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ABSTRACT

We present Manifold Diffusion Fields (MDF), an approach that unlocks learning of
diffusion models of data in general non-Euclidean geometries. Leveraging insights
from spectral geometry analysis, we define an intrinsic coordinate system on the
manifold via the eigen-functions of the Laplace-Beltrami Operator. MDF represents
functions using an explicit parametrization formed by a set of multiple input-output
pairs. Our approach allows to sample continuous functions on manifolds and
is invariant with respect to rigid and isometric transformations of the manifold.
In addition, we show that MDF generalizes to the case where the training set
contains functions on different manifolds. Empirical results on multiple datasets
and manifolds including challenging scientific problems like weather prediction or
molecular conformation show that MDF can capture distributions of such functions
with better diversity and fidelity than previous approaches.

1 INTRODUCTION

Approximating probability distributions from finite observational datasets is a pivotal machine
learning challenge, with recent strides made in areas like text (Brown et al., 2020), images (Nichol
& Dhariwal, 2021), and video (Ho et al., 2022). The burgeoning interest in diffusion generative
models (Ho et al., 2020; Nichol & Dhariwal, 2021; Song et al., 2021b) can be attributed to their
stable optimization goals and fewer training anomalies (Kodali et al., 2017). However, fully utilizing
the potential of these models across scientific and engineering disciplines remains an open problem.
While diffusion generative models excel in domains with Euclidean (i.e. flat) spaces like 2D images
or 3D geometry and video, many scientific problems involve reasoning about continuous functions
on curved spaces (i.e. Riemannian manifolds). Examples include climate observations on the sphere
(Hersbach et al., 2020; Lindgren et al., 2011) or solving PDEs on curved surfaces, which is a crucial
problem in areas like quantum mechanics (Bhabha, 1945) and molecular conformation (Jing et al.,
2022). Recent works have tackled the problem of learning generative models of continuous functions
following either adversarial formulations (Dupont et al., 2022b), latent parametrizations (Dupont
et al., 2022a; Du et al., 2021; Bauer et al., 2023), or diffusion models (Bond-Taylor & Willcocks,
2023; Zhuang et al., 2023). While these approaches have shown promise on functions within the
Euclidean domain, the general case of learning generative models of functions on Riemannian
manifolds remains unexplored.

In this paper, we introduce Manifold Diffusion Fields (MDF), extending generative models over
functions to the Riemannian setting. We take the term function and field to have equivalent meaning
throughout the paper. Note that these are not to be confused with gradient vector fields typically used
on manifold. These fields f : M → Y map points from a manifold M (that might be parametrized
as a 3D mesh, graph or even a pointcloud, see Sect. 5.2) to corresponding values in signal space Y .
MDF is trained on collections of fields and learns a generative model that can sample different fields
over a manifold. In Fig. 1 we show real samples of such functions for different manifolds, as well as
samples generated by MDF.

Here are our main contributions:

• We borrow insights from spectral geometry analysis to define a coordinate system for points
in manifolds using the eigen-functions of the Laplace-Beltrami Operator.

∗Work was completed while A.A.E was an intern with Apple.
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Figure 1: MDF learns a distribution over a collection of fields f : M → Rd, where each field is
defined on a manifold M. We show real samples and MDF’s generations on different datasets of
fields defined on different manifolds. First row: MNIST digits on the sine wave manifold. Second
row Middle: ERA5 climate dataset (Hersbach et al., 2020) on the 2D sphere. Third row: GMM
dataset on the bunny manifold. Fourth row: molecular conformations in GEOM-QM9 (Ruddigkeit
et al., 2012) given the molecular graph.

• We formulate an end-to-end generative model for functions defined on manifolds, allowing
sampling different fields over a manifold. Focusing on practical settings, our extensive exper-
imental evaluation covers graphs, meshes and pointclouds as approximations of manifolds.

• Our model outperforms recent approaches like (Zhuang et al., 2023; Dupont et al., 2022b),
yielding diverse and high fidelity samples, while being robust to rigid and isometric manifold
transformations. Results on climate modeling datasets (Hersbach et al., 2020) and PDE
problems show the practicality of MDF in scientific domains.

• On the challenging problem of molecular conformer generation, MDF obtains state-of-the-
art results on GEOM-QM9 (Ruddigkeit et al., 2012).

2 RELATED WORK

Our approach extends recent efforts in generative models for continuous functions in Euclidean
space (Zhuang et al., 2023; Dupont et al., 2022b;a; Du et al., 2021), shown Fig. 2(a), to functions
defined over manifolds, see Fig. 2(b). The term Implicit Neural Representation (INR) is used in
these works to denote a parameterization of a single function (e.g. a single image in 2D) using a
neural network that maps the function’s inputs (i.e. pixel coordinates) to its outputs (i.e. RGB
values). Different approaches have been proposed to learn distributions over fields in Euclidean space,
GASP (Dupont et al., 2022b) leverages a GAN whose generator produces field data whereas a point
cloud discriminator operates on discretized data and aims to differentiate real and generated functions.
Two-stage approaches (Dupont et al., 2022a; Du et al., 2021) adopt a latent field parameterization
(Park et al., 2019) where functions are parameterized via a hyper-network (Ha et al., 2017) and a
generative model is learnt on the latent or INR representations. In addition, MDF also relates to
recent work focusing on fitting a function (e.g. learning an INR) on a manifold using an intrinsic
coordinate system (Koestler et al., 2022; Grattarola & Vandergheynst, 2022), and generalizes it to the
problem of learning a probabilistic model over multiple functions defined on a manifold.

Intrinsic coordinate systems have also been recently used in the context of Graph Transform-
ers(Maskey et al., 2022; Sharp et al., 2022; He et al., 2022; Dwivedi et al., 2020), where eigenvectors
of the Graph Laplacian are used to replace standard positional embeddings (in addition to also
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Figure 2: (a) Generative models of fields in Euclidean space (Zhuang et al., 2023; Dupont et al.,
2022b;a; Du et al., 2021) learn a distribution pθ over functions whose domain is Rn. We show
an example where each function is the result of evaluating a Gaussian mixture with 3 random
components in 2D. (b) MDF learns a distribution pθ from a collection of fields whose domain is
a general Riemannian manifold f ∼ q(f)|f : M → Y . Similarly, as an illustrative example
each function is the result of evaluating a Gaussian mixture with 3 random components on M (i.e.
the Stanford bunny). (c) Riemannian generative models (Bortoli et al., 2022; Gemici et al., 2016;
Rozen et al., 2021; Chen & Lipman, 2023) learn a parametric distribution pθ from an empirical
observations x ∼ q(x)|x ∈ M of points x on a Riemannian manifold M, denoted by black dots
on the manifold.

using edge features). In this setting, Graph Transformer architectures have been used for supervised
learning problems like graph/node classification and regression, whereas we focus on generative
modeling.

The learning problem we tackle with MDF can be interpreted as lifting the Riemannian generative
modeling problem (Bortoli et al., 2022; Gemici et al., 2016; Rozen et al., 2021; Chen & Lipman,
2023) to function spaces. Fig. 2(b)(c) show the training setting for the two problems, which are
related but not directly comparable. MDF learns a generative model over functions defined on
manifolds, e.g. a probability density over functions f : M → Y that map points in the manifold M
to a signal space Y . In contrast, the goal in Riemannian generative modeling is to learn a probability
density from an observed set of points living in a Riemannian manifold M. For example, in the
case of the bunny, shown in Fig. 2(c), a Riemannian generative model learns a distribution of points
x ∈ M on the manifold.

MDF is also related to work on Neural Processes (Garnelo et al., 2018; Kim et al., 2019; Dutordoir
et al., 2022), which also learn distributions over functions. As opposed to the formulation of Neural
Processes which optimizes an ELBO (Kingma & Welling, 2014) we formulate MDF as a denoising
diffusion process in function space, which results in a robust training objective and a powerful
inference process. Moreover, our work relates to formulations of Gaussian Processes (GP) on
Riemannian manifolds (Borovitskiy et al., 2020; Hutchinson et al., 2021). These approaches are GP
formulations of Riemannian generative modeling (see Fig. 2), in the sense that they learn conditional
distributions of points on the manifold, as opposed to distributions over functions on the manifold
like MDF.

3 PRELIMINARIES

3.1 DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising Diffusion Probabilistic Models (Ho et al., 2020) (DDPMs) belong to the broad family of
latent variable models. We refer the reader to (Everett, 2013) for an in depth review. In short, to learn
a parametric data distribution pθ(x0) from an empirical distribution of finite samples q(x0), DDPMs
reverse a diffusion Markov Chain that generates latents x1:T by gradually adding Gaussian noise to the
data x0 ∼ q(x0) for T time-steps as follows: q(xt|xt−1) := N (xt−1;

√
ᾱtx0, (1− ᾱt)I). Here, ᾱt

is the cumulative product of fixed variances with a handcrafted scheduling up to time-step t. (Ho et al.,
2020) introduce an efficient training recipe in which: i) The forward process adopts sampling in closed
form. ii) reversing the diffusion process is equivalent to learning a sequence of denoising (or score)
networks ϵθ, with tied weights. Reparameterizing the forward process as xt =

√
ᾱtx0 +

√
1− ᾱtϵ

results in the “simple” DDPM loss: Et∼[0,T ],x0∼q(x0),ϵ∼N (0,I)

[
∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

]
,

which makes learning of the data distribution pθ(x0) both efficient and scalable.
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At inference time, we compute x0 ∼ pθ(x0) via ancestral sampling (Ho et al., 2020). Concretely,
we start by sampling xT ∼ N (0, I) and iteratively apply the score network ϵθ to denoise xT , thus
reversing the diffusion Markov Chain to obtain x0. Sampling xt−1 ∼ pθ(xt−1|xt) is equivalent
to computing the update: xt−1 = 1√

αt

(
xt − 1−αt√

1−αt
ϵθ(xt, t)

)
+ z, where at each inference step a

stochastic component z ∼ N (0, I) is injected, resembling sampling via Langevin dynamics (Welling
& Teh, 2011). In practice, DDPMs have obtained amazing results for signals living in an Euclidean
grid (Nichol & Dhariwal, 2021; Ho et al., 2022). However, the extension to functions defined on
curved manifolds remains an open problem.

3.2 RIEMANNIAN MANIFOLDS

Previous work on Riemannian generative models (Bortoli et al., 2022; Gemici et al., 2016; Rozen
et al., 2021; Chen & Lipman, 2023) develops machinery to learn distribution from a training set
of points living on Riemannian manifolds. In this work, we assume manifolds are compact and
connected Riemannian manifolds M equipped with a smooth metric g : TxM × TxM → R≥0

(e.g. a smoothly varying inner product from which a distance can be constructed on M). A core
tool in Riemannian manifolds is the tangent space, this space defines the tangent hyper-plane of a
point x ∈ M and is denoted by TxM. This tangent space TxM is used to define inner products
⟨u,v⟩g,u,v ∈ TxM, which in turns defines g. The tangent bundle TM is defined as the collection
of tangent spaces for all points TxM∀x ∈ M.

In practice we cannot assume that for general geometries (e.g. geometries for which we don’t have
access to a closed form and are commonly represented as graphs/meshes) one can efficiently compute
g. While it is possible to define an analytical form for the Riemannian metric g on simple parametric
manifolds (e.g. hyper-spheres, hyperbolic spaces, tori), general geometries (i.e. the Stanford bunny)
are inherently discrete and irregular, which can make it expensive to even approximate g. To mitigate
these issues MDF is formulated from the ground up without relying on access to an analytical form
for g or the tangent bundle TM and allows for learning a distribution of functions defined on general
geometries.

3.3 LAPLACE-BELTRAMI OPERATOR

The Laplace-Beltrami Operator (LBO) denoted by ∆M is one of the cornerstones of differential
geometry and can be intuitively understood as a generalization of the Laplace operator to functions
defined on Riemannian manifolds M. Intuitively, the LBO encodes information about the curvature
of the manifold and how it bends and twists at every point, reflecting the intrinsic geometry. One
of the basic uses of the Laplace-Beltrami operator is to define a functional basis on the manifold
by solving the general eigenvalue problem associated with ∆M, which is a foundational technique
in spectral geometry analysis (Lévy, 2006). The eigen-decomposition of ∆M are the non-trivial
solutions to the equation ∆Mφi = λiφi. The eigen-functions φi : M → R represent an orthonormal
functional basis for the space of square integrable functions (Lévy, 2006; Minakshisundaram &
Pleijel, 1949). Thus, one can express a square integrable function f : M → Y , with f ∈ L2 as a

linear combination of the functional basis, as follows: f =
∞∑
i=1

⟨f, φi⟩φi.

In practice, the infinite sum is truncated to the k eigen-functions with lowest eigen-values, where
the ordering of the eigen-values λ1 < λ2 · · · < λk enables a low-pass filter of the basis. Moreover,
(Lévy, 2006) shows that the eigen-functions of ∆M can be interpreted as a Fourier-like function basis
(Vallet & Lévy, 2008) on the manifold, e.g. an intrinsic coordinate system for the manifold. In
particular, if M = S2 this functional basis is equivalent to spherical harmonics, and in Euclidean
space it becomes a Fourier basis which is typically used in implicit representations (Xie et al., 2022).
MDF uses the eigen-functions of the LBO ∆M to define a Fourier-like positional embedding (PE)
for points on M (see Fig. 3). Note that these eigen-functions are only defined for points that lie on
the manifold, making MDF strictly operate on the manifold.

4 METHOD

MDF is a diffusion generative model that captures distributions over fields defined on a Riemannian
manifold M. We are given observations in the form of an empirical distribution f0 ∼ q(f0) over
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Figure 3: Left: Fourier PE of a point x in 2D Euclidean space. Generative models of functions in
ambient space (Zhuang et al., 2023; Dupont et al., 2022b;a; Du et al., 2021) use this representation to
encode a function’s input. Right: MDF uses the eigen-functions φi of the Laplace-Beltrami Operator
(LBO) ∆M evaluated at a point x ∈ M.

fields where a field f0 : M → Y maps points from a manifold M to a signal space Y . As a result,
latent variables f1:T are also fields on manifolds that can be continuously evaluated.

To tackle the problem of learning a diffusion generative model over fields we employ a similar
recipe to (Zhuang et al., 2023), generalizing from fields defined on Euclidean domains to functions
on Riemannian manifolds. In order to this we use the first k eigen-functions φi=1:k of ∆M to
define a Fourier-like representation on M. Note that our model is independent of the particular
parametrization of the LBO, e.g. cotangent, point cloud (Sharp & Crane, 2020) or graph laplacians
can be used depending on the available manifold parametrization (see Sect. 5.2 for experimental
results). We use the term φ(x) =

√
n[φ1(x), φ2(x), . . . , φk(x)] ∈ Rk to denote the normalized

eigen-function representation of a point x ∈ M. In Fig. 3 we show a visual comparison of standard
Fourier PE on Euclidean space and the eigen-functions of the LBO on a manifold.

We adopt an explicit field parametrization (Zhuang et al., 2023), where a field is characterized by a
set of coordinate-signal pairs {(φ(xc),y(c,0))}, xc ∈ M,y(c,0) ∈ Y , which is denoted as context
set. We row-wise stack the context set and refer to the resulting matrix via C0 = [φ(Xc), Y(c,0)].
Here, φ(Xc) denotes the eigen-function representation of the coordinate portion and Y(c,0) denotes
the signal portion of the context set at time t = 0. We define the forward process for the context set
by diffusing the signal and keeping the eigen-functions fixed:

Ct = [φ(Xc),Y(c,t) =
√
ᾱtY(c,0) +

√
1− ᾱtϵc], (1)

where ϵc ∼ N (0, I) is a noise vector of the appropriate size. We now turn to the task of formulating
a score network for fields. Following (Zhuang et al., 2023), the score network needs to take as input
the context set (i.e. the field parametrization), and needs to accept being evaluated continuously in
M. We do this by employing a query set {xq,y(q,0)}. Equivalently to the context set, we row-wise
stack query pairs and denote the resulting matrix as Q0 = [φ(Xq), Y(q,0)]. Note that the forward
diffusion process is equivalently defined for both context and query sets:

Qt = [φ(Xq),Y(q,t) =
√
ᾱtY(q,0) +

√
1− ᾱtϵq], (2)

where ϵq ∼ N (0, I) is a noise vector of the appropriate size. The underlying field is solely defined
by the context set, and the query set are the function evaluations to be de-noised. The resulting score
field model is formulated as follows, ϵ̂q = ϵθ(Ct, t,Qt).

Using the explicit field characterization and the score field network, we obtain the training and
inference procedures in Alg. 1 and Alg. 2, respectively, which are accompanied by illustrative
examples of sampling a field encoding a Gaussian mixture model over the manifold (i.e. the bunny).
For training, we uniformly sample context and query sets from f0 ∼ Uniform(q(f0)) and only
corrupt their signal using the forward process in Eq. equation 1 and Eq. equation 2. We train the score
field network ϵθ to denoise the signal portion of the query set, given the context set. During sampling,
to generate a field f0 ∼ pθ(f0) we first define a query set QT = [φ(Xq), Y(q,T ) ∼ N (0, I)] of
random values to be de-noised. Similar to (Zhuang et al., 2023) we set the context set to be a random
subset of the query set. We use the context set to denoise the query set and follow ancestral sampling
as in the vanilla DDPM (Ho et al., 2020). Note that during inference the eigen-function representation
φ(x) of the context and query sets does not change, only their corresponding signal value.
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Algorithm 1 Training
1: ∆Mφi = φiλi // LBO eigen-decomposition
2: repeat
3: (C0,Q0) ∼ Uniform(q(f0))
4: t ∼ Uniform({1, . . . , T})
5: ϵc ∼ N (0, I), ϵq ∼ N (0, I)
6: Ct = [φ(Xc),

√
ᾱtY(c,0) +

√
1− ᾱtϵc]

7: Qt = [φ(Xq),
√
ᾱtY(q,0) +

√
1− ᾱtϵq]

8: Take gradient descent step on
∇θ ∥ϵq − ϵθ(Ct, t,Qt)∥2

9: until converged

Figure 4: Left: MDF training algorithm. Right: Visual depiction of a training iteration for a field on
the bunny manifold M. See Sect. 4 for definitions.

Algorithm 2 Sampling
1: ∆Mφi = φiλi // LBO eigen-decomposition
2: QT = [φ(Xq),Y(q,t) ∼ N (0q, Iq)]
3: CT ⊆ QT ▷ Random subset
4: for t = T, . . . , 1 do
5: z ∼ N (0, I) if t > 1, else z = 0

6: Y(q,t−1) = 1√
αt

(
Y(q,t) − 1−αt√

1−ᾱt
ϵθ(Ct, t,Qt)

)
+ σtz

7: Qt−1 = [Mq,Y(q,t−1)]
8: Ct−1 ⊆ Qt−1 ▷ Same subset as in step 2
9: end for

10: return f0 evaluated at coordinates φ(Xq)

Figure 5: Left: MDF sampling algorithm. Right: Visual depiction of the sampling process for a field
on the bunny manifold.

5 EXPERIMENTS

We validate the practicality of MDF via extensive experiments including synthetic and real-world
problems. In Sect. 5.1 we provide results for learning distributions of functions on a fixed manifold
(e.g. climate science), where functions change but manifolds are fixed across all functions. In
addition, in Sect. 5.2 we show that MDF is robust to different manifold parametrizations. Finally,
in Sect. 5.3 we also provide results on a generalized setting where manifolds are different for each
function (e.g. molecule conformer generation). As opposed to generative models over images, we
cannot rely on FID (Heusel et al., 2017) type metrics for evaluation since functions are defined on
curved geometries. We borrow metrics from generative modeling of point cloud data (Achlioptas
et al., 2018), namely Coverage (COV) and Minimum Matching Distance (MMD). We compute COV
and MMD metrics based on the l2 distance in signal space for corresponding vertices in the manifolds.

5.1 DISTRIBUTIONS OF FUNCTIONS ON A FIXED MANIFOLD

We evaluate MDF on 3 different manifolds that are fixed across functions: a sine wave, the Stanford
bunny and a human mesh. These manifolds have an increasing average mean curvature |K| (averaged
over vertices), which serves as a measure for how distant they are from being globally Euclidean. On
each manifold we define 3 function datasets: a Gaussian Mixture (GMM) with 3 components (where
in each field the 3 components are randomly placed on the manifold), MNIST (LeCun et al., 1998)
and CelebA-HQ (Karras et al., 2018) images. We use an off-the-shelf texture mapping approach
(Sullivan & Kaszynski, 2019) to map images to manifolds, see Fig. 1. We compare MDF with
Diffusion Probabilistic Fields (DPF) (Zhuang et al., 2023) a generative model for fields in ambient
space, where points in the manifold are parametrized by the Fourier PE of its coordinates in 3D space.
To provide a fair comparison we equate all the hyper-parameters in both MDF and DPF (Zhuang
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GMM MNIST CelebA-HQ

COV↑ MMD ↓ COV↑ MMD↓ COV↑ MMD ↓

MDF 0.444 0.01405 0.564 0.0954 0.354 0.11601

DPF 0.352 0.01339 0.552 0.09633 0.361 0.12288

Table 1: COV and MMD metrics for different
datasets on the wave manifold (mean curvature
|K| = 0.004).

GMM MNIST CelebA-HQ

COV↑ MMD ↓ COV↑ MMD↓ COV↑ MMD ↓

MDF 0.575 0.00108 0.551 0.07205 0.346 0.11101

DPF 0.472 0.00120 0.454 0.11525 0.313 0.11530

Table 2: Results on the bunny manifold (mean
curvature |K| = 7.388). As the mean curvature
increases the boost of MDF over DPF (Zhuang
et al., 2023) becomes larger across all datasets.

GMM MNIST CelebA-HQ

COV↑ MMD ↓ COV↑ MMD↓ COV↑ MMD ↓

MDF 0.551 0.00100 0.529 0.08895 0.346 0.14162

DPF 0.479 0.00112 0.472 0.09537 0.318 0.14502

Table 3: Human manifold (mean curvature|K| =
25.966). At high mean curvatures MDF consis-
tently outperforms DPF (Zhuang et al., 2023).

M → M M → Miso Miso → Miso

COV↑ MMD↓ COV↑ MMD ↓ COV↑ MMD ↓

MDF 0.595 0.00177 0.595 0.00177 0.582 0.00191

DPF 0.547 0.00189 0.003 0.08813 0.306 0.00742

Table 4: Training MDF on a manifold M and
evaluating it on an isometric transformation Miso
does not impact performance, while being on par
with training directly on the transformed manifold.

et al., 2023). Tab. 1-2-3 show results for the different approaches and tasks. We observe that MDF
tends to outperform DPF (Zhuang et al., 2023), both in terms of covering the empirical distribution,
resulting in higher COV, but also in the fidelity of the generated fields, obtaining a lower MMD.
In particular, MDF outperforms DPF (Zhuang et al., 2023) across the board for manifolds of large
mean curvature |K|. We attribute this behaviour to our choice of using intrinsic functional basis (e.g.
eigen-functions of the LBO) to represent a coordinate system for points in the manifold. Fig. 1 shows
a side to side comparison of real and generated functions on different manifolds obtained from MDF.

We also compare MDF with GASP (Dupont et al., 2022b), a generative model for continuous functions
using an adversarial formulation. We compare MDF and GASP performance on the CelebA-HQ
dataset (Karras et al., 2018) mapped on the bunny manifold. Additionally, we report results on the
ERA5 climate dataset (Dupont et al., 2022b), which is composed of functions defined on the sphere
f : S2 → R1 (see Fig. 1). For the ERA5 dataset we use spherical harmonics to compute φ, which are
equivalent to the analytical eigen-functions of the LBO on the sphere (Lévy, 2006). To compare with
GASP we use their pre-trained models to generate samples. In the case of CelebA-HQ, we use GASP
to generate 2D images and map them to the bunny manifold using (Sullivan & Kaszynski, 2019).
Experimental results in Tab. 5 show that MDF outperforms GASP in both ERA5(Hersbach et al.,
2020) and CelebA-HQ datasets, obtaining both higher coverage but also higher fidelity in generated
functions. This can be observed in Fig. 6 where the samples generated by MDF are visually crisper
than those generated by GASP.

ERA5 CelebA-HQ on M
COV↑ MMD ↓ COV↑ MMD↓

MDF 0.347 0.00498 0.346 0.11101

GASP 0.114 0.00964 0.309 0.38979

Table 5: MDF outperforms GASP on
ERA5(Hersbach et al., 2020) and CelebA-
HQ both in terms of fidelity and distribution
coverage. For GASP, we generate CelebA-HQ
images and texture map them to the bunny
manifold using (Sullivan & Kaszynski, 2019).

Figure 6: CelebA-HQ samples generated by
MDF and GASP (Dupont et al., 2022b) on the
bunny.

Furthermore, we ablate the performance of MDF as the number of eigen-functions used to compute
the coordinate representation φ increases (e.g. the eigen-decomposition of the LBO). For this task
we use the bunny and the GMM dataset. Results in Fig. 7 show that performance initially increases
with the number of eigen-functions up to a point where high frequency eigen-functions of the LBO
are not needed to faithfully encode the distribution of functions.
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Figure 7: Performance of
MDF as a function of the num-
ber of eigen-functions of the
LBO, measured by COV and
MMD metrics. As expected,
performance increases ini-
tially as more eigen-functions
are used, followed by a plateau
phase for more than k = 32
eigen-functions.

5.2 MANIFOLD PARAMETRIZATION

MDF uses the eigen-functions of the LBO as positional embeddings. In practice, different real-world
problems parametrize manifolds in different ways, and thus, have different ways of computing
the LBO. For example, in computer graphics the usage of 3D meshes and cotangent Laplacians
(Rustamov et al., 2007) is widespread. In computer vision, 3D geometry can also be represented as
pointclouds which enjoy sparsity benefits and for which Laplacians can also be computed (Sharp &
Crane, 2020). Finally, in computational chemistry problems, molecules are represented as undirected
graphs of atoms connected by bonds, in this case graph Laplacians are commonly used (Maskey et al.,
2022). In Fig. 8 we show the top-2 eigenvectors of these different Laplacians on the bunny manifold.
In Tab. 6 we show the performance of MDF on the bunny mesh on different datasets using different
manifold parametrizations and their respective Laplacian computation. These results show that MDF
is relatively robust to different Laplacians and can be readily applied to any of these different settings
by simply computing eigenvectors of the appropriate Laplacian.

GMM MNIST CelebA-HQ

COV↑ MMD ↓ COV↑ MMD↓ COV↑ MMD ↓

Graph 0.575 0.00108 0.551 0.07205 0.346 0.11101

Cotangent 0.581 0.00384 0.568 0.06890 0.374 0.12440

Pointcloud 0.588 0.00417 0.571 0.06909 0.337 0.12297

Table 6: Performance of MDF using different
Laplacians for different datastets on the bunny
manifold, where we see that MDF is relatively
robust and can be readily deployed on different
settings depending on the manifold parametriza-
tion.

Figure 8: Visualizing top-2 eigenvectors on the
bunny manifold for Graph, Cotangent and Point-
cloud (Sharp & Crane, 2020) Laplacians.

5.3 GENERALIZING ACROSS MANIFOLDS

We now generalize the problem setting to learning distributions over functions where each function is
defined on a different manifold. In this setting, the training set is defined as {fi}i=0:N with functions
fi : Mi → Y mapping elements from different manifolds Mi to a shared signal space Y . This is
a generalization of the setting in Sect. 5.1 where functions are defined as fi : M → Y , with the
manifold M being fixed across fi’s. This generalized setting is far more complex than the fixed
setting since the model not only has to figure out the distribution of functions but also it needs to
represent different manifolds in a consistent manner. To evaluate the performance of MDF in this
setting we tackle the challenging problem of molecule conformer generation (Xu et al., 2021; 2022;
Ganea et al., 2021; Jing et al., 2022) which is a fundamental task in computational chemistry and
requires models to handle multiple manifolds. In this problem, manifolds Mi are parametrized
as graphs that encode the connectivity structure between atoms of different types. From MDF’s
perspective a conformer is then a function fi : Mi → R3 that maps elements in the graph (e.g. .
atoms) to a point in 3D space. Note that graphs are just one of different the manifold representations
that are amenable for MDF as show in Sect. 5.2.
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Following the standard setting for molecule conformer prediction we use the GEOM-QM9 dataset
(Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) which contains ∼ 130K molecules ranging
from ∼ 10 to ∼ 40 atoms. We report our results in Tab. 7 and compare with CGCF (Xu et al.,
2021), GeoDiff (Xu et al., 2022), GeoMol (Ganea et al., 2021) and Torsional Diffusion (Jing et al.,
2022). Note that both GeoMol (Ganea et al., 2021) and Torsional Diffusion (Jing et al., 2022)
make strong assumptions about the geometric structure of molecules and model domain-specific
characteristics like torsional angles of bonds. In contraposition, MDF simply models the distribution
of 3D coordinates of atoms without making any assumptions about the underlying structure. We use
the same train/val/test splits as Torsional Diffusion (Jing et al., 2022) and use the same metrics to
compare the generated and ground truth conformer ensembles: Average Minimum RMSD (AMR)
and Coverage. These metrics are reported both for precision, measuring the accuracy of the generated
conformers, and recall, which measures how well the generated ensemble covers the ground-truth
ensemble. We generate 2K conformers for a molecule with K ground truth conformers. Note that in
this setting, models are evaluated on unseen molecules (e.g. unseen manifolds Mi).

We report results on Tab. 7 where we see how MDF outperforms previous approaches. It is important
to note that MDF is a general approach for learning functions on manifolds that does not make any
assumptions about the intrinsic geometric factors important in conformers like torsional angles in
Torsional Diffusion (Jing et al., 2022). This makes MDF simpler to implement and applicable to
other settings in which intrinsic geometric factors are not known.

Recall Precision

Coverage ↑ AMR ↓ Coverage ↑ AMR ↓
mean median mean median mean median mean median

CGCF 69.47 96.15 0.425 0.374 38.20 33.33 0.711 0.695
GeoDiff 76.50 100.00 0.297 0.229 50.00 33.50 0.524 0.510
GeoMol 91.50 100.00 0.225 0.193 87.60 100.00 0.270 0.241
Torsional Diff. 92.80 100.00 0.178 0.147 92.70 100.00 0.221 0.195
MDF (ours) 95.30 100.00 0.124 0.074 91.50 100.00 0.169 0.101

MDF (k = 16) 94.87 100.00 0.139 0.093 87.54 100.00 0.220 0.151
MDF (k = 8) 94.28 100.00 0.162 0.109 84.27 100.00 0.261 0.208
MDF (k = 4) 94.57 100.00 0.145 0.093 86.83 100.00 0.225 0.151
MDF (k = 2) 93.15 100.00 0.152 0.088 86.97 100.00 0.211 0.138

Table 7: Molecule conformer generation results for GEOM-QM9 dataset. MDF obtains comparable
or better results than the state-of-the-art Torsional Diffusion (Jing et al., 2022), without making any
explicit assumptions about the geometric structure of molecules (i.e. without modeling torsional
angles). In addition, we show how performance of MDF changes as a function of the number of
eigen-functions k. Interestingly, with as few as k = 2 eigen-functions MDF is able to generate
consistent accurate conformations.

Finally, In the appendix we present additional results that carefully ablate different architectures for
the score network ϵθ in A.7.1. As well as an extensive study of the robustness of MDF to both rigid
and isometric transformations of the manifold M A.7.2. Finally, we also show conditional inference
results on the challenging problem of PDEs on manifolds A.7.3.

6 CONCLUSIONS

In this paper we introduced MDF a diffusion probabilistic model that is capable of capturing distri-
butions of functions defined on general Riemannian manifolds. We leveraged tools from spectral
geometry analysis and use the eigen-functions of the manifold Laplace-Beltrami Operator to define
an intrinsic coordinate system on which functions are defined. This allows us to design an efficient
recipe for training a diffusion probabilistic model of functions whose domain are arbitrary geometries.
Our results show that we can capture distributions of functions on manifolds of increasing complexity
outperforming previous approaches, while also enabling the applications of powerful generative priors
to fundamental scientific problems like forward and inverse solutions to PDEs, climate modeling, and
molecular chemistry.

9



Published as a conference paper at ICLR 2024

REFERENCES

P. Achlioptas, P. Diamanti, I. Mitliagkas, and L. Guibas. Learning representations and generative
models for 3d point clouds. In ICML, 2018.

Matthias Bauer, Emilien Dupont, Andy Brock, Dan Rosenbaum, Jonathan Schwarz, and Hyunjik
Kim. Spatial functa: Scaling functa to imagenet classification and generation. arXiv preprint
arXiv:2302.03130, 2023.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
clustering. Advances in neural information processing systems, 14, 2001.

Yoshua Bengio, Jean-françcois Paiement, Pascal Vincent, Olivier Delalleau, Nicolas Roux, and
Marie Ouimet. Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering.
Advances in neural information processing systems, 16, 2003a.

Yoshua Bengio, Pascal Vincent, Jean-François Paiement, Olivier Delalleau, Marie Ouimet, and
Nicolas Le Roux. Spectral clustering and kernel PCA are learning eigenfunctions, volume 1239.
Citeseer, 2003b.

HJ Bhabha. Relativistic wave equations for the elementary particles. Reviews of Modern Physics, 17
(2-3):200, 1945.

Sam Bond-Taylor and Chris G Willcocks. -diff: Infinite resolution diffusion with subsampled
mollified states. CoRR, 2023.

Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, et al. Matérn gaussian processes on
riemannian manifolds. Advances in Neural Information Processing Systems, 33:12426–12437,
2020.

V. Bortoli, E. Mathieu, M. Hutchinson, J. Thornton, Y. Teh, and A. Doucet. Riemannian score-based
generative modeling. arXiv, 2022.

Alexander M Bronstein, Michael M Bronstein, and Ron Kimmel. Numerical geometry of non-rigid
shapes. Springer Science & Business Media, 2008.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Ricky TQ Chen and Yaron Lipman. Riemannian flow matching on general geometries. arXiv preprint
arXiv:2302.03660, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Y. Du, K. Collins, J. Tenenbaum, and V. Sitzmann. Learning signal-agnostic manifolds of neural
fields. In NeurIPS, 2021.

E. Dupont, H. Kim, S. Eslami, D. Rezende, and D. Rosenbaum. From data to functa: Your data point
is a function and you should treat it like one. In ICML, 2022a.

E. Dupont, Y. Teh, and A. Doucet. Generative models as distributions of functions. In AISTATS,
2022b.

V. Dutordoir, A. Saul, Z. Ghahramani, and F. Simpson. Neural diffusion processes. arXiv, 2022.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. 2020.

B Everett. An introduction to latent variable models. Springer, 2013.

Octavian Ganea, Lagnajit Pattanaik, Connor Coley, Regina Barzilay, Klavs Jensen, William Green,
and Tommi Jaakkola. Geomol: Torsional geometric generation of molecular 3d conformer
ensembles. Advances in Neural Information Processing Systems, 34:13757–13769, 2021.

10



Published as a conference paper at ICLR 2024

M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. Rezende, SM Eslami, and Y. Teh. Neural
processes. ICML workshop, 2018.

M. Gemici, D. Rezende, and S. Mohamed. Normalizing flows on riemannian manifolds. arXiv, 2016.

Daniele Grattarola and Pierre Vandergheynst. Generalised implicit neural representations. arXiv
preprint arXiv:2205.15674, 2022.

D. Ha, A. Dai, and Q. Le. Hypernetworks. In ICLR, 2017.

Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A
generalization of vit/mlp-mixer to graphs. arXiv preprint arXiv:2212.13350, 2022.

V Hernandez, JE Roman, A Tomas, and V Vidal. A survey of software for sparse eigenvalue problems.
Universitat Politecnica De Valencia, SLEPs technical report STR-6, 2009.

Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquín Muñoz-Sabater,
Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, et al. The era5 global reanalysis.
Quarterly Journal of the Royal Meteorological Society, 146(730):1999–2049, 2020.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium. In NeurIPS, 2017.

J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In NeurIPS, 2020.

J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J Fleet. Video diffusion models. In
ICLR, 2022.

Michael Hutchinson, Alexander Terenin, Viacheslav Borovitskiy, So Takao, Yee Teh, and Marc
Deisenroth. Vector-valued gaussian processes on riemannian manifolds via gauge independent
projected kernels. Advances in Neural Information Processing Systems, 34:17160–17169, 2021.

Victor Isakov. Inverse problems for partial differential equations, volume 127. Springer, 2006.

A. Jaegle, S. Borgeaud, J. Alayrac, et al. Perceiver io: A general architecture for structured inputs &
outputs. In ICLR, 2022.

N. Jain, A. Olmo, S. Sengupta, L. Manikonda, and S. Kambhampati. Imperfect imaganation:
Implications of gans exacerbating biases on facial data augmentation and snapchat selfie lenses.
CORR, 2020.

Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Torsional
diffusion for molecular conformer generation. Advances in Neural Information Processing Systems,
35:24240–24253, 2022.

T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of gans for improved quality,
stability, and variation. In ICLR, 2018.

H. Kim, A. Mnih, J. Schwarz, M. Garnelo, A. Eslami, D. Rosenbaum, O. Vinyals, and Y. Teh.
Attentive neural processes. ICLR, 2019.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

D. Kingma and M. Welling. Auto-encoding variational bayes. In NeurIPS, 2014.

N. Kodali, J. Abernethy, J. Hays, and Z. Kira. On convergence and stability of gans. arXiv, 2017.

Lukas Koestler, Daniel Grittner, Michael Moeller, Daniel Cremers, and Zorah Lähner. Intrinsic
neural fields: Learning functions on manifolds. In Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part II, pp. 622–639. Springer,
2022.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, 1998.

11



Published as a conference paper at ICLR 2024

Bruno Lévy. Laplace-beltrami eigenfunctions towards an algorithm that" understands" geometry. In
IEEE International Conference on Shape Modeling and Applications 2006 (SMI’06), pp. 13–13.
IEEE, 2006.

Finn Lindgren, Håvard Rue, and Johan Lindström. An explicit link between gaussian fields and
gaussian markov random fields: the stochastic partial differential equation approach. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 73(4):423–498, 2011.

C. Loop. Smooth Subdivision Surfaces based on triangles. 1987.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11461–11471, 2022.

Sohir Maskey, Ali Parviz, Maximilian Thiessen, Hannes Stärk, Ylli Sadikaj, and Haggai Maron.
Generalized laplacian positional encoding for graph representation learning. arXiv preprint
arXiv:2210.15956, 2022.

Subbaramiah Minakshisundaram and Åke Pleijel. Some properties of the eigenfunctions of the
laplace-operator on riemannian manifolds. Canadian Journal of Mathematics, 1(3):242–256, 1949.

Y. Mirsky and W. Lee. The creation and detection of deepfakes: A survey. CSUR, 2021.

A. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In ICML, 2021.

J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. Deepsdf: Learning continuous
signed distance functions for shape representation. In CVPR, 2019.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Junuthula Narasimha Reddy. Introduction to the finite element method. McGraw-Hill Education,
2019.

N. Rostamzadeh, E. Denton, and L. Petrini. Ethics and creativity in computer vision. arXiv, 2021.

N. Rozen, A. Grover, M. Nickel, and Y. Lipman. Moser flow: Divergence-based generative modeling
on manifolds. In NeurIPS, 2021.

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond. Enumeration of 166
billion organic small molecules in the chemical universe database gdb-17. Journal of chemical
information and modeling, 52(11):2864–2875, 2012.

Raif M Rustamov et al. Laplace-beltrami eigenfunctions for deformation invariant shape representa-
tion. In Symposium on geometry processing, volume 257, pp. 225–233, 2007.

Nicholas Sharp and Keenan Crane. A laplacian for nonmanifold triangle meshes. In Computer
Graphics Forum, volume 39, pp. 69–80. Wiley Online Library, 2020.

Nicholas Sharp, Souhaib Attaiki, Keenan Crane, and Maks Ovsjanikov. Diffusionnet: Discretization
agnostic learning on surfaces. ACM Transactions on Graphics (TOG), 41(3):1–16, 2022.

J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. In ICLR, 2021a.

Y. Song, J. Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based generative
modeling through stochastic differential equations. In ICLR, 2021b.

C Sullivan and Alexander Kaszynski. Pyvista: 3d plotting and mesh analysis through a streamlined
interface for the visualization toolkit (vtk). Journal of Open Source Software, 4(37):1450, 2019.

Robert W. Sumner and Jovan Popovic. Deformation Transfer for Triangle Meshes. In ACM Transac-
tions on Graphics, 2004.

P. Tinsley, A. Czajka, and P. Flynn. This face does not exist... but it might be yours! identity leakage
in generative models. In WACV, 2021.

12



Published as a conference paper at ICLR 2024

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer:
An all-mlp architecture for vision. Advances in Neural Information Processing Systems, 34:
24261–24272, 2021.

Bruno Vallet and Bruno Lévy. Spectral geometry processing with manifold harmonics. In Computer
Graphics Forum, volume 27, pp. 251–260. Wiley Online Library, 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

M. Welling and Y. Teh. Bayesian learning via stochastic gradient langevin dynamics. In ICML, 2011.

Y. Xie, T. Takikawa, S. Saito, O. Litany, S. Yan, N. Khan, F. Tombari, J. Tompkin, V. Sitzmann, and
S. Sridhar. Neural fields in visual computing and beyond. In Computer Graphics Forum, 2022.

Minkai Xu, Shitong Luo, Yoshua Bengio, Jian Peng, and Jian Tang. Learning neural generative
dynamics for molecular conformation generation. arXiv preprint arXiv:2102.10240, 2021.

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geometric
diffusion model for molecular conformation generation. arXiv preprint arXiv:2203.02923, 2022.

S. Zhai, W. Talbott, N. Srivastava, C. Huang, H. Goh, R. Zhang, and J. Susskind. An attention free
transformer. In ICML, 2022.

Peiye Zhuang, Samira Abnar, Jiatao Gu, Alex Schwing, Josh Susskind, and Miguel Angel Bautista.
Diffusion probabilistic fields. In ICLR, 2023.

13



Published as a conference paper at ICLR 2024

A APPENDIX

A.1 BROADER IMPACT STATEMENT

When examining the societal implications of generative models, certain critical elements warrant
close attention. These include the potential misuse of generative models to fabricate deceptive data,
such as "DeepFakes" (Mirsky & Lee, 2021), the risk of training data leakage and associated privacy
concerns (Tinsley et al., 2021), and the potential to amplify existing biases in the training data (Jain
et al., 2020). For a comprehensive discussion on ethical aspects in the context of generative modeling,
readers are directed to (Rostamzadeh et al., 2021).

A.2 LIMITATIONS AND FUTURE WORK

As MDF advances in learning function distributions over Riemannian manifolds, it does encounter
certain constraints and potential areas of future enhancement. One primary challenge is the computa-
tional demand of the transformer-based score network in its basic form, even at lower resolutions.
This stems from the quadratic cost of calculating attention over context and query pairs. To mitigate
this, the PerceiverIO architecture, which scales in a linear manner with the number of query and
context points, is utilized (Jaegle et al., 2022) in our experiments. Further exploration of other
efficient transformer architectures could be a promising direction for future work (Zhai et al., 2022;
Dao et al., 2022). Furthermore, MDF, much like DDPM (Ho et al., 2020), iterates over all time steps
during sampling to generate a field during inference, a process slower than that of GANs. Current
studies have accelerated sampling (Song et al., 2021a), but at the expense of sample quality and
diversity. However, it’s worth noting that improved inference methods such as (Song et al., 2021a)
can be seamlessly incorporated into MDF.

Since MDF has the capability to learn distributions over fields defined on various Riemannian mani-
folds within a single model, in future work we are poised to enhance its capacity for comprehending
and adapting to a broader range of geometrical contexts. This adaptability will further pave the
way towards the development of general foundation models to scientific and engineering challenges,
which can better account for the intricate geometric intricacies inherent in real-world scenarios.

For example, we aim to extend the application of MDF to inverse problems in PDEs. A noteworthy
attribute of our model is its inherent capability to model PDEs on Riemannian manifolds trivially. The
intrinsic structure of MDF facilitates not only the understanding and solving of forward problems,
where PDEs are known and solutions to the forward problem are needed, but also inverse problems,
where certain outcome or boundary conditions are known and the task is to determine the underlying
PDE. Expanding our application to handle inverse problems in PDEs on Riemannian manifolds can
have profound implications for complex systems modeling, as it enhances our understanding of the
manifold structures and the way systems governed by PDEs interact with them.

A.3 DISCUSSION ON COMPUTING EMBEDDINGS

When considering how to compute embeddings for points in a manifold M there are several options
to explore. The simplest one is to adopt the ambient space in which the manifold is embedded as a
coordinate system to represent points (eg. a plain coordinate approach). For example, in the case of
3D meshes one can assign a coordinate in R3 to every point in the mesh. As shown in Tab. 1-2-3-4
this approach (used by DPF) is outperformed by MDF. In addition, in Sect. A.6.2 we show that this
approach is not robust wrt rigid or isometric transformations of the manifold. Note that manifolds
are not always embedded in an ambient space. For example, in molecular conformation, molecular
graphs only represent connectivity structure between atoms but are not necessarily embedded in a
higher dimensional space.

Another method that one can consider is to use a local chart approach. Local charts are interesting
because they provide a way assigning a set of coordinates to points in a local region of the manifold.
While the manifold may have arbitrary curvature, local charts are always Euclidean spaces. Each
point in the manifold can be described by a unique set of coordinates in the chart, but different charts
may overlap. However, this requires computing transformations (often complex to implement) to
convert coordinates from one chart to another.
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Finally, the eigen-functions of the LBO not only provide a way of assigning a coordinate to points on a
manifold but also do this by defining an intrinsic coordinate system. This intrinsic coordinate system is
global, and does not require transformations like local charts do. In addition, this intrinsic coordinate
system is robust wrt rigid or isometric transformations of the manifold (ref A.6.2). Summarizing, this
intrinsic coordinate system is a more fundamental way of describing the manifold, based on its own
inherent properties, without reference to an external ambient space.

A.4 IMPLEMENTATION DETAILS

In this section we describe implementation details for all our experiments. These include all details
about the data: manifolds and functions, as well as details for computing the eigen-functions φ. We
also provide hyper-parameters and settings for the implementation of the score field network ϵθ and
compute used for each experiment in the paper.

A.4.1 DATA

Unless explicitly described in the main paper, we report experiments on 5 different manifolds which
we show in Fig. 9. This manifolds are: a parametric sine wave Fig. 9(a) computed using (Sullivan
& Kaszynski, 2019) containing 1024 vertices. The Stanford bunny with 5299 vertices Fig. 9(b). A
human body mesh from the Tosca dataset (Bronstein et al., 2008) containing 4823 vertices, show in
Fig. 9(c). A cat mesh and its reposed version from (Sumner & Popovic, 2004), show in Fig. 9(d)
and Fig. 9(e), respectively containing 7207 vertices. To compute the mean curvature values |K| for
each mesh reported in the main paper we compute the absolute value of the average mean curvature,
which we obtain using (Sullivan & Kaszynski, 2019).

Figure 9: Manifolds used in the different experiments throughout the paper. (a) Wave. (b) Bunny. (c)
Human (Bronstein et al., 2008). (d) Cat (Sumner & Popovic, 2004). (e) Cat (re-posed) (Sumner &
Popovic, 2004).

In terms of datasets of functions on these manifolds we use the following:

• A Gaussian Mixture Model (GMM) dataset with 3 components, where in each field the 3
components are randomly placed on the specific manifold. We define a held out test set
containing 10k samples.

• MNIST (LeCun et al., 1998) and CelebA-HQ (Karras et al., 2018) datasets, where images are
texture mapped into the meshes using (Sullivan & Kaszynski, 2019), models are evaluated
on the standard tests sets for these datasets.

• The ERA5 (Hersbach et al., 2020) dataset used to compare with GASP (Dupont
et al., 2022b) is available at https://github.com/EmilienDupont/
neural-function-distributions. This dataset contains a train set of
8510 samples and a test set of 2420 samples, which are the settings used in GASP (Dupont
et al., 2022b). To compare with GASP we used their pretrained model available available at
1

1https://github.com/EmilienDupont/neural-function-distributions
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Figure 10: Interaction between context and query pairs in the PerceiverIO architecture. Context pairs
Ct attend to a latent array of learnable parameters via cross attention. The latent array then goes
through several self attention blocks. Finally, the query pairs Qt cross-attend to the latent array to
produce the final noise prediction ϵ̂q .

A.5 COMPUTING THE LAPLACIAN AND φ

In practice, for general geometries (e.g. general 3D meshes with n vertices) we compute eigenvectors
of the symmetric normalized graph Laplacian L. We define L as follows:

L = D− 1
2 (D−A)D− 1

2 , (3)

where A ∈ {0, 1}n×n is the discrete adjacency matrix and D is the diagonal degree matrix of the
mesh graph. Note that eigenvectors of L converge to the eigen-functions of the LBO ∆M as n → ∞
(Belkin & Niyogi, 2001; Bengio et al., 2003b;a). The eigen-decomposition of L can be computed
efficiently using sparse eigen-problem solvers (Hernandez et al., 2009) and only needs to be computed
once during training. Note that eigen-vectors of L are only defined for the mesh vertices. In MDF,
we sample random points on the mesh during training and interpolate the eigenvector representation
φ of the vertices in the corresponding triangle using barycentric interpolation.

A.5.1 SCORE FIELD NETWORK ϵθ

In MDF, the score field’s design space covers all architectures that can process irregularly sampled
data, such as Transformers (Vaswani et al., 2017) and MLPs (Tolstikhin et al., 2021). The model is
primarily implemented using PerceiverIO (Jaegle et al., 2022), an effective transformer architecture
that encodes and decodes. The PerceiverIO was chosen due to its efficiency in managing large
numbers of elements in the context and query sets, as well as its natural ability to encode interactions
between these sets using attention. Figure 10 demonstrates how these sets are used within the
PerceiverIO architecture. To elaborate, the encoder maps the context set into latent arrays (i.e., a
group of learnable vectors) through a cross-attention layer, while the decoder does the same for query
set. For a more detailed analysis of the PerceiverIO architecture refer to (Jaegle et al., 2022).

The time-step t is incorporated into the score computation by concatenating a positional embedding
representation of t to the context and query sets. The specific PerceiverIO settings used in all
quantitatively evaluated experiments are presented in Tab.8. Practically, the MDF network consists
of 12 transformer blocks, each containing 1 cross-attention layer and 2 self-attention layers, except
for GEOM-QM9 we use smaller model with 6 blocks. Each of these layers has 4 attention heads.
Fourier position embedding is used to represent time-steps t with 64 frequencies. An Adam (Kingma
& Ba, 2015) optimizer is employed during training with a learning rate of 1e− 4. We use EMA with
a decay of 0.9999. A modified version of the publicly available repository is used for PerceiverIO 2.

2https://huggingface.co/docs/transformers/model_doc/perceiver
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Hyper-parameter Wave Bunny Human GEOM-QM9

train res. 1024 5299 4823 variable
#context set 1024 5299 4823 variable
#query set 1024 5299 4823 variable
#eigenfuncs (k) 64 64 64 28

#freq pos. embed t 64 64 64 64

#latents 1024 1024 1024 512
#dim latents 512 512 512 256
#blocks 12 12 12 6
#dec blocks 1 1 1 1
#self attends per block 2 2 2 2
#self attention heads 4 4 4 4
#cross attention heads 4 4 4 4

batch size 96 96 96 96
lr 1e− 4 1e− 4 1e− 4 1e− 4
epochs 1000 1000 1000 250

Table 8: Hyperparameters and settings for MDF on different manifolds.

A.5.2 COMPUTE

Each model was trained on an machine with 8 Nvidia A100 GPUs, we trained models for 3 days.

A.6 METRICS

Instead of using FID type metrics commonly used for generative models over images (Heusel
et al., 2017), we must take a different approach for evaluating functions on curved geometries. Our
suggestion is to use metrics from the field of generative modeling of point cloud data (Achlioptas
et al., 2018), specifically Coverage (COV) and Minimum Matching Distance (MMD).

• Coverage (COV) refers to how well the generated data set represents the test set. We first
identify the closest neighbour in the generated set for each field in the test set. COV is then
calculated as the proportion of fields in the generated set that have corresponding fields in
the test set. The distance between fields is determined using the average l2 distance in signal
space on the vertices of the mesh, usually in either R1 or R3 space in our experiments. A
high COV score implies that the generated samples adequately represent the real samples.

• Minimum Matching Distance (MMD), on the other hand, provides a measure of how
accurately the fields are represented in the test set. This measure is required because in
the COV metric matches don’t necessarily have to be close. To gauge the fidelity of the
generated fields against the real ones, we pair each field in the generated set with its closes
neigbour in the test set (MMD), averaging these distances for our final result. This process
also utilizes the l2 distance in signal space on the mesh vertices. MMD provides a good
correlation with the authenticity of the generated set, as it directly depends on the matching
distances.

As a summary, COV and MMD metrics are complementary to each other. A model captures the
distribution of real fields with good fidelity when MMD is small and COV is large. In particular, at
equivalent levels of MMD a higher COV is desired (Achlioptas et al., 2018), and vice-versa. This
observation correlates well with our results shown in Tab. 1-2-3 on the main paper, where MDF
obtains comparable or better MMD score that DPF (Zhuang et al., 2023) while greatly improving
COV.

A.7 ADDITIONAL EXPERIMENTS

In this section we provide additional empirical results using different network architectures to
implement the score field network ϵθ. Furthermore, we provide additional experiments on robustness
to discretization.
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A.7.1 ARCHITECTURE ABLATION

The construction of MDF does not rely on a specific implementation of the score network ϵθ. The
score model’s design space encompasses a broad range of options, including all architectures capable
of handling irregular data like transformers or MLPs. To substantiate this, we conducted an evaluation
on the GMM dataset and the Stanford bunny at a resolution of 602 vertices, comparing three distinct
architectures: a PerceiverIO (Jaegle et al., 2022), a standard Transformer Encoder-Decoder (Vaswani
et al., 2017), and an MLP-mixer (Tolstikhin et al., 2021). For a fair comparison, we approximated the
same number of parameters (around 55M) and settings (such as the number of blocks, parameters per
block, etc.) for each model and trained them over 500 epochs. Note that because of these reasons the
numbers reported in this section are not directly comparable to those shown in the main paper. We
simplified the evaluation by using an equal number of context and query pairs. Both the Transformer
Encoder and MLP-mixer process context pairs using their respective architectures; the resulting
latents are then merged with corresponding query pairs and fed into a linear projection layer for final
prediction.

In Tab. 9 we show that the MDF formulation is compatible with different architectural implementa-
tions of the score field model. We observe relatively uniform performance across various architectures,
ranging from transformer-based to MLPs. Similar patterns are noted when examining qualitative
samples displayed in Fig. 11, corroborating our assertion that MDF’s advantages stem from its
formulation rather than the specific implementation of the score field model. Each architecture brings
its own strengths—for instance, MLP-mixers enable high throughput, transformer encoders are easy
to implement, and PerceiverIO facilitates the handling of large and variable numbers of context and
query pairs. We posit that marrying the strengths of these diverse architectures promises substantial
advancement for MDF. Please note, these empirical results aren’t directly comparable to those
reported elsewhere in the paper, as these models generally possess around 50% of the parameters of
the models used in other sections.

COV ↑ MMD ↓
PeceiverIO (Jaegle et al., 2022) 0.569 0.00843
Transf. Enc-Dec (Vaswani et al., 2017) 0.581 0.00286
MLP-mixer (Tolstikhin et al., 2021) 0.565 0.00309

Table 9: Quantitative evaluation of image generation on the GMM + Stanford Bunny dataset for
different implementations of the score field ϵθ.

Finally, to measure the effect of random training seed for weight initialization we ran the exact same
model fixing all hyper-parameters and training settings. For this experiment we used the PerceiverIO
architecture and the GMM dataset on the Stanford bunny geometry with 602 vertices. We ran the same
experiment 3 times and measured performance using COV and MMD metrics. Our results show that
across the different training runs MDF obtained COV=0.569± 0.007 and MMD=0.00843± 0.00372.

A.7.2 ROBUSTNESS OF MDF

We evaluate MDF’s robustness to rigid and isometric transformations of the training manifold M.
We use the cat category geometries from (Sumner & Popovic, 2004) and build a dataset of different
fields on the manifold by generating 2 gaussians around the area of the tail and the right paw of the
cat. Note that every field is different since the gaussians are centered at different points in the tail
and right paw, see Fig. 13(a). During training, the model only has access to fields defined on a fixed
manifold M (see Fig. 13(a)). We then evaluate the model on either a rigid Mrigid (shown in Fig.
13(b)) or isometric Miso (Fig. 13(c)) transformation of M. Qualitatively comparing the transfer
results of MDF with DPF (Zhuang et al., 2023) in Fig. 13(d)-(e), we see a marked difference in
fidelity and coverage of the distribution.

In Fig. 13 we show how performance changes as the magnitude of a rigid transformation (e.g. a
rotation about the z−axis) of M increases. As expected, the performance of DPF (Zhuang et al.,
2023) sharply declines as we move away from the training setting, denoted by a rotation of 0 radians.
However, MDF obtains a stable performance across transformations, this is due to the eigen-function
basis being intrinsic to M, and thus, invariant to rigid transformations. In addition, in Tab. 4 we show
results under an isometric transformation of the manifold (e.g. changing the pose of the cat, see Fig.
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(a) Real samples.

(b) Transf. Enc-Dec (Vaswani et al., 2017).

(c) MLP-mixer (Tolstikhin et al., 2021).

(d) PerceiverIO (Jaegle et al., 2022).

Figure 11: Qualitative comparison of different architectures to implement the score field model ϵθ.

13(c)). As in the rigid setting, the performance of DPF (Zhuang et al., 2023) sharply declines under
an isometric transformation while MDF keeps performance constant. In addition, transferring to an
isometric transformation (M → Miso) performs comparably with directly training on the isometric
transformation (Miso → Miso) up to small differences due to random weight initialization.

Figure 12: Robustness of
MDF and DPF (Zhuang et al.,
2023) with respect to rigid
transformations of M. The
distribution of fields learned
by MDF is invariant with re-
spect to rigid transformations,
while DPF (Zhuang et al.,
2023) collapses due to learn-
ing distributions in ambient
space.

We also provide transfer results to different discretizations of M. To do so, we train MDF on a low
resolution discretization of a manifold and evaluate transfer to a high resolution discretization. We use
the GMM dataset and the bunny manifold at 2 different resolutions: 1394 and 5570 vertices, which
we get by applying loop subdivision (Loop, 1987) to the lowest resolution mesh. Theoretically, the
Laplacian eigenvectors φ are only unique up to sign, which can result in ambiguity when transferring
a pre-trained model to a different discretization. Empirically we did not find this to be an issue in
our experiments. We hypothesize that transferring MDF from low to high resolution discretizations
is largely a function of the number of eigen-functions used to compute φ. This is because eigen-
functions of small eigenvalue represent low-frequency components of the manifold which are more
stable across different discretizations. In Fig. 14 we report transfer performance as a function of
the number of eigen-functions used to compute φ. We observe an initial regime where more eigen-
functions aid in transferring (up to 64 eigen-functions) followed by a stage where high-frequency
eigen-functions negatively impact transfer performance.
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Figure 13: (a) Training set composed of different fields f : M → R where 2 gaussians are randomly
placed in the tail and the right paw of the cat. Fields generated by transferring the MDF pre-trained
on M to (b) a rigid and (c) an isometric transformation of M. Fields generated by transferring the
DPF (Zhuang et al., 2023) pre-trained on M to (d) a rigid and (e) an isometric transformation of M.

Figure 14: Transferring MDF
from low to high resolu-
tion discretizations as a func-
tion of the number of eigen-
functions. We observe that
eigen-functions of small eigen-
value transfer better since they
encode coarse (i.e. low-
frequency) information of the
manifold.

We additionally run a transfer experiment between low resolution and high resolution discretizations
of a different manifold (e.g. a mesh of the letter ’A’, show in Fig. 15(b)). In this setting the low
resolution mesh contains 1000 vertices and the high resolution mesh contains 4000 vertices. As
show in Fig. 16 the results are consistent across manifolds, and a similar trend as in Fig. 14 can be
observed. This trend further reinforces our hypothesis that low frequency eigen-functions transfer
better across discretization than high frequency ones.

Figure 15: (a) Low and high resolution discretizations of the Stanford bunny manifold used for the
transfer experiments in the main paper (Fig. 14). (b) Low and high resolution discretizations of the
letter ’A’ manifold, used for the experiments in Fig. 16.
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Figure 16: Transferring MDF
from a less detailed to a
more detailed discretization
depends on the number of
eigen-functions. It’s note-
worthy that eigen-functions
with small eigenvalues have
better transferability as they
represent the broad, or low-
frequency, information of the
manifold.

A.7.3 CONDITIONAL INFERENCE ON PDES

In this section we evaluate MDF on conditional inference tasks. In particular, we create a dataset
of different simulations of the heat diffusion PDE on a manifold. As a result, every sample in our
training distribution f0 ∼ q(f0) is a temporal field f : M× R → R. We create a training set of 10k
samples where each sample is a rollout of the PDE for 10 steps given initial conditions. We generate
initial conditions by uniformly sampling 3 gaussian heat sources of equivalent magnitude on the
manifold and use FEM (Reddy, 2019) to compute the rollout over time. For this experiment we use a
version of the bunny mesh with 602 vertices as a manifold M and set the diffusivity term of the PDE
to D = 0.78. We then train MDF on this training set of temporal fields f : M× R → R, which in
practice simply means concatenating a Fourier PE of the time step to the eigen-functions of the LBO.

We tackle the forward problem where we are given the initial conditions of the PDE and the model is
tasked to predict the forward dynamics on a test set of 60 held out samples. To perform conditional
inference with MDF we follow the recipe in (Lugmayr et al., 2022) which has been successful in the
image domain. We show the forward dynamics predicted by FEM (Reddy, 2019) on Fig. 17(a) and
MDF Fig. 17(b) for the same initial conditions in the held out set. We see how MDF successfully
captures temporal dynamics, generating a temporal field consistent with observed initial conditions.
Evaluating the full test set MDF obtains an mean squared error MSE = 4.77e10 − 3. In addition,
MDF can directly be used for inverse problems (Isakov, 2006). Here we focus on inverting the full
dynamics of the PDE, conditioned on sparse observations. Fig. 17(c) shows sparse observations of
the FEM rollout, amounting to observing 10% of the field. Fig. 17(d) shows a probabilistic solution
to the inverse PDE problem generated by MDF which is consistent with the FEM dynamics in Fig.
17(a).

Figure 17: (a) Forward prediction of the heat diffusion PDE computed with FEM (Reddy, 2019).
(b) Conditionally sampled field generated by MDF. (c) Sparse observations of the FEM solution for
inverse prediction. (d) Conditionally sampled inverse solution generated by MDF.
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A.8 ADDITIONAL VISUALIZATIONS

In this section we provide additional visualizations of experiments in the main paper. We show real
and generated fields for the wave manifold (Fig. 18), ERA5 dataset (Hersbach et al., 2020) (Fig. 19)
and GMM dataset on the bunny (Fig. 20) and human (Bronstein et al., 2008) manifolds (see Fig. 21).
In summary, MDF captures the distribution of real fields for different datasets and manifolds, with
high fidelity and coverage.

Finally, under ./videos we include two video visualizations:

• A visualization of training data as well as the sampling process for the MNIST dataset on
the wave manifold.

• A visualization of GT and temporal fields generated by MDF for the PDE dataset introduced
in Sect. A.7.3.

• A visualization of the sampling process for QM9 molecules for experiments Sect. 5.3.

(a) Real samples

(b) Generated samples

Figure 18: Real and generated samples for MNIST (LeCun et al., 1998) digits on the wave manifold.
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(a) Real samples

(b) Generated samples

Figure 19: Real and generated samples for the ERA5 (Hersbach et al., 2020) climate dataset.
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(a) Real samples

(b) Generated samples

Figure 20: Real and generated samples for the GMM dataset on the Stanford bunny manifold.
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(a) Real samples

(b) Generated samples

Figure 21: Real and generated samples for the GMM dataset on the human manifold (Bronstein et al.,
2008).
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