follows:

gt = ∇θft(θ) =
1

K

∑
j∈Jt

∇θℓ(θ;xj , yj)

npj,t
=

1

K

∑
j∈Jt

gj,t
npj,t

(8)

Here, we denote the gradients for each individual sample in the mini-batch Dt as {gj,t}j∈Jt
, where

Jt is the set of indices for Dt. In stochastic optimization methods like SGD and Adam, it is crucial to
use an unbiased gradient estimate when updating the moment vectors. We can easily show that gt is
an unbiased estimate of the true gradient g over the entire dataset by taking the expectation over pt,
i.e, Ept

[gt] = g. The unbiased gradient estimate gt in Eq.(8) is then used to update the first moment
estimate mt and the second moment estimate vt in each iteration of the algorithm.

3.4 Update of Sample Weights

The final step in each iteration of Algorithm 1 involves updating the sample weights wt. Treating
the optimization problem as an adversarial semi-bandit, our partial feedback consists only of the
gradients {gj,t}j∈Jt

. The loss ℓi,t occurred when the i-th arm is pulled is computed based on the
norm of the gradient ∥gi,t∥. Specifically, the loss ℓi,t is always non-negative and inversely related
to ∥gi,t∥. This implies that samples with smaller gradient norms are assigned lower weights, while
samples with larger gradient norms are more likely to be selected in future iterations.

Algorithm 3: Weight-Update
Input: wt−1, pt, Jt, {gj,t}j∈Jt , Snull,t, γ ∈ [0, 1)

1 for j = 1 to n do
2 Compute loss ℓj,t = p2

min

L2

(
−∥gj,t∥2

(pj,t)2
+ L2

p2
min

)
if j ∈ Jt; otherwise ℓj,t = 0

3 if j /∈ Snull,t then
4 wj,t ← wj,t−1 exp (−Kγℓj,t/n)

5 return wt

4 Regret Analysis

In this section, we present a regret analysis for our proposed algorithm, AdamCB. We begin by
introducing the standard assumptions commonly used in the analysis of optimization algorithms.
Assumption 1 (Bounded gradient). There exists L > 0 such that ∥gi,t∥ ≤ L for all i ∈ [n] and
t ∈ [T ].
Assumption 2 (Bounded parameter). There exists D > 0 such that ∥θs−θt∥ ≤ D for any s, t ∈ [T ].
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Discussion of Assumptions. Both Assumptions 1 and 2 are the standard assumptions in the relevant
literature that studies the regret bounds of Adam-based optimization (Kingma & Ba, 2015; Reddi
et al., 2018; Luo et al., 2019; Liu et al., 2020; Chen et al., 2020). A closely related work (Liu et al.,
2020) relies on the additional stronger assumption of a doubly heavy-tailed feature distribution. In
contrast, the regret bound for AdamCB is derived using only these two standard assumptions.

4.1 Regret Bound of AdamCB

Theorem 1 (Regret bound of AdamCB). Suppose Assumptions 1-2 hold, and we run AdamCB for a
total T iterations with αt =

α√
t

and with β1,t := β1λ
t−1, λ ∈ (0, 1). Then, the cumulative regret of

AdamCB (Algorithm 1) with batch size K is upper-bounded by

O

(
d
√
T +

√
d

n3/4

(
T

K
ln

n

K

)1/4
)
. (9)

Discussion of Theorem 1. The cumulative regret bound ofAdamCB is sub-linear inT , i.e.,Rπ(T ) =
o(T ). Hence, AdamCB is guaranteed to converge to the optimal solution. The first term in the regret
bound, d

√
T , which is commonly shared by the results in all Adam-based methods (Kingma & Ba,

2015; Reddi et al., 2018; Liu et al., 2020). The second term, (
√
d/n3/4) ((T/K) ln (n/K))

1/4,
illustrates the impact of the number of samples n as well as the batch size K on regret. As the
number of samples n increases, this term decreases, suggesting that having more data generally
helps in reducing regret (hence converging faster to optimality). Similarly, increasing the batch size
K also decreases this term, reflecting that larger mini-batches can reduce the variance in gradient
estimates, thus improving the performance.

4.2 Proof Sketch of Theorem 1

In this section, we present the proof sketch of the regret bound in Theorem 1. The proof start by
decomposing the cumulative regretRπ(T ) into three parts: the cumulative online regretRπ

online(T )
and auxiliary terms (A) and (B), as shown below:

Rπ(T ) = Rπ
online(T ) + E

[
T∑

t=1

(f(θt;D)− f(θt;Dt))

]
︸ ︷︷ ︸

(A)

+E

[
min
θ∈Rd

T∑
t=1

f(θ;Dt)− T · min
θ∈Rd

f(θ;D)

]
︸ ︷︷ ︸

(B)

(10)

We now prove the following two key lemmas to bound the online regretRπ
online(T ).

Lemma 1. Suppose Assumptions 1-2 hold. AdamCB (Algorithm 1) with a mini-batch of size K, which
is formed dynamically by distribution pt, achieves the following upper-bound for the cumulative online
regretRπ

online(T ) over T iterations,

Rπ
online(T ) ≤ ρ1d

√
T +
√
dρ2

√√√√ 1

n2K

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2
(pj,t)2

]
+ ρ3

where ρ1, ρ2, and ρ3 are constants (See Appendix B.2).

Lemma 1 provides an upper bound for the cumulative online regret over T iterations. This lemma
shows that pt affects the upper bound of Rπ

online(T ). Hence, we wish to choose pt that could lead
to minimizing the upper bound. The following key lemma shows that it can be achieved by a
combinatorial semi-bandit approach, adapted from EXP3 (Auer et al., 2002b).

Lemma 2. Suppose Assumptions 1-2 hold. If we set γ = min

{
1,
√

n ln (n/K)
(e−1)TK

}
, the batch selection

(Algorithm 2) and the weight update rule (Algorithm 3) following AdamCB (Algorithm 1) implies

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

−min
pt

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = O
(√

KnT ln
n

K

)

8
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Table 1: Comparison of Convergence Rates

Optimizer Convergence Rate

Adam (Kingma & Ba, 2015) (corrected†) O
(
d
√
T +

√
d

n1/2

√
T
)

AdamBS (Liu et al., 2020) (corrected†) O
(
d
√
T +

√
d

n3/4 (T lnn)
1
4

)
AdamCB (Ours) O

(
d
√
T +

√
d

n3/4

(
T
K ln n

K

) 1
4

)
† Note that the original results and proofs in both Kingma & Ba (2015) and Liu et al. (2020) are incorrect.
Hence, their claimed regret bounds in both works are invalid. However, we newly derive the corrected versions
of the regret bounds for Kingma & Ba (2015) and Liu et al. (2020) in Theorems 2 and 3, which can be of
independent interest.

Lemma 2 bounds the difference between the expected cumulative loss of the chosen mini-batch
and the optimal mini-batch, showing sub-linear growth in T with dependence on the batch size K.
Combining Lemma 1 and Lemma 2, we can bound the cumulative online regretRπ

online(T ), which also
grows sub-linearly in T . Proofs of Lemma 1 and Lemma 2 are in Appendix B.2 and Appendix B.3,
respectively. The discrepancy terms (A) and (B) in Eq.(10) capture the difference between the full
dataset D and the mini-batches {Dt}Tt=1, and are also bounded sub-linearly in T (See Lemma 11 in
Appendix B.4). Since the cumulative regretRπ(T ) is decomposed into the online regretRπ

online(T )
with additional sub-linear terms, we obtain the cumulative regret bound for AdamCB.

4.3 Comparisons with Adam and AdamBS

Our main goal is to demonstrate that the convergence rate of AdamCB (Algorithm 1) is provably more
efficient than Adam (Kingma & Ba, 2015) which employs uniform sampling and AdamBS (Liu et al.,
2020) which utilizes (non-combinatorial) bandit sampling. Note that the original proofs in Kingma
& Ba (2015) and Liu et al. (2020) are incorrect as explained in Sections 2.5.2 and 2.5.3. Hence, their
claimed regret bounds in both works are invalid. However, we newly derive the corrected versions of
the regret bounds for Kingma & Ba (2015) and Liu et al. (2020) in Theorems 2 and 3, respectively,
which we believe are independent contributions.

To facilitate comparisons with corrected results of Kingma & Ba (2015) and Liu et al. (2020), we
additionally introduce the following assumption:
Assumption 3 (Bounded variance of gradient). There exists σ > 0 such that Var(∥gi,t∥) ≤ σ2 for
all i ∈ [n] and t ∈ [T ]

Assumption 3 is commonly used in the previous literature (Reddi et al., 2016; Nguyen et al., 2018;
Zou et al., 2019; Patel et al., 2022). It is important to note that Assumption 3 is not required for the
analysis of our algorithm in Theorem 1. Rather, we employ the assumption to fairly compare with
corrected results for the existing Adam-based methods (Kingma & Ba, 2015; Liu et al., 2020).

Under Assumptions 1, 2, and 3, the convergence rate for (corrected) Adam using uniform sampling
is given by O

(
d
√
T +

√
d

n1/2

√
T
)

(Theorem 2 in Appendix D), while the convergence rate for
(corrected) Adam using bandit sampling isO

(
d
√
T +

√
d

n3/4 (T lnn)1/4
)

(Theorem 3 in Appendix E)
when Assumptions 1 and 2 hold. The convergence rates are outlined in Table 1.

Faster convergence of AdamCB. In the case of uniform sampling in Adam, the second term in the
convergence rate exhibits a dependence on n−1/2, which implies that regret decreases as the dataset
size increases. However, this reduction in regret occurs at a slower rate compared to bandit-based
sampling methods. Both AdamBS (corrected) and AdamCB achieve an improved n−3/4 dependency,
resulting in a faster convergence. When comparing the two bandit-based sampling methods, AdamCB
surpasses AdamBS (corrected) in terms of convergence rate, particularly by the factor of the batch size
K. That is, AdamBS does not benefit from multiple samples in batch while our AdamCB enjoys faster
convergence. Hence, AdamCB is not only the first algorithm with correct performance guarantees
for Adam with adaptive batch selection, but to our best knowledge, also the method with the fastest
convergence guarantees in terms of regret performance.

9
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Figure 1: Performances with MLP model on MNIST, Fashion MNIST, and CIFAR10
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Figure 2: Performances with CNN model on MNIST, Fashion MNIST, and CIFAR10

5 Numerical Experiments

Experimental Setup. To evaluate our proposed algorithm, AdamCB, we conduct experiments using
deep neural networks, including multilayer perceptrons (MLP) and convolutional neural networks
(CNN), on three benchmark datasets: MNIST, Fashion MNIST, and CIFAR10. Comparisons are
made with Adam and AdamBS, with all experiments implemented in PyTorch. Performance is assessed
by plotting training and test losses over epochs, with training loss calculated on the full dataset and
test loss calculated on the held-out validation data set. Results represent the average of five runs with
different random seeds, including standard deviations. All methods use the same hyperparameters:
β1 = 0.9, β2 = 0.999, γ = 0.4, K = 128, and α = 0.001. Additional experimental details are
provided in Appendix G.

Results. Figures 1 and 2 show that AdamCB consistently outperforms Adam and AdamBS, demon-
strating faster reductions in both training and test losses across all datasets. These results suggest
that combinatorial bandit sampling is more effective than uniform sampling for performance opti-
mization. Attempts to replicate the results of AdamBS from Liu et al. (2020) revealed inconsistent
outcomes, with significant fluctuations in losses, indicating potential instability and divergence. In
contrast, AdamCB exhibits consistent convergence across all datasets, highlighting its superior per-
formance and practical efficiency compared to Adam and AdamBS. Additional experimental results
in Appendix G further reinforce the superior performance of AdamCB.
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6 Reproducibility Statement

For each theoretical result, we present the complete set of assumptions in the main paper (see
Section 4) and the detailed proofs of the main results are provided in the appendix, along with
experimental details and additional experiments in Appendix G to reproduce the main experimental
results.
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A Auxiliary Lemmas

Definition 1. A function f : Rd → R is convex if for all u, v ∈ Rd, and all λ ∈ [0, 1],
λf(u) + (1− λ)f(v) ≥ f(λu+ (1− λ)v)

Lemma 3. If a function f : Rd → R is convex, then for all u, v ∈ Rd,
f(v) ≥ f(u) +∇f(u)T(v − u)

where (−)T denotes the transpose of (−).
Lemma 4 (Cauchy-Schwarz inequality). For all n ≥ 1, ai, bi ∈ R, (1 ≤ i ≤ n),(

n∑
i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
Lemma 5 (Taylor series). For α ∈ R, and 0 ≤ α ≤ 1,∑

t≥1

αt =
1

1− α
and

∑
t≥1

tαt−1 =
1

(1− α)2

Lemma 6 (Upper bound for the harmonic series). For N ∈ N,
N∑

n=1

1

n
≤ lnN + 1 and

N∑
n=1

1√
n
≤ 2
√
N

Lemma 7. For all n ∈ N, and ai, bi ∈ R such that ai ≥ 0 and bi > 0 for all i ∈ [n],∑n
i=1 ai∑n
j=1 bj

≤
n∑

i=1

ai
bi
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B Proof for AdamCB Regret Bound

In this section, we provide proofs of key lemmas, Lemma 1 and Lemma 2. They are needed to prove
Theorem 1, which shows the regret bound for AdamCB. In the last of this section, we present the
proof for Theorem 1.

B.1 Auxiliary Lemmas for Lemma 1

We first present auxiliary lemmas and proofs for Lemma 1. Our proofs basically follow arguments
as in Tran et al. (2019). For the sake of completeness, all lemmas from Tran et al. (2019) are restated
with our problem setting.
Lemma 8. For all t ≥ 1, we have

v̂t = max

{
(1− β1,t)

2

(1− β1,s)2
vs, for all 1 ≤ s ≤ t

}
, (11)

where v̂t is in AdamCB (Algorithm 1).

Proof. Prove by induction on t. Recall that by the update rule on v̂t, we have v̂1 ← v1, v̂t ←
max

{
(1−β1,t)

2

(1−β1,t−1)2
v̂t−1, vt

}
if t ≥ 2. Thus,

v̂2 = max

{
(1− β1,2)

2

(1− β1,1)2
v̂1, v2

}
= max

{
(1− β1,2)

2

(1− β1,1)2
v1, v2

}
= max

{
(1− β1,2)

2

(1− β1,s)2
vs, 1 ≤ s ≤ 2

}
which we proved for the case when t = 2 in Eq.(11). Now, assume that

v̂t−1 = max

{
(1− β1,t−1)

2

(1− β1,s)2
vs, for all 1 ≤ s ≤ t− 1

}
,

and Eq.(11) holds for all 1 ≤ j ≤ t− 1. By the update rule on v̂t,

v̂t = max

{
(1− β1,t)

2

(1− β1,t−1)2
v̂t−1, vt

}
= max

{
(1− β1,t)

2

(1− β1,t−1)2

(
max

{
(1− β1,t−1)

2

(1− β1,s)2
vs, for all 1 ≤ s ≤ t− 1

})
, vt

}
= max

{
max

{
(1− β1,t)

2

(1− β1,t−1)2
(1− β1,t−1)

2

(1− β1,s)2
vs, for all 1 ≤ s ≤ t− 1

}
,

(1− β1,t)
2

(1− β1,t−1)2
vt

}
= max

{
max

{
(1− β1,t)

2

(1− β1,s)2
vs, for all 1 ≤ s ≤ t− 1

}
,

(1− β1,t)
2

(1− β1,t−1)2
vt

}
= max

{
(1− β1,t)

2

(1− β1,s)2
vs, for all 1 ≤ s ≤ t

}

which ends the proof.

Lemma 9. For all t ≥ 1, we have √
v̂t ≤

L

γ(1− β1)
(12)

where v̂t is in AdamCB (Algorithm 1).
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Proof. By Lemma 8,

v̂t = max

{
(1− β1,t)

2

(1− β1,s)2
vs, for all 1 ≤ s ≤ t

}
Therefore, there is some 1 ≤ s ≤ t such that v̂t = (1−β1,t)

2

(1−β1,s)2
vs. Recall that by the update rule on vt,

we have vt ← β2vt−1 + (1− β2)g
2
t . This implies

vt = (1− β2)

t∑
k=1

βt−k
2 g2k

Hence,

√
v̂t =

√
(1− β1,t)2

(1− β1,s)2
vs

=
√

1− β2

(
1− β1,t

1− β1,s

)√√√√ s∑
k=1

βs−k
2 g2k

≤
√
1− β2

(
1− β1,t

1− β1,s

)√√√√ s∑
k=1

βs−k
2 ( max

1≤r≤s
∥gr∥)2

Recall the unbiased gradient estimate gt in Eq.(8),

gt =
1

K

∑
j∈Jt

gj,t
npj,t

By the triangle inequality property of norms and the fact that pi,t ≥ γ/n and ∥gi,t∥ ≤ L for all
i ∈ [n] and t ∈ [T ] from Assumption 1, the unbiased gradient estimate is bounded by L/γ, i.e,
∥gt∥ ≤ L/γ. Therefore,

√
v̂t ≤ (L/γ)

√
1− β2

(
1− β1,t

1− β1,s

)√√√√ s∑
k=1

βs−k
2

≤ (L/γ)
√

1− β2

(
1− β1,t

1− β1,s

)
1√

1− β2

= (L/γ)

(
1− β1,t

1− β1,s

)
≤ L

γ(1− β1)

which ends the proof.

Lemma 10. For the parameter settings and conditions assumed in Lemma 1, we have

T∑
t=1

m2
t,u√
tv̂t,u

≤
√
lnT + 1

(1− β1)
√
1− β2(1− η)

∥g1:T,u∥

Proof. Recall that by the update rule on mt, vt, we have mt ← β1,tmt−1 + (1 − β1,t)gt and
vt ← β2vt−1 + (1− β2)g

2
t . This implies

mt =

t∑
k=1

(1− β1,k)

(
t∏

r=k+1

β1,r

)
gk, vt = (1− β2)

t∑
k=1

βt−k
2 g2k
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Since for all t ≥ 1, v̂t,u ≥ vt,u by Lemma 8, we have

m2
t,u√
tv̂t,u

≤
m2

t,u√
tvt,u

=

[∑t
k=1(1− β1,k)

(∏t
r=k+1 β1,r

)
gk,u

]2
√
(1− β2)t

∑t
k=1 β

t−k
2 g2k,u

≤

(∑t
k=1(1− β1,k)

2
(∏t

r=k+1 β1,r

))(∑t
k=1

(∏t
r=k+1 β1,r

)
g2k,u

)
√
(1− β2)t

∑t
k=1 β

t−k
2 g2k,u

≤

(∑t
k=1 β

t−k
1

)(∑t
k=1 β

t−k
1 g2k,u

)
√
(1− β2)t

∑t
k=1 β

t−k
2 g2k,u

≤ 1

(1− β1)
√
1− β2

∑t
k=1 β

t−k
1 g2k,u√

t
∑t

k=1 β
t−k
2 g2k,u

where the second inequality is by Lemma 4, the third inequality is from the fact that β1,k ≤ 1
and β1,k ≤ β1 for all 1 ≤ k ≤ T , and the fourth inequality is obtained by applying Lemma 5 to∑t

k=1 β
t−k
1 . Therefore,

m2
t,u√
tv̂t,u

≤ 1

(1− β1)
√
1− β2

√
t

∑t
k=1 β

t−k
1 g2k,u√∑t

k=1 β
t−k
2 g2k,u

≤ 1

(1− β1)
√
1− β2

√
t

t∑
k=1

βt−k
1 g2k,u√
βt−k
2 g2k,u

=
1

(1− β1)
√
1− β2

√
t

t∑
k=1

βt−k
1√
βt−k
2

|gk,u|

=
1

(1− β1)
√
1− β2

√
t

t∑
k=1

ηt−k|gk,u|

where the second inequality is by Lemma 7 and we define η := β1√
β2

. Therefore,

T∑
t=1

m2
t,u√
tv̂t,u

=
1

(1− β1)
√
1− β2

T∑
t=1

1√
t

t∑
k=1

ηt−k|gk,u| (13)

It is sufficient to consider
∑T

t=1
1√
t

∑t
k=1 η

t−k|gk,u|. Firstly, this can be expanded as:

T∑
t=1

1√
t

t∑
k=1

ηt−k|gk,u| = η0|g1,u|

+
1√
2

[
η1|g1,u + η0|g2,u|]

]
+

1√
3

[
η2|g1,u + η1|g2,u|+ η0|g3,u|]

]
+ · · ·

+
1√
T

[
ηT−1|g1,u + ηT−2|g2,u|+ · · ·+ η0|gT,u|]

]

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Changing the role of |g1,u| as the common factor, we obtain,
T∑

t=1

1√
t

t∑
k=1

ηt−k|gk,u| = |g1,u|
(
η0 +

1√
2
η1 +

1√
3
η2 + · · ·+ 1√

T
ηT−1

)
+ |g2,u|

(
1√
2
η0 +

1√
3
η1 + · · ·+ 1√

T
ηT−2

)
+ |g3,u|

(
1√
3
η0 +

1√
4
η1 + · · ·+ 1√

T
ηT−3

)
+ · · ·

+ |gT,u|
1√
T
η0

In other words,
T∑

t=1

1√
t

t∑
k=1

ηt−k|gk,u| =
T∑

t=1

|gt,u|
T∑

k=t

1√
k
ηk−t

Moreover, since
T∑

k=t

1√
k
ηk−t ≤

T∑
k=t

1√
t
ηk−t =

1√
t

T∑
k=t

ηk−t =
1√
t

T−t∑
k=0

ηk ≤ 1√
t

(
1

1− η

)
where the last inequality is by Lemma 5, we obtain

T∑
t=1

1√
t

t∑
k=1

ηt−k|gk,u| ≤
T∑

t=1

|gt,u|
1√
t

(
1

1− η

)
=

1

1− η

T∑
t=1

1√
t
|gt,u|

Furthermore, since
T∑

t=1

1√
t
|gt,u| =

√√√√( T∑
t=1

1√
t
|gt,u|

)2

≤

√√√√ T∑
t=1

1

t

√√√√ T∑
t=1

g2t,u ≤ (
√
lnT + 1)∥g1:T,u∥

where the first inequality is by Lemma 4 and the last inequality is by Lemma 6, we obtain
T∑

t=1

1√
t

t∑
k=1

ηt−k|gk,u| ≤
√
lnT + 1

1− η
∥g1:T,u∥

Hence, by Eq.(13),
T∑

t=1

m2
t,u√
tv̂t,u

≤
√
lnT + 1

(1− β1)
√
1− β2(1− η)

∥g1:T,u∥

which ends the proof.

B.2 Proof for Lemma 1

Lemma 1. Suppose Assumptions 1-2 hold. AdamCB (Algorithm 1) with a mini-batch of size K,
which is formed dynamically by distribution pt, achieves the following upper-bound for the cumulative
online regretRπ

online(T ) over T iterations,

Rπ
online(T ) ≤ ρ1d

√
T +
√
dρ2

√√√√ 1

n2K

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2
(pj,t)2

]
+ ρ3

where ρ1, ρ2, and ρ3 are defined as follows:

ρ1 =
D2L

2αγ(1− β1)2
, ρ2 =

α
√
1 + lnT

(1− β1)2
√
1− β2(1− η)

, ρ3 =
dβ1D

2L

2αγ(1− β1)2(1− λ)2

Note that d is the dimension of parameter space and the inputs of Algorithm 1 follows these
conditions: (a) αt = α√

t
, (b) β1, β2 ∈ [0, 1), β1,t := β1λ

t−1 for all t ∈ [T ], λ ∈ (0, 1), (c)
η = β1/

√
β2 ≤ 1, and (d) γ ∈ [0, 1).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof. Recall Lemma 3.
Since ft : Rd → R is convex, we have, ft(θ∗)− ft(θt) ≥ gT

t (θ
∗ − θt). This means that

ft(θt)− ft(θ
∗) ≤ gT

t (θt − θ∗) =

d∑
u=1

gt,u(θt,u − θ∗,u)

From the parameter update rule presented in Algorithm 1,
θt+1 = θt − αtmt/

√
v̂t

= θt − αt

(
β1,t√
v̂t
mt−1 +

(1− β1,t)√
v̂t

gt

)
We focus on the u-th dimension of the parameter vector θt ∈ Rd. Substract the scalar θ∗,u and square
both sides of the above update rule, we have,

(θt+1,u − θ∗,u)
2 = (θt,u − θ∗,u)

2 − 2αt

(
β1,t√
v̂t,u

mt−1,u +
(1− β1,t)√

v̂t,u
gt,u

)
(θt,u − θ∗,u) + α2

t

(
mt,u√
v̂t,u

)2

We can rearrange the above equation

gt,u(θt,u − θ∗,u) =

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)

+
αt

2(1− β1,t)

m2
t,u√
v̂t,u
− β1,t

(1− β1,t)
mt−1,u(θt,u − θ∗,u) (14)

Note that,

Rπ
online(T ) = E

[
T∑

t=1

ft(θt)− min
θ∈Rd

T∑
t=1

ft(θ)

]
= E

[
T∑

t=1

[ft(θt)− ft(θ
∗)]

]
where θ∗ ∈ argminθ∈Rd

∑T
t=1 ft(θ) is defined as the optimal parameter that minimizes the cumu-

lative loss over given T iterations. Hence,

Rπ
online(T ) = E

[
T∑

t=1

[ft(θt)− ft(θ
∗)]

]
≤ E

[
T∑

t=1

gT
t (θt − θ∗)

]
= E

[
T∑

t=1

d∑
u=1

gt,u(θt,u − θ∗,u)

]
(15)

Combining Eq.(14) with Eq.(15), we obtain

Rπ
online(T ) ≤ E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

+ E

[
d∑

u=1

T∑
t=1

αt

2(1− β1,t)

m2
t,u√
v̂t,u

]
+ E

[
d∑

u=1

T∑
t=2

β1,t

(1− β1,t)
mt−1,u(θ

∗
,u − θt,u)

]
On the other hand, for all t ≥ 2, we have

mt−1,u(θ
∗
,u − θt,u) =

(v̂t−1,u)
1/4

√
αt−1

(θ∗,u − θt,u)
√
αt−1

mt−1,u

(v̂t−1,u)1/4

≤
√
v̂t−1,u

2αt−1
(θ∗,u − θt,u)

2 + αt−1

m2
t−1,u

2
√
v̂t−1,u

where the inequality is from the fact that pq ≤ p2/2 + q2/2 for any p, q ∈ R. Hence,

Rπ
online(T ) ≤ E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

+ E

[
d∑

u=1

T∑
t=1

αt

2(1− β1,t)

m2
t,u√
v̂t,u

]

+ E

[
d∑

u=1

T∑
t=2

β1,tαt−1

2(1− β1,t)

m2
t−1,u√
v̂t−1,u

]

+ E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1,t)
(θ∗,u − θt,u)

2

]
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Since β1,t ≤ β1(1 ≤ t ≤ T ), we obtain

d∑
u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1,t)
(θ∗,u − θt,u)

2 ≤
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

Moreover, we have
d∑

u=1

T∑
t=2

β1,tαt−1

2(1− β1,t)

m2
t−1,u√
v̂t−1,u

=

d∑
u=1

T−1∑
t=1

β1,t+1αt

2(1− β1,t+1)

m2
t,u√
v̂t,u

≤
d∑

u=1

T∑
t=1

αt

2(1− β1,t+1)

m2
t,u√
v̂t,u

≤
d∑

u=1

T∑
t=1

αt

2(1− β1)

m2
t,u√
v̂t,u

where the last inequality is from the assumption that β1,t ≤ β1 < 1(1 ≤ t ≤ T ). Therefore,

d∑
u=1

T∑
t=1

αt

2(1− β1,t)

m2
t,u√
v̂t,u

+

d∑
u=1

T∑
t=2

β1,tαt−1

2(1− β1,t)

m2
t−1,u√
v̂t−1,u

≤
d∑

u=1

T∑
t=1

αt

1− β1

m2
t,u√
v̂t,u

and we obtain the bound forRπ
online(T ) as:

Rπ
online(T ) ≤ E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

(16)

+ E

[
d∑

u=1

T∑
t=1

αt

1− β1

m2
t,u√
v̂t,u

]
(17)

+ E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
(18)

Now, we start to bound each term: (16), (17), and (18).

Bound for the term (16). Let us rewrite the term (16) as

E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

= E

[
d∑

u=1

√
v̂1,u

2α1(1− β1,1)
(θ1,u − θ∗,u)

2

]
+ E

[
d∑

u=1

T∑
t=2

√
v̂t,u

2αt(1− β1,t)
(θt,u − θ∗,u)

2

]

− E

[
d∑

u=1

T∑
t=2

√
v̂t−1,u

2αt−1(1− β1,t−1)
(θt,u − θ∗,u)

2

]
− E

[
d∑

u=1

√
v̂T,u

2αT (1− β1,T )
(θT,u − θ∗,u)

2

]

Omitting the last term and replacing αt = α/
√
t(1 ≤ t ≤ T ), we obtain

E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

≤ E

[
d∑

u=1

√
v̂1,u

2α(1− β1,1)
(θ1,u − θ∗,u)

2

]

+
1

2α
E

[
d∑

u=1

T∑
t=2

(θt,u − θ∗,u)
2

( √
tv̂t,u

(1− β1,t)
−
√
(t− 1)v̂t−1,u

(1− β1,t−1)

)]
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Recall that by the update rule on v̂t, we have v̂t,u ← max
{

(1−β1,t)
2

(1−β1,t−1)2
v̂t−1,u, vt,u

}
. Therefore,

v̂t,u ≥ (1−β1,t)
2

(1−β1,t−1)2
v̂t−1,u, and hence

√
tv̂t,u

(1− β1,t)
−
√
(t− 1)v̂t−1,u

(1− β1,t−1)
≥

√
t

(1−β1,t)2

(1−β1,t−1)2
v̂t−1,u

(1− β1,t)
−
√

(t− 1)v̂t−1,u

(1− β1,t−1)

=

√
tv̂t−1,u

(1− β1,t−1)
−
√

(t− 1)v̂t−1,u

(1− β1,t−1)

> 0

Now by the positivity of the essential formula
√

tv̂t,u
(1−β1,t)

−
√

(t−1)v̂t−1,u

(1−β1,t−1)
, we obtain

E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

≤ D2

2α

d∑
u=1

√
v̂1,u

(1− β1)
+

D2

2α
E

[
d∑

u=1

T∑
t=2

( √
tv̂t,u

(1− β1,t)
−
√
(t− 1)v̂t−1,u

(1− β1,t−1)

)]

≤ D2

2α

d∑
u=1

√
T v̂T,u

(1− β1,T )
≤ dD2L

2αγ(1− β1)2

√
T

where the last inequality is by Lemma 9.

Bound for the term (17).

E

[
d∑

u=1

T∑
t=1

αt

1− β1

m2
t,u√
v̂t,u

]
=

α

1− β1
E

[
d∑

u=1

T∑
t=1

m2
t,u√
tv̂t,u

]

≤ α

1− β1
E

[
d∑

u=1

√
lnT + 1

(1− β1)
√
1− β2(1− η)

∥g1:T,u∥

]

=
α
√
lnT + 1

(1− β1)2
√
1− β2(1− η)

d∑
u=1

E [∥g1:T,u∥]

where the last inequality is by Lemma 10.

Bound for the term (18). By Assumption 2 that ∥θm− θn∥ ≤ D for any m,n ∈ [T ], αt = α/
√
t,

and β1,t = β1λ
t−1 ≤ β1 ≤ 1, we obtain

E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
≤ D2

2α(1− β1)
E

[
d∑

u=1

T∑
t=2

β1,t

√
(t− 1)v̂t−1,u

]
Therefore, from Lemma 9, we obtain

E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
≤ dD2L

2αγ(1− β1)2
E

[
T∑

t=2

β1,t

√
(t− 1)

]
Note that

T∑
t=2

β1,t

√
(t− 1) =

T∑
t=2

β1λ
t−1
√
(t− 1) ≤

T∑
t=2

β1

√
(t− 1)λt−1 ≤

T∑
t=2

β1tλ
t−1 ≤ β1

(1− λ)2

where the first inequality is from the fact that β1 ≤ 1, and the last inequality is from Lemma 5. Thus,
the bound for the term (18) is

E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
≤ dβ1D

2L

2αγ(1− β1)2(1− λ)2
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We bounded for terms (16), (17), and (18).

Rπ
online(T ) ≤

dD2L

2αγ(1− β1)2

√
T +

α
√
lnT + 1

(1− β1)2
√
1− β2(1− η)

d∑
u=1

E [∥g1:T,u∥]

+
dβ1D

2L

2αγ(1− β1)2(1− λ)2

Hence,

Rπ
online(T ) ≤ ρ1d

√
T + ρ2

d∑
u=1

E [∥g1:T,u∥] + ρ3 (19)

where ρ1, ρ2, and ρ3 are defined as the following:

ρ1 =
D2L

2αγ(1− β1)2
, ρ2 =

α
√
1 + lnT

(1− β1)2
√
1− β2(1− η)

, ρ3 =
dβ1D

2L

2αγ(1− β1)2(1− λ)2

Now, we consider
∑d

u=1 E [∥g1:T,u∥], which is in the right-hand side of Eq.(19).

d∑
u=1

E [∥g1:T,u∥] = d

d∑
u=1

1

d
E


√√√√ T∑

t=1

g2t,u

 ≤ d

√√√√ d∑
u=1

1

d
E

[
T∑

t=1

g2t,u

]
=
√
d

√√√√ T∑
t=1

E [∥gt∥2]

where the first inequality is due to the concavity of square root. Recall that the unbiased gradient
estimate is gt = 1

K

∑
j∈Jt

gj,t
npj,t

. Hence,

Rπ
online(T ) ≤ ρ1d

√
T + ρ2

d∑
u=1

Ept
[∥g1:T,u∥] + ρ3

≤ ρ1d
√
T + ρ2

√
d

√√√√ T∑
t=1

Ept
[∥gt∥2] + ρ3

≤ ρ1d
√
T + ρ2

√
d

√√√√√√ T∑
t=1

Ept


∥∥∥∥∥∥ 1

K

∑
j∈Jt

gj,t
npj,t

∥∥∥∥∥∥
2
+ ρ3

The last inequality uses Jensen’s inequality to the convex function ∥ · ∥2. Therefore,

Rπ
online(T ) ≤ ρ1d

√
T + ρ2

√
d

√√√√√√ 1

n2K2

T∑
t=1

Ept


∥∥∥∥∥∥
∑
j∈Jt

gj,t
pj,t

∥∥∥∥∥∥
2
+ ρ3

≤ ρ1d
√
T + ρ2

√
d

√√√√√ 1

n2K

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2
(pj,t)2

+ ρ3

where the last inequality is by Lemma 4. This completes the proof of Lemma 1.
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B.3 Proof for Lemma 2

Lemma 2. Suppose Assumptions 1-2 hold. If we set γ = min

{
1,
√

n ln (n/K)
(e−1)TK

}
, the batch selection

(Algorithm 2) and the weight update rule (Algorithm 3) following AdamCB (Algorithm 1) implies
T∑

t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

−min
pt

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = O
(√

KnT ln
n

K

)

Proof. We set ℓj,t = p2
min

L2

(
−∥gj,t∥2

(pj,t)2
+ L2

p2
min

)
in Algorithm 3. Since ∥gi,t∥ ≤ L and pi,t ≥ pmin

for all i ∈ [n] and t ∈ [T ] by Assumption 1, we have ℓi,t ∈ [0, 1].
Let Wt :=

∑n
i=1 wt. Then, for any t ∈ [T ],

Wt

Wt−1
=

∑
i∈[n]\Snull,t

wi,t

Wt−1
+

∑
i∈Snull,t

wi,t

Wt−1

=
∑

i∈[n]\Snull,t

wi,t−1

Wt−1
exp

(
−Kγ

n
ℓ̂i,t

)
+

∑
i∈Snull,t

wi,t−1

Wt−1

The last equality is by the weight update rule in Algorithm 3. From the probability computation in
Algorithm 2, we have

pi,t = K

(
(1− γ)

wi,t−1∑n
j=1 wj,t−1

+
γ

n

)
≥ Kγ

n

Thus, we obtain the following bound,

0 ≤ Kγ

n
ℓ̂i,t =

Kγℓi,t
npi,t

≤ ℓi,t ≤ 1

By the fact that e−x ≤ 1− x+ (e− 2)x2 for all x ∈ [0, 1], and considering Kγ
n ℓ̂i,t as x, we have

Wt

Wt−1
≤

∑
i∈[n]\Snull,t

wi,t−1

Wt−1

[
1− Kγ

n
ℓ̂i,t + (e− 2)

(Kγ

n
ℓ̂i,t
)2]

+
∑

i∈Snull,t

wi,t−1

Wt−1

= 1 +
∑

i∈[n]\Snull,t

wi,t−1

Wt−1

[
−Kγ

n
ℓ̂i,t + (e− 2)

(Kγ

n
ℓ̂i,t
)2]

= 1 +
∑

i∈[n]\Snull,t

pi,t

K −
γ
n

1− γ

[
−Kγ

n
ℓ̂i,t + (e− 2)

(Kγ

n
ℓ̂i,t
)2]

≤ 1− γ

n(1− γ)

∑
i∈[n]\Snull,t

pi,tℓ̂i,t +
K(e− 2)γ2

n2(1− γ)

∑
i∈[n]\Snull,t

pi,t(ℓ̂i,t)
2

≤ 1− γ

n(1− γ)

∑
i∈Jt\Snull,t

ℓi,t +
K(e− 2)γ2

n2(1− γ)

∑
i∈[n]

ℓ̂i,t

The last inequality uses the fact that pi,tℓ̂i,t = ℓi,t ≤ 1 for i ∈ Jt and pi,tℓ̂i,t = 0 for i /∈ Jt. Taking
logarithms and using the fact that ln(1 + x) ≤ x for all x > −1 gives

ln
Wt

Wt−1
≤ − γ

n(1− γ)

∑
i∈Jt\Snull,t

ℓi,t +
K(e− 2)γ2

n2(1− γ)

∑
i∈[n]

ℓ̂i,t

By summing over t, we obtain

ln
WT

W1
≤ − γ

n(1− γ)

T∑
t=1

∑
i∈Jt\Snull,t

ℓi,t +
K(e− 2)γ2

n2(1− γ)

T∑
t=1

∑
i∈[n]

ℓ̂i,t
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On the other hand, for the sequence {J∗
t }Tt=1 of batches with the optimal

∑T
t=1

∑
j∈Jt

ℓj,t among
all subsets Jt containing K elements,

ln
WT

W1
≥ ln

∑
j∈J∗

t
wj,T

W1
≥
∑

j∈J∗
t
lnwj,T

K
+ ln

K

n

= −γ

n

∑
j∈J∗

t

∑
t:j /∈Snull,t

ℓ̂j,t + ln
K

n

The first line above uses the fact that∑
j∈J∗

t

wj,T ≥ K(Πj∈J∗
t
wj,T )

1/K

and the second line uses wj,T = exp
(
−(Kγ/n)

∑
t:j /∈Snull,t

ℓ̂j,t

)
.

From combining results,

∑
j∈J∗

t

∑
t:j /∈Snull,t

ℓ̂j,t +
n

γ
ln

K

n
≤ 1

(1− γ)

T∑
t=1

∑
i∈Jt\Snull,t

ℓi,t +
(e− 2)Kγ

n(1− γ)

T∑
t=1

∑
i∈[n]

ℓ̂i,t

Since
∑

j∈J∗
t

∑
t:j∈Snull,t

ℓj,t ≤ 1
1−γ

∑T
t=1

∑
i∈Snull,t

ℓi,t trivially holds, we have

∑
j∈J∗

t

∑
t:j /∈Snull,t

ℓ̂j,t +
∑
j∈J∗

t

∑
t:j∈Snull,t

ℓj,t +
n

γ
ln

K

n
≤ 1

(1− γ)

T∑
t=1

∑
i∈Jt

ℓi,t +
(e− 2)Kγ

n(1− γ)

T∑
t=1

∑
i∈[n]

ℓ̂i,t

Let LMIN-K(T ) :=
∑T

t=1

∑
j∈J∗

t
ℓj,t and LEXP3-K(T ) :=

∑T
t=1

∑
j∈Jt

ℓj,t. Taking the expectation
of both sides and using the properties of ℓ̂i,t, we obtain,

LMIN-K(T ) +
n

γ
ln

K

n
≤ 1

(1− γ)
E[LEXP3-K(T )] +

(e− 2)Kγ

n(1− γ)

T∑
t=1

∑
i∈[n]

ℓi,t

This is because the expectation of ℓ̂j,t is ℓj,t from the fact that DepRound selects i-th sample with
probability pi,t. Since

∑T
t=1

∑n
i=1 ℓi,t ≤

nLMIN-K(T )
K , we have the following statement,

LMIN-K(T )− E[LEXP3-K(T )] ≤ (e− 1)γLMIN-K(T ) +
n

γ
ln

n

K

Using the fact that LMIN-K(T ) ≤ TK and choosing the input parameter as γ =

min

{
1,
√

n ln (n/K)
(e−1)TK

}
, we obtain the following,

LMIN-K(T )− E[LEXP3-K(T )] ≤ 2
√
e− 1

√
KnT ln

n

K
≤ 2.63

√
KnT ln

n

K

Therefore, considering the scaling factor, we have:
T∑

t=1

Ept

[∑
j∈Jt

∥gj,t∥2

(pj,t)2

]
−min

pt

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2

(pj,t)2

]
=

L2

p2min

(LMIN-K(T )− E[LEXP3-K(T )])

≤ 2.63L2

p2min

√
KnT ln

n

K

= O
(√

KnT ln
n

K

)
This completes the proof of Lemma 2.
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B.4 Proof for Theorem 1 (Regret Bound of AdamCB)

In this section, we present the full proof of Theorem 1. Recall that the online regret only focuses on
the minimization over the sequence of mini-batch datasets {Dt}Tt=1. Thus, the online regret of the
algorithm at the end of T iterations is defined as

Rπ
online(T ) := E

[
T∑

t=1

f(θt;Dt)− min
θ∈Rd

T∑
t=1

f(θ;Dt)

]
However, our ultimate goal is to find the optimal selection of the parameter under the full dataset.
Consider an online optimization algorithm π that computes the sequence of model parameters
θ1, . . . , θT . Then, we can compare the performance of π with the optimal selection of the parameter
minθ∈Rd f(θ;D) under the full dataset. The cumulative regret after T iterations is

Rπ(T ) := E

[
T∑

t=1

f(θt;D)− T · min
θ∈Rd

f(θ;D)

]
where the expectation is taken with respect to any stochasticity in data sampling and parameter
estimation. Before we prove Theorem 1, we first prove the following lemma.
Lemma 11. The cumulative regret Rπ(T ) can be decomposed into sub-parts which includes the
cumulative online regretRπ

online(T ) and additional terms that are sub-linear in T :

Rπ(T ) = Rπ
online(T ) +O(

√
T )

Proof. First, rewrite Rπ(T ) by expanding the terms inside the expectations. We add and subtract
the sum

∑T
t=1 f(θt;Dt) inside the expectation:

Rπ(T ) = E

[
T∑

t=1

f(θt;D)− T · min
θ∈Rd

f(θ;D)

]

= E

[
T∑

t=1

f(θt;D)−
T∑

t=1

f(θt;Dt) +

T∑
t=1

f(θt;Dt)− T · min
θ∈Rd

f(θ;D)

]

We also add and subtract the term minθ∈Rd

∑T
t=1 f(θ;Dt) inside the expectation. Then, we have

the following,

Rπ(T ) = E

[
T∑

t=1

f(θt;D)−
T∑

t=1

f(θt;Dt) +

T∑
t=1

f(θt;Dt)− T · min
θ∈Rd

f(θ;D)

]

= E

[
T∑

t=1

f(θt;D)−
T∑

t=1

f(θt;Dt)

]
+ E

[
T∑

t=1

f(θt;Dt)− min
θ∈Rd

T∑
t=1

f(θ;Dt)

]

+ E

[
min
θ∈Rd

T∑
t=1

f(θ;Dt)− T · min
θ∈Rd

f(θ;D)

]
Since the second term of the right-hand side in above equation is equal the online cumulative regret
Rπ

online(T ), we can rewriteRπ(T ) as:

Rπ(T ) = Rπ
online(T )

+ E

[
T∑

t=1

f(θt;D)−
T∑

t=1

f(θt;Dt)

]
(20)

+ E

[
min
θ∈Rd

T∑
t=1

f(θ;Dt)− T · min
θ∈Rd

f(θ;D)

]
(21)

Now, let us consider each term in detail.
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Bound for the term (20). Recall the expression of f(θ;D) and ft; = f(θ;Dt):

f(θ;D) = 1

n

n∑
i=1

ℓ(θ;xi, yi), f(θ;Dt) =
1

K

∑
j∈Jt

ℓ(θ;xj , yj)

npj,t

where Jt is the set of indices in the subset dataset (mini-batch) at iteration t, Dt ⊆ D. For any
θ ∈ Rd, we have

E[f(θ;Dt)] = E

 1

K

∑
j∈Jt

ℓ(θ;xj , yj)

npj,t

 =
1

K

∑
j∈Jt

E
[
ℓ(θ;xj , yj)

npj,t

]

=
1

K

∑
j∈Jt

n∑
i=1

ℓ(θ;xi, yi)

npi,t
pi,t =

1

n

n∑
i=1

ℓ(θ;xi, yi) = f(θ;D).

Note that, by linearity of expectation, we can interchange the expectation and the summation. Since
E[f(θ;Dt)] = f(θ;D), we have for the term (20) as:

(20) = E

[
T∑

t=1

f(θt;D)−
T∑

t=1

f(θt;Dt)

]

= E

[
T∑

t=1

[f(θt;D)− f(θt;Dt)]

]

=

T∑
t=1

E[f(θt;D)− f(θt;Dt)] = 0

Bound for the term (21). Let θ∗ be the parameter that minimizes the cumulative loss over the full
dataset D, i.e, θ∗ ∈ argminθ∈Rd f(θ;D). Since θ∗ is optimal for the full dataset, we have:

min
θ∈Rd

f(θ;D) = f(θ∗;D)

Similarly, denote the optimal parameter for the cumulative regret for mini-batch datasets by θ∗t :=

argminθ∈Rd

∑T
t=1 f(θ;Dt). Given these notations, we can write the term (21) as:

(21) = E

[
min
θ∈Rd

T∑
t=1

f(θ;Dt)− T · min
θ∈Rd

f(θ;D)

]
= E

[
T∑

t=1

f(θ∗t ;Dt)− T · f(θ∗;D)

]
We can add and subtract the term

∑T
t=1 f(θ

∗;Dt) inside the expectation.

E

[
T∑

t=1

f(θ∗t ;Dt)− T · f(θ∗;D)

]
= E

[
T∑

t=1

f(θ∗t ;Dt)−
T∑

t=1

f(θ∗;Dt)

]

+ E

[
T∑

t=1

f(θ∗;Dt)− T · f(θ∗;D)

]
Note that E[f(θ∗;Dt)] = f(θ∗;D) holds as we have shown when bounding the term (20). By the
linearity of expectation, we have

E

[
T∑

t=1

f(θ∗;Dt)

]
=

T∑
t=1

E[f(θ∗;Dt)] = T · f(θ∗;D)

Since E
[∑T

t=1 f(θ
∗;Dt)− T · f(θ∗;D)

]
= 0 holds, the term (21) reduces to

(21) = E

[
T∑

t=1

(f(θ∗t ;Dt)− f(θ∗;Dt))

]

= E

[
T∑

t=1

(ft(θ
∗
t )− ft(θ

∗))

]
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By the convexity of ft, we have:
ft(θ

∗
t )− ft(θ

∗) ≤ gT
t (θ

∗
t − θ∗)

Therefore,

E

[
T∑

t=1

(ft(θ
∗
t )− ft(θ

∗))

]
≤ E

[
T∑

t=1

gT
t (θ

∗
t − θ∗)

]
Using bounded gradients assumption (Assumption 1), i.e, ∥gt∥ ≤ L/γ (Proof in Lemma 9), and
Cauchy-Schwarz inequality (Lemma 4), we have

(21) ≤ E

[
T∑

t=1

gT
t (θ

∗
t − θ∗)

]
≤

T∑
t=1

E[∥gt∥∥θ∗t − θ∗∥] ≤ (L/γ)

T∑
t=1

E[∥θ∗t − θ∗∥]

Recall the parameter update rule, θt+1 ← θt − αtmt/(
√
v̂t + ϵ). Then

∥θ∗t+1 − θ∗∥ ≤ ∥θ∗t − θ∗∥+ αt

∥∥∥mt/(
√
v̂t + ϵ)

∥∥∥ (22)

Now, we claim that ∥mt∥ is bounded. The update rule for the first moment estimate:
mt ← β1,tmt−1 + (1− β1,t)gt

Then, the expression for mt is:

mt =

t∑
k=1

(1− β1,k)

(
t∏

r=k+1

β1,r

)
gk

where β1,t = β1λ
t−1 with β1 < 1 and λ < 1. Note that ∥gk∥ is bounded by L/γ for all k. This

implies that:

∥mt∥ ≤
t∑

k=1

|1− β1,k|

∣∣∣∣∣
t∏

r=k+1

β1,r

∣∣∣∣∣ ∥gk∥
≤ (L/γ)

t∑
k=1

|1− β1λ
k−1|

∣∣∣∣∣
t∏

r=k+1

β1λ
r−1

∣∣∣∣∣
≤ (L/γ)

t∑
k=1

βt−k
1 λ

t(t−1)−k(k−1)
2

≤ (L/γ)

t∑
k=1

βt−k
1

≤ L

γ(1− β1)

The last inequality is due to Lemma 5. Therefore, the step size in Eq.(22) is bounded by:
αt∥mt∥√
v̂t + ϵ

≤ αtL

ϵγ(1− β1)
=

αL√
tϵγ(1− β1)

We use the fact that αt = α/
√
t. By summing over T iterations, we obtain

T∑
t=1

E[∥θ∗t − θ∗∥] ≤ αL

ϵγ(1− β1)

T∑
t=1

1√
t
≤ 2αL

√
T

ϵγ(1− β1)

The last inequality is by Lemma 6. Finally, we get

(21) ≤ (L/γ)

T∑
t=1

E[∥θ∗t − θ∗∥] ≤ 2αL2
√
T

ϵγ2(1− β1)
= O(

√
T )

In summary, the cumulative regretRπ(T ) is decomposed by the following:
Rπ(T ) = Rπ

online(T ) + (20) + (21)

where (20) = 0 and (21) = O(
√
T ). Thus, this completes the proof of Lemma 11, saying
Rπ(T ) = Rπ

online(T ) +O(
√
T )
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Now, we prove the main Theorem 1.

Proof. From Lemma 11, we have shown that the cumulative regretRπ(T ) can be decomposed into
the online regret Rπ

online(T ) with the additional sub-linear terms. Hence, we are left to bound the
cumulative online regretRπ

online(T ). Recall the first key lemma (Lemma 1):

Rπ
online(T ) ≤ ρ1d

√
T +
√
dρ2

√√√√ 1

n2K

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2
(pj,t)2

]
+ ρ3

Recall also the second key lemma (Lemma 2):
T∑

t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

−min
pt

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = O
(√

KnT ln
n

K

)
Let we denote M := minpt

∑T
t=1 Ept

[∑
j∈Jt

∥gj,t∥2

(pj,t)2

]
. Then by Lemma 2, we have

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = M + C

√
KnT ln

n

K

where C > 0 is a constant. By plugging above equation to Lemma 1, we obtain

Rπ
online(T ) ≤ ρ1d

√
T + ρ2

√
d

n
√
K

√
M + C

√
KnT ln

n

K
+ ρ3

≤ ρ1d
√
T + ρ2

√
d

n
√
K

√
M + ρ2

√
d

n
√
K

√
C

√
KnT ln

n

K
+ ρ3

= ρ1d
√
T +

ρ2
√
d

n
√
K

√
M +

ρ4
√
d

n

(
nT

K
ln

n

K

)1/4

+ ρ3

We use the fact that
√
a+ b ≤

√
a+
√
b in the second inequality and we define ρ4 := ρ2

√
C.

Now, we should consider M . Using the tower property, we can express M as,

M = min
pt

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2


= min

pt

T∑
t=1

Ept

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2
| pt


= min

pt

T∑
t=1

Ept

 n∑
i=1

∑
j∈Jt

∥gi,t∥2

(pi,t)2
pi,t


= min

pt

T∑
t=1

Ept

∑
j∈Jt

[
n∑

i=1

∥gi,t∥2

pi,t

]
= Kmin

pt

T∑
t=1

Ept

[
n∑

i=1

∥gi,t∥2

pi,t

]
For this minimization problem, it can be shown that for every iteration t, the optimal distribution
p∗t is proportional to the gradient norm of individual example. Formally speaking, for any t, the
optimal solution p∗t to the problem argminpt

∑T
t=1 Ept

[∑n
i=1

∥gi,t∥2

pi,t

]
is (pj,t)∗ =

∥gj,t∥∑n
i=1 ∥gi,t∥ for

all j ∈ [n]. By plugging this solution,

M = K

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2
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By plugging M to the online regret bound expression,

Rπ
online(T ) ≤ ρ1d

√
T + ρ2

√
d

n
√
K

√
M + ρ4

√
d

n

(
nT

K
ln

n

K

)1/4

+ ρ3

= ρ1d
√
T + ρ2

√
d

n
√
K

√√√√K

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2

+ ρ4

√
d

n

(
nT

K
ln

n

K

)1/4

+ ρ3

= ρ1d
√
T +
√
dρ2

√√√√ 1

n2

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2

+ ρ4

√
d

n

(
nT

K
ln

n

K

)1/4

+ ρ3

By Assumption 1, ∥gi,t∥ ≤ L for i ∈ [n] and t ∈ [T ]. Then, the second term in the right-hand side
of above inequality is bounded by Lρ2

√
dT , which diminishes by the first term that have order of

O(d
√
T ). Hence, the online regretRπ

online(T ) after T iterations is,

Rπ
online(T ) ≤ O(d

√
T ) +O

(√
d

n

(
nT

K
ln

n

K

)1/4)
Finally, by Lemma 11, we can bound the cumulative regret using the bound of the online regret as

Rπ(T ) = Rπ
online(T ) +O(

√
T ) ≤ O(d

√
T ) +O

(√
d

n

(
nT

K
ln

n

K

)1/4)
+O(

√
T )

= O

(
d
√
T +

√
d

n3/4

(
T

K
ln

n

K

) 1
4

)
This completes the proof of Theorem 1.
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C Issues in Convergence Proof of Adam-based Optimizers

Adam (Kingma & Ba, 2015) is a widely used optimizer in practice. However, Reddi et al. (2018)
pointed out issues with the convergence proof of Adam and introduced a modified version called
AMSGrad to address the problem. Unfortunately, the convergence proof of AMSGrad also contains
errors. In this section, we highlight a specific issue in the convergence proof of AMSGrad, which
is similarly overlooked in the convergence proof of Adam. As a result, neither Adam nor AMSGrad
guarantees convergence, and they actually diverge under certain conditions.

Algorithm 4: AMSGrad
Input: θ1 ∈ Rd, {αt}Tt=1, {β1,t}Tt=1, β2

Initialize: m0 ← 0, v0 ← 0, v̂0 ← 0
1 for t = 1 to T do
2 gt = ∇ft(θt)
3 mt = β1,tmt−1 + (1− β1,t)gt
4 vt = β2vt−1 + (1− β2)g

2
t

5 v̂t = max{v̂t−1, vt} and V̂t = diag(v̂t)

6 θt+1 = θt − αtmt/
√
v̂t

Before presenting the convergence issue in the proof of AMSGrad, it is essential to first revisit and
establish the following inequality, as discussed in Reddi et al. (2018).
Lemma 12. Algorithm 4 achieves the following guarantee, for all T ≥ 1:

Rπ
online(T ) ≤ E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

(23)

+ E

[
d∑

u=1

T∑
t=1

αt

1− β1

m2
t,u√
v̂t,u

]
(24)

+ E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
(25)

Proof. Recall Lemma 3.

Since ft : Rd → R is convex, we have, ft(θ∗)− ft(θt) ≥ gT
t (θ

∗ − θt). This means that

ft(θt)− ft(θ
∗) ≤ gT

t (θt − θ∗) =

d∑
u=1

gt,u(θt,u − θ∗,u)

From the parameter update rule presented in Algorithm 4,

θt+1 = θt − αtmt/
√
v̂t

= θt − αt

(
β1,t√
v̂t
mt−1 +

(1− β1,t)√
v̂t

gt

)
We focus on the u-th dimension of the parameter vector θt ∈ Rd. Substract the scalar θ∗,u and square
both sides of the above update rule, we have,

(θt+1,u − θ∗,u)
2 = (θt,u − θ∗,u)

2 − 2αt

(
β1,t√
v̂t,u

mt−1,u +
(1− β1,t)√

v̂t,u
gt,u

)
(θt,u − θ∗,u) + α2

t

(
mt,u√
v̂t,u

)2

We can rearrange the above equation as

gt,u(θt,u − θ∗,u) =

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)

+
αt

2(1− β1,t)

m2
t,u√
v̂t,u
− β1,t

(1− β1,t)
mt−1,u(θt,u − θ∗,u) (26)
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Note that,

Rπ
online(T ) = E

[
T∑

t=1

ft(θt)− min
θ∈Rd

T∑
t=1

ft(θ)

]
= E

[
T∑

t=1

[ft(θt)− ft(θ
∗)]

]
where θ∗ ∈ argminθ∈Rd

∑T
t=1 ft(θ) is defined as the optimal parameter that minimizes the cumu-

lative loss over given T iterations. Hence,

Rπ
online(T ) = E

[
T∑

t=1

[ft(θt)− ft(θ
∗)]

]
≤ E

[
T∑

t=1

gT
t (θt − θ∗)

]
= E

[
T∑

t=1

d∑
u=1

gt,u(θt,u − θ∗,u)

]
(27)

Combining Eq.(26) with Eq.(27), we obtain

Rπ
online(T ) ≤ E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

+ E

[
d∑

u=1

T∑
t=1

αt

2(1− β1,t)

m2
t,u√
v̂t,u

]
+ E

[
d∑

u=1

T∑
t=2

β1,t

(1− β1,t)
mt−1,u(θ

∗
,u − θt,u)

]
On the other hand, for all t ≥ 2, we have

mt−1,u(θ
∗
,u − θt,u) =

(v̂t−1,u)
1/4

√
αt−1

(θ∗,u − θt,u)
√
αt−1

mt−1,u

(v̂t−1,u)1/4

≤
√
v̂t−1,u

2αt−1
(θ∗,u − θt,u)

2 + αt−1

m2
t−1,u

2
√
v̂t−1,u

where the inequality is from the fact that pq ≤ p2/2 + q2/2 for any p, q ∈ R. Hence,

Rπ
online(T ) ≤ E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

+ E

[
d∑

u=1

T∑
t=1

αt

2(1− β1,t)

m2
t,u√
v̂t,u

]

+ E

[
d∑

u=1

T∑
t=2

β1,tαt−1

2(1− β1,t)

m2
t−1,u√
v̂t−1,u

]

+ E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1,t)
(θ∗,u − θt,u)

2

]
Since β1,t ≤ β1(1 ≤ t ≤ T ), we obtain

d∑
u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1,t)
(θ∗,u − θt,u)

2 ≤
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

Moreover, we have
d∑

u=1

T∑
t=2

β1,tαt−1

2(1− β1,t)

m2
t−1,u√
v̂t−1,u

=

d∑
u=1

T−1∑
t=1

β1,t+1αt

2(1− β1,t+1)

m2
t,u√
v̂t,u

≤
d∑

u=1

T∑
t=1

αt

2(1− β1,t+1)

m2
t,u√
v̂t,u

≤
d∑

u=1

T∑
t=1

αt

2(1− β1)

m2
t,u√
v̂t,u

where the last inequality is from the assumption that β1,t ≤ β1 < 1(1 ≤ t ≤ T ). Therefore,
d∑

u=1

T∑
t=1

αt

2(1− β1,t)

m2
t,u√
v̂t,u

+

d∑
u=1

T∑
t=2

β1,tαt−1

2(1− β1,t)

m2
t−1,u√
v̂t−1,u

≤
d∑

u=1

T∑
t=1

αt

1− β1

m2
t,u√
v̂t,u
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and we obtain the bound forRπ
online(T ) as:

Rπ
online(T ) ≤ E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

+ E

[
d∑

u=1

T∑
t=1

αt

1− β1

m2
t,u√
v̂t,u

]

+ E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
This completes the proof of Lemma 12.

Issue in the Convergence Proof of AMSGrad. The problem with the convergence proof of
AMSGrad arises when analyzing the term in Eq.(23) from Lemma 12.

E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

{
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
}]

≤ E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1)

{
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
}]

Indeed, Reddi et al. (2018) used the fact that β1,t ≤ β1 in the above inequality, however, it is not
always valid because the term

(θt,u − θ∗,u)
2 − (θt+1,u − θ∗,u)

2

in Eq.(23) can be negative. Thus, the convergence rate of AMSGrad described in Theorem 4 of
Reddi et al. (2018) is incorrect, and AMSGrad does not guarantee convergence as well as Adam. The
same issue appears in the convergence proofs of other Adam-based algorithms, i.e, Theorem 10.5
in Kingma & Ba (2015), Theorem 4.4 in Bock et al. (2018), Theorem 5 in Luo et al. (2019), and
Theorem 4.2 in Chen et al. (2020).
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D Proof for Convergence Rate when using Uniform Sampling

To compare the convergence rate between using uniform sampling and bandit sampling, we will
now prove the following Theorem 2. It is important to note that Theorem 2 includes an additional
condition—Assumption 3—which was not present in Theorem 1. This assumption plays a key role
in distinguishing the results between these two theorems.
Theorem 2. Suppose Assumptions 1,2, and 3 hold. The convergence rate for (corrected) Adam using
uniform sampling is given by:

O

(
d
√
T +

√
d

n1/2

√
T

)

Proof. We start the proof from the first key lemma (Lemma 1):

Lemma 1. Suppose Assumptions 1-2 hold. AdamCB (Algorithm 1) with a mini-batch of size K,
which is formed dynamically by distribution pt, achieves the following upper-bound for the cumulative
online regretRπ

online(T ) over T iterations,

Rπ
online(T ) ≤ ρ1d

√
T +
√
dρ2

√√√√ 1

n2K

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2
(pj,t)2

]
+ ρ3 (28)

where ρ1, ρ2, and ρ3 are defined as follows:

ρ1 =
D2L

2αγ(1− β1)2
, ρ2 =

α
√
1 + lnT

(1− β1)2
√
1− β2(1− η)

, ρ3 =
dβ1D

2L

2αγ(1− β1)2(1− λ)2

Note that d is the dimension of parameter space and the inputs of Algorithm 1 follows these
conditions: (a) αt = α√

t
, (b) β1, β2 ∈ [0, 1), β1,t := β1λ

t−1 for all t ∈ [T ], λ ∈ (0, 1), (c)
η = β1/

√
β2 ≤ 1, and (d) γ ∈ [0, 1).

Consider the second term in the right-hand side of Eq.(28),

1

n2K

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 =
1

n2K

T∑
t=1

Ept

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2
| pt


=

1

n2K

T∑
t=1

Ept

 n∑
i=1

∑
j∈Jt

∥gi,t∥2

(pi,t)2
pi,t


=

1

n2K

T∑
t=1

Ept

∑
j∈Jt

[
n∑

i=1

∥gi,t∥2

pi,t

]
=

1

n2

T∑
t=1

Ept

[
n∑

i=1

∥gi,t∥2

pi,t

]

The tower property is used in the first equality. Since
∑n

i=1
∥gi,t∥2

pi,t
is independent to j ∈ Jt, the

mini-batch size K is multiplied in the last equality. Therefore, we can express the cumulative online
regretRπ

online(T ) as:

Rπ
online(T ) ≤ ρ1d

√
T +
√
dρ2

√√√√ 1

n2

T∑
t=1

Ept

[
n∑

i=1

∥gi,t∥2
pi,t

]
+ ρ3

In the case when we select samples uniformly, we can set the probability distribution pt to satisfy
pi,t = 1/n for all t ∈ [T ] and i ∈ [n]. By plugging it, we obtain

Rπ
online(T ) ≤ ρ1d

√
T +
√
dρ2

√√√√ 1

n

T∑
t=1

[
n∑

i=1

∥gi,t∥2
]
+ ρ3
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Now, recall Assumption 3:
Assumption 3. There exists σ > 0 such that Var(∥gi,t∥) ≤ σ2 for all i ∈ [n] and t ∈ [T ]

1

n

[
n∑

i=1

∥gi,t∥2
]
≤
(
1

n

n∑
i=1

∥gi,t∥
)2

+
σ2

n

Therefore, the online regret boundRπ
online(T ) for uniform sampling is,

Rπ
online(T ) = O(d

√
T ) +O

√d
√√√√ 1

n2

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2

+
σ2

n
T


Applying the fact that

√
a+ b ≤

√
a+
√
b, we obtain,

Rπ
online(T ) = O(d

√
T ) +O

√d
√√√√ 1

n2

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2
+O

(
√
d

√
T

n

)

By Assumption 1, ∥gi,t∥ ≤ L for i ∈ [n] and t ∈ [T ]. Then, the second term in the right-hand side
of above inequality is bounded by O(

√
dT ), which diminishes by the first term that have order of

O(d
√
T ). Hence, the online regretRπ

online(T ) after T iterations is given by

Rπ
online(T ) = O(d

√
T ) +O

( √
d

n1/2

√
T

)

Finally, by Lemma 11, we can bound the cumulative regret using the online regret, which completes
the regret analysis for uniform sampling.

Rπ(T ) = Rπ
online(T ) +O(

√
T ) = O(d

√
T ) +O

( √
d

n1/2

√
T

)
+O(

√
T )

= O

(
d
√
T +

√
d

n1/2

√
T

)
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E Correction of AdamBS (Liu et al., 2020)

This section introduces the corrected analysis for AdamBS (Liu et al., 2020). We use Algorithm 5
and Algorithm 6 for modified AdamBS.

Algorithm 5: (Corrected) Adam with Bandit Sampling (AdamBS)
Input: learning rate {αt}Tt=1, decay rates {β1,t}Tt=1, β2, batch size K, exploration parameter

γ ∈ [0, 1)
Initialize: model parameters θ0; first moment estimate m0 ← 0; second moment estimate

v0 ← 0, v̂0 ← 0; sample weights wi
0 ← 1 for all i ∈ [n]

1 for t = 1 to T do
2 Compute sample distribution pt for all j ∈ [n]
3

pj,t = (1− γ)
wj,t−1∑n
i=1 wi,t−1

+
γ

n

Select a mini-batch Dt := {(xj , yj)}j∈Jt
by sampling with replacement from pt

4 Compute unbiased gradient estimate gt with respect to the mini-batch Dt using Eq.(8)
5 mt ← β1,tmt−1 + (1− β1,t)gt
6 vt ← β2vt−1 + (1− β2)g

2
t

7 v̂1 ← v1, v̂t ← max
{

(1−β1,t)
2

(1−β1,t−1)2
v̂t−1, vt

}
if t ≥ 2

8 θt+1 ← θt − αtmt/(
√
v̂t + ϵ)

9 wt ← Weight-Update(wt−1, pt, Jt, {gj,t}j∈Jt
, γ) (Algorithm 6)

Algorithm 6: (Corrected) Weight-Update for AdamBS
Input: wt−1, pt, Jt, {gj,t}j∈Jt

, and γ ∈ [0, 1)
1 for j = 1 to n do
2 Compute loss ℓj,t = p2

min

L2

(
−∥gj,t∥2

(pj,t)2
+ L2

p2
min

)
if j ∈ Jt, otherwise, ℓj,t = 0

3 Compute unbiased gradient estimate ℓ̂j,t =
ℓj,t

∑K
k=1 I(j=Jk

t )

Kpj,t

4 Update sample weights wj,t ← wj,t−1 exp
(
−γℓ̂j,t/n

)
5 return wt

At iteration t ∈ [T ], AdamBS chooses a mini-batch Dt = {(xj , yj)}j∈Jt of size K according to
probability distribution pt with replacement. We denote Jt as the set of indices for the mini-batch
Dt. Then, the algorithm receives the loss, regarding losses from all chosen samples in the mini-batch
D as one loss, is 1

K

∑
j∈Jt

ℓj,t, denote as ℓj,t ∈ [0, 1]. The unbiased estimate of the loss ℓ̂j,t is,

ℓ̂j,t =
ℓj,t
∑K

k=1 I(j = Jk
t )

Kpj,t

We have a following key lemma concerning the rate of convergence of AdamBS.
Lemma 13 (Corrected version of Lemma 1 in Liu et al. (2020)). Suppose Assumptions 1-2 hold. If we

set γ = min

{
1,
√

n lnn
(e−1)T

}
, the weight update rule (Algorithm 6) following AdamBS (Algorithm 5)

implies
T∑

t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

−min
pt

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = O(K
√
nT lnn)

Proof. We set ℓj,t = p2
min

L2

(
−∥gj,t∥2

(pj,t)2
+ L2

p2
min

)
in Algorithm 6. Since, ∥gi,t∥2 ≤ L and pi,t ≥ pmin

for all t ∈ [T ], i ∈ [n] by Assumption 1, we have ℓi,t ∈ [0, 1].
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We use the following simple facts, which are immediately derived from the definitions,
n∑

i=1

pi,tℓ̂i,t =
1

K

∑
j∈Jt

ℓj,t := ℓJt
t (29)

n∑
i=1

pi,t(ℓ̂i,t)
2 =

n∑
i=1

pi,t

(
ℓi,t
∑K

k=1 I(i = Jk
t )

Kpi,t

)
ℓ̂i,t =

n∑
i=1

ℓi,t

∑K
k=1 I(i = Jk

t )

K
ℓ̂i,t ≤

n∑
i=1

ℓ̂i,t

(30)

Let Wt :=
∑n

i=1 wt. Then, for any t ∈ [T ],

Wt

Wt−1
=

n∑
i=1

wi,t

Wt−1

=

n∑
i=1

wi,t−1

Wt−1
exp

(
−γ

n
ℓ̂it

)
The last equality is by the weight update rule in Algorithm 6. From the probability computation in
Algorithm 5, we have

pi,t = (1− γ)
wi,t−1∑n
j=1 wj,t−1

+
γ

n
≥ γ

n

Thus, we obtain the following bound,

0 ≤ γ

n
ℓ̂i,t =

γ

n

(
ℓi,t
∑K

k=1 I(i = Jk
t )

Kpi,t

)
≤ ℓi,t ≤ 1

By the fact that e−x ≤ 1− x+ (e− 2)x2 for all x ∈ [0, 1], and considering γ
n ℓ̂i,t as x, we have

Wt

Wt−1
≤

n∑
i=1

wi,t−1

Wt−1

[
1− γ

n
ℓ̂it + (e− 2)

(γ
n
ℓ̂it
)2]

=

n∑
i=1

pi,t − γ/n

1− γ

[
1− γ

n
ℓ̂it + (e− 2)

(γ
n
ℓ̂it
)2]

≤ 1− γ/n

1− γ

n∑
i=1

pi,tℓ̂
i
t +

(e− 2)(γ/n)2

1− γ

n∑
i=1

pi,t(ℓ̂i,t)
2

≤ 1− γ/n

1− γ
ℓJt
t +

(e− 2)(γ/n)2

1− γ

n∑
i=1

ℓ̂i,t

The last inequality uses Eq.(29) and Eq.(30). Taking logarithms and using the fact that ln (1 + x) ≤ x
for all x > −1 gives

ln
Wt

Wt−1
≤ − γ/n

1− γ
ℓJt
t +

(e− 2)(γ/n)2

1− γ

n∑
i=1

ℓ̂i,t

By summing over t, we obtain

ln
WT

W1
≤ − γ/n

1− γ

T∑
t=1

ℓJt
t +

(e− 2)(γ/n)2

1− γ

T∑
t=1

n∑
i=1

ℓ̂i,t

On the other hand, for any action j,

ln
WT

W1
≥ ln

wj,T

W1
= −γ

n

T∑
t=1

ℓ̂j,t − lnn

From combining results,
T∑

t=1

ℓJt
t ≥ (1− γ)

T∑
t=1

ℓ̂j,t −
n lnn

γ
− (e− 2)

γ

n

T∑
t=1

n∑
i=1

ℓ̂i,t

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

We next take the expectation of both sides with respect to probability distribution pt and since
Ept

[ℓ̂j,t] = ℓj,t, we have

Ept
[

T∑
t=1

ℓJt
t ] ≥ (1− γ)

T∑
t=1

ℓj,t −
n lnn

γ
− (e− 2)

γ

n

n∑
i=1

T∑
t=1

ℓi,t

Since j ∈ Jt were chosen arbitrarily, we can choose the best J∗
t for every iteration t. Let LMIN(T ) :=∑T

t=1

∑
j∈J∗

t
ℓj,t and LEXP3(T ) :=

∑T
t=1

∑
j∈Jt

ℓj,t. Summing over j ∈ J∗
t , and using the fact

that
∑T

t=1

∑n
i=1 ℓi,t ≤

nLMIN(T )
K , we have the following statement,

E[LEXP3(T )] ≥ (1− γ)LMIN(T )−
nK lnn

γ
− (e− 2)γLMIN(T )

Then, we get the following,

LMIN(T )− E[LEXP3(T )] ≤ (e− 1)γLMIN(T ) +
nK lnn

γ

Using the fact that LMIN(T ) ≤ TK and choosing the input parameter as γ = min

{
1,
√

n lnn
(e−1)T

}
,

we obtain the following,

LMIN(T )− E[LEXP3(T )] ≤ 2
√
e− 1K

√
nT lnn ≤ 2.63K

√
nT lnn

Therefore, considering the scaling factor, we have:

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2

(pj,t)2

]
−min

pt

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2

(pj,t)2

]
=

L2

p2min

(LMIN(T )− E[LEXP3(T )])

≤ 2.63L2

p2min

K
√
nT lnn

= O
(
K
√
nT lnn

)

Theorem 3 (Corrected version of Theorem 4 in Liu et al. (2020)). Suppose Assumptions 1-2 hold.
The convergence rate for (corrected) AdamBS using bandit sampling is given by:

O

(
d
√
T +

√
d

n3/4
(T lnn)1/4

)

Proof. From Lemma 11, we have shown that the cumulative regretRπ(T ) can be decomposed into
the online regret Rπ

online(T ) with the additional sub-linear terms. Hence, we are left to bound the
cumulative online regretRπ

online(T ). Recall the first key lemma (Lemma 1):

Rπ
online(T ) ≤ ρ1d

√
T +
√
dρ2

√√√√ 1

n2K

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2
(pj,t)2

]
+ ρ3

We can apply Lemma 1 to AdamBS as AdamCB, since both AdamBS and AdamCB follow the same
model parameter update rule. However, we use the corrected lemma (Lemma 13) for AdamBS, rather
than applying the key lemma (Lemma 2) used for AdamCB. Recall Lemma 13:

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

−min
pt

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = O(K
√
nT lnn)
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Let we denote M := minpt

∑T
t=1 Ept

[∑
j∈Jt

∥gj,t∥2

(pj,t)2

]
. Then by Lemma 13, we have

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = M + C ′K
√
nT lnn

where C ′ > 0 is a constant. By plugging above equation to Lemma 1, we obtain

Rπ
online(T ) ≤ ρ1d

√
T + ρ2

√
d

n
√
K

√
M + C ′K

√
nT lnn+ ρ3

≤ ρ1d
√
T + ρ2

√
d

n
√
K

√
M + ρ2

√
d

n
√
K

√
C ′K
√
nT lnn+ ρ3

= ρ1d
√
T +

ρ2
√
d

n
√
K

√
M +

ρ5
√
d

n
(nT lnn)

1/4
+ ρ3

We use the fact that
√
a+ b ≤

√
a+
√
b in the second inequality and we define ρ5 := ρ2

√
C ′.

Now, we should consider M . Using the tower property and applying the optimal solution for pt at
each iteration, we can express M as,

M = K

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2

This follows the same argument as in the proof of Theorem 1 (See B.4). Then, by plugging M to the
online regret bound expression,

Rπ
online(T ) ≤ ρ1d

√
T + ρ2

√
d

n
√
K

√
M + ρ5

√
d

n
(nT lnn)

1/4
+ ρ3

= ρ1d
√
T + ρ2

√
d

n
√
K

√√√√K

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2

+ ρ5

√
d

n
(nT lnn)

1/4
+ ρ3

= ρ1d
√
T +
√
dρ2

√√√√ 1

n2

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2

+ ρ5

√
d

n
(nT lnn)

1/4
+ ρ3

By Assumption 1, ∥gi,t∥ ≤ L for i ∈ [n] and t ∈ [T ]. Then, the second term in the right-hand side
of above inequality is bounded by Lρ2

√
dT , which diminishes by the first term that have order of

O(d
√
T ). Hence, the online regretRπ

online(T ) after T iterations is,

Rπ
online(T ) = O(d

√
T ) +O

(√
d

n
(nT lnn)

1/4

)
Finally, by Lemma 11, we can bound the cumulative regret using the bound of the online regret as

Rπ(T ) = Rπ
online(T ) +O(

√
T ) = O(d

√
T ) +O

(√
d

n
(nT lnn)

1/4

)
+O(

√
T )

= O

(
d
√
T +

√
d

n3/4
(T lnn)

1/4

)
This completes the proof of Theorem 3.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

F Additional Algorithm

F.1 DepRound Algorithm

Algorithm 7: DepRound
Input: Natural number K(< n), sample distribution p := (p1, p2, . . . , pn) with

∑n
i=1 p

i = K
Output: Subset of [n] with distinct K elements

1 while there is an i with 0 < pi < 1 do
2 Choose distinct i, j with 0 < pi < 1 and 0 < pj < 1

3 Set α = min{1− pi, pj} and β = min{pi, 1− pj}
4 Update pi and pj as:

(pi, pj) =

{(
pi + α, pj − α

)
with probability β

α+β(
pi − β, pj + β

)
with probability α

α+β

5 return {i : pi = 1, 1 ≤ i ≤ n}

The DepRound (Gandhi et al., 2006) (Dependent Rounding) algorithm is used to select a subset of
elements from a set while maintaining certain probabilistic properties. It ensures that the sum of
probabilities is preserved and elements are chosen with the correct marginal probabilities.

G More on Numerical Experiments

G.1 Details on Experimental Setup

We compared our method, AdamCB, with corrected Adam and corrected AdamBS. The experiments
measured training loss and test loss, averaged over five runs with different random seeds, and included
1-sigma error bars for reliability. Throughout the entire experiments, identical hyper-parameters are
used with any tuning as shown in Table 2.

Table 2: Hyper-parameters used for experiments

Hyper-parameter Value
Learning rate αt 0.001
Exponential decay rates for momentum β1,1, β2 0.9, 0.999
Decay rate for β1,1 for convergence guarantee λ 1-1e-8
ϵ for non-zero division 1e-8
Loss Function Cross-Entropy
Batch Size K 128
exploration parameter γ 0.4
Number of epochs 10

We trained MLP models on the MNIST, Fashion MNIST, and CIFAR-10 datasets. The detailed
architectures of the MLP models for each dataset are provided in Table 3.

Table 3: MLP Architecture for MNIST/Fashion MNIST (left) and CIFAR10 (right)

Layer Type Input Output
Flatten (N, 28281) (N, 28281)
Dense + ReLU (N, 28281) (N, 512)
Dense + ReLU (N, 512) (N, 256)
Dense (N, 256) (N, 10)

Layer Type Input Output
Flatten (N, 32323) (N, 32323)
Dense + ReLU (N, 32323) (N, 512)
Dense + ReLU (N, 512) (N, 256)
Dense (N, 256) (N, 10)

We also trained CNN models on the same datasets. The detailed architectures of the CNN models
for each dataset are presented in Table 4.
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Table 4: CNN Architecture for MNIST/Fashion MNIST (left) and CIFAR10 (right)

Layer Type Input Output
Conv + ReLU (N, 1, 28, 28) (N, 32, 28, 28)
MaxPool (N, 32, 28, 28) (N, 32, 14, 14)
Conv + ReLU (N, 32, 14, 14) (N, 64, 14, 14)
MaxPool (N, 64, 14, 14) (N, 64, 7, 7)
Flatten (N, 64, 7, 7) (N, 3136)
Dense (N, 3136) (N, 128)
Dense + Softmax (N, 128) (N, 10)

Layer Type Input Output
Conv + ReLU (N, 3, 32, 32) (N, 64, 32, 32)
MaxPool (N, 64, 32, 32) (N, 64, 16, 16)
Conv + ReLU (N, 64, 16, 16) (N, 128, 16, 16)
MaxPool (N, 128, 16, 16) (N, 128, 8, 8)
Conv + ReLU (N, 128, 8, 8) (N, 256, 8, 8)
MaxPool (N, 256, 8, 8) (N, 256, 4, 4)
Flatten (N, 256, 4, 4) (N, 25644)
Dense (N, 25644) (N, 512)
Dense + Softmax (N, 512) (N, 10)

Table 5: VGG Architecture for MNIST/Fashion MNIST (left) and CIFAR10 (right)

Layer Type Input Output
Conv + ReLU (N, 1, 28, 28) (N, 64, 28, 28)
Conv + ReLU (N, 64, 28, 28) (N, 64, 28, 28)
MaxPool (N, 64, 28, 28) (N, 64, 14, 14)
Conv + ReLU (N, 64, 14, 14) (N, 128, 14, 14)
Conv + ReLU (N, 128, 14, 14) (N, 128, 14, 14)
MaxPool (N, 128, 14, 14) (N, 128, 7, 7)
Conv + ReLU (N, 128, 7, 7) (N, 256, 7, 7)
Conv + ReLU (N, 256, 7, 7) (N, 256, 7, 7)
Conv + ReLU (N, 256, 7, 7) (N, 256, 7, 7)
MaxPool (N, 256, 7, 7) (N, 256, 3, 3)
Flatten (N, 256, 3, 3) (N, 2304)
Dense (N, 2304) (N, 512)
Dense (N, 512) (N, 512)
Dense (N, 512) (N, 10)

Layer Type Input Output
Conv + ReLU (N, 3, 32, 32) (N, 64, 32, 32)
Conv + ReLU (N, 64, 32, 32) (N, 64, 32, 32)
MaxPool (N, 64, 32, 32) (N, 64, 16, 16)
Conv + ReLU (N, 64, 16, 16) (N, 128, 16, 16)
Conv + ReLU (N, 128, 16, 16) (N, 128, 16, 16)
MaxPool (N, 128, 16, 16) (N, 128, 8, 8)
Conv + ReLU (N, 128, 8, 8) (N, 256, 8, 8)
Conv + ReLU (N, 256, 8, 8) (N, 256, 8, 8)
Conv + ReLU (N, 256, 8, 8) (N, 256, 8, 8)
MaxPool (N, 256, 8, 8) (N, 256, 4, 4)
Flatten (N, 256, 4, 4) (N, 4096)
Dense (N, 4096) (N, 512)
Dense (N, 512) (N, 512)
Dense (N, 512) (N, 10)

We also evaluated the original Adam optimizer and the AMSGrad optimizer on the CIFAR-10 dataset
using both MLP and CNN models. We also conducted an evaluation of the corrected AdamBS
algorithm (Algorithm 5). The results are presented in Figures 3 and 4. From these plots, it
is evident that our AdamCB algorithm outperforms the other Adam-based algorithms. To further
assess performance, we conducted experiments using the VGG model, which is a larger architecture
compared to the MLP and CNN models. The detailed structure of the VGG architecture is provided
in Table 5, and the results are shown in Figure 5.
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Figure 3: Comparison of Adam-based optimizations on MLP model
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Figure 4: Comparison of Adam-based optimizations on CNN model
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Figure 5: Comparison of Adam-based optimizations on VGG model

G.2 Additional Experiments

To further evaluate the effectiveness of our proposed method, we conducted additional experiments
using logistic regression, ResNet-18 (He et al., 2016), ConvNeXt-Base (Liu et al., 2022), and
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Figure 6: Comparison of Adam-based optimizations on the logistic regression model (MNIST)
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Figure 7: Comparison of Adam-based optimizations on ResNet-18 model
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Figure 8: Comparison of Adam-based optimizations on ConvNext-base model
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Figure 9: Comparison of Adam-based optimizations on ConvNext-large model

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

ConvNeXt-Large (Liu et al., 2022) networks. The archecture of The logistic regression model was
employed to assess the performance of our algorithm in convex optimization settings.

For general non-convex optimization, we tested our method on the ResNet-18, ConvNeXt-Base,
and ConvNeXt-Large models. Notably, ResNet-18 (11.4 million parameters), ConvNeXt-Base
(89 million parameters), and ConvNeXt-Large (198 million parameters) are substantially larger
architectures compared to the simple MLP and CNN models evaluated in the previous section.
These experiments demonstrate the scalability and efficiency of our algorithm on larger, more
complex models.

In all experiments, our proposed algorithm, AdamCB, consistently outperformed existing methods,
reaffirming its effectiveness across both convex and non-convex optimization tasks and on models of
varying complexity.
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H When L is not known

Algorithm 8: Weight-Update (with unknown L)
Input: wt−1, pt, Jt, {gj,t}j∈Jt , Snull,t, γ ∈ [0, 1), Lt−1

1 Set Lt ← max(Lt−1,maxj∈Jt ∥gj,t∥)
2 for j = 1 to n do
3 Compute loss ℓj,t = p2

min

L2
t

(
−∥gj,t∥2

(pj,t)2
+

L2
t

p2
min

)
if j ∈ Jt; otherwise ℓj,t = 0

4 if j /∈ Snull,t then
5 wj,t ← wj,t−1 exp (−Kγℓj,t/n)

6 return wt, Lt

Lemma 14. (Lemma 9 when L is unknown) For all t ≥ 1, we have√
v̂t ≤

Lt

γ(1− β1)
(31)

where v̂t is in AdamCB (Algorithm 1).

Proof. The argument follows the same reasoning as presented in Lemma 9, with the modification
that L is replaced by Lt, reflecting the condition that ∥gi,t∥ ≤ Lt for all i ∈ [n] at any t.

Lemma 15. (Lemma 1 when L is unknown) Suppose Assumptions 1-2 hold. AdamCB (Algorithm 1)
with a mini-batch of size K, which is formed dynamically by distribution pt, achieves the following
upper-bound for the cumulative online regretRπ

online(T ) over T iterations,

Rπ
online(T ) ≤ ρ′1d

√
T +
√
dρ′2

√√√√ 1

n2K

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2
(pj,t)2

]
+ ρ′3

where ρ′1, ρ′2, and ρ′3 are defined as follows:

ρ′1 =
D2LT

2αγ(1− β1)2
, ρ′2 =

α
√
1 + lnT

(1− β1)2
√
1− β2(1− η)

, ρ′3 =
dβ1D

2LT

2αγ(1− β1)2(1− λ)2

Note that d is the dimension of parameter space and the inputs of Algorithm 1 follows these conditions:
(a) αt =

α√
t
, (b) β1, β2 ∈ [0, 1), β1,t := β1λ

t−1 for all t ∈ [T ], λ ∈ (0, 1), (c) η = β1/
√
β2 ≤ 1,

and (d) γ ∈ [0, 1).

Proof. The proof is the same as Lemma 1 until bounding the terms (16), (17), and (18).

Bound for the term (16). Following the same reasoning as Lemma 1, we have

E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]
≤ D2

2α

d∑
u=1

√
T v̂T,u

(1− β1,T )
≤ dD2Lt

2αγ(1− β1)2

√
T

where the last inequality is by Lemma 14.

Bound for the term (17). Nothing changes here.

Bound for the term (18). Following the same reasoning as Lemma 1, we obtain

E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
≤ D2

2α(1− β1)
E

[
d∑

u=1

T∑
t=2

β1,t

√
(t− 1)v̂t−1,u

]
Therefore, from Lemma 14, we obtain

E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
≤ dD2

2αγ(1− β1)2
E

[
T∑

t=2

β1,tLt

√
(t− 1)

]
(32)
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Since Lt is a running max, {Lt}Tt=1 is a non-decreasing sequence, i.e., L1 ≤ L2 ≤ · · · ≤ LT . Thus,
the inequality (32) becomes

E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
≤ dD2LT

2αγ(1− β1)2
E

[
T∑

t=2

β1,t

√
(t− 1)

]
Note that

T∑
t=2

β1,t

√
(t− 1) =

T∑
t=2

β1λ
t−1
√
(t− 1) ≤

T∑
t=2

β1

√
(t− 1)λt−1 ≤

T∑
t=2

β1tλ
t−1 ≤ β1

(1− λ)2

where the first inequality is from the fact that β1 ≤ 1, and the last inequality is from Lemma 5. Thus,
the bound for the term (18) is

E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
≤ dβ1D

2LT

2αγ(1− β1)2(1− λ)2

We now bounded three terms: (16), (17), and (18). Hence,

Rπ
online(T ) ≤

dD2LT

2αγ(1− β1)2

√
T +

α
√
lnT + 1

(1− β1)2
√
1− β2(1− η)

d∑
u=1

E [∥g1:T,u∥]

+
dβ1D

2LT

2αγ(1− β1)2(1− λ)2

Thus, we can expressRπ
online(T ) as

Rπ
online(T ) ≤ ρ′1d

√
T + ρ′2

d∑
u=1

E [∥g1:T,u∥] + ρ′3

where ρ′1, ρ
′
2, and ρ′3 are defined as the following:

ρ′1 =
D2LT

2αγ(1− β1)2
, ρ′2 =

α
√
1 + lnT

(1− β1)2
√
1− β2(1− η)

, ρ′3 =
dβ1D

2LT

2αγ(1− β1)2(1− λ)2

The subsequent proof process is same as Lemma 1.

Note that, by Assumption 1, LT is always less than or equal to the theoretical upper bound of the
maximum gradient norm across all iterations (L). Hence, we have ρ′1 ≤ ρ1, ρ′2 = ρ2, and ρ′3 = ρ3.
This implies that Lemma 1 holds even when L is not known.
Lemma 16. (Lemma 2 when L is unknown) Suppose Assumptions 1-2 hold. If we set γ =

min

{
1,
√

n ln (n/K)
(e−1)TK

}
, the batch selection (Algorithm 2) and the weight update rule (Algorithm 8)

following AdamCB (Algorithm 1) implies
T∑

t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

−min
pt

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = O
(√

KnT ln
n

K

)

Proof. The proof is the same as Lemma 2. However, at the last part, where we scale,
T∑

t=1

Ept

[∑
j∈Jt

L2
t

p2min

∥gj,t∥2

(pj,t)2

]
−min

pt

T∑
t=1

Ept

[∑
j∈Jt

L2
t

p2min

∥gj,t∥2

(pj,t)2

]
= LMIN-K(T )− E[LEXP3-K(T )]

(33)

Since Lt is a running max, {Lt}Tt=1 is a non-decreasing sequence, i.e., L1 ≤ L2 ≤ · · · ≤ LT .
Hence, Eq.(33) becomes

LMIN-K(T )− E[LEXP3-K(T )] ≤
2.63L2

T

p2min

√
KnT ln

n

K

By Assumption 1, LT is always less than or equal to L, which implies LT = O(1). This completes
the proof of Lemma 16.
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Lemma 16 implies that Lemma 2 holds even when L is not known.
Theorem 4. (Regret bound of AdamCB (Theorem 1) when L is unknown) Suppose Assumptions 1-2
hold, and we run AdamCB for a total T iterations with αt =

α√
t

and with β1,t := β1λ
t−1, λ ∈ (0, 1).

Then, the cumulative regret of AdamCB (Algorithm 1) with batch size K is upper-bounded by

O

(
d
√
T +

√
d

n3/4

(
T

K
ln

n

K

)1/4
)
. (34)

Proof. The overall proof is similar to the proof of Theorem 1 (when L is known) detailed in
Appendix B.4. The part that is different is when bounding the term Eq.(21) in Lemma 11.

(21) ≤ (LT /γ)

T∑
t=1

E[∥θ∗t − θ∗∥] ≤ 2αL2
T

√
T

ϵγ2(1− β1)

By Assumption 1, LT is always less than or equal to the upper bound of the maximum gradient
norm across all iterations (L), which implies LT = O(1). Therefore, we have (21) = O(

√
T ). This

implies that Lemma 11 still holds. Since both Lemma 1 and Lemma 2 hold even when L is not
known according to Lemma 15 and Lemma 16, we complete the proof of Theorem 4 by following
the same proof process as Theorem 1.

I Additional Related Works

Importance sampling. Importance sampling methods have received significant attention in recent
years for their application in convex optimization problems. A study identified as Richtárik & Takáč
(2016) introduced a specialized coordinate descent algorithm that selects groups of coordinates
to enhance the rate of convergence. Subsequent research, referenced as Needell et al. (2014),
Zhao & Zhang (2015), delves into the variance in gradient estimates within stochastic gradient
descent, highlighting that the ideal sampling distribution should align with the per-sample gradient
norm. Another study, Namkoong et al. (2017), developed a method for adaptively sampling in
both block coordinate descent and stochastic gradient descent. This involves dividing parameters
into predetermined blocks for coordinate descent and organizing training samples into fixed batches
for stochastic gradient descent. Research denoted as Katharopoulos & Fleuret (2018) suggested
sampling a large batch in each iteration to create a distribution derived from the gradient norms of
these samples, followed by selecting a smaller batch from this large batch for updating parameters.
However, The potential for accelerating the convergence rate with this method remains uncertain.

Bandit methods. AdaBoost (Schapire, 2013) works with complete information, meaning it evalu-
ates each training instance through the current ensemble model to identify misclassified examples.
Our method, however, deals with limited information because we can only choose a small set of
examples in each step. This limitation requires finding a balance between exploring by selecting
diverse examples to collect more data and exploiting by choosing the best examples based on the
currently available information. The multi-armed bandit problem is a classic framework for under-
standing this trade-off between exploration and exploitation. This dilemma also arises in numerous
other scenarios (Auer et al., 1995; 2002a).

Improving batch selection. The adversarial bandit method known as EXP3 (Auer, 2002) is often
used as a standard in dynamic settings and has proven to be highly effective in the context of automated
curriculum learning. In ACL, the dynamic selection of tasks is guided by an algorithm, often relying
on reinforcement learning or bandit techniques. For example, Graves et al. (2017) have suggested
the use of a non-stationary bandit method, specifically EXP3, and their findings reveal that without
prior task knowledge, ACL can significantly enhance training efficiency when compared to uniform
sampling methods. Furthermore, a bandit algorithm is capable of identifying intricate sequences
and opportunities for effective knowledge sharing within an unorganized curriculum. While existing
research has predominantly concentrated on task-oriented ACL, the underlying concepts are equally
applicable to selecting instances and batches.
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