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Abstract

Adam is a widely used optimizer in neural network training due to its adaptive
learning rate. However, because different data samples influence model updates to
varying degrees, treating them equally can lead to inefficient convergence. To ad-
dress this, a prior work proposed adapting the sampling distribution using a bandit
framework to select samples adaptively. While promising, the bandit-based variant
of Adam suffers from limited theoretical guarantees. In this paper, we introduce
Adam with Combinatorial Bandit Sampling (AdamCB), which integrates combina-
torial bandit techniques into Adam to resolve these issues. AdamCB is able to fully
utilize feedback from multiple samples at once, enhancing both theoretical guar-
antees and practical performance. Our regret analysis shows that AdamCB achieves
faster convergence than Adam-based methods including the previous bandit-based
variant. Numerical experiments demonstrate that AdamCB consistently outperforms
existing methods.

1 Introduction

Adam (Kingma & Ba, 2015) is one of the most widely used optimizers for training neural networks,
primarily due to its ability to adapt learning rates. The standard version of Adam and its numerous
variants treat each training sample equally by employing uniform sampling over the dataset. In
practice, however, different data samples can influence model updates to varying degrees. As a
result, simply performing full dataset sweeps or sampling data with equal weighting may lead to
inefficient convergence and, consequently, unnecessary computational overhead when aiming to
satisfy a given convergence criterion.

To address these challenges, Liu et al. (2020) introduced a dynamic approach called AdamBS, which
adapts the sampling distribution during training using a multi-armed bandit (MAB) framework. In
this method, each training sample is treated as an arm in the MAB, allowing more important samples
to be selected with higher probability and having a greater influence on model updates. This approach
was intended to improve both the adaptability and efficiency of the optimization process, presenting
a promising direction for further advancements.

However, despite its potential benefits, critical issues remain: Specifically, the convergence issue
previously identified in the original analysis of Adam (initially reported by Reddi et al. 2018 and later
resolved by Zhang et al. 2022) also affects its bandit-based variant, AdamBS, as newly discovered in
our work. Consequently, the existing theoretical guarantees regarding the efficiency and effectiveness
of AdamBS are invalid (see Section 2.5.3). As a result, to the best of our knowledge, there is no existing
Adam-based method that can adaptively sample while providing rigorous performance guarantees.
This raises a critical question: is it possible to design an algorithm that adaptively adjusts the sampling
distribution while ensuring both provable guarantees and practical performance improvements?

In this paper, we propose a new optimization method, Adam with Combinatorial Bandit Sampling
(AdamCB), which addresses the limitation in both the analysis and implementation of AdamBS by
incorporating a combinatorial bandit approach into the sample selection process. In this approach,
batch selection is formulated as a combinatorial action, where multiple arms (samples) are selected
simultaneously. This combinatorial bandit framework can take advantage of feedback from multiple
samples at once, significantly enhancing the adaptivity of the optimizer. For the first time, we provide
provable performance guarantees for adaptive batch selection in Adam-based methods, leading to
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faster convergence and demonstrating both theoretical and practical improvements over existing
approaches. Our main contributions are summarized as follows:

• We propose Adam with Combinatorial Bandit Sampling (AdamCB), a novel optimization
algorithm that integrates the Adammethod with a combinatorial bandit approach for sample
selection. To the best of our knowledge, AdamCB is not only the first algorithm to successfully
combine combinatorial bandit techniques with the Adam framework, but also the first to
correctly adapt any bandit techniques to Adam, significantly enhancing its adaptability.

• We provide a rigorous regret analysis of the proposed AdamCB algorithm, demonstrating
that it achieves a sharper regret bound compared to both the original Adam (which uses
uniform sampling) and its bandit-based variant, AdamBS (Liu et al., 2020). Additionally, we
correct the theoretical errors in the analysis of AdamBS and present a revised regret bound
(see Table 1 for comparisons).

• We perform empirical evaluations across multiple datasets and models, showing thatAdamCB
consistently outperforms existing Adam-based optimization methods in terms of both conver-
gence rate and practical performance. Our results establish AdamCB as the first Adam-based
algorithm to offer both provable convergence guarantees and practical efficiency for bandit-
based Adam optimization methods.

2 Preliminaries

2.1 Notations

We denote by [n] the set {1, 2, . . . n} for a positive integer n. For a vector x ∈ Rd, we denote by
∥x∥ the vector’s Euclidean norm. For two positive sequences {an}∞n=1 and {bn}∞n=1, an = O(bn)
implies that there exists an absolute constant C > 0 such that an ≤ Cbn holds for all n ≥ 1.
Similarly, an = o(bn) indicates that limn→∞

an

bn
= 0.

2.2 Expected Risk and Empirical Risk

Expected Risk. In many machine learning problems, the primary goal is to develop a model with
robust generalization performance. By generalization, we mean that while models are trained on a
finite sample of data points, we aim for them to perform well on the entire population of data. To
achieve this, we focus on minimizing a quantity known as the expected risk. The expected risk is the
average loss across the entire population data distribution, reflecting the model’s anticipated error if
it had access to the complete set of possible data samples. Formally, the expected risk is defined as:

E(x,y)∼P [ℓ(θ;x, y)] :=

∫
ℓ(θ;x, y)dP (x, y) (1)

where θ ∈ Rd is the model parameter, ℓ(θ;x, y) is the loss function that measures the error of the
model on a single data sample (x, y), and P is the true distribution of the data. The gold standard
goal is to find the θ that minimizes the expected risk in Eq.(1), ensuring that the model generalizes
well to all data drawn from P .

Empirical Risk. In practice, however, the true distribution P is typically unknown. Instead, we
only work with a finite dataset D consisting of n samples, which is denoted as D := {(xi, yi)}ni=1.
To approximate the expected risk, we use the empirical distribution P̂ derived from the dataset D.
For this empirical distribution P̂ to be a reliable approximation, we assume that the dataset D is
representative of the true distribution P . This requires that each sample in the dataset D is equally
likely and independently drawn from the true distribution P (i.e., the samples (xi, yi) are i.i.d.
according to P ). The empirical distribution P̂ can be expressed as:

P̂ (x, y;D) = 1

n

n∑
i=1

δ(x = xi, y = yi) (2)

where δ is the Dirac-delta function. With the empirical distribution at hand, the empirical risk is the
average loss over the given finite dataset D. The empirical risk serves as an estimate of the expected
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risk and is formally defined as:

E(x,y)∼P̂ [ℓ(θ;x, y)] :=

∫
ℓ(θ;x, y)dP̂ (x, y;D) = 1

n

n∑
i=1

ℓ(θ;xi, yi). (3)

However, if the dataset is non-uniformly distributed, some samples may be over-represented or under-
represented, leading to a biased estimate of the expected risk. To address this issue, one can use
importance sampling (Katharopoulos & Fleuret, 2018), which adjusts the sample weights to ensure
the empirical risk remains an unbiased estimate of the expected risk.

2.3 Objective Function and Mini-Batches

Objective Function. In the context of optimizing machine learning models, the objective function
f(θ;D) is often the empirical risk shown in Eq.(3). Given a datasetD = {(xi, yi)}ni=1, the objective
function f(θ;D) is defined as, f(θ;D) := 1

n

∑n
i=1 ℓ(θ;xi, yi). As studied in the relevant literature

of Adam optimization (Duchi et al., 2011; Tieleman & Hinton, 2012; Kingma & Ba, 2015; Dozat,
2016; Reddi et al., 2018), we focus on the problem setting where f is convex (i.e., ℓ is convex). Then,
the goal of the optimization problem is to find a parameter θ∗ ∈ Rd that minimizes the objective
function f(θ;D). This problem is known as empirical risk minimization:

θ∗ ∈ argmin
θ∈Rd

f(θ;D) .

The gradient of the objective function f with respect to θ is denoted by g := ∇θf(θ;D) = 1
n

∑n
i=1 gi,

where gi := ∇θℓ(θ;xi, yi) is the gradient of the loss based on the i-th data sample in D.

Mini-Batches. When the full datasetD = {(xi, yi)}ni=1 is very large (i.e., large n), computing the
gradient over the entire dataset for each optimization iteration becomes computationally expensive.
To address this, mini-batches—smaller subsets of the full dataset—are commonly used to reduce
computational overhead per iteration. Consider the sequence of mini-batches D1,D2, . . . ,DT ⊆ D
used for training, with corresponding objective functions ft(θ) := f(θ,Dt) for each t ∈ {1, . . . , T}.
LetK be the size of the mini-batchDt for all t, thenDt := {(xJ1

t
, yJ1

t
), (xJ2

t
, yJ2

t
), . . . , (xJK

t
, yJK

t
)},

where Jt := {J1
t , J

2
t , . . . , J

K
t } ⊆ [n] is the set of indices of the samples in the mini-batch Dt. The

objective function ft(θ) for the mini-batch Dt is defined as the expected risk over this mini-batch:

ft(θ) = f(θ;Dt) :=

∫
ℓ(θ;x, y)dP̂ (x, y;Dt) (4)

where P̂ (x, y;Dt) is the empirical distribution derived from the mini-batch Dt. The gradient of the
objective function ft with respect to θ is denoted as gt := ∇θft.

Note that the sequence of mini-batches {Dt}Tt=1 can be selected adaptively. Adaptive selection
involves choosing mini-batches based on results observed during previous optimization steps, poten-
tially adjusting the importance assigned to specific samples. The empirical distribution P̂ (x, y;Dt)
is significantly influenced by the method used to select the mini-batch Dt from the full dataset D.

2.4 Regret Minimization

Cumulative Regret. An online optimization method can be analyzed within the framework of
regret minimization. Consider an online optimization algorithm π that generates a sequence of
model parameters θ1, . . . , θT over T iterations. The performance of π can be compared to the
optimal parameter θ∗ ∈ argminθ∈Rd f(θ;D), which minimizes the objective function over the full
dataset D. The cumulative regret after T iterations is defined as:

Rπ(T ) := E

[
T∑

t=1

f(θt;D)− T · min
θ∈Rd

f(θ;D)

]
(5)

where the expectation is taken with respect to any stochasticity in data sampling and parameter
estimation. For the optimization algorithm π to converge to optimality, we require the cumulative
regretRπ(T ) to grow slower than the number of iterations T , specificallyRπ(T ) = o(T ).
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Online Regret. An alternative notion of regret is the online regret, defined over a sequence of
mini-batch datasets {Dt}Tt=1, or equivalently, over the sequence of functions {ft}Tt=1. Specifically,
the online regret of the optimization algorithm π after T iterations is given by:

Rπ
online(T ) := E

[
T∑

t=1

ft(θt)− min
θ∈Rd

T∑
t=1

ft(θ)

]
where the expectation is again taken over any stochasticity in the optimization process. It is important
to note that the primary focus should not solely be on minimizing the online regret. An algorithm
might select Dt ⊂ D in a way that allows π to perform well on {Dt}Tt=1, but it may perform poorly
on the full datasetD. Therefore, our ultimate goal remains minimizing the cumulative regretRπ(T ).
Later, in the proof of Theorem 1, we demonstrate how minimizing the cumulative regret Rπ(T ) in
Eq.(5) relates to minimizing the online regretRπ

online(T ) with respect to the sequence {ft}Tt=1.

2.5 Related Work: Adam and Technical Issues in Convergence Guarantees

2.5.1 Adam Optimizer

Adam (Kingma & Ba, 2015) is a widely used first-order gradient-based optimization method that
computes adaptive learning rates for each parameter by using both the first and second moment
estimates of the gradients. In each iteration t, Adam maintains the accumulated gradients mt ←
β1,tmt−1 + (1− β1,t)gt and the accumulated squared gradients vt ← β2vt−1 + (1− β2)g

2
t , where

gt is the gradient at iteration t and g2t represents the element-wise square of gradient gt. The hyper-
parameters β1, β2 ∈ [0, 1) control the decay rates of mt and vt, respectively. Since these moment
estimates are initially biased towards zero, the estimates are corrected as m̂t ← mt/(1 − βt

1) and
v̂t ← vt/(1 − βt

2). The Adam algorithm then updates the parameters using θt ← θt−1 − αt
m̂t√
v̂t+ϵ

,
where ϵ is a small positive constant added to prevent division by zero. The key characteristic of
Adam lies in its use of exponential moving average for both the gradient estimates (first-order) and the
element-wise squares of gradients (second-order). This approach has shown empirical effectiveness
for optimizing deep neural networks and has led to many follow-up works, such as Reddi et al. (2018),
Loshchilov & Hutter (2019), Chen et al. (2020), Alacaoglu et al. (2020), and Chen et al. (2023).

2.5.2 Convergence of Adam

After Adam was first introduced, there was considerable debate regarding its convergence properties.
In particular, Reddi et al. (2018) provided a counterexample demonstrating that Adam might fail
to converge under certain conditions (see Section3 of Reddi et al. 2018). In response, numerous
variants of adaptive gradient methods have been proposed, such as AMSGrad (Reddi et al., 2018),
AdamW (Loshchilov & Hutter, 2019), and AdaBelief (Zhuang et al., 2020), to address this issue and
ensure convergence.

However, recent studies (Zhang et al., 2022; Défossez et al., 2022) indicate that the standard Adam
algorithm itself can achieve convergence with appropriate hyperparameter choices, thereby resolving
its earlier theoretical concerns. These recent works provide alternative convergence proofs for
the original Adam algorithm without requiring modifications to its update rules, contingent upon
hyperparameter conditions being satisfied.

2.5.3 Technical Issues in Adam with Bandit Sampling (Liu et al., 2020)

The work most closely related to ours is by Liu et al. (2020), who proposedAdamBS, an extension of the
original Adam algorithm and proof framework incorporating a bandit sampling approach. However,
the initial convergence issue present in the original proof of Adam, discussed in Section 2.5.2, also
affects AdamBS, thus invalidating the convergence guarantee provided by Liu et al. (2020). Moreover,
even if the alternative convergence proofs of Adam are adapted to the AdamBS framework, several
other critical shortcomings persist. We summarize these remaining issues as follows:

• AdamBS unfortunately fails to provide guarantees on convergence despite its claims,
both on the regret bound and on the effectiveness of the adaptive sample selection via the
bandit approach. Specifically, the claimed regret bound in Theorem 1 of Liu et al. (2020) is
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incorrect. In particular, Eq.(7) on Page 3 of the supplemental material of Liu et al. (2020)
contains an error in the formula expansion.1 This technical error is critical to their claims
regarding the convergence rate of AdamBS and its dependence on the mini-batch size K

• Their problem setting is also limited and impractical, even if the analysis were corrected.
The analysis assumes that feature vectors follow a doubly heavy-tailed distribution, a strong
and restrictive condition that may not hold in practical scenarios. Importantly, no analysis is
provided for bounded or sub-Gaussian (light-tailed) distributions, which are more commonly
encountered in real-world applications.

• Despite their claim regarding mini-batch selection of size K, their algorithm design allows
the same sample to be selected multiple times within a single mini-batch. This occurs
because the bandit algorithm they employ is based on single-action selection rather than a
combinatorial bandit approach. As a result, their method may repeatedly sample the same
data points within a mini-batch. Moreover, due to this limitation, their method fails to
achieve performance gains with increasing mini-batch size K, contradicting their claim.

• Numerical evaluations (in Section 5) demonstrate poor performance of AdamBS. Our
numerical experiments across various models and datasets reveal that AdamBS exhibits poor
and inconsistent performance. Additionally, an independent evaluation by a separate group
has also reported inconsistent results for AdamBS (Bansal et al., 2022).

3 Proposed Algorithm: AdamCB

3.1 AdamCB Algorithm

Algorithm 1: Adam with Combinatorial Bandit Sampling (AdamCB)
Input: learning rate {αt}Tt=1, decay rates {β1,t}Tt=1, β2, batch size K, exploration parameter

γ ∈ [0, 1)
Initialize: model parameters θ0, first moment estimate m0 ← 0, second moment estimate

v0 ← 0, v̂0 ← 0, sample weights wi,0 ← 1 for all i ∈ [n]
1 for t = 1 to T do
2 Jt, pt, Snull,t ← Batch-Selection(wt−1,K, γ) (Algorithm 2)
3 Compute unbiased gradient estimate gt with respect to Jt using Eq.(7)
4 mt ← β1,tmt−1 + (1− β1,t)gt
5 vt ← β2vt−1 + (1− β2)g

2
t

6 v̂1 ← v1, v̂t ← max
{

(1−β1,t)
2

(1−β1,t−1)2
v̂t−1, vt

}
if t ≥ 2

7 θt+1 ← θt − αt
mt√
v̂t+ϵ

8 wt ← Weight-Update(wt−1, pt, Jt, {gj,t}j∈Jt
, Snull,t, γ) (Algorithm 3)

We present our proposed algorithm, Adam with Combinatorial Bandit Sampling (AdamCB), which
is described in Algorithm 1. The algorithm begins by initializing the sample weights w0 :=
{w1,0, w2,0, . . . , wn,0} uniformly, assigning an equal weight of 1 to each of n training samples. At
each iteration t ∈ [T ], the current sample weights wt−1 = {w1,t−1, w2,t−1, . . . , wn,t−1} are used to
determine the sample selection probabilities pt := {p1,t, p2,t, . . . , pn,t}, where these probabilities
are controlled with the exploration parameter γ (Line 2). A subset of samples, denoted by Dt ⊆ D,
is chosen based on these probabilities. The set of indices for samples chosen in the mini-batch Dt is
denoted by Jt := {J1

t , J
2
t , . . . , J

K
t } ⊆ [n]. Using this mini-batchDt, an unbiased gradient estimate

gt is computed (Line 3). The algorithm then updates moments estimates mt, vt, and v̂t following
the Adam-based update rules (Lines 4–6). The model parameters θt are subsequently updated based
on these moment estimates (Line 7). Finally, the weights wt−1 are adjusted to reflect the importance
of each sample, improving the batch selection process in future iterations (Line 8).

1Liu et al. (2020) apply Jensen’s inequality to handle the expectation of the squared norm of the sum of
gradient estimates. However, the convexity assumption required for Jensen’s inequality does not hold in this
context, rendering this step in their proof invalid.
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The following sections describe the detailed process for deriving the sample probabilities pt and
selecting the mini-batch Dt = {(xj , yj)}j∈Jt

from the sample weights wt−1 utilizing our proposed
combinatorial bandit sampling.

3.2 Batch Selection: Combinatorial Bandit Sampling

In our approach, we incorporate a bandit framework where each sample is treated as an arm. Since
multiple samples must be selected for a mini-batch, we extend the selection process to handle
multiple arms. There are two primary methods for sampling multiple arms: with replacement or
without replacement. The previous method, AdamBS (Liu et al., 2020), samples multiple arms with
replacement. In contrast, our proposed method, AdamCB, employs a combinatorial bandit algorithm
to sample multiple arms without replacement, achieved by Batch-Selection (Algorithm 2).

Algorithm 2: Batch-Selection
Input: Sample weights wt−1, batch size K, exploration parameter γ ∈ [0, 1)

1 Set C ← (1/K − γ/n)/(1− γ)
2 if maxi∈[n] wi,t−1 ≥ C

∑n
i=1 wi,t−1 then

3 Let w̄t−1 be a sorted list of {wi,t−1}ni=1 in descending order
4 Set S ←

∑n
i=1 w̄i,t−1

5 for i = 1 to n do
6 Compute τ ← C · S/(1− i · C)
7 if w̄i,t−1 < τ then break, else update S ← S − w̄i,t−1

8 Set Snull,t ← {i : wi,t−1 ≥ τ} and wi,t−1 = τ for i ∈ Snull,t

9 else
10 Set Snull,t ← ∅

11 Set pi,t ← K
(
(1− γ)

wi,t−1∑n
j=1 wj,t−1

+ γ
n

)
for all i ∈ [n]

12 Set Jt ← DepRound(K, (p1,t, p2,t, . . . , pn,t)) (Algorithm 6)
13 return Jt, pt, Snull,t

Weight Adjustment (Lines 2–10). Unlike single-arm selection bandit approach like AdamBS,
where

∑n
i=1 pi,t = 1, because only one sample is selected at a time, AdamCBmust select K samples

simultaneously for a mini-batch. Therefore, it is natural to scale the sum of the probabilities to K,
reflecting the expected number of samples selected in each round.2 Allowing the sum of probabilities
to equal K can lead to individual probabilities pi,t exceeding 1, especially when certain samples
are assigned significantly higher weights due to their importance (or gradient magnitude). To
ensure valid probabilities and prevent any sample from being overrepresented, AdamCB introduces
a threshold τ . If a weight wi,t−1 exceeds τ , the index i is added to a null set Snull,t, effectively
removing it from active consideration for selection. The probabilities of the remaining samples are
adjusted to redistribute the excess weight while ensuring the sum of probabilities remains K.

Probability Computation (Line 11). After adjusting the weights, the probabilities pt for selecting
each sample are computed using the adjusted weights wt−1 and the exploration parameter γ. This
computation balances the need to exploit samples with higher weights (more likely to provide useful
gradients) and explore other samples. The inclusion of K in the scaling ensures that the sum of
probabilities matches the batch size:

∑n
i=1 pi,t = K.

Mini-batch Selection (Line 12). The final selection of K distinct samples for the mini-batch is
performed using DepRound (Algorithm 6), originally proposed by Gandhi et al. (2006) and later
adapted by Uchiya et al. (2010). DepRound efficiently selects K distinct samples from a set of
n samples, ensuring that each sample i is selected with probability pi,t. The algorithm has a
computational complexity of O(n), which is significantly more efficient than a naive approach
requiring consideration of all possible combinations with a complexity of at least

(
n
K

)
.

2If the sum of probabilities were constrained to 1, the algorithm would need to perform additional rescaling
or sampling adjustments. Instead, directly setting

∑n
i=1 pi,t = K aligns the probability distribution with the

batch-level selection requirements.
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3.3 Computing Unbiased Gradient Estimates

Given the mini-batch data Dt = {(xj , yj)}j∈Jt
from Algorithm 2, and since pt is a probability over

the full dataset D, and Dt is sampled according to pt, we employ an importance sampling technique
to compute the empirical distribution P̂ for Dt:

P̂ (x, y;Dt) :=
1

K

∑
j∈Jt

δ(x = xj , y = yj)

npj,t
(6)

where δ is the Dirac-delta function. This formulation ensures that the empirical distribution P̂ for
the mini-batch Dt closely approximates the original empirical distribution P̂ (x, y;D) defined over
the full dataset D, as expressed in Eq.(2). According to the empirical distribution P̂ (x, y;Dt) in
Eq.(6), the online objective function ft corresponding to the mini-batch Dt (as defined in Eq.(4))
can be computed as

ft(θ) = f(θ;Dt) =

∫
ℓ(θ;x, y)dP̂ (x, y;Dt) =

1

K

∑
j∈Jt

ℓ(θ;xj , yj)

npj,t
.

This implies that the gradient gt = ∇θft(θ) obtained from the mini-batch Dt at iteration t is
computed as follows:

gt = ∇θft(θ) =
1

K

∑
j∈Jt

∇θℓ(θ;xj , yj)

npj,t
=

1

K

∑
j∈Jt

gj,t
npj,t

(7)

Here, we denote the gradients for each individual sample in the mini-batch Dt as {gj,t}j∈Jt
, where

Jt is the set of indices for Dt. In stochastic optimization methods like SGD and Adam, it is crucial to
use an unbiased gradient estimate when updating the moment vectors. We can easily show that gt is
an unbiased estimate of the true gradient g over the entire dataset by taking the expectation over pt,
i.e, Ept

[gt] = g. The unbiased gradient estimate gt in Eq.(7) is then used to update the first moment
estimate mt and the second moment estimate vt in each iteration of the algorithm.

3.4 Update of Sample Weights

The final step in each iteration of Algorithm 1 involves updating the sample weights wt. Treating
the optimization problem as an adversarial semi-bandit, our partial feedback consists only of the
gradients {gj,t}j∈Jt

. The loss ℓi,t occurred when the i-th arm is pulled is computed based on the
norm of the gradient ∥gi,t∥. Specifically, the loss ℓi,t is always non-negative and inversely related
to ∥gi,t∥. This implies that samples with smaller gradient norms are assigned lower weights, while
samples with larger gradient norms are more likely to be selected in future iterations.

Algorithm 3: Weight-Update
Input: wt−1, pt, Jt, {gj,t}j∈Jt , Snull,t, γ ∈ [0, 1)

1 for j = 1 to n do
2 Compute loss ℓj,t = p2

min

L2

(
−∥gj,t∥2

(pj,t)2
+ L2

p2
min

)
if j ∈ Jt; otherwise ℓj,t = 0

3 if j /∈ Snull,t then
4 wj,t ← wj,t−1 exp (−Kγℓj,t/n)

5 return wt

4 Regret Analysis

In this section, we present a regret analysis for our proposed algorithm, AdamCB. We begin by
introducing the standard assumptions commonly used in the analysis of optimization algorithms.
Assumption 1 (Bounded gradient). There exists L > 0 such that ∥gi,t∥ ≤ L for all i ∈ [n] and
t ∈ [T ].
Assumption 2 (Bounded parameter). There exists D > 0 such that ∥θs−θt∥ ≤ D for any s, t ∈ [T ].

7



Published as a conference paper at ICLR 2025

Discussion of Assumptions. Both Assumptions 1 and 2 are the standard assumptions in the relevant
literature that studies the regret bounds of Adam-based optimization (Kingma & Ba, 2015; Reddi
et al., 2018; Luo et al., 2019; Liu et al., 2020; Chen et al., 2020). A closely related work (Liu et al.,
2020) relies on the additional stronger assumption of a doubly heavy-tailed feature distribution. In
contrast, the regret bound for AdamCB is derived using only these two standard assumptions.

4.1 Regret Bound of AdamCB

Theorem 1 (Regret bound of AdamCB). Suppose Assumptions 1-2 hold, and we run AdamCB for a
total T iterations with αt =

α√
t

and with β1,t := β1λ
t−1, λ ∈ (0, 1). Then, the cumulative regret of

AdamCB (Algorithm 1) with batch size K is upper-bounded by

O

(
d
√
T +

√
d

n3/4

(
T

K
ln

n

K

)1/4
)
.

Discussion of Theorem 1. Theorem 1 establishes that the cumulative regret bound of AdamCB
is sub-linear in T , i.e., Rπ(T ) = o(T ). Hence, AdamCB is guaranteed to converge to the optimal
solution. The first term in the regret bound, d

√
T , which is commonly shared by the results in all

Adam-based methods (Kingma & Ba, 2015; Reddi et al., 2018; Liu et al., 2020). The second term,
(
√
d/n3/4)·((T/K) ln (n/K))

1/4, illustrates the impact of the number of samples n as well as the
batch size K on regret. As the number of samples n increases, this term decreases, suggesting
that having more data generally helps in reducing regret (hence converging faster to optimality).
Similarly, increasing the batch size K also decreases this term, reflecting that larger mini-batches
can reduce the variance in gradient estimates, thus improving the performance.

4.2 Proof Sketch of Theorem 1

In this section, we present the proof sketch of the regret bound in Theorem 1. The proof start by
decomposing the cumulative regretRπ(T ) into three parts: the cumulative online regretRπ

online(T )
and auxiliary terms (A) and (B), as shown below:

Rπ(T ) = Rπ
online(T ) + E

[
T∑

t=1

(f(θt;D)− f(θt;Dt))

]
︸ ︷︷ ︸

(A)

+E

[
min
θ∈Rd

T∑
t=1

f(θ;Dt)− T · min
θ∈Rd

f(θ;D)

]
︸ ︷︷ ︸

(B)

(8)

We now prove the following two key lemmas to bound the online regretRπ
online(T ).

Lemma 1. Suppose Assumptions 1-2 hold. AdamCB (Algorithm 1) with a mini-batch of size K, which
is formed dynamically by distribution pt, achieves the following upper-bound for the cumulative online
regretRπ

online(T ) over T iterations,

Rπ
online(T ) ≤ ρ1d

√
T +
√
dρ2

√√√√ 1

n2K

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2
(pj,t)2

]
+ ρ3

where ρ1, ρ2, and ρ3 are constants (See Appendix B.2).

Lemma 1 provides an upper bound for the cumulative online regret over T iterations. This lemma
shows that pt affects the upper bound of Rπ

online(T ). Hence, we wish to choose pt that could lead
to minimizing the upper bound. The following key lemma shows that it can be achieved by a
combinatorial semi-bandit approach, adapted from EXP3 (Auer et al., 2002).

Lemma 2. Suppose Assumptions 1-2 hold. If we set γ = min

{
1,
√

n ln (n/K)
(e−1)TK

}
, the batch selection

(Algorithm 2) and the weight update rule (Algorithm 3) following AdamCB (Algorithm 1) implies

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

−min
pt

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = O
(√

KnT ln
n

K

)

8
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Table 1: Comparison of Regret Bounds

Optimizer Regret Bound

AdamX (Tran et al., 2019) (variant of Adam†) O
(
d
√
T +

√
d

n1/2

√
T
)

AdamBS (Liu et al., 2020) (corrected‡) O
(
d
√
T +

√
d

n3/4 (T lnn)
1
4

)
AdamCB (Ours) O

(
d
√
T +

√
d

n3/4

(
T
K ln n

K

) 1
4

)
† While the convergence of Adam (Kingma & Ba, 2015) has been correctly established by Zhang et al. (2022),
the results in Zhang et al. (2022) do not provide regret guarantees. For fair comparisons of regret, we use a
slight modification of Adam, AdamX (Tran et al., 2019), for which correct regret analysis is feasible.
‡ Similarly, for AdamBS(Liu et al., 2020), since the existing proof of regret guarantee contains technical errors,
we present a corrected proof, resulting in a new regret bound (Theorem 3).

Lemma 2 bounds the difference between the expected cumulative loss of the chosen mini-batch
and the optimal mini-batch, showing sub-linear growth in T with dependence on the batch size K.
Combining Lemma 1 and Lemma 2, we can bound the cumulative online regretRπ

online(T ), which also
grows sub-linearly in T . Proofs of Lemma 1 and Lemma 2 are in Appendix B.2 and Appendix B.3,
respectively. The discrepancy terms (A) and (B) in Eq.(8) capture the difference between the full
dataset D and the mini-batches {Dt}Tt=1, and are also bounded sub-linearly in T (See Lemma 11 in
Appendix B.4). Since the cumulative regretRπ(T ) is decomposed into the online regretRπ

online(T )
with additional sub-linear terms, we obtain the cumulative regret bound for AdamCB.

4.3 Comparisons with Adam and AdamBS

Our main goal is to demonstrate that the convergence rate of AdamCB (Algorithm 1) is provably more
efficient than those of the existing Adam-based methods including ones that employ uniform sampling
and AdamBS (Liu et al., 2020) that utilizes (non-combinatorial) bandit sampling. Since the claimed
regret bounds in the original Adam and AdamBS are invalid, we provide new regret bounds for both
a variant of Adam, called AdamX (Tran et al., 2019) and AdamBS in Theorems 2 and 3, respectively,
which may be of independent interest.

For comparison purposes, we additionally introduce the following assumption:

Assumption 3 (Bounded variance of gradient). There exists σ > 0 such that Var(∥gi,t∥) ≤ σ2 for
all i ∈ [n] and t ∈ [T ]

Assumption 3 is commonly used in the previous literature (Reddi et al., 2016; Nguyen et al., 2018;
Zou et al., 2019; Patel et al., 2022). It is important to note that Assumption 3 is not required for the
analysis of our algorithm in Theorem 1. Rather, we employ the assumption to fairly compare with
corrected results for the existing Adam-based methods (Tran et al., 2019; Liu et al., 2020).

Under Assumptions 1, 2, and 3, the regret bound for the Adam variant (AdamX) using uniform sampling
is given byO(d

√
T+n−1/2

√
dT ) (Theorem 2 in Appendix C), while the regret bound for a corrected

version of AdamBS using (non-combinatorial) bandit sampling is O
(
d
√
T + n−3/4

√
d(T lnn)1/4

)
(Theorem 3 in Appendix D) when Assumptions 1 and 2 hold. The comparisons of regret bounds are
outlined in Table 1.

Faster Convergence of AdamCB. The second term in the regret bound of AdamX exhibits a depen-
dence on n−1/2, which is the rate of regret decrease as the dataset size increases. However, this
reduction in regret occurs at a slower rate compared to bandit-based sampling methods. Both AdamBS
(corrected) and AdamCB achieve an improved n−3/4 dependency, resulting in a faster convergence.
When comparing the two bandit-based sampling methods, AdamCB surpasses AdamBS (corrected) in
terms of convergence, particularly by the factor of the batch size K. That is, as far as regret per-
formance is concerned, AdamBS does not benefit from multiple samples in batch while our AdamCB
enjoys faster convergence. Hence, AdamCB is not only the first algorithm with correct performance
guarantees for AdamX with adaptive batch selection, but to our best knowledge, also the method with
the fastest convergence guarantees in terms of regret performance.
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Figure 1: Performances with MLP model on MNIST, Fashion MNIST, and CIFAR10
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Figure 2: Performances with CNN model on MNIST, Fashion MNIST, and CIFAR10

5 Numerical Experiments

Experimental Setup. To evaluate our proposed algorithm, AdamCB, we conduct experiments using
deep neural networks, including multilayer perceptrons (MLP) and convolutional neural networks
(CNN), on three benchmark datasets: MNIST, Fashion MNIST, and CIFAR10. Comparisons are
made with Adam, AdamX and AdamBS, with all experiments implemented in PyTorch. Performance
is assessed by plotting training and test losses over epochs, with training loss calculated on the full
dataset and test loss calculated on the held-out validation data set. Results represent the average
of five runs with different random seeds, including standard deviations. All methods use the same
hyperparameters: β1 = 0.9, β2 = 0.999, γ = 0.4, K = 128, and α = 0.001. Additional
experimental details are provided in Appendix F.

Results. Figures 1 and 2 show that AdamCB consistently outperforms Adam, AdamX and AdamBS,
demonstrating faster reductions in both training and test losses across all datasets. These results
suggest that combinatorial bandit sampling is more effective than uniform sampling for performance
optimization. Attempts to replicate the results of AdamBS from Liu et al. (2020) revealed inconsistent
outcomes, with significant fluctuations in losses, indicating potential instability and divergence.
In contrast, AdamCB exhibits consistent convergence across all datasets, highlighting its superior
performance and practical efficiency compared to Adam, AdamX and AdamBS. Additional experimental
results in Appendix F further reinforce the superior performance of AdamCB.
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Appendix
A Auxiliary Lemmas

Definition 1. A function f : Rd → R is convex if for all u, v ∈ Rd, and all λ ∈ [0, 1],
λf(u) + (1− λ)f(v) ≥ f(λu+ (1− λ)v)

Lemma 3. If a function f : Rd → R is convex, then for all u, v ∈ Rd,
f(v) ≥ f(u) +∇f(u)⊤(v − u)

where (−)⊤ denotes the transpose of (−).
Lemma 4 (Cauchy-Schwarz inequality). For all n ≥ 1, ai, bi ∈ R, (1 ≤ i ≤ n),(

n∑
i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
Lemma 5 (Taylor series). For α ∈ R, and 0 ≤ α ≤ 1,∑

t≥1

αt =
1

1− α
and

∑
t≥1

tαt−1 =
1

(1− α)2

Lemma 6 (Upper bound for the harmonic series). For N ∈ N,
N∑

n=1

1

n
≤ lnN + 1 and

N∑
n=1

1√
n
≤ 2
√
N

Lemma 7. For all n ∈ N, and ai, bi ∈ R such that ai ≥ 0 and bi > 0 for all i ∈ [n],∑n
i=1 ai∑n
j=1 bj

≤
n∑

i=1

ai
bi

B Proof for AdamCB Regret Bound

In this section, we provide proofs of key lemmas, Lemma 1 and Lemma 2. They are needed to prove
Theorem 1, which shows the regret bound for AdamCB. In the last of this section, we present the
proof for Theorem 1.

B.1 Auxiliary Lemmas for Lemma 1

We first present auxiliary lemmas and proofs for Lemma 1. Our proofs basically follow arguments
as in Tran et al. (2019). For the sake of completeness, all lemmas from Tran et al. (2019) are restated
with our problem setting.
Lemma 8. For all t ≥ 1, we have

v̂t = max

{
(1− β1,t)

2

(1− β1,s)2
vs for all 1 ≤ s ≤ t

}
, (9)

where v̂t is in AdamCB (Algorithm 1).

Proof. Prove by induction on t. Recall that by the update rule on v̂t, we have v̂1 ← v1, v̂t ←
max

{
(1−β1,t)

2

(1−β1,t−1)2
v̂t−1, vt

}
if t ≥ 2. Thus,

v̂2 = max

{
(1− β1,2)

2

(1− β1,1)2
v̂1, v2

}
= max

{
(1− β1,2)

2

(1− β1,1)2
v1, v2

}
= max

{
(1− β1,2)

2

(1− β1,s)2
vs, 1 ≤ s ≤ 2

}

13
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which we proved for the case when t = 2 in Eq.(9). Now, assume that

v̂t−1 = max

{
(1− β1,t−1)

2

(1− β1,s)2
vs for all 1 ≤ s ≤ t− 1

}
,

and Eq.(9) holds for all 1 ≤ j ≤ t− 1. By the update rule on v̂t,

v̂t = max

{
(1− β1,t)

2

(1− β1,t−1)2
v̂t−1, vt

}
= max

{
(1− β1,t)

2

(1− β1,t−1)2

(
max

{
(1− β1,t−1)

2

(1− β1,s)2
vs for all 1 ≤ s ≤ t− 1

})
, vt

}
= max

{
max

{
(1− β1,t)

2

(1− β1,t−1)2
(1− β1,t−1)

2

(1− β1,s)2
vs for all 1 ≤ s ≤ t− 1

}
,

(1− β1,t)
2

(1− β1,t−1)2
vt

}
= max

{
max

{
(1− β1,t)

2

(1− β1,s)2
vs for all 1 ≤ s ≤ t− 1

}
,

(1− β1,t)
2

(1− β1,t−1)2
vt

}
= max

{
(1− β1,t)

2

(1− β1,s)2
vs for all 1 ≤ s ≤ t

}

which ends the proof.

Lemma 9. For all t ≥ 1, we have √
v̂t ≤

L

γ(1− β1)

where v̂t is in AdamCB (Algorithm 1).

Proof. By Lemma 8,

v̂t = max

{
(1− β1,t)

2

(1− β1,s)2
vs for all 1 ≤ s ≤ t

}
Therefore, there is some 1 ≤ s ≤ t such that v̂t = (1−β1,t)

2

(1−β1,s)2
vs. Recall that by the update rule on vt,

we have vt ← β2vt−1 + (1− β2)g
2
t . This implies

vt = (1− β2)

t∑
k=1

βt−k
2 g2k

Hence,

√
v̂t =

√
(1− β1,t)2

(1− β1,s)2
vs

=
√

1− β2

(
1− β1,t

1− β1,s

)√√√√ s∑
k=1

βs−k
2 g2k

≤
√
1− β2

(
1− β1,t

1− β1,s

)√√√√ s∑
k=1

βs−k
2 ( max

1≤r≤s
∥gr∥)2

Recall the unbiased gradient estimate gt in Eq.(7),

gt =
1

K

∑
j∈Jt

gj,t
npj,t

By the triangle inequality property of norms and the fact that pi,t ≥ γ/n and ∥gi,t∥ ≤ L for all
i ∈ [n] and t ∈ [T ] from Assumption 1, the unbiased gradient estimate is bounded by L/γ, i.e,
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∥gt∥ ≤ L/γ. Therefore,

√
v̂t ≤ (L/γ)

√
1− β2

(
1− β1,t

1− β1,s

)√√√√ s∑
k=1

βs−k
2

≤ (L/γ)
√

1− β2

(
1− β1,t

1− β1,s

)
1√

1− β2

= (L/γ)

(
1− β1,t

1− β1,s

)
≤ L

γ(1− β1)

which ends the proof.

Lemma 10. For the parameter settings and conditions assumed in Lemma 1, we have

T∑
t=1

m2
t,u√
tv̂t,u

≤
√
lnT + 1

(1− β1)
√
1− β2(1− η)

∥g1:T,u∥

Proof. Recall that by the update rule on mt, vt, we have mt ← β1,tmt−1 + (1 − β1,t)gt and
vt ← β2vt−1 + (1− β2)g

2
t . This implies

mt =

t∑
k=1

(1− β1,k)

(
t∏

r=k+1

β1,r

)
gk, vt = (1− β2)

t∑
k=1

βt−k
2 g2k

Since for all t ≥ 1, v̂t,u ≥ vt,u by Lemma 8, we have

m2
t,u√
tv̂t,u

≤
m2

t,u√
tvt,u

=

[∑t
k=1(1− β1,k)

(∏t
r=k+1 β1,r

)
gk,u

]2
√
(1− β2)t

∑t
k=1 β

t−k
2 g2k,u

≤

(∑t
k=1(1− β1,k)

2
(∏t

r=k+1 β1,r

))(∑t
k=1

(∏t
r=k+1 β1,r

)
g2k,u

)
√
(1− β2)t

∑t
k=1 β

t−k
2 g2k,u

≤

(∑t
k=1 β

t−k
1

)(∑t
k=1 β

t−k
1 g2k,u

)
√
(1− β2)t

∑t
k=1 β

t−k
2 g2k,u

≤ 1

(1− β1)
√
1− β2

∑t
k=1 β

t−k
1 g2k,u√

t
∑t

k=1 β
t−k
2 g2k,u

where the second inequality is by Lemma 4, the third inequality is from the fact that β1,k ≤ 1
and β1,k ≤ β1 for all 1 ≤ k ≤ T , and the fourth inequality is obtained by applying Lemma 5 to
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∑t
k=1 β

t−k
1 . Therefore,

m2
t,u√
tv̂t,u

≤ 1

(1− β1)
√
1− β2

√
t

∑t
k=1 β

t−k
1 g2k,u√∑t

k=1 β
t−k
2 g2k,u

≤ 1

(1− β1)
√
1− β2

√
t

t∑
k=1

βt−k
1 g2k,u√
βt−k
2 g2k,u

=
1

(1− β1)
√
1− β2

√
t

t∑
k=1

βt−k
1√
βt−k
2

|gk,u|

=
1

(1− β1)
√
1− β2

√
t

t∑
k=1

ηt−k|gk,u|

where the second inequality is by Lemma 7 and we define η := β1√
β2

. Therefore,

T∑
t=1

m2
t,u√
tv̂t,u

=
1

(1− β1)
√
1− β2

T∑
t=1

1√
t

t∑
k=1

ηt−k|gk,u| (10)

It is sufficient to consider
∑T

t=1
1√
t

∑t
k=1 η

t−k|gk,u|. Firstly, this can be expanded as:

T∑
t=1

1√
t

t∑
k=1

ηt−k|gk,u| = η0|g1,u|

+
1√
2

[
η1|g1,u + η0|g2,u|]

]
+

1√
3

[
η2|g1,u + η1|g2,u|+ η0|g3,u|]

]
+ · · ·

+
1√
T

[
ηT−1|g1,u + ηT−2|g2,u|+ · · ·+ η0|gT,u|]

]
Changing the role of |g1,u| as the common factor, we obtain,

T∑
t=1

1√
t

t∑
k=1

ηt−k|gk,u| = |g1,u|
(
η0 +

1√
2
η1 +

1√
3
η2 + · · ·+ 1√

T
ηT−1

)
+ |g2,u|

(
1√
2
η0 +

1√
3
η1 + · · ·+ 1√

T
ηT−2

)
+ |g3,u|

(
1√
3
η0 +

1√
4
η1 + · · ·+ 1√

T
ηT−3

)
+ · · ·

+ |gT,u|
1√
T
η0

In other words,
T∑

t=1

1√
t

t∑
k=1

ηt−k|gk,u| =
T∑

t=1

|gt,u|
T∑

k=t

1√
k
ηk−t

Moreover, since
T∑

k=t

1√
k
ηk−t ≤

T∑
k=t

1√
t
ηk−t =

1√
t

T∑
k=t

ηk−t =
1√
t

T−t∑
k=0

ηk ≤ 1√
t

(
1

1− η

)
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where the last inequality is by Lemma 5, we obtain
T∑

t=1

1√
t

t∑
k=1

ηt−k|gk,u| ≤
T∑

t=1

|gt,u|
1√
t

(
1

1− η

)
=

1

1− η

T∑
t=1

1√
t
|gt,u|

Furthermore, since

T∑
t=1

1√
t
|gt,u| =

√√√√( T∑
t=1

1√
t
|gt,u|

)2

≤

√√√√ T∑
t=1

1

t

√√√√ T∑
t=1

g2t,u ≤ (
√
1 + lnT )∥g1:T,u∥

where the first inequality is by Lemma 4 and the last inequality is by Lemma 6, we obtain
T∑

t=1

1√
t

t∑
k=1

ηt−k|gk,u| ≤
√
1 + lnT

1− η
∥g1:T,u∥

Hence, by Eq.(10),
T∑

t=1

m2
t,u√
tv̂t,u

≤
√
1 + lnT

(1− β1)
√
1− β2(1− η)

∥g1:T,u∥

which ends the proof.

B.2 Proof for Lemma 1

Lemma 1. Suppose Assumptions 1-2 hold. AdamCB (Algorithm 1) with a mini-batch of size K,
which is formed dynamically by distribution pt, achieves the following upper-bound for the cumulative
online regretRπ

online(T ) over T iterations,

Rπ
online(T ) ≤ ρ1d

√
T +
√
dρ2

√√√√ 1

n2K

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2
(pj,t)2

]
+ ρ3

where ρ1, ρ2, and ρ3 are defined as follows:

ρ1 =
D2L

2αγ(1− β1)2
, ρ2 =

α
√
1 + lnT

(1− β1)2
√
1− β2(1− η)

, ρ3 =
dβ1D

2L

2αγ(1− β1)2(1− λ)2

Note that d is the dimension of parameter space and the inputs of Algorithm 1 follows these
conditions: (a) αt = α√

t
, (b) β1, β2 ∈ [0, 1), β1,t := β1λ

t−1 for all t ∈ [T ], λ ∈ (0, 1), (c)
η = β1/

√
β2 ≤ 1, and (d) γ ∈ [0, 1).

Proof. Recall Lemma 3.
Since ft : Rd → R is convex, we have, ft(θ∗)− ft(θt) ≥ gT

t (θ
∗ − θt). This means that

ft(θt)− ft(θ
∗) ≤ gT

t (θt − θ∗) =

d∑
u=1

gt,u(θt,u − θ∗,u)

From the parameter update rule presented in Algorithm 1,

θt+1 = θt − αtmt/
√
v̂t

= θt − αt

(
β1,t√
v̂t
mt−1 +

(1− β1,t)√
v̂t

gt

)
We focus on the u-th dimension of the parameter vector θt ∈ Rd. Substract the scalar θ∗,u and square
both sides of the above update rule, we have,

(θt+1,u − θ∗,u)
2 = (θt,u − θ∗,u)

2 − 2αt

(
β1,t√
v̂t,u

mt−1,u +
(1− β1,t)√

v̂t,u
gt,u

)
(θt,u − θ∗,u) + α2

t

(
mt,u√
v̂t,u

)2
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We can rearrange the above equation

gt,u(θt,u − θ∗,u) =

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)

+
αt

2(1− β1,t)

m2
t,u√
v̂t,u
− β1,t

(1− β1,t)
mt−1,u(θt,u − θ∗,u) (11)

Note that,

Rπ
online(T ) = E

[
T∑

t=1

ft(θt)− min
θ∈Rd

T∑
t=1

ft(θ)

]
= E

[
T∑

t=1

[ft(θt)− ft(θ
∗)]

]
where θ∗ ∈ argminθ∈Rd

∑T
t=1 ft(θ) is defined as the optimal parameter that minimizes the cumu-

lative loss over given T iterations. Hence,

Rπ
online(T ) = E

[
T∑

t=1

[ft(θt)− ft(θ
∗)]

]
≤ E

[
T∑

t=1

gT
t (θt − θ∗)

]
= E

[
T∑

t=1

d∑
u=1

gt,u(θt,u − θ∗,u)

]
(12)

Combining Eq.(11) with Eq.(12), we obtain

Rπ
online(T ) ≤ E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

+ E

[
d∑

u=1

T∑
t=1

αt

2(1− β1,t)

m2
t,u√
v̂t,u

]
+ E

[
d∑

u=1

T∑
t=2

β1,t

(1− β1,t)
mt−1,u(θ

∗
,u − θt,u)

]
On the other hand, for all t ≥ 2, we have

mt−1,u(θ
∗
,u − θt,u) =

(v̂t−1,u)
1/4

√
αt−1

(θ∗,u − θt,u)
√
αt−1

mt−1,u

(v̂t−1,u)1/4

≤
√
v̂t−1,u

2αt−1
(θ∗,u − θt,u)

2 + αt−1

m2
t−1,u

2
√
v̂t−1,u

where the inequality is from the fact that pq ≤ p2/2 + q2/2 for any p, q ∈ R. Hence,

Rπ
online(T ) ≤ E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

+ E

[
d∑

u=1

T∑
t=1

αt

2(1− β1,t)

m2
t,u√
v̂t,u

]

+ E

[
d∑

u=1

T∑
t=2

β1,tαt−1

2(1− β1,t)

m2
t−1,u√
v̂t−1,u

]

+ E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1,t)
(θ∗,u − θt,u)

2

]
Since β1,t ≤ β1(1 ≤ t ≤ T ), we obtain

d∑
u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1,t)
(θ∗,u − θt,u)

2 ≤
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

Moreover, we have
d∑

u=1

T∑
t=2

β1,tαt−1

2(1− β1,t)

m2
t−1,u√
v̂t−1,u

=

d∑
u=1

T−1∑
t=1

β1,t+1αt

2(1− β1,t+1)

m2
t,u√
v̂t,u

≤
d∑

u=1

T∑
t=1

αt

2(1− β1,t+1)

m2
t,u√
v̂t,u

≤
d∑

u=1

T∑
t=1

αt

2(1− β1)

m2
t,u√
v̂t,u
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where the last inequality is from the assumption that β1,t ≤ β1 < 1(1 ≤ t ≤ T ). Therefore,

d∑
u=1

T∑
t=1

αt

2(1− β1,t)

m2
t,u√
v̂t,u

+

d∑
u=1

T∑
t=2

β1,tαt−1

2(1− β1,t)

m2
t−1,u√
v̂t−1,u

≤
d∑

u=1

T∑
t=1

αt

1− β1

m2
t,u√
v̂t,u

and we obtain the bound forRπ
online(T ) as:

Rπ
online(T ) ≤ E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

(13)

+ E

[
d∑

u=1

T∑
t=1

αt

1− β1

m2
t,u√
v̂t,u

]
(14)

+ E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
(15)

Now, we start to bound each term: (13), (14), and (15).

Bound for the term (13). Let us rewrite the term (13) as

E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

= E

[
d∑

u=1

√
v̂1,u

2α1(1− β1,1)
(θ1,u − θ∗,u)

2

]
+ E

[
d∑

u=1

T∑
t=2

√
v̂t,u

2αt(1− β1,t)
(θt,u − θ∗,u)

2

]

− E

[
d∑

u=1

T∑
t=2

√
v̂t−1,u

2αt−1(1− β1,t−1)
(θt,u − θ∗,u)

2

]
− E

[
d∑

u=1

√
v̂T,u

2αT (1− β1,T )
(θT,u − θ∗,u)

2

]

Omitting the last term and replacing αt = α/
√
t(1 ≤ t ≤ T ), we obtain

E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

≤ E

[
d∑

u=1

√
v̂1,u

2α(1− β1,1)
(θ1,u − θ∗,u)

2

]

+
1

2α
E

[
d∑

u=1

T∑
t=2

(θt,u − θ∗,u)
2

( √
tv̂t,u

(1− β1,t)
−
√
(t− 1)v̂t−1,u

(1− β1,t−1)

)]

Recall that by the update rule on v̂t, we have v̂t,u ← max
{

(1−β1,t)
2

(1−β1,t−1)2
v̂t−1,u, vt,u

}
. Therefore,

v̂t,u ≥ (1−β1,t)
2

(1−β1,t−1)2
v̂t−1,u, and hence

√
tv̂t,u

(1− β1,t)
−
√
(t− 1)v̂t−1,u

(1− β1,t−1)
≥

√
t

(1−β1,t)2

(1−β1,t−1)2
v̂t−1,u

(1− β1,t)
−
√

(t− 1)v̂t−1,u

(1− β1,t−1)

=

√
tv̂t−1,u

(1− β1,t−1)
−
√

(t− 1)v̂t−1,u

(1− β1,t−1)

> 0
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Now by the positivity of the essential formula
√

tv̂t,u
(1−β1,t)

−
√

(t−1)v̂t−1,u

(1−β1,t−1)
, we obtain

E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

≤ D2

2α

d∑
u=1

√
v̂1,u

(1− β1)
+

D2

2α
E

[
d∑

u=1

T∑
t=2

( √
tv̂t,u

(1− β1,t)
−
√
(t− 1)v̂t−1,u

(1− β1,t−1)

)]

≤ D2

2α

d∑
u=1

√
T v̂T,u

(1− β1,T )
≤ dD2L

2αγ(1− β1)2

√
T

where the last inequality is by Lemma 9.

Bound for the term (14).

E

[
d∑

u=1

T∑
t=1

αt

1− β1

m2
t,u√
v̂t,u

]
=

α

1− β1
E

[
d∑

u=1

T∑
t=1

m2
t,u√
tv̂t,u

]

≤ α

1− β1
E

[
d∑

u=1

√
lnT + 1

(1− β1)
√
1− β2(1− η)

∥g1:T,u∥

]

=
α
√
lnT + 1

(1− β1)2
√
1− β2(1− η)

d∑
u=1

E [∥g1:T,u∥]

where the last inequality is by Lemma 10.

Bound for the term (15). By Assumption 2 that ∥θm− θn∥ ≤ D for any m,n ∈ [T ], αt = α/
√
t,

and β1,t = β1λ
t−1 ≤ β1 ≤ 1, we obtain

E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
≤ D2

2α(1− β1)
E

[
d∑

u=1

T∑
t=2

β1,t

√
(t− 1)v̂t−1,u

]
Therefore, from Lemma 9, we obtain

E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
≤ dD2L

2αγ(1− β1)2
E

[
T∑

t=2

β1,t

√
(t− 1)

]
Note that

T∑
t=2

β1,t

√
(t− 1) =

T∑
t=2

β1λ
t−1
√
(t− 1) ≤

T∑
t=2

β1

√
(t− 1)λt−1 ≤

T∑
t=2

β1tλ
t−1 ≤ β1

(1− λ)2

where the first inequality is from the fact that β1 ≤ 1, and the last inequality is from Lemma 5. Thus,
the bound for the term (15) is

E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
≤ dβ1D

2L

2αγ(1− β1)2(1− λ)2

We bounded for terms (13), (14), and (15).

Rπ
online(T ) ≤

dD2L

2αγ(1− β1)2

√
T +

α
√
lnT + 1

(1− β1)2
√
1− β2(1− η)

d∑
u=1

E [∥g1:T,u∥]

+
dβ1D

2L

2αγ(1− β1)2(1− λ)2

Hence,

Rπ
online(T ) ≤ ρ1d

√
T + ρ2

d∑
u=1

E [∥g1:T,u∥] + ρ3 (16)
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where ρ1, ρ2, and ρ3 are defined as the following:

ρ1 =
D2L

2αγ(1− β1)2
, ρ2 =

α
√
1 + lnT

(1− β1)2
√
1− β2(1− η)

, ρ3 =
dβ1D

2L

2αγ(1− β1)2(1− λ)2

Now, we consider
∑d

u=1 E [∥g1:T,u∥], which is in the right-hand side of Eq.(16).

d∑
u=1

E [∥g1:T,u∥] = d

d∑
u=1

1

d
E


√√√√ T∑

t=1

g2t,u

 ≤ d

√√√√ d∑
u=1

1

d
E

[
T∑

t=1

g2t,u

]
=
√
d

√√√√ T∑
t=1

E [∥gt∥2]

where the first inequality is due to the concavity of square root. Recall that the unbiased gradient
estimate is gt = 1

K

∑
j∈Jt

gj,t
npj,t

. Hence,

Rπ
online(T ) ≤ ρ1d

√
T + ρ2

d∑
u=1

Ept
[∥g1:T,u∥] + ρ3

≤ ρ1d
√
T + ρ2

√
d

√√√√ T∑
t=1

Ept [∥gt∥2] + ρ3

≤ ρ1d
√
T + ρ2

√
d

√√√√√√ T∑
t=1

Ept


∥∥∥∥∥∥ 1

K

∑
j∈Jt

gj,t
npj,t

∥∥∥∥∥∥
2
+ ρ3

The last inequality uses Jensen’s inequality to the convex function ∥ · ∥2. Therefore,

Rπ
online(T ) ≤ ρ1d

√
T + ρ2

√
d

√√√√√√ 1

n2K2

T∑
t=1

Ept


∥∥∥∥∥∥
∑
j∈Jt

gj,t
pj,t

∥∥∥∥∥∥
2
+ ρ3

≤ ρ1d
√
T + ρ2

√
d

√√√√√ 1

n2K

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2
(pj,t)2

+ ρ3

where the last inequality is by Lemma 4. This completes the proof of Lemma 1.

B.3 Proof for Lemma 2

Lemma 2. Suppose Assumptions 1-2 hold. If we set γ = min

{
1,
√

n ln (n/K)
(e−1)TK

}
, the batch selection

(Algorithm 2) and the weight update rule (Algorithm 3) following AdamCB (Algorithm 1) implies
T∑

t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

−min
pt

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = O
(√

KnT ln
n

K

)

Proof. We set ℓj,t = p2
min

L2

(
−∥gj,t∥2

(pj,t)2
+ L2

p2
min

)
in Algorithm 3. Since ∥gi,t∥ ≤ L and pi,t ≥ pmin

for all i ∈ [n] and t ∈ [T ] by Assumption 1, we have ℓi,t ∈ [0, 1].
Let Wt :=

∑n
i=1 wt. Then, for any t ∈ [T ],

Wt

Wt−1
=

∑
i∈[n]\Snull,t

wi,t

Wt−1
+

∑
i∈Snull,t

wi,t

Wt−1

=
∑

i∈[n]\Snull,t

wi,t−1

Wt−1
exp

(
−Kγ

n
ℓ̂i,t

)
+

∑
i∈Snull,t

wi,t−1

Wt−1
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The last equality is by the weight update rule in Algorithm 3. From the probability computation in
Algorithm 2, we have

pi,t = K

(
(1− γ)

wi,t−1∑n
j=1 wj,t−1

+
γ

n

)
≥ Kγ

n

Thus, we obtain the following bound,

0 ≤ Kγ

n
ℓ̂i,t =

Kγℓi,t
npi,t

≤ ℓi,t ≤ 1

By the fact that e−x ≤ 1− x+ (e− 2)x2 for all x ∈ [0, 1], and considering Kγ
n ℓ̂i,t as x, we have

Wt

Wt−1
≤

∑
i∈[n]\Snull,t

wi,t−1

Wt−1

[
1− Kγ

n
ℓ̂i,t + (e− 2)

(Kγ

n
ℓ̂i,t
)2]

+
∑

i∈Snull,t

wi,t−1

Wt−1

= 1 +
∑

i∈[n]\Snull,t

wi,t−1

Wt−1

[
−Kγ

n
ℓ̂i,t + (e− 2)

(Kγ

n
ℓ̂i,t
)2]

= 1 +
∑

i∈[n]\Snull,t

pi,t

K −
γ
n

1− γ

[
−Kγ

n
ℓ̂i,t + (e− 2)

(Kγ

n
ℓ̂i,t
)2]

≤ 1− γ

n(1− γ)

∑
i∈[n]\Snull,t

pi,tℓ̂i,t +
K(e− 2)γ2

n2(1− γ)

∑
i∈[n]\Snull,t

pi,t(ℓ̂i,t)
2

≤ 1− γ

n(1− γ)

∑
i∈Jt\Snull,t

ℓi,t +
K(e− 2)γ2

n2(1− γ)

∑
i∈[n]

ℓ̂i,t

The last inequality uses the fact that pi,tℓ̂i,t = ℓi,t ≤ 1 for i ∈ Jt and pi,tℓ̂i,t = 0 for i /∈ Jt. Taking
logarithms and using the fact that ln(1 + x) ≤ x for all x > −1 gives

ln
Wt

Wt−1
≤ − γ

n(1− γ)

∑
i∈Jt\Snull,t

ℓi,t +
K(e− 2)γ2

n2(1− γ)

∑
i∈[n]

ℓ̂i,t

By summing over t, we obtain

ln
WT

W1
≤ − γ

n(1− γ)

T∑
t=1

∑
i∈Jt\Snull,t

ℓi,t +
K(e− 2)γ2

n2(1− γ)

T∑
t=1

∑
i∈[n]

ℓ̂i,t

On the other hand, for the sequence {J∗
t }Tt=1 of batches with the optimal

∑T
t=1

∑
j∈Jt

ℓj,t among
all subsets Jt containing K elements,

ln
WT

W1
≥ ln

∑
j∈J∗

t
wj,T

W1
≥
∑

j∈J∗
t
lnwj,T

K
+ ln

K

n

= −γ

n

∑
j∈J∗

t

∑
t:j /∈Snull,t

ℓ̂j,t + ln
K

n

The first line above uses the fact that∑
j∈J∗

t

wj,T ≥ K(Πj∈J∗
t
wj,T )

1/K

and the second line uses wj,T = exp
(
−(Kγ/n)

∑
t:j /∈Snull,t

ℓ̂j,t

)
.

From combining results,

∑
j∈J∗

t

∑
t:j /∈Snull,t

ℓ̂j,t +
n

γ
ln

K

n
≤ 1

(1− γ)

T∑
t=1

∑
i∈Jt\Snull,t

ℓi,t +
(e− 2)Kγ

n(1− γ)

T∑
t=1

∑
i∈[n]

ℓ̂i,t

22



Published as a conference paper at ICLR 2025

Since
∑

j∈J∗
t

∑
t:j∈Snull,t

ℓj,t ≤ 1
1−γ

∑T
t=1

∑
i∈Snull,t

ℓi,t trivially holds, we have

∑
j∈J∗

t

∑
t:j /∈Snull,t

ℓ̂j,t +
∑
j∈J∗

t

∑
t:j∈Snull,t

ℓj,t +
n

γ
ln

K

n
≤ 1

(1− γ)

T∑
t=1

∑
i∈Jt

ℓi,t +
(e− 2)Kγ

n(1− γ)

T∑
t=1

∑
i∈[n]

ℓ̂i,t

Let LMIN-K(T ) :=
∑T

t=1

∑
j∈J∗

t
ℓj,t and LEXP3-K(T ) :=

∑T
t=1

∑
j∈Jt

ℓj,t. Taking the expectation
of both sides and using the properties of ℓ̂i,t, we obtain,

LMIN-K(T ) +
n

γ
ln

K

n
≤ 1

(1− γ)
E[LEXP3-K(T )] +

(e− 2)Kγ

n(1− γ)

T∑
t=1

∑
i∈[n]

ℓi,t

This is because the expectation of ℓ̂j,t is ℓj,t from the fact that DepRound selects i-th sample with
probability pi,t. Since

∑T
t=1

∑n
i=1 ℓi,t ≤

nLMIN-K(T )
K , we have the following statement,

LMIN-K(T )− E[LEXP3-K(T )] ≤ (e− 1)γLMIN-K(T ) +
n

γ
ln

n

K

Using the fact that LMIN-K(T ) ≤ TK and choosing the input parameter as γ =

min

{
1,
√

n ln (n/K)
(e−1)TK

}
, we obtain the following,

LMIN-K(T )− E[LEXP3-K(T )] ≤ 2
√
e− 1

√
KnT ln

n

K
≤ 2.63

√
KnT ln

n

K

Therefore, considering the scaling factor, we have:
T∑

t=1

Ept

[∑
j∈Jt

∥gj,t∥2

(pj,t)2

]
−min

pt

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2

(pj,t)2

]
=

L2

p2min

(LMIN-K(T )− E[LEXP3-K(T )])

≤ 2.63L2

p2min

√
KnT ln

n

K

= O
(√

KnT ln
n

K

)
This completes the proof of Lemma 2.
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B.4 Proof for Theorem 1 (Regret Bound of AdamCB)

In this section, we present the full proof of Theorem 1. Recall that the online regret only focuses on
the minimization over the sequence of mini-batch datasets {Dt}Tt=1. Thus, the online regret of the
algorithm at the end of T iterations is defined as

Rπ
online(T ) := E

[
T∑

t=1

f(θt;Dt)− min
θ∈Rd

T∑
t=1

f(θ;Dt)

]
However, our ultimate goal is to find the optimal selection of the parameter under the full dataset.
Consider an online optimization algorithm π that computes the sequence of model parameters
θ1, . . . , θT . Then, we can compare the performance of π with the optimal selection of the parameter
minθ∈Rd f(θ;D) under the full dataset. The cumulative regret after T iterations is

Rπ(T ) := E

[
T∑

t=1

f(θt;D)− T · min
θ∈Rd

f(θ;D)

]
where the expectation is taken with respect to any stochasticity in data sampling and parameter
estimation. Before we prove Theorem 1, we first prove the following lemma.
Lemma 11. The cumulative regret Rπ(T ) can be decomposed into sub-parts which includes the
cumulative online regretRπ

online(T ) and additional terms that are sub-linear in T :

Rπ(T ) = Rπ
online(T ) +O(

√
T )

Proof. First, rewrite Rπ(T ) by expanding the terms inside the expectations. We add and subtract
the sum

∑T
t=1 f(θt;Dt) inside the expectation:

Rπ(T ) = E

[
T∑

t=1

f(θt;D)− T · min
θ∈Rd

f(θ;D)

]

= E

[
T∑

t=1

f(θt;D)−
T∑

t=1

f(θt;Dt) +

T∑
t=1

f(θt;Dt)− T · min
θ∈Rd

f(θ;D)

]

We also add and subtract the term minθ∈Rd

∑T
t=1 f(θ;Dt) inside the expectation. Then, we have

the following,

Rπ(T ) = E

[
T∑

t=1

f(θt;D)−
T∑

t=1

f(θt;Dt) +

T∑
t=1

f(θt;Dt)− T · min
θ∈Rd

f(θ;D)

]

= E

[
T∑

t=1

f(θt;D)−
T∑

t=1

f(θt;Dt)

]
+ E

[
T∑

t=1

f(θt;Dt)− min
θ∈Rd

T∑
t=1

f(θ;Dt)

]

+ E

[
min
θ∈Rd

T∑
t=1

f(θ;Dt)− T · min
θ∈Rd

f(θ;D)

]
Since the second term of the right-hand side in above equation is equal the online cumulative regret
Rπ

online(T ), we can rewriteRπ(T ) as:

Rπ(T ) = Rπ
online(T )

+ E

[
T∑

t=1

f(θt;D)−
T∑

t=1

f(θt;Dt)

]
(17)

+ E

[
min
θ∈Rd

T∑
t=1

f(θ;Dt)− T · min
θ∈Rd

f(θ;D)

]
(18)

Now, let us consider each term in detail.
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Bound for the term (17). Recall the expression of f(θ;D) and ft; = f(θ;Dt):

f(θ;D) = 1

n

n∑
i=1

ℓ(θ;xi, yi), f(θ;Dt) =
1

K

∑
j∈Jt

ℓ(θ;xj , yj)

npj,t

where Jt is the set of indices in the subset dataset (mini-batch) at iteration t, Dt ⊆ D. For any
θ ∈ Rd, we have

E[f(θ;Dt)] = E

 1

K

∑
j∈Jt

ℓ(θ;xj , yj)

npj,t

 =
1

K

∑
j∈Jt

E
[
ℓ(θ;xj , yj)

npj,t

]

=
1

K

∑
j∈Jt

n∑
i=1

ℓ(θ;xi, yi)

npi,t
pi,t =

1

n

n∑
i=1

ℓ(θ;xi, yi) = f(θ;D).

Note that, by linearity of expectation, we can interchange the expectation and the summation. Since
E[f(θ;Dt)] = f(θ;D), we have for the term (17) as:

(17) = E

[
T∑

t=1

f(θt;D)−
T∑

t=1

f(θt;Dt)

]

= E

[
T∑

t=1

[f(θt;D)− f(θt;Dt)]

]

=

T∑
t=1

E[f(θt;D)− f(θt;Dt)] = 0

Bound for the term (18). Let θ∗ be the parameter that minimizes the cumulative loss over the full
dataset D, i.e, θ∗ ∈ argminθ∈Rd f(θ;D). Since θ∗ is optimal for the full dataset, we have:

min
θ∈Rd

f(θ;D) = f(θ∗;D)

Similarly, denote the optimal parameter for the cumulative regret for mini-batch datasets by θ∗t :=

argminθ∈Rd

∑T
t=1 f(θ;Dt). Given these notations, we can write the term (18) as:

(18) = E

[
min
θ∈Rd

T∑
t=1

f(θ;Dt)− T · min
θ∈Rd

f(θ;D)

]
= E

[
T∑

t=1

f(θ∗t ;Dt)− T · f(θ∗;D)

]
We can add and subtract the term

∑T
t=1 f(θ

∗;Dt) inside the expectation.

E

[
T∑

t=1

f(θ∗t ;Dt)− T · f(θ∗;D)

]
= E

[
T∑

t=1

f(θ∗t ;Dt)−
T∑

t=1

f(θ∗;Dt)

]

+ E

[
T∑

t=1

f(θ∗;Dt)− T · f(θ∗;D)

]
Note that E[f(θ∗;Dt)] = f(θ∗;D) holds as we have shown when bounding the term (17). By the
linearity of expectation, we have

E

[
T∑

t=1

f(θ∗;Dt)

]
=

T∑
t=1

E[f(θ∗;Dt)] = T · f(θ∗;D)

Since E
[∑T

t=1 f(θ
∗;Dt)− T · f(θ∗;D)

]
= 0 holds, the term (18) reduces to

(18) = E

[
T∑

t=1

(f(θ∗t ;Dt)− f(θ∗;Dt))

]

= E

[
T∑

t=1

(ft(θ
∗
t )− ft(θ

∗))

]
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By the convexity of ft, we have:
ft(θ

∗
t )− ft(θ

∗) ≤ gT
t (θ

∗
t − θ∗)

Therefore,

E

[
T∑

t=1

(ft(θ
∗
t )− ft(θ

∗))

]
≤ E

[
T∑

t=1

gT
t (θ

∗
t − θ∗)

]
Using bounded gradients assumption (Assumption 1), i.e, ∥gt∥ ≤ L/γ (Proof in Lemma 9), and
Cauchy-Schwarz inequality (Lemma 4), we have

(18) ≤ E

[
T∑

t=1

gT
t (θ

∗
t − θ∗)

]
≤

T∑
t=1

E[∥gt∥∥θ∗t − θ∗∥] ≤ (L/γ)

T∑
t=1

E[∥θ∗t − θ∗∥]

Recall the parameter update rule, θt+1 ← θt − αtmt/(
√
v̂t + ϵ). Then

∥θ∗t+1 − θ∗∥ ≤ ∥θ∗t − θ∗∥+ αt

∥∥∥mt/(
√
v̂t + ϵ)

∥∥∥ (19)

Now, we claim that ∥mt∥ is bounded. The update rule for the first moment estimate:
mt ← β1,tmt−1 + (1− β1,t)gt

Then, the expression for mt is:

mt =

t∑
k=1

(1− β1,k)

(
t∏

r=k+1

β1,r

)
gk

where β1,t = β1λ
t−1 with β1 < 1 and λ < 1. Note that ∥gk∥ is bounded by L/γ for all k. This

implies that:

∥mt∥ ≤
t∑

k=1

|1− β1,k|

∣∣∣∣∣
t∏

r=k+1

β1,r

∣∣∣∣∣ ∥gk∥
≤ (L/γ)

t∑
k=1

|1− β1λ
k−1|

∣∣∣∣∣
t∏

r=k+1

β1λ
r−1

∣∣∣∣∣
≤ (L/γ)

t∑
k=1

βt−k
1 λ

t(t−1)−k(k−1)
2

≤ (L/γ)

t∑
k=1

βt−k
1

≤ L

γ(1− β1)

The last inequality is due to Lemma 5. Therefore, the step size in Eq.(19) is bounded by:
αt∥mt∥√
v̂t + ϵ

≤ αtL

ϵγ(1− β1)
=

αL√
tϵγ(1− β1)

We use the fact that αt = α/
√
t. By summing over T iterations, we obtain

T∑
t=1

E[∥θ∗t − θ∗∥] ≤ αL

ϵγ(1− β1)

T∑
t=1

1√
t
≤ 2αL

√
T

ϵγ(1− β1)

The last inequality is by Lemma 6. Finally, we get

(18) ≤ (L/γ)

T∑
t=1

E[∥θ∗t − θ∗∥] ≤ 2αL2
√
T

ϵγ2(1− β1)
= O(

√
T )

In summary, the cumulative regretRπ(T ) is decomposed by the following:
Rπ(T ) = Rπ

online(T ) + (17) + (18)

where (17) = 0 and (18) = O(
√
T ). Thus, this completes the proof of Lemma 11, saying
Rπ(T ) = Rπ

online(T ) +O(
√
T )
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Now, we prove the main Theorem 1.

Proof. From Lemma 11, we have shown that the cumulative regretRπ(T ) can be decomposed into
the online regret Rπ

online(T ) with the additional sub-linear terms. Hence, we are left to bound the
cumulative online regretRπ

online(T ). Recall the first key lemma (Lemma 1):

Rπ
online(T ) ≤ ρ1d

√
T +
√
dρ2

√√√√ 1

n2K

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2
(pj,t)2

]
+ ρ3

Recall also the second key lemma (Lemma 2):
T∑

t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

−min
pt

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = O
(√

KnT ln
n

K

)
Let we denote M := minpt

∑T
t=1 Ept

[∑
j∈Jt

∥gj,t∥2

(pj,t)2

]
. Then by Lemma 2, we have

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = M + C

√
KnT ln

n

K

where C > 0 is a constant. By plugging above equation to Lemma 1, we obtain

Rπ
online(T ) ≤ ρ1d

√
T + ρ2

√
d

n
√
K

√
M + C

√
KnT ln

n

K
+ ρ3

≤ ρ1d
√
T + ρ2

√
d

n
√
K

√
M + ρ2

√
d

n
√
K

√
C

√
KnT ln

n

K
+ ρ3

= ρ1d
√
T +

ρ2
√
d

n
√
K

√
M +

ρ4
√
d

n

(
nT

K
ln

n

K

)1/4

+ ρ3

We use the fact that
√
a+ b ≤

√
a+
√
b in the second inequality and we define ρ4 := ρ2

√
C.

Now, we should consider M . Using the tower property, we can express M as,

M = min
pt

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2


= min

pt

T∑
t=1

Ept

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2
| pt


= min

pt

T∑
t=1

Ept

 n∑
i=1

∑
j∈Jt

∥gi,t∥2

(pi,t)2
pi,t


= min

pt

T∑
t=1

Ept

∑
j∈Jt

[
n∑

i=1

∥gi,t∥2

pi,t

]
= Kmin

pt

T∑
t=1

Ept

[
n∑

i=1

∥gi,t∥2

pi,t

]
For this minimization problem, it can be shown that for every iteration t, the optimal distribution
p∗t is proportional to the gradient norm of individual example. Formally speaking, for any t, the
optimal solution p∗t to the problem argminpt

∑T
t=1 Ept

[∑n
i=1

∥gi,t∥2

pi,t

]
is (pj,t)∗ =

∥gj,t∥∑n
i=1 ∥gi,t∥ for

all j ∈ [n]. By plugging this solution,

M = K

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2
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By plugging M to the online regret bound expression,

Rπ
online(T ) ≤ ρ1d

√
T + ρ2

√
d

n
√
K

√
M + ρ4

√
d

n

(
nT

K
ln

n

K

)1/4

+ ρ3

= ρ1d
√
T + ρ2

√
d

n
√
K

√√√√K

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2

+ ρ4

√
d

n

(
nT

K
ln

n

K

)1/4

+ ρ3

= ρ1d
√
T +
√
dρ2

√√√√ 1

n2

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2

+ ρ4

√
d

n

(
nT

K
ln

n

K

)1/4

+ ρ3

By Assumption 1, ∥gi,t∥ ≤ L for i ∈ [n] and t ∈ [T ]. Then, the second term in the right-hand side
of above inequality is bounded by Lρ2

√
dT , which diminishes by the first term that have order of

O(d
√
T ). Hence, the online regretRπ

online(T ) after T iterations is,

Rπ
online(T ) ≤ O(d

√
T ) +O

(√
d

n

(
nT

K
ln

n

K

)1/4)
Finally, by Lemma 11, we can bound the cumulative regret using the bound of the online regret as

Rπ(T ) = Rπ
online(T ) +O(

√
T ) ≤ O(d

√
T ) +O

(√
d

n

(
nT

K
ln

n

K

)1/4)
+O(

√
T )

= O

(
d
√
T +

√
d

n3/4

(
T

K
ln

n

K

) 1
4

)
This completes the proof of Theorem 1.
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C Proof for Convergence Rate when using Uniform Sampling

To compare the convergence rate between using uniform sampling and bandit sampling, we will
now prove the following Theorem 2. It is important to note that Theorem 2 includes an additional
condition—Assumption 3—which was not present in Theorem 1. This assumption plays a key role
in distinguishing the results between these two theorems.
Theorem 2. Suppose Assumptions 1,2, and 3 hold. The convergence rate for AdamX (variant of
Adam) using uniform sampling is given by:

O

(
d
√
T +

√
d

n1/2

√
T

)

Proof. We start the proof from the first key lemma (Lemma 1):

Lemma 1. Suppose Assumptions 1-2 hold. AdamCB (Algorithm 1) with a mini-batch of size K,
which is formed dynamically by distribution pt, achieves the following upper-bound for the cumulative
online regretRπ

online(T ) over T iterations,

Rπ
online(T ) ≤ ρ1d

√
T +
√
dρ2

√√√√ 1

n2K

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2
(pj,t)2

]
+ ρ3 (20)

where ρ1, ρ2, and ρ3 are defined as follows:

ρ1 =
D2L

2αγ(1− β1)2
, ρ2 =

α
√
1 + lnT

(1− β1)2
√
1− β2(1− η)

, ρ3 =
dβ1D

2L

2αγ(1− β1)2(1− λ)2

Note that d is the dimension of parameter space and the inputs of Algorithm 1 follows these
conditions: (a) αt = α√

t
, (b) β1, β2 ∈ [0, 1), β1,t := β1λ

t−1 for all t ∈ [T ], λ ∈ (0, 1), (c)
η = β1/

√
β2 ≤ 1, and (d) γ ∈ [0, 1).

Consider the second term in the right-hand side of Eq.(20),

1

n2K

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 =
1

n2K

T∑
t=1

Ept

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2
| pt


=

1

n2K

T∑
t=1

Ept

 n∑
i=1

∑
j∈Jt

∥gi,t∥2

(pi,t)2
pi,t


=

1

n2K

T∑
t=1

Ept

∑
j∈Jt

[
n∑

i=1

∥gi,t∥2

pi,t

]
=

1

n2

T∑
t=1

Ept

[
n∑

i=1

∥gi,t∥2

pi,t

]
The tower property is used in the first equality. Since

∑n
i=1

∥gi,t∥2

pi,t
is independent to j ∈ Jt, the

mini-batch size K is multiplied in the last equality. Therefore, we can express the cumulative online
regretRπ

online(T ) as:

Rπ
online(T ) ≤ ρ1d

√
T +
√
dρ2

√√√√ 1

n2

T∑
t=1

Ept

[
n∑

i=1

∥gi,t∥2
pi,t

]
+ ρ3

In the case when we select samples uniformly, we can set the probability distribution pt to satisfy
pi,t = 1/n for all t ∈ [T ] and i ∈ [n]. By plugging it, we obtain

Rπ
online(T ) ≤ ρ1d

√
T +
√
dρ2

√√√√ 1

n

T∑
t=1

[
n∑

i=1

∥gi,t∥2
]
+ ρ3
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Now, recall Assumption 3:
Assumption 3. There exists σ > 0 such that Var(∥gi,t∥) ≤ σ2 for all i ∈ [n] and t ∈ [T ]

1

n

[
n∑

i=1

∥gi,t∥2
]
≤
(
1

n

n∑
i=1

∥gi,t∥
)2

+
σ2

n

Therefore, the online regret boundRπ
online(T ) for uniform sampling is,

Rπ
online(T ) = O(d

√
T ) +O

√d
√√√√ 1

n2

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2

+
σ2

n
T


Applying the fact that

√
a+ b ≤

√
a+
√
b, we obtain,

Rπ
online(T ) = O(d

√
T ) +O

√d
√√√√ 1

n2

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2
+O

(
√
d

√
T

n

)

By Assumption 1, ∥gi,t∥ ≤ L for i ∈ [n] and t ∈ [T ]. Then, the second term in the right-hand side
of above inequality is bounded by O(

√
dT ), which diminishes by the first term that have order of

O(d
√
T ). Hence, the online regretRπ

online(T ) after T iterations is given by

Rπ
online(T ) = O(d

√
T ) +O

( √
d

n1/2

√
T

)

Finally, by Lemma 11, we can bound the cumulative regret using the online regret, which completes
the regret analysis for uniform sampling.

Rπ(T ) = Rπ
online(T ) +O(

√
T ) = O(d

√
T ) +O

( √
d

n1/2

√
T

)
+O(

√
T )

= O

(
d
√
T +

√
d

n1/2

√
T

)
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D Correction of AdamBS (Liu et al., 2020)

This section introduces the corrected analysis for AdamBS (Liu et al., 2020). We use Algorithm 4
and Algorithm 5 for modified AdamBS.

Algorithm 4: (Corrected) Adam with Bandit Sampling (AdamBS)
Input: learning rate {αt}Tt=1, decay rates {β1,t}Tt=1, β2, batch size K, exploration parameter

γ ∈ [0, 1)
Initialize: model parameters θ0; first moment estimate m0 ← 0; second moment estimate

v0 ← 0, v̂0 ← 0; sample weights wi
0 ← 1 for all i ∈ [n]

1 for t = 1 to T do
2 Compute sample distribution pt for all j ∈ [n]
3

pj,t = (1− γ)
wj,t−1∑n
i=1 wi,t−1

+
γ

n

Select a mini-batch Dt := {(xj , yj)}j∈Jt
by sampling with replacement from pt

4 Compute unbiased gradient estimate gt with respect to the mini-batch Dt using Eq.(7)
5 mt ← β1,tmt−1 + (1− β1,t)gt
6 vt ← β2vt−1 + (1− β2)g

2
t

7 v̂1 ← v1, v̂t ← max
{

(1−β1,t)
2

(1−β1,t−1)2
v̂t−1, vt

}
if t ≥ 2

8 θt+1 ← θt − αtmt/(
√
v̂t + ϵ)

9 wt ← Weight-Update(wt−1, pt, Jt, {gj,t}j∈Jt
, γ) (Algorithm 5)

Algorithm 5: (Corrected) Weight-Update for AdamBS
Input: wt−1, pt, Jt, {gj,t}j∈Jt

, and γ ∈ [0, 1)
1 for j = 1 to n do
2 Compute loss ℓj,t = p2

min

L2

(
−∥gj,t∥2

(pj,t)2
+ L2

p2
min

)
if j ∈ Jt, otherwise, ℓj,t = 0

3 Compute unbiased gradient estimate ℓ̂j,t =
ℓj,t

∑K
k=1 I(j=Jk

t )

Kpj,t

4 Update sample weights wj,t ← wj,t−1 exp
(
−γℓ̂j,t/n

)
5 return wt

At iteration t ∈ [T ], AdamBS chooses a mini-batch Dt = {(xj , yj)}j∈Jt of size K according to
probability distribution pt with replacement. We denote Jt as the set of indices for the mini-batch
Dt. Then, the algorithm receives the loss, regarding losses from all chosen samples in the mini-batch
D as one loss, is 1

K

∑
j∈Jt

ℓj,t, denote as ℓj,t ∈ [0, 1]. The unbiased estimate of the loss ℓ̂j,t is,

ℓ̂j,t =
ℓj,t
∑K

k=1 I(j = Jk
t )

Kpj,t

We have a following key lemma concerning the rate of convergence of AdamBS.
Lemma 12 (Corrected version of Lemma 1 in Liu et al. (2020)). Suppose Assumptions 1-2 hold. If we

set γ = min

{
1,
√

n lnn
(e−1)T

}
, the weight update rule (Algorithm 5) following AdamBS (Algorithm 4)

implies
T∑

t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

−min
pt

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = O(K
√
nT lnn)

Proof. We set ℓj,t = p2
min

L2

(
−∥gj,t∥2

(pj,t)2
+ L2

p2
min

)
in Algorithm 5. Since, ∥gi,t∥2 ≤ L and pi,t ≥ pmin

for all t ∈ [T ], i ∈ [n] by Assumption 1, we have ℓi,t ∈ [0, 1].
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We use the following simple facts, which are immediately derived from the definitions,
n∑

i=1

pi,tℓ̂i,t =
1

K

∑
j∈Jt

ℓj,t := ℓJt
t (21)

n∑
i=1

pi,t(ℓ̂i,t)
2 =

n∑
i=1

pi,t

(
ℓi,t
∑K

k=1 I(i = Jk
t )

Kpi,t

)
ℓ̂i,t =

n∑
i=1

ℓi,t

∑K
k=1 I(i = Jk

t )

K
ℓ̂i,t ≤

n∑
i=1

ℓ̂i,t (22)

Let Wt :=
∑n

i=1 wt. Then, for any t ∈ [T ],

Wt

Wt−1
=

n∑
i=1

wi,t

Wt−1

=

n∑
i=1

wi,t−1

Wt−1
exp

(
−γ

n
ℓ̂i,t

)
The last equality is by the weight update rule in Algorithm 5. From the probability computation in
Algorithm 4, we have

pi,t = (1− γ)
wi,t−1∑n
j=1 wj,t−1

+
γ

n
≥ γ

n

Thus, we obtain the following bound,

0 ≤ γ

n
ℓ̂i,t =

γ

n

(
ℓi,t
∑K

k=1 I(i = Jk
t )

Kpi,t

)
≤ ℓi,t ≤ 1

By the fact that e−x ≤ 1− x+ (e− 2)x2 for all x ∈ [0, 1], and considering γ
n ℓ̂i,t as x, we have

Wt

Wt−1
≤

n∑
i=1

wi,t−1

Wt−1

[
1− γ

n
ℓ̂i,t + (e− 2)

(γ
n
ℓ̂i,t
)2]

=

n∑
i=1

pi,t − γ/n

1− γ

[
1− γ

n
ℓ̂i,t + (e− 2)

(γ
n
ℓ̂i,t
)2]

≤ 1− γ/n

1− γ

n∑
i=1

pi,tℓ̂i,t +
(e− 2)(γ/n)2

1− γ

n∑
i=1

pi,t(ℓ̂i,t)
2

≤ 1− γ/n

1− γ
ℓJt
t +

(e− 2)(γ/n)2

1− γ

n∑
i=1

ℓ̂i,t

The last inequality uses Eq.(21) and Eq.(22). Taking logarithms and using the fact that ln (1 + x) ≤ x
for all x > −1 gives

ln
Wt

Wt−1
≤ − γ/n

1− γ
ℓJt
t +

(e− 2)(γ/n)2

1− γ

n∑
i=1

ℓ̂i,t

By summing over t, we obtain

ln
WT

W1
≤ − γ/n

1− γ

T∑
t=1

ℓJt
t +

(e− 2)(γ/n)2

1− γ

T∑
t=1

n∑
i=1

ℓ̂i,t

On the other hand, for any action j,

ln
WT

W1
≥ ln

wj,T

W1
= −γ

n

T∑
t=1

ℓ̂j,t − lnn

From combining results,
T∑

t=1

ℓJt
t ≥ (1− γ)

T∑
t=1

ℓ̂j,t −
n lnn

γ
− (e− 2)

γ

n

T∑
t=1

n∑
i=1

ℓ̂i,t
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We next take the expectation of both sides with respect to probability distribution pt and since
Ept

[ℓ̂j,t] = ℓj,t, we have

Ept
[

T∑
t=1

ℓJt
t ] ≥ (1− γ)

T∑
t=1

ℓj,t −
n lnn

γ
− (e− 2)

γ

n

n∑
i=1

T∑
t=1

ℓi,t

Since j ∈ Jt were chosen arbitrarily, we can choose the best J∗
t for every iteration t. Let LMIN(T ) :=∑T

t=1

∑
j∈J∗

t
ℓj,t and LEXP3(T ) :=

∑T
t=1

∑
j∈Jt

ℓj,t. Summing over j ∈ J∗
t , and using the fact

that
∑T

t=1

∑n
i=1 ℓi,t ≤

nLMIN(T )
K , we have the following statement,

E[LEXP3(T )] ≥ (1− γ)LMIN(T )−
nK lnn

γ
− (e− 2)γLMIN(T )

Then, we get the following,

LMIN(T )− E[LEXP3(T )] ≤ (e− 1)γLMIN(T ) +
nK lnn

γ

Using the fact that LMIN(T ) ≤ TK and choosing the input parameter as γ = min

{
1,
√

n lnn
(e−1)T

}
,

we obtain the following,

LMIN(T )− E[LEXP3(T )] ≤ 2
√
e− 1K

√
nT lnn ≤ 2.63K

√
nT lnn

Therefore, considering the scaling factor, we have:

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2

(pj,t)2

]
−min

pt

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2

(pj,t)2

]
=

L2

p2min

(LMIN(T )− E[LEXP3(T )])

≤ 2.63L2

p2min

K
√
nT lnn

= O
(
K
√
nT lnn

)

Theorem 3 (Corrected version of Theorem 4 in Liu et al. (2020)). Suppose Assumptions 1-2 hold.
The convergence rate for (corrected) AdamBS using bandit sampling is given by:

O

(
d
√
T +

√
d

n3/4
(T lnn)1/4

)

Proof. From Lemma 11, we have shown that the cumulative regretRπ(T ) can be decomposed into
the online regret Rπ

online(T ) with the additional sub-linear terms. Hence, we are left to bound the
cumulative online regretRπ

online(T ). Recall the first key lemma (Lemma 1):

Rπ
online(T ) ≤ ρ1d

√
T +
√
dρ2

√√√√ 1

n2K

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2
(pj,t)2

]
+ ρ3

We can apply Lemma 1 to AdamBS as AdamCB, since both AdamBS and AdamCB follow the same
model parameter update rule. However, we use the corrected lemma (Lemma 12) for AdamBS, rather
than applying the key lemma (Lemma 2) used for AdamCB. Recall Lemma 12:

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

−min
pt

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = O(K
√
nT lnn)
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Let we denote M := minpt

∑T
t=1 Ept

[∑
j∈Jt

∥gj,t∥2

(pj,t)2

]
. Then by Lemma 12, we have

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = M + C ′K
√
nT lnn

where C ′ > 0 is a constant. By plugging above equation to Lemma 1, we obtain

Rπ
online(T ) ≤ ρ1d

√
T + ρ2

√
d

n
√
K

√
M + C ′K

√
nT lnn+ ρ3

≤ ρ1d
√
T + ρ2

√
d

n
√
K

√
M + ρ2

√
d

n
√
K

√
C ′K
√
nT lnn+ ρ3

= ρ1d
√
T +

ρ2
√
d

n
√
K

√
M +

ρ5
√
d

n
(nT lnn)

1/4
+ ρ3

We use the fact that
√
a+ b ≤

√
a+
√
b in the second inequality and we define ρ5 := ρ2

√
C ′.

Now, we should consider M . Using the tower property and applying the optimal solution for pt at
each iteration, we can express M as,

M = K

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2

This follows the same argument as in the proof of Theorem 1 (see Appendix B.4). Then, by plugging
M to the online regret bound expression,

Rπ
online(T ) ≤ ρ1d

√
T + ρ2

√
d

n
√
K

√
M + ρ5

√
d

n
(nT lnn)

1/4
+ ρ3

= ρ1d
√
T + ρ2

√
d

n
√
K

√√√√K

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2

+ ρ5

√
d

n
(nT lnn)

1/4
+ ρ3

= ρ1d
√
T +
√
dρ2

√√√√ 1

n2

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2

+ ρ5

√
d

n
(nT lnn)

1/4
+ ρ3

By Assumption 1, ∥gi,t∥ ≤ L for i ∈ [n] and t ∈ [T ]. Then, the second term in the right-hand side
of above inequality is bounded by Lρ2

√
dT , which diminishes by the first term that have order of

O(d
√
T ). Hence, the online regretRπ

online(T ) after T iterations is,

Rπ
online(T ) = O(d

√
T ) +O

(√
d

n
(nT lnn)

1/4

)
Finally, by Lemma 11, we can bound the cumulative regret using the bound of the online regret as

Rπ(T ) = Rπ
online(T ) +O(

√
T ) = O(d

√
T ) +O

(√
d

n
(nT lnn)

1/4

)
+O(

√
T )

= O

(
d
√
T +

√
d

n3/4
(T lnn)

1/4

)
This completes the proof of Theorem 3.
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E Additional Algorithm

E.1 DepRound Algorithm

Algorithm 6: DepRound
Input: Natural number K(< n), sample distribution p := (p1, p2, . . . , pn) with

∑n
i=1 p

i = K
Output: Subset of [n] with distinct K elements

1 while there is an i with 0 < pi < 1 do
2 Choose distinct i, j with 0 < pi < 1 and 0 < pj < 1

3 Set α = min{1− pi, pj} and β = min{pi, 1− pj}
4 Update pi and pj as:

(pi, pj) =

{(
pi + α, pj − α

)
with probability β

α+β(
pi − β, pj + β

)
with probability α

α+β

5 return {i : pi = 1, 1 ≤ i ≤ n}

The DepRound (Gandhi et al., 2006) (Dependent Rounding) algorithm is used to select a subset of
elements from a set while maintaining certain probabilistic properties. It ensures that the sum of
probabilities is preserved and elements are chosen with the correct marginal probabilities.

F More on Numerical Experiments

F.1 Details on Experimental Setup

We compared our method, AdamCB, with Adam, AdamX, and corrected AdamBS. The experiments
measured training loss and test loss, averaged over five runs with different random seeds, and included
1-sigma error bars for reliability. Throughout the entire experiments, identical hyper-parameters are
used with any tuning as shown in Table 2.

Table 2: Hyper-parameters used for experiments

Hyper-parameter Value
Learning rate αt 0.001
Exponential decay rates for momentum β1,1, β2 0.9, 0.999
Decay rate for β1,1 for convergence guarantee λ 1-1e-8
ϵ for non-zero division 1e-8
Loss Function Cross-Entropy
Batch Size K 128
exploration parameter γ 0.4
Number of epochs 10

We trained MLP models on the MNIST, Fashion MNIST, and CIFAR-10 datasets. The detailed
architectures of the MLP models for each dataset are provided in Table 3.

Table 3: MLP Architecture for MNIST/Fashion MNIST (left) and CIFAR10 (right)

Layer Type Input Output
Flatten (N, 28281) (N, 28281)
Dense + ReLU (N, 28281) (N, 512)
Dense + ReLU (N, 512) (N, 256)
Dense (N, 256) (N, 10)

Layer Type Input Output
Flatten (N, 32323) (N, 32323)
Dense + ReLU (N, 32323) (N, 512)
Dense + ReLU (N, 512) (N, 256)
Dense (N, 256) (N, 10)

We also trained CNN models on the same datasets. The detailed architectures of the CNN models
for each dataset are presented in Table 4.
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Table 4: CNN Architecture for MNIST/Fashion MNIST (left) and CIFAR10 (right)

Layer Type Input Output
Conv + ReLU (N, 1, 28, 28) (N, 32, 28, 28)
MaxPool (N, 32, 28, 28) (N, 32, 14, 14)
Conv + ReLU (N, 32, 14, 14) (N, 64, 14, 14)
MaxPool (N, 64, 14, 14) (N, 64, 7, 7)
Flatten (N, 64, 7, 7) (N, 3136)
Dense (N, 3136) (N, 128)
Dense + Softmax (N, 128) (N, 10)

Layer Type Input Output
Conv + ReLU (N, 3, 32, 32) (N, 64, 32, 32)
MaxPool (N, 64, 32, 32) (N, 64, 16, 16)
Conv + ReLU (N, 64, 16, 16) (N, 128, 16, 16)
MaxPool (N, 128, 16, 16) (N, 128, 8, 8)
Conv + ReLU (N, 128, 8, 8) (N, 256, 8, 8)
MaxPool (N, 256, 8, 8) (N, 256, 4, 4)
Flatten (N, 256, 4, 4) (N, 25644)
Dense (N, 25644) (N, 512)
Dense + Softmax (N, 512) (N, 10)

Table 5: VGG Architecture for MNIST/Fashion MNIST (left) and CIFAR10 (right)

Layer Type Input Output
Conv + ReLU (N, 1, 28, 28) (N, 64, 28, 28)
Conv + ReLU (N, 64, 28, 28) (N, 64, 28, 28)
MaxPool (N, 64, 28, 28) (N, 64, 14, 14)
Conv + ReLU (N, 64, 14, 14) (N, 128, 14, 14)
Conv + ReLU (N, 128, 14, 14) (N, 128, 14, 14)
MaxPool (N, 128, 14, 14) (N, 128, 7, 7)
Conv + ReLU (N, 128, 7, 7) (N, 256, 7, 7)
Conv + ReLU (N, 256, 7, 7) (N, 256, 7, 7)
Conv + ReLU (N, 256, 7, 7) (N, 256, 7, 7)
MaxPool (N, 256, 7, 7) (N, 256, 3, 3)
Flatten (N, 256, 3, 3) (N, 2304)
Dense (N, 2304) (N, 512)
Dense (N, 512) (N, 512)
Dense (N, 512) (N, 10)

Layer Type Input Output
Conv + ReLU (N, 3, 32, 32) (N, 64, 32, 32)
Conv + ReLU (N, 64, 32, 32) (N, 64, 32, 32)
MaxPool (N, 64, 32, 32) (N, 64, 16, 16)
Conv + ReLU (N, 64, 16, 16) (N, 128, 16, 16)
Conv + ReLU (N, 128, 16, 16) (N, 128, 16, 16)
MaxPool (N, 128, 16, 16) (N, 128, 8, 8)
Conv + ReLU (N, 128, 8, 8) (N, 256, 8, 8)
Conv + ReLU (N, 256, 8, 8) (N, 256, 8, 8)
Conv + ReLU (N, 256, 8, 8) (N, 256, 8, 8)
MaxPool (N, 256, 8, 8) (N, 256, 4, 4)
Flatten (N, 256, 4, 4) (N, 4096)
Dense (N, 4096) (N, 512)
Dense (N, 512) (N, 512)
Dense (N, 512) (N, 10)

We also evaluated the AMSGrad optimizer and the corrected AdamBS algorithm (Algorithm 4) on
the CIFAR-10 dataset using both MLP and CNN models. The results are presented in Figures 3
and 4. From these plots, it is evident that our AdamCB algorithm outperforms the other Adam-based
algorithms. To further assess performance, we conducted experiments using the VGG model, which
is a larger architecture compared to the MLP and CNN models. The detailed structure of the VGG
architecture is provided in Table 5, and the results are shown in Figure 5.
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Figure 3: Comparison of Adam-based optimizations on MLP model
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Figure 4: Comparison of Adam-based optimizations on CNN model
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Figure 5: Comparison of Adam-based optimizations on VGG model

F.2 Additional Experiments

To further evaluate the effectiveness of our proposed method, we conducted additional experiments
using logistic regression, ResNet-18 (He et al., 2016), ConvNeXt-Base (Liu et al., 2022), and
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Figure 6: Comparison of Adam-based optimizations on the logistic regression model (MNIST)
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Figure 7: Comparison of Adam-based optimizations on ResNet-18 model
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Figure 8: Comparison of Adam-based optimizations on ConvNext-base model
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Figure 9: Comparison of Adam-based optimizations on ConvNext-large model
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ConvNeXt-Large (Liu et al., 2022) networks. The archecture of The logistic regression model was
employed to assess the performance of our algorithm in convex optimization settings.

For general non-convex optimization, we tested our method on the ResNet-18, ConvNeXt-Base,
and ConvNeXt-Large models. Notably, ResNet-18 (11.4 million parameters), ConvNeXt-Base
(89 million parameters), and ConvNeXt-Large (198 million parameters) are substantially larger
architectures compared to the simple MLP and CNN models evaluated in the previous section.
These experiments demonstrate the scalability and efficiency of our algorithm on larger, more
complex models.

In all experiments, our proposed algorithm, AdamCB, consistently outperformed existing methods,
reaffirming its effectiveness across both convex and non-convex optimization tasks and on models of
varying complexity.

39



Published as a conference paper at ICLR 2025

G When L is not known

Algorithm 7: Weight-Update (with unknown L)
Input: wt−1, pt, Jt, {gj,t}j∈Jt

, Snull,t, γ ∈ [0, 1), Lt−1

1 Set Lt ← max(Lt−1,maxj∈Jt
∥gj,t∥)

2 for j = 1 to n do
3 Compute loss ℓj,t = p2

min

L2
t

(
−∥gj,t∥2

(pj,t)2
+

L2
t

p2
min

)
if j ∈ Jt; otherwise ℓj,t = 0

4 if j /∈ Snull,t then
5 wj,t ← wj,t−1 exp (−Kγℓj,t/n)

6 return wt, Lt

Lemma 13. (Lemma 9 when L is unknown) For all t ≥ 1, we have√
v̂t ≤

Lt

γ(1− β1)

where v̂t is in AdamCB (Algorithm 1).

Proof. The argument follows the same reasoning as presented in Lemma 9, with the modification
that L is replaced by Lt, reflecting the condition that ∥gi,t∥ ≤ Lt for all i ∈ [n] at any t.

Lemma 14. (Lemma 1 when L is unknown) Suppose Assumptions 1-2 hold. AdamCB (Algorithm 1)
with a mini-batch of size K, which is formed dynamically by distribution pt, achieves the following
upper-bound for the cumulative online regretRπ

online(T ) over T iterations,

Rπ
online(T ) ≤ ρ′1d

√
T +
√
dρ′2

√√√√ 1

n2K

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2
(pj,t)2

]
+ ρ′3

where ρ′1, ρ′2, and ρ′3 are defined as follows:

ρ′1 =
D2LT

2αγ(1− β1)2
, ρ′2 =

α
√
1 + lnT

(1− β1)2
√
1− β2(1− η)

, ρ′3 =
dβ1D

2LT

2αγ(1− β1)2(1− λ)2

Note that d is the dimension of parameter space and the inputs of Algorithm 1 follows these conditions:
(a) αt =

α√
t
, (b) β1, β2 ∈ [0, 1), β1,t := β1λ

t−1 for all t ∈ [T ], λ ∈ (0, 1), (c) η = β1/
√
β2 ≤ 1,

and (d) γ ∈ [0, 1).

Proof. The proof is the same as Lemma 1 until bounding the terms (13), (14), and (15).

Bound for the term (13). Following the same reasoning as Lemma 1, we have

E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]
≤ D2

2α

d∑
u=1

√
T v̂T,u

(1− β1,T )
≤ dD2Lt

2αγ(1− β1)2

√
T

where the last inequality is by Lemma 13.

Bound for the term (14). Nothing changes here.

Bound for the term (15). Following the same reasoning as Lemma 1, we obtain

E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
≤ D2

2α(1− β1)
E

[
d∑

u=1

T∑
t=2

β1,t

√
(t− 1)v̂t−1,u

]
Therefore, from Lemma 13, we obtain

E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
≤ dD2

2αγ(1− β1)2
E

[
T∑

t=2

β1,tLt

√
(t− 1)

]
(23)
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Since Lt is a running max, {Lt}Tt=1 is a non-decreasing sequence, i.e., L1 ≤ L2 ≤ · · · ≤ LT . Thus,
the inequality (23) becomes

E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
≤ dD2LT

2αγ(1− β1)2
E

[
T∑

t=2

β1,t

√
(t− 1)

]
Note that

T∑
t=2

β1,t

√
(t− 1) =

T∑
t=2

β1λ
t−1
√
(t− 1) ≤

T∑
t=2

β1

√
(t− 1)λt−1 ≤

T∑
t=2

β1tλ
t−1 ≤ β1

(1− λ)2

where the first inequality is from the fact that β1 ≤ 1, and the last inequality is from Lemma 5. Thus,
the bound for the term (15) is

E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
≤ dβ1D

2LT

2αγ(1− β1)2(1− λ)2

We now bounded three terms: (13), (14), and (15). Hence,

Rπ
online(T ) ≤

dD2LT

2αγ(1− β1)2

√
T +

α
√
lnT + 1

(1− β1)2
√
1− β2(1− η)

d∑
u=1

E [∥g1:T,u∥]

+
dβ1D

2LT

2αγ(1− β1)2(1− λ)2

Thus, we can expressRπ
online(T ) as

Rπ
online(T ) ≤ ρ′1d

√
T + ρ′2

d∑
u=1

E [∥g1:T,u∥] + ρ′3

where ρ′1, ρ
′
2, and ρ′3 are defined as the following:

ρ′1 =
D2LT

2αγ(1− β1)2
, ρ′2 =

α
√
1 + lnT

(1− β1)2
√
1− β2(1− η)

, ρ′3 =
dβ1D

2LT

2αγ(1− β1)2(1− λ)2

The subsequent proof process is same as Lemma 1.

Note that, by Assumption 1, LT is always less than or equal to the theoretical upper bound of the
maximum gradient norm across all iterations (L). Hence, we have ρ′1 ≤ ρ1, ρ′2 = ρ2, and ρ′3 = ρ3.
This implies that Lemma 1 holds even when L is not known.
Lemma 15. (Lemma 2 when L is unknown) Suppose Assumptions 1-2 hold. If we set γ =

min

{
1,
√

n ln (n/K)
(e−1)TK

}
, the batch selection (Algorithm 2) and the weight update rule (Algorithm 7)

following AdamCB (Algorithm 1) implies
T∑

t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

−min
pt

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = O
(√

KnT ln
n

K

)

Proof. The proof is the same as Lemma 2. However, at the last part, where we scale,
T∑

t=1

Ept

[∑
j∈Jt

L2
t

p2min

∥gj,t∥2

(pj,t)2

]
−min

pt

T∑
t=1

Ept

[∑
j∈Jt

L2
t

p2min

∥gj,t∥2

(pj,t)2

]
= LMIN-K(T )− E[LEXP3-K(T )] (24)

Since Lt is a running max, {Lt}Tt=1 is a non-decreasing sequence, i.e., L1 ≤ L2 ≤ · · · ≤ LT .
Hence, Eq.(24) becomes

LMIN-K(T )− E[LEXP3-K(T )] ≤
2.63L2

T

p2min

√
KnT ln

n

K

By Assumption 1, LT is always less than or equal to L, which implies LT = O(1). This completes
the proof of Lemma 15.
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Lemma 15 implies that Lemma 2 holds even when L is not known.
Theorem 4. (Regret bound of AdamCB (Theorem 1) when L is unknown) Suppose Assumptions 1-2
hold, and we run AdamCB for a total T iterations with αt =

α√
t

and with β1,t := β1λ
t−1, λ ∈ (0, 1).

Then, the cumulative regret of AdamCB (Algorithm 1) with batch size K is upper-bounded by

O

(
d
√
T +

√
d

n3/4

(
T

K
ln

n

K

)1/4
)
. (25)

Proof. The overall proof is similar to the proof of Theorem 1 (when L is known) detailed in
Appendix B.4. The part that is different is when bounding the term Eq.(18) in Lemma 11.

(18) ≤ (LT /γ)

T∑
t=1

E[∥θ∗t − θ∗∥] ≤ 2αL2
T

√
T

ϵγ2(1− β1)

By Assumption 1, LT is always less than or equal to the upper bound of the maximum gradient
norm across all iterations (L), which implies LT = O(1). Therefore, we have (18) = O(

√
T ). This

implies that Lemma 11 still holds. Since both Lemma 1 and Lemma 2 hold even when L is not
known according to Lemma 14 and Lemma 15, we complete the proof of Theorem 4 by following
the same proof process as Theorem 1.
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