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ABSTRACT

Stochastic Gradient Descent (SGD) plays a key role in training deep learning mod-
els, yet its ability to implicitly regularize and enhance generalization remains an
open theoretical question. We apply Large Deviation Theory (LDT) to analyze why
SGD selects models with strong generalization properties. We show that the gener-
alization error jointly depends on the level of concentration of its empirical loss
around its expected value and the abnormality of the random deviations stemming
from the stochastic nature of the training data observation process. Our analysis
reveals that SGD gradients are inherently biased toward models exhibiting more
concentrated losses and less abnormal and smaller random deviations. These theo-
retical insights are empirically validated using deep convolutional neural networks,
confirming that mini-batch training acts as a natural regularizer by preventing
convergence to models with high generalization errors.

1 INTRODUCTION

Stochastic Gradient Descent (SGD) has become a crucial tool in modern deep learning, driving the
training of models that power today’s AI applications (Bottou, 2010). In addition to being an efficient
optimization algorithm, SGD plays a vital role in shaping the generalization performance of models,
particularly in overparameterized systems where many solutions can perfectly fit the training data
(Zhang et al., 2017). Remarkably, SGD exhibits an implicit bias toward solutions that generalize well
to unseen data, an intriguing phenomenon that has captured the attention of researchers.

A key reason for this implicit bias is the inherent noise from the stochastic nature of gradient updates
in SGD (Neyshabur et al., 2015b; Zou et al., 2021). This noise directs the optimization process
toward flat minima —solutions that are less sensitive to data perturbations— resulting in models with
robust generalization (Keskar et al., 2016). Researchers have linked this behavior to a preference for
simpler, lower-complexity solutions, indicating that SGD’s stochasticity acts as an implicit regularizer
(Neyshabur et al., 2015b; Hardt et al., 2016; Zou et al., 2021; Tian et al., 2023). Recent studies show
that, even in simple models like linear regression, SGD’s implicit regularization can outperform
explicit methods like ridge regression, especially in overparameterized settings (Zou et al., 2021).
These insights underscore the importance of algorithmic regularization in deep learning, yet there is
still a pressing need for new perspectives and explanations to unravel the relationship between SGD,
noise, and generalization. The exact nature of this phenomenon remains one of the most compelling
open questions in theoretical machine learning (Ghorbani et al., 2019).

We present a novel theoretical analysis of SGD’s implicit bias using principles from Large Deviation
Theory (LDT) (Ellis, 2006; Touchette, 2009). We introduce a new decomposition of the generalization
error based on the rate function, showing that it depends on the concentration of empirical loss around
its expected value and the magnitude of random deviations from the stochastic training data. This
decomposition breaks the gradient of the training loss into three terms: (i) biases the algorithm
toward models with lower expected loss, (ii) favors less concentrated empirical losses, and (iii)
promotes models with larger random deviations. We show that small mini-batches prevent SGD from
converging to models with large generalization error.

These findings provide a new perspective on SGD and suggest ways to improve optimization.
Specifically, we show that SGD does not need to follow every mini-batch’s gradients to achieve low
generalization error. By discarding mini-batches that contribute little information, we can achieve
more efficient solutions with better generalization, paving the way for enhanced performance in SGD.
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2 PRELIMINARIES

In this work, we build on the idea that the empirical loss of each model in a given class behaves
as a random variable with a distinct mean and varying concentration around that mean. A dataset
induces a realization of this random variable. Formally, let D represent a training dataset of size
n > 0, generated i.i.d. from an unknown distribution ν(y,x). The model class is parameterized by
θ ∈ Θ, and for each model θ, its loss function ℓ(y,x,θ) is assumed to be positive. The expected loss
is L(θ) = Eν [ℓ(y,x,θ)], while the empirical loss on dataset D is L̂(D,θ) = 1

n

∑n
i=1 ℓ(yi,xi,θ).

The empirical loss L̂(D,θ) behaves as a random variable L̂n(θ), as it is derived from the randomly
sampled dataset D ∼ νn. The realized value of L̂n(θ) when the dataset D is observed is denoted as
L̂(D,θ). Each model’s empirical loss L̂n(θ) has mean equal to L(θ), but the degree of concentration
around this mean varies. Figure 1 (left) illustrates this with histograms for three InceptionV3 models
(Szegedy et al., 2016), using datasets of size n = 50, produced using methods from Masegosa and
Ortega (2024). The histograms show that concentration varies: the Initial model (using Kaiming or
He initialization (He et al., 2015)) is highly concentrated around its mean L(θ) = ln 10, while the
ℓ2-regularized model also has greater concentration compared to the Standard model.

Empirical risk minimization seeks to find a model θ that minimizes the realized empirical loss,
minθ L̂(D,θ). The main challenge is to choose models whose empirical loss is close to the expected
loss L(θ), ensuring a small generalization error, defined as the difference between L̂(D,θ) and L(θ).
This work demonstrates that generalization error is influenced by two key factors: (i) the level of
concentration of the random variable L̂n(θ); a small empirical loss L̂(D,θ) could result from a
model with a high expected loss L(θ) but poor concentration, which is undesirable since such models
generalize poorly. It could also come from a model with a well-concentrated L̂n(θ) and a lower mean
L(θ), the desired outcome. (ii) the level of abnormality of the generalization error, which refers to
the possibility that a small empirical loss may be due to an unlikely, abnormal occurrence from the
left tail of L̂n(θ), irrespective of the concentration level.

In order to mathematically formalize these two factors, we use the so-called rate function, the central
function in LDT, which is denoted by Iθ(a) : R → R, and it is defined as the Legendre transform of
the cumulant generating function, denoted by Jθ(λ) : R → R+. In this work, we introduced a signed
version of the rate function and consider the cumulant generating function of the model’s centered
loss. These two functions are defined as

Jθ(λ) = lnEν

[
eλ(L(θ)−ℓ(y,x,θ))

]
and Iθ(a) = sign(a) · sup

λ∈R
λa− Jθ(λ) , (1)

where Iθ(a) is a signed rate function to make it invertible in R. The rate Iθ(a) and the cummulant
Jθ(λ) are well defined, positive and strictly monotonic real-valued functions, satisfying Iθ(0) = 0
and Jθ(0) = 0 (Rockafellar, 1970).

The relevance of the rate function is consequence of Chernoff’s bound, which upper-bounds how
likely is to observe an empirical loss L̂(D,θ) that largely deviates from the expected loss L(θ).

Theorem 1 (Chernoff (1952)). For any fixed θ ∈ Θ and n > 0, it satisfies

∀a ≥ 0, PD∼νn

(
L(θ)− L̂(D,θ) ≥ a

)
≤ e−n|Iθ(a)|,

∀a ≤ 0, PD∼νn

(
L(θ)− L̂(D,θ) ≤ a

)
≤ e−n|Iθ(a)| .

(2)

On the other hand, Cramér’s Theorem (Cramér, 1938) states that Chernoff’s bound is exponentially
tight for large n. Formally, this statement is written as follows,

Theorem 2 (Cramér (1938); Ellis (2006)). For any fixed θ ∈ Θ and any a > 0, it satisfies

lim
n→∞

− 1

n
lnPD∼νn

(
L(θ)− L̂(D,θ) ≥ a

)
= |Iθ(a)| .

The same result holds for the left tail, PD∼νn

(
L(θ)− L̂(D,θ) ≤ a

)
with a ≤ 0. In LDT, the above

asymptotic result is stated by saying the Chernoff’s bound is exponentially tight for large n. Formally,
there exists a function o(n, a) such that limn→∞

1
no(n, a) = 0, verifying

∀a ≥ 0, PD∼νn

(
L(θ)− L̂(D,θ) ≥ a

)
= e−n|Iθ(a)|+o(n,a) ≍ e−n|Iθ(a)| , (3)
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Figure 1: Visualization of the distribution L̂n(θ) (left), the rate function Iθ(a) (center), and the
abnormality α(D,θ) (right) for three InceptionV3 models trained on CIFAR-10. The models
considered include a standard SGD-trained model, a ℓ2-regularized model, and the initial model
before training. In the right panel, the Exponential of n is displayed twice to illustrate Theorem 4.

where ≍ denotes asymptotic equality (Ellis, 2006). The expression above demonstrates that the exact
value of PD∼νn(L(θ)− L̂(D,θ) ≥ a) is determined by the rate function, along with an additional
sub-exponential term that becomes negligible for sufficiently large n. Therefore, for large n, the
rate function effectively captures the level of concentration of the empirical loss L̂n(θ) around its
expected value L(θ), because it defines the survival function of the random variable L(θ)− L̂(D,θ)
with D ∼ νn. As a result, models with larger rate functions are less likely to exhibit large differences
between their expected and its realized empirical losses. This relationship within the context of
machine learning has been recently examined by Masegosa and Ortega (2024).

Figure 1 (center) presents the rate functions for the three previously discussed InceptionV3 (Szegedy
et al., 2016) neural networks, estimated using the procedures outlined in Masegosa and Ortega
(2024). The rate functions clearly reflect the varying levels of concentration in the empirical losses,
as depicted by the histograms in Figure 1 (left). The Initial model exhibits a prominent rate function,
while the Standard model has a smaller rate function compared to the ℓ2-regularized model.

3 THE IMPLICIT BIAS OF GRADIENT DESCENT (GD)

In this section, we introduce a novel decomposition of a model’s generalization error, formalize
the concept of abnormality in the generalization error, and demonstrate how (full-batch) Gradient
Descent (GD) is biased toward finding models with poorly concentrated empirical losses and whose
realized empirical loss deviates abnormally from the expected loss.

DECOMPOSING THE EMPIRICAL LOSS

The following result presents a novel decomposition of the empirical loss in terms of the expected loss
L(θ), the inverse of the (signed) rate function, denoted I−1

θ (s), and a function α : D ×Θ → R. As
argued in the next section, α(D,θ) measures the degree of abnormality of the observed generalization
error, L(θ)− L̂(D,θ), for the model θ.

Proposition 3. For any D ∼ νn and any θ ∈ Θ, we have that

L̂(D,θ) = L(θ)− I−1
θ (α(D,θ)) . (4)

where α : D ×Θ → R is defined as α(D,θ) := Iθ(L(θ)− L̂(D,θ)).

Although the above decomposition is technically simple, it effectively breaks down the empirical loss
into three distinct components with highly meaningful interpretations. The first component is the
expected loss, denoted as L(θ). The second component, a composite term, measures the deviation
of the observed empirical loss from its expected value, often referred to as the generalization error.
Within this term, the function I−1

θ (s) defines the level of concentration of L̂n(θ) around its expected
value. As shown in Section 2, models with a high rate function exhibit greater concentration. Conse-
quently, models with a smaller inverse rate function I−1

θ (s) are more concentrated too. Actually, a
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second-order Taylor expansion I−1
θ (s) around s = 0 shows how this quantity is closely related to

the standard-deviation of the loss of a model, denoted by σ(θ):

I−1
θ (s) ≈ sign(s)

√
2|s|σ(θ) , where σ(θ) :=

√
Eν [(ℓ(y,x,θ)− L(θ))2] . (5)

Finally, it is important to note that both L(θ) and I−1
θ (s) are deterministic; all the randomness in

L̂(D,θ) arises from the abnormality value α(D,θ). As we will show in the next section, the value of
α(D,θ) represents the degree of abnormality in the magnitude of the generalization error. α(D,θ)
will be higher when the observed L̂(D,θ) comes from the tails of L̂n(θ) and small otherwise. Since
I−1
θ (s) increases monotonically with s (Rockafellar, 1970), a larger α(D,θ) value leads to a greater

difference between L(θ) and L̂(D,θ).

THE ABNORMALITY OF THE GENERALIZATION ERROR

In this work, we propose that α(D,θ), as defined in Proposition 3, serves as a measure of the degree
of abnormality in an observed generalization error. A large difference between L̂(D,θ) and L(θ) can
be considered highly unlikely or abnormal if the model’s empirical loss L̂n(θ) is tightly concentrated
around its mean L(θ), indicating that L̂(D,θ) is sampled from the tails of L̂n(θ). Conversely, the
same difference between L̂(D,θ) and L(θ) may not be abnormal for a model whose empirical loss
L̂n(θ) is poorly concentrated.

Using the approximation of Equation (5), we can derive the following approximation for α(D,θ):

α(D,θ) ≈ sign(L(θ)− L̂(D,θ))σ(θ)−2(L(θ)− L̂(D,θ))2 . (6)

From this approximation we can start to understand why large α(D,θ) values corresponds to
situations where L̂(D,θ) is abnormally distant from its mean L(θ). In general, according to Theorem
2, α(D,θ) asymptotically equals the (normalized) log-probability of observing a generalization error
higher or equal than L(θ)− L̂(D,θ) as:

α(D,θ) ≍ − 1
n lnPS∼νn

(
L(θ)− L̂(S,θ) ≥ L(θ)− L̂(D,θ)

)
. (7)

Intuitively, given a fixed dataset D, the abnormality rate α(D,θ) measures the log-probability of
observing, for another dataset S, a larger generalization error than the one observed with D. Using
it to compare two models θ and θ′, if α(D,θ) ≥ α(D,θ′), observing, for another dataset S ∼ νn, a
generalization error higher or equal than the one observed with D is more unlikely for θ than for θ′.
We then say that the observed generalization error for D was more abnormal under θ than under θ′.

The following result shows how α(D,θ), as a random variable over D ∼ νn, is highly related to an
exponential distribution of parameter n:
Theorem 4. For any θ ∈ Θ, n > 0 and D ∼ νn, the cumulative of distribution of α(D,θ) satisfies

∀s > 0 PD∼νn

(
α(D,θ) ≥ s

)
≤ e−n|s| and ∀s < 0 PD∼νn

(
α(D,θ) ≤ s

)
≤ e−n|s| ,

(8)
and both inequalities are asymptotically tight,

∀s > 0 PD∼νn(α(D,θ) ≥ s) ≍ e−n|s| and ∀s < 0 PD∼νn(α(D,θ) ≤ s) ≍ e−n|s| . (9)

The result given by Equation (8) shows that the tails of the distribution of α(D,θ) are always thinner
than those of an exponential distribution with rate n, denoted as Exp(n). Crucially, this always
happens regardless of the model or the data-generating distribution. This insight allows us to
accurately quantify the degree of abnormality in the generalization error of a model by positioning the
corresponding α(D,θ) value within the tail of an exponential distribution. For example, in a dataset
of size 50 000, when α(D,θ) ≥ 1

50 000 ln
1

0.01 ≈ 0.0001, the probability of randomly observing
such an event is less than 1%. This is a universal cut-off, because it is applicable for any model and
for any data-generating distribution.

The second result, presented in Equation (9), shows that for large datasets, α(D,θ) closely approx-
imates a zero-centered double-exponential distribution, or Laplace distribution, regardless of the
model or the data-generating distribution. This indicates that for large datasets, the stochasticity
associated with L̂(D,θ) can be effectively represented by a Laplace distribution, independently of
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Figure 2: Evolution of training and test loss (left), loss variance (center), and abnormality rate (right)
for InceptionV3 models trained with varying batch sizes. ℓ2 regularization is applied to the model
trained with a larger batch size. In the right panel, α(Bt,θt) is depicted with a shadowed color to
emphasize its proximity to α(D,θ).

the model family or the underlying data-generating process. Figure 1 (right) illustrates this point with
surprising accuracy. The figure shows how the empirical distribution of α(D,θ) for three very differ-
ent InceptionV3 models trained on Cifar10, where D ∼ ν50, closely resembles a double-exponential
or Laplace distribution, even with such as a small n value. As conclusion, the distribution of L̂n(θ)
for large n values can be expressed as:

L̂(D,θ) ≈ L(θ)− I−1
θ (s) , s ∼ Laplace(0, n) . (10)

The above equation resembles the reparametrization of a Gaussian distribution, particularly when
considering the approximation given in Equation (5). This perspective highlights a novel asymptotic
approximation of the generalization error offered by Large Deviation Theory (LDT) (Ellis, 2006),
that, at first, differs from the one provided by the Central Limit Theorem.

THE IMPLICIT BIAS OF GRADIENT DESCENT (GD)

Proposition 3 sheds light on the different trade-offs involved in the minimization of the empirical
loss. This result can be used to decompose the gradient of L̂(D,θ) in three different terms at each
iteration t of the optimization process followed by GD. More precisely:

∇θL̂(D,θt) = ∇θL(θt)−∇θI−1
θt

(s)|s=α(D,θt)
−∇sI−1

θt
(s)|s=α(D,θt)

∇θα(D,θt) . (11)

To simplify the analysis, and without any loss of generality, we will assume through the rest of
the paper that L(θt) > L̂(D,θt), because this is always the case in GD after very few iterations.
According to Proposition 3 and the above decomposition of the gradient, when GD minimizes the
empirical loss L̂(D,θ) involves the minimization/maximization of the following terms:

1. ∇θL(θt) points towards models with small expected loss L(θ).

2. −∇θI−1
θt

(s) points towards models with poorly concentrated L̂n(θ).

3. −∇θα(D,θt) points towards models with abnormal generalization errors.

The third term in the decomposition is multiplied by ∇sI−1
θt

(s)|s=α(D,θt)
, which is a scalar. Since

L(θt) > L̂(D,θt), this term is always positive and does not influence the gradient’s direction.

These dynamics are clearly depicted in Figure 2, which illustrates the behavior of the gradient
descent optimizer with very large batches (batch size 5 000). In Figure 2 (left), we observe that
L̂(D,θ) decreases monotonically, while L(θ) decreases during the first half of the iterations but then
begins to slightly increase in the latter half. Figure 2 (center) displays the evolution of the variance
of the model’s loss function, which is a proxy to measure the degree of concentration of L̂n(θt),
showing a consistent increase over time. Finally, Figure 2 (right) demonstrates the progression of the
abnormality rate α(D,θ), which steadily rises during the entire optimization process.

It is noteworthy to see how GD converges to models whose realized empirical loss L̂(D,θ) is
very abnormally far from the expected loss L(θ). To get a sense of how much abnormal are these

5
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Figure 3: Cosine similarities between using the full dataset D and mini-batches Bt of the three
gradient components of Equation (12); namely, train loss, inverse rate and abnormality rate. The same
InceptionV3 models of Figure 2 are considered. As shown, gradients of I−1

θt
(α(·,θt)) are perfectly

aligned using D or Bt, meaning that batch misalignment in ∇θL̂(·,θt) is governed by ∇θα(·,θt).

deviations, we can use Theorem 4 and compute the probability of observing an α(D,θ) value
of 0.7 when the dataset D has a size n = 50 000. This probability is equal to or smaller than
e−50 000·0.7 ≈ 10−8 000, which represents an astronomically small probability. The occurrence of
this extremely unlikely event can only be explained by recognizing that gradient descent explores
a vast space of different realizations of (potentially independent) random variables L̂n(θ), one for
each model in the model class. When we have a very large model class and explore the empirical loss
over a particular dataset D, we are really exploring the realizations of a very large number of random
variables. It is inevitable that, by chance, some of these realizations will deviate abnormally far from
their mean. This phenomenon is independent of the level of concentration of the random variable.
The following inequality shows how smaller model classes make α(D,θ) takes smaller values.
Proposition 5. Let be Θ a finite model class with M models. Then, with h.p. 1− δ over D ∼ νn,

P
( ⋂

θ∈Θ

α(D,θ) ≤ 1

n
ln

M

δ

)
≥ 1− δ .

4 THE IMPLICIT BIAS OF STOCHASTIC GRADIENT DESCENT (SGD)

Stochastic Gradient Descent (SGD) seeks to minimize L̂(D,θ) by following the gradients of
L̂(Bt,θt), where Bt represents the mini-batch processed by SGD at iteration t. When batch sizes
are large, the gradients of L̂(D,θ) and L̂(Bt,θt) are closely aligned. However, as the batch size
decreases, this alignment can deteriorate significantly. This effect is empirically illustrated by the
green dots of Figure 3, these green dots display the cosine similarity between ∇θL̂(Bt,θt) and
∇θL̂(D,θt) computed for trained InceptionV3 models with different batch sizes. With large batch
sizes, the gradients of L̂(D,θt) and L̂(Bt,θt) are strongly aligned. However, for smaller batch sizes
(those typically used in machine learning), the misalignment is much higher.

This misalignment between the gradients of L̂(D,θt) and L̂(Bt,θt) is the effect of the so-called
gradient noise introduced by SGD (Keskar et al., 2017; Jastrzebski et al., 2017). This gradient noise
is known to be the key factor behind the superior generalization performance of models trained
with SGD compared to those trained with GD. Although both SGD and GD converge to neural
networks that minimize and interpolate the training data (i.e., L̂(D,θ) ≈ 0), the minima found by
SGD typically result in better generalization error (Hochreiter and Schmidhuber, 1997). Figure 2
(left) illustrates this widely recognized effect in the literature.

In this section, we show how the misalignment between the gradients of L̂(D,θt) and L̂(Bt,θt)
can be clearly identified and understood using the decomposition of the empirical loss presented in
Equation (4). Similarly to the gradient decomposition shown in Equation (11), we can decompose
the gradient of L̂(Bt,θt) as follows,

∇θL̂(Bt,θt) = ∇θL(θt)−∇θI−1
θt

(s)|s=α(Bt,θt)
−∇sI−1

θt
(s)|s=α(Bt,θt)

∇θα(Bt,θt) . (12)

The first component of this decomposition, ∇θL(θt), is independent of the batch Bt, and thus
remains the same for both GD and SGD. As a result, any differences between the gradients in GD

6
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and SGD must stem from the other two components. However, we will argue that the second term
involving ∇θI−1

θt
is (nearly) perfectly aligned with the same second component of ∇θL̂(D,θ) beside

of the use of mini-batches, concluding that the stochasticity in SGD is governed fully by the last term.

ON THE ALIGNMENT OF ∇θI−1
θt

(s) IN GD AND SGD

Figure 3 shows that the cosine similarity between ∇θI−1
θt

(s)|s=α(D,θt)
and ∇θI−1

θt
(s)|s=α(Bt,θt)

remains consistently close to 1 or −1 across all models encountered during the SGD optimization
process, irrespective of the batch size. In fact, this quantity goes to −1 only when L(θt)− L̂(Bt,θt)
and L(θt) − L̂(D,θt) have different signs, which usually never happens after a few optimization
steps, because, after few iterations, we always have that L(θt) > L̂(Bt,θt) and L(θt) > L̂(D,θt),
as shown in Figure 2 (left).

We can theoretically explain why the inverse rate gradient of SGD in Equation (12) is perfectly align
with its full-batch version at the early stages of the training procedure (when the values of α(Bt,θt)
are low) and at the final stages (when α(Bt,θt) is large). Firstly, consider the first iterations of SGD,
when L̂(Bt,θt) are still relatively close to L(θt). In that cases, α(Bt,θt) is close to 0, as illustrated
in Figure 2 (right), because lima→0 Iθ(a) = 0. In that regime, using a second order approximation
around s = 0, as shown in Equation (5), we got that I−1

θ (s) ≈ sign(s)
√
2|s|σ(θ). The direction of

the gradient w.r.t. θ of such quantity does not depend on s, and hence, does not depend on Bt through
s = α(Bt,θt). As a result, using different mini-batches does not affect the direction of the gradient
of I−1

θ (s) at the early stages of the training setup. The particular mini-batch only affects the norm of
this gradient. On the other hand, at the latter stages of the learning when L̂(Bt,θt) ≈ 0, by adapting
Proposition 3 for batches Bt, we have that I−1

θ (α(Bt,θt)) ≈ L(θt) and the same argument holds:
the different mini-batches does not affect direction of the gradient ∇θI−1

θ (s)|s=α(Bt,θt)
. These

approximations are shown in Figure A.6 for different batch sizes. They hold quite well for a large
part of the training process.

Our hypothesis to explain the perfect alignment observed in the middle phase of training is that
∇θI−1

θ (s) can also be accurately approximated as the product of two functions, ∇θI−1
θ (s) =

f(s,θ)∇θg(θ), similar to what occurs in the early and late training stages. As a result, the abnor-
mality rate α(Bt,θt) influences only the magnitude, not the direction, of the inverse rate’s gradient.
Although a exploration of this decoupled gradient approximation is beyond the scope of this work,
the following result demonstrates that, for linearized neural networks (a commonly used approxi-
mation valid in the infinite-width limit (Jacot et al., 2018)) and under certain assumptions about the
data-generating distribution, this gradient decoupling of the inverse rate indeed always holds.

Proposition 6 (Informal). In regression problems with mean squared error loss and under a model
linearization hypothesis with Gaussian feature vectors, the gradient of the inverse-rate function can
be expressed as ∇θI−1

θ (s) = f(s,θ)∇θσ(θ).

The conclusion of all these analyses is that both the first and second components of the stochastic
gradient ∇θL̂(Bt,θt) are perfectly aligned with the corresponding components of the full-batch
gradient ∇θL̂(D,θt). Therefore, the primary source of gradient noise in SGD arises from the
misalignment between the third components of the stochastic and full-batch gradients.

SGD PREVENTS HIGHLY ABNORMAL GENERALIZATION ERRORS

SGD promotes models with abnormal generalization errors due to ∇θα(D,θt) appearing in the
decomposition of Equation (12). Figure 3 shows how, under large batches, ∇θα(Bt,θt) is almost
perfectly aligned with ∇θα(D,θt), directing the optimizer towards models with abnormal gener-
alization errors (i.e., models with larger α(D,θt) values) as shown in Figure 2 (right). However,
this figure also shows how SGD with small mini-batches leads to models with much less abnormal
generalization errors. In this case, Figure 3 (left) shows how the the gradients ∇θα(Bt,θt) are highly
misaligned with ∇θα(D,θt). It is important to observe that, in the gradient decompositions of GD
and SGD given by Equations (11) and (12), the final term is multiplied by a gradient, which acts
as a scalar. Consequently, the cosine distance between these third components is equivalent to that
between the α(D,θt) and α(Bt,θt)) components.

7
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Figure 4: Evolution on KL divergence from Theorem 7 (left), norm difference between training
loss and expected loss gradients (center) and cosine similarity between the gradients (right) of the
InceptionV3 models trained on Cifar10 for different batch sizes.

Let denote θ×
t an update of θt by following the gradient of α(Bt,θt) instead of α(D,θt). That

is, θ×
t = θt + γ∇θα(Bt,θt) for a step-size γ > 0. The alignment between ∇θα(Bt,θt) and

∇θα(D,θt) determines the value of α(D,θ×
t ). When γ is small, we can use a Taylor approximation

of order 1 on α(D,θ×
t ), centered at θt, to estimate α(D,θ×

t ),

α(D,θ×
t ) ≈ α(D,θt) + γ∇θα(D,θt)

T∇θα(Bt,θt) .

Naming β the angle between ∇θα(D,θt) and ∇θα(Bt,θt), that is, their cosine similarity, we can
rewrite the above equation as

α(D,θ×
t ) ≈ α(D,θt) + γ∥∇θα(D,θt)∥∥∇θα(Bt,θt)∥ cos(β) .

As a result, if the two gradients are highly misaligned, cos(β) will take on small positive or even
negative values, as illustrated in Figure 3 (left). This leads to smaller increases or even decreases in
α(D,θt). In contrast, as shown in Figure 3 (right), using larger batches results in cos(β) values that
are closer to 1, which facilitates a more straightforward increase in α(D,θt).

Overall, we observe that the primary effect of gradient noise in SGD is to bias the optimizer toward
models with less abnormal generalization errors, which, according to Proposition 3, leads to models
with smaller generalization error. In the next section, we explore another consequence of this bias.

ON WHY SGD IS BIASED TOWARDS MODELS WITH LOWER GENERALIZATION ERROR

On average, SGD follows the gradients of L̂(D,θ), meaning EB∼D[∇θL(B,θ)] = ∇θL̂(D,θ),
where B ∼ D represents the mini-batches sampled from the dataset D. In the next result, we
show that the similarity between the gradients of L̂(D,θ) and L(θ) improves for models whose
generalization error is less abnormal. The key result is that the gradient of L̂(D,θ) can be represented
as an expectation over an alternative distribution γ, where the KL divergence between γ and the true
data distribution ν increases with the abnormality α(D,θ). By keeping this abnormality low, the
gradients of L̂(D,θ) for the models visited by SGD are more similar to those of L(θ), leading to
models with lower expected loss.

Theorem 7. For any θ ∈ Θ, n > 0 and D ∼ νn, there exists a distribution γ(y,x) that depends on
θ and α(D,θ), such that,

∇θL̂(D,θ) = ∇θEγ [ℓ(y,x,θ)] (13)

and KL (ν | γ) is monotonically increasing with α(D,θ) and KL (ν | γ) = 0 if α(D,θ) = 0.
Furthermore, if the loss function ℓ(y,x,θ) is M -Lipschitz with respect to (y,x). Then,

∥∇θI−1
θ (s)|s=α(D,θ) ∥2 ≤ M

√
2 KL (ν | γ) . (14)

Equation (13) suggests that the difference between the expected and empirical gradients is thus
governed by the difference between ν and γ,

∇L(θ) = ∇θEν [ℓ(x,y,θ)], ∇L̂(D,θ) = ∇θEγ [ℓ(x,y,θ)] .

8
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Figure 5: Evolution on train/test loss (upper left), variance (upper center), abnormality rate (upper
right), KL divergence from Theorem 7 (lower left), distance (lower center) and cosine similarity
(lower right) between training loss and expected loss gradients of the InceptionV3 models trained on
Cifar10 using batch size of 250 and the skipping procedure described in Section 4.

Following the procedures in Masegosa and Ortega (2024), KL (ν | γ) can be easily estimated using
Proposition 16 and the test set. Figure 4 (left) illustrates that SGD with smaller mini-batches tends to
explore models where this KL divergence is significantly reduced, which, as shown in Theorem 7,
results from the decreased level of abnormality α(D,θ) in the models visited by SGD. Consequently,
the gradients of L̂(D,θ) and L(θ) should become more similar, as suggested by Theorem 7. The
experimental findings presented in Figure 4 (center and right) support this theoretical analysis.

Equation (14) in Theorem 7 shows how the KL (ν | γ) term also limits the norm of the second
component of the gradient of L̂(D,θ) in Equation (11), which also aligns with the idea that the
gradient of L̂(D,θ) become more similar to the gradient of L(θ) according the decomposition given
in Equation (11). As a consequence, a smaller abnormality induces a smaller KL term and, in turn, a
gradient of the inverse rate with smaller norm. The consequence is that the optimizer is less biased
to models with a poorly concentrated loss. Figure A.7 (left) shows how the norm of this gradient is
(relatively) smaller for SGD with smaller mini-batches. And this would explain why SGD is also
biased towards models with more concentrated losses, as shown in Figure 2 (center).

DISCARDING HIGHLY ABNORMAL MINI-BATCHES

To further validate our results, we conducted an experiment in Figure 5 where we applied SGD
optimization but discarded batches with α(Bt,θt) values deemed large. We used Theorem 4
to determine when an α(Bt,θt) value was considered large, discarding batches where α(Bt,θt)
exceeded a pre-specified quantile of the corresponding exponential distribution. The rationale is that
if a batch is highly abnormal (i.e., the probability of observing it is below 0.001, this threshold is
called skip size in Figure 5), the similarity between its gradient and the gradient of the expected loss
is likely to be poor, as the term KL (ν | γ), which controls this similarity, would be large according to
Theorem 7. Therefore, in such cases, it’s more effective to skip the batch, avoid following its gradient,
wait for the next batch and repeats the procedure.

Figure 5 supports our theoretical analysis. The reduction in the level of abnormality leads to effects
analogous to those seen when reducing the batch size, as when transitioning from GD to SGD. This
corroborates the idea that by reducing the level of abnormality, we can biased the optimizer towards
models with smaller generalization error. This experiment should not be interpreted as a novel
training approach because to compute α(Bt,θt), we are using the test set to approximate ν.

9
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5 RELATED WORK

The generalization capabilities of Stochastic Gradient Descent (SGD) have been extensively studied,
with various theories proposed to explain why SGD often outperforms deterministic optimization
methods in terms of generalization. A prominent line of research attributes this phenomenon to the
tendency of SGD to converge to flat minima in the loss landscape. Hochreiter and Schmidhuber
(1997) first introduced the concept of flat minima, suggesting that solutions located in wide, flat
regions of the loss surface generalize better to unseen data. This idea has been further explored by
many other works (Keskar et al., 2016), who observed that small-batch SGD gravitates towards flatter
minima, while large-batch training tends to find sharp minima associated with poorer generalization.
Although our work focuses on the concentration properties of the empirical loss rather than the
geometry of the loss landscape, our main hypothesis is that the connection between these two lines of
research is that flatter minima correspond to models which are more concentrated and/or with less
abnormal generalization error.

Another perspective considers the implicit regularization effect of SGD. Neyshabur et al. (2015a)
proposed that SGD biases models towards solutions with smaller norms, aligning with capacity
control theories that relate model complexity to generalization. This implicit norm minimization
effect has been linked to the generalization performance of deep neural networks, as networks
with smaller weights are thought to be less prone to overfitting (Bartlett et al., 2017). The work
of Masegosa and Ortega (2024) would establish a link between these works and our work, as it
establishes that models with smaller norms exhibit greater concentration in their empirical losses.

Works using concentration bounds to understand SGD build on the same conceptualization by treating
the empirical loss of each model as a random variable (Kawaguchi et al., 2017; Bartlett et al., 2017;
Neyshabur et al., 2017; Golowich et al., 2018; Liang et al., 2019). However, these works typically
rely on upper bounds, which are often known to be vacuous or overly loose in deep neural networks
(Nagarajan and Kolter, 2019; Gastpar et al., 2024). Moreover, they generally do not account for the
individual concentration properties of each model in the hypothesis space, potentially overlooking
critical nuances in how different models generalize (Casado et al., 2024). In contrast, our work
leverages a fundamental equality that directly decomposes the training loss into distinct components,
providing a more nuanced and detailed analysis that goes beyond the limitations of traditional
concentration bounds.

6 CONCLUSIONS AND LIMITATIONS

In this work, we have presented a novel theoretical analysis of Stochastic Gradient Descent (SGD)
using principles from Large Deviation Theory (LDT). Our findings reveal that the generalization
error in SGD can be decomposed into components influenced by the expected loss, the concentration
of the empirical loss, and the level of abnormal deviations from the expected value.

Our analysis reveals that the primary effect of gradient noise in SGD is to limit the exploration of
models where the empirical loss deviates substantially from the expected loss. We show that this
effect ensures that SGD tends to visit models where the empirical gradients closely align with the
expected gradients, resulting in a more effective reduction of the expected loss and, consequently,
leading to models with lower generalization error.

While this work offers valuable theoretical insights into the implicit regularization effects of SGD,
there are several limitations that need to be addressed. Firstly, although we introduced the concept of
SKIP-SGD, we did not provide a fully developed alternative to standard SGD. We believe, however,
that this approach could be transformed into a viable optimization technique by using an independent
validation dataset to compute α(Bt,θt), potentially paving the way for entirely new variations of
SGD. Secondly, our empirical findings were limited to a specific set of models, and it is crucial to
validate these results across a broader range of architectures and tasks to ensure their generalizability.
Lastly, the role of explicit regularization methods, such as ℓ2 regularization or the use of invariant
architectures, should be investigated within this framework to better understand how they interact
with and influence the implicit biases of SGD.
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Figure A.6: Evolution of the inverse rate evaluated at α(Bt,θt). Two other functions are also shown,
one that perfectly fits the inverse rate at the early stages and another that perfectly fits for the latter
stages of the training procedure. The same InceptionV3 models of Figure 2 are considered.

0 1000 2000 3000
Iterations

0.0

0.5

1.0

0 1000 2000 3000
Iterations

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Batch Size 250

Batch Size 500

Batch Size 5000

Batch Size 250 Skip 0.001

Batch Size 250 Skip 0.005

Batch Size 250 Skip 0.01

Figure A.7: Evolution of ∥∇θI−1
θt

(s)|s=α(D,θt)∥2 divided by ∥∇θL(θt)∥2 for different InceptionV3
models trained with different batch sizes and SGD-SKIP procedures. The same models that were
used in Figures 2 and 5 are considered here.

A EXPERIMENTAL DETAILS

The conducted experimentation can be found in the anonymous Github Repository https://
github.com/SGDAbnormality/SGDAbnormality.

B THEOREMS AND PROOFS

Proposition 3. For any D ∼ νn and any θ ∈ Θ, we have that

L̂(D,θ) = L(θ)− I−1
θ (α(D,θ)) . (15)

where α : D ×Θ → R is defined as α(D,θ) := Iθ(L(θ)− L̂(D,θ)).

Proof. This is a direct consequence of the fact that the (signed) rate function Iθ(·) is a bijective
function. This in turn is a consequence of the fact that the non-signed rate function is strictly convex
and positive in R (Rockafellar, 1970).

Theorem 4. For any θ ∈ Θ, n > 0 and D ∼ νn, the cumulative of distribution of α(D,θ) satisfies

∀s > 0 PD∼νn

(
α(D,θ) ≥ s

)
≤ e−n|s| and ∀s < 0 PD∼νn

(
α(D,θ) ≤ s

)
≤ e−n|s| ,

(16)
and both inequalities are asymptotically tight,

∀s > 0 PD∼νn(α(D,θ) ≥ s) ≍ e−n|s| and ∀s < 0 PD∼νn(α(D,θ) ≤ s) ≍ e−n|s| .
(17)
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Proof. From Theorem 1 we got that

∀a ≥ 0, PD∼νn

(
L(θ)− L̂(D,θ) ≥ a

)
≤ e−n|Iθ(a)|,

∀a ≤ 0, PD∼νn

(
L(θ)− L̂(D,θ) ≤ a

)
≤ e−n|Iθ(a)| .

(18)

As a result, for any value of s ∈ R, taking a = I−1
θ (s), we got

∀s ≥ 0, PD∼νn

(
L(θ)− L̂(D,θ) ≥ I−1

θ (s)
)
≤ e−n|s|,

∀s ≤ 0, PD∼νn

(
L(θ)− L̂(D,θ) ≤ I−1

θ (s)
)
≤ e−n|s| .

(19)

As Iθ(·) is a strictly monotonic and increasing function, we an apply it at both sides of the inequality
inside the probability, giving as:

∀s ≥ 0, PD∼νn

(
Iθ(L(θ)− L̂(D,θ)) ≥ s

)
≤ e−n|s|,

∀s ≤ 0, PD∼νn

(
Iθ(L(θ)− L̂(D,θ)) ≤ s

)
≤ e−n|s| .

(20)

The asymptotic inequalities can be obtained by applying the same reasoning to Equation (3), which
is a direct consequence of Cramér’s Theorem.

Proposition 5. Let be Θ a finite model class with M models. Then, with h.p. 1− δ over D ∼ νn,

P
( ⋂

θ∈Θ

α(D,θ) ≤ 1

n
ln

M

δ

)
≥ 1− δ .

Proof. By Chernoff’s Theorem 1, for a given θ, we have, that for any a ≥ 0, it verifies that
P(L(θ) − L̂(D,θ) ≥ a) ≤ e−n|Iθ(a)|. Naming δ′ := e−n|Iθ(a)| ≤ 1 and re-arranging terms,
a = I−1

θ

(
− 1

n ln δ′
)
≥ 0. This allows us to rewrite the first equation as

P
(
L(θ)− L̂(D,θ) ≥ I−1

θ

(
1
n ln 1

δ′

) )
≤ δ′ .

Using that the rate function Iθ(·) is a bijection, we got that

P
(
Iθ(L(θ)− L̂(D,θ)) ≥ 1

n ln 1
δ′

)
≤ δ′ =⇒ P

(
α(D,θ) ≥ 1

n ln 1
δ′

)
≤ δ′ .

Using an union bound over the set of M models,

P
( ⋃

θ∈Θ

α(D,θ) ≥ 1
n ln 1

δ′

)
≤
∑

θ∈Θ

P
(
α(D,θ) ≥ 1

n ln 1
δ′

)
.

As we have M different models, the r.h.s. can be rewritten as

P
( ⋃

θ∈Θ

α(D,θ) ≥ 1
n ln 1

δ′

)
≤ Mδ′ .

By reparametrizing the above inequality with δ′ = δM−1 we have

P
( ⋃

θ∈Θ

L(θ)− L̂(D,θ) ≥ 1

n
ln

M

δ

)
≤ δ .

Which verifies,
1− P

( ⋃

θ∈Θ

α(D,θ) ≥ 1

n
ln

M

δ

)
≥ 1− δ .

Which is equivalent to,

P
( ⋂

θ∈Θ

α(D,θ) ≤ 1

n
ln

M

δ

)
≥ 1− δ .

Proposition 8. Let A,B be open sets and f : A× B → R be a function on R. If we denote b⋆a the
maximum or the minimum over B for a fixed a ∈ A, i.e.,

b⋆a = argmax
b

f(a, b) or b⋆a = argmin
b

f(a, b) (21)

Then, we have that
∇af(a, b

⋆
a) = ∇af(a, b)|b=b⋆a

(22)
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Proof. It is clear that, using the chain rule

∇af(a, b
⋆
a) = ∇af(a, b)|b=b⋆a

+∇bf(a, b)b=b⋆a
∇ab

⋆
a . (23)

However, given that b⋆a is an optimal value, it verifies that ∇bf(a, b)b=b⋆a
= 0 by definition of

maximum/minimum. As a result,

∇af(a, b
⋆
a) = ∇af(a, b)|b=b⋆a

. (24)

Proposition 9. For any model θ ∈ Θ, it verifies that

∀s > 0 ∇θI−1
θ (s) =

1

λs
∇θJθ(λ

s) , (25)

where λs is defined as,

λs = argmin
λ>0

Jθ(λ) + s

λ
. (26)

Proof. Given that tha minimum in the refinition of the inverse rate function is reached, we can express
I−1
θ (a) as follows,

I−1
θ (s) =

Jθ(λ
s) + s

λs
. (27)

Then ∇θI−1
θ (s) can be computed as

∇θI−1
θ (s) = ∇θ

Jθ(λ
s) + s

λs
. (28)

And, by Proposition 8, this gradient does not have to propagate through λs. Then, it simplifies to,

∇θI−1
θ (s) =

1

λs
∇θJθ(λ

s) . (29)

which concludes the proof.

Proposition 10. Under the setup where the loss function is

ℓ(y,x,θ) = (y − fθ(x))
2
,

with fθ(x) linearized around θ0:

fθ(x) ≈ fθ0
(x) +∇θfθ0

(x)⊤(θ − θ0) ,

and assuming that
y = fθ0

(x) +∇θfθ0
(x)⊤(θ⋆ − θ0) ,

with ∇θfθ0(x) ∼ N (0,Σ), the variance of the loss function ℓ(y,x,θ) under the distribution ν(y,x)
is

Varν [ℓ(y,x,θ)] = 2 (L(θ))
2
,

where L(θ) = (θ⋆ − θ)⊤Σ(θ⋆ − θ) is the expected loss.

Proof. From the given assumptions, the loss function simplifies to

ℓ(y,x,θ) =
(
∇θfθ0

(x)⊤(θ⋆ − θ)
)2

.

Let δθ = θ⋆ − θ and define the random variable

Z = ∇θfθ0
(x)⊤δθ .

Since ∇θfθ0
(x) ∼ N (0,Σ), it follows that

Z ∼ N
(
0, σ2

)
,

where
σ2 = δθ⊤Σδθ = L(θ) .

Therefore, the loss function can be expressed as

ℓ(y,x,θ) = Z2 .

15
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To find the variance of ℓ(y,x,θ), we compute

Varν [ℓ(y,x,θ)] = Eν

[
(ℓ(y,x,θ))

2
]
− (Eν [ℓ(y,x,θ)])

2
.

First, compute the expected value:

Eν [ℓ(y,x,θ)] = Eν

[
Z2
]
= σ2 = L(θ) .

Next, compute the fourth moment:

Eν

[
(ℓ(y,x,θ))

2
]
= Eν

[
Z4
]
.

Since Z is normally distributed with mean zero and variance σ2, the fourth moment is

Eν

[
Z4
]
= 3σ4 .

Therefore, the variance is

Varν [ℓ(y,x,θ)] = Eν

[
Z4
]
−
(
Eν

[
Z2
])2

= 3σ4 − (σ2)2

= 3σ4 − σ4

= 2σ4

= 2 (L(θ))
2
.

This completes the proof.

Proposition 11. Consider a regression problem with the mean squared error loss function

ℓ(y,x,θ) = (y − fθ(x))
2
,

where fθ(x) is approximated by a first-order Taylor expansion around an initial parameter θ0:

fθ(x) ≈ fθ0
(x) +∇θfθ0

(x)⊤(θ − θ0) .

Assume that the target variable y is given by

y = fθ0(x) +∇θfθ0(x)
⊤(θ⋆ − θ0) ,

for some parameter θ⋆ ∈ Θ, and that the gradients ∇θfθ0
(x) follow a multivariate normal distribu-

tion:
∇θfθ0

(x) ∼ N (0,Σ) .

Then, the cumulant generating function Jθ(λ) of the centered loss L(θ)− ℓ(y,x,θ) is given by

Jθ(λ) = λL(θ)− 1

2
ln (1 + 2λL(θ)) ,

where L(θ) = (θ⋆ − θ)⊤Σ(θ⋆ − θ).

Proof. We start by expressing the loss function using the linear approximation:

ℓ(y,x,θ) = (y − fθ(x))
2
=
(
∇θfθ0(x)

⊤(θ⋆ − θ)
)2

.

Define δθ = θ⋆ − θ. Then,
ℓ(y,x,θ) =

(
∇θfθ0

(x)⊤δθ
)2

.

Since ∇θfθ0
(x) ∼ N (0,Σ), it follows that

Z = ∇θfθ0(x)
⊤δθ ∼ N

(
0, δθ⊤Σδθ

)
.

Let σ2 = δθ⊤Σδθ, so Z ∼ N (0, σ2).

The expected loss L(θ) is

L(θ) = E [ℓ(y,x,θ)] = E
[
Z2
]
= σ2 .

16
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To find the variance of ℓ(y,x,θ), we compute

Varν [ℓ(y,x,θ)] = Eν

[
(ℓ(y,x,θ))

2
]
− (Eν [ℓ(y,x,θ)])

2
.

Next, compute the fourth moment:

Eν

[
(ℓ(y,x,θ))

2
]
= Eν

[
Z4
]
.

Since Z is normally distributed with mean zero and variance σ2, the fourth moment is

Eν

[
Z4
]
= 3σ4 .

Therefore, the variance is

Varν [ℓ(y,x,θ)] = Eν

[
Z4
]
−
(
Eν

[
Z2
])2

= 3σ4 − (σ2)2

= 3σ4 − σ4

= 2σ4

= 2 (L(θ))
2
.

And the starndard deviation σ(θ) =
√
2L(θ)

The centered loss is L(θ)− ℓ(y,x,θ) = σ2 − Z2.

The cumulant generating function Jθ(λ) is

Jθ(λ) = lnE
[
eλ(L(θ)−ℓ(y,x,θ))

]

= lnE
[
eλ(σ

2−Z2)
]

= λσ2 + lnE
[
e−λZ2

]
.

Since Z is normally distributed with mean zero and variance σ2, the moment generating function of
−Z2 is

E
[
e−λZ2

]
=

1√
1 + 2λσ2

.

Therefore,

Jθ(λ) = λσ2 − 1

2
ln
(
1 + 2λσ2

)

= λL(θ)− 1

2
ln (1 + 2λL(θ)) ,

which completes the proof.

Proposition 6. Consider a regression problem defined by the mean square error loss, ℓ(y,x,θ) =
(y − fθ(x))

2, where fθ(x) represents a regression model implemented by a neural network with
parameters θ. The neural network can be linearized through a first-order Taylor expansion around
the initial parameter configuration θ0, given by:

fθ(x) ≈ fθ0
(x) +∇θfθ0

(x)T (θ − θ0).

Assume that, for a given input x, the corresponding target value y can be expressed as y =
fθ0

(x) +∇θfθ0
(x)T (θ⋆ − θ0) for some parameter θ⋆ ∈ Θ. Additionally, assume that the feature

vectors ∇θfθ0(x) follow a multivariate Normal distribution, ∇θfθ0(x) ∼ N (0,Σ). Under these
assumptions, the gradient of the inverse-rate function can be expressed as:

∇θI−1
θ (s) = f(s,θ)∇θσ(θ),

where f(s,θ) is a real-valued function that increases monotonically with s.
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Proof. By Propositon 11, we have that

Jθ(λ) = λL(θ)− 1

2
ln (1 + 2λL(θ)) ,

By Proposition 9,

∇θI−1
θ (s) =

1

λ⋆
∇θJθ(λ

⋆) , (30)

where
λ⋆ = argmin

λ

Jθ(λ) + s

λ
. (31)

In this case, we have that

1

λ⋆
∇θJθ(λ

⋆) =
1

λ⋆

(
λ⋆∇θL(θ)−

λ⋆∇L(θ)

1 + 2λ⋆L(θ)

)
= ∇L(θ)

(
1− 1

1 + 2λ⋆L(θ)

)

By Proposition 10,
Varν [ℓ(y,x,θ)] = 2 (L(θ))

2
,

Rearrging, we have that

L(θ) =
σ(θ)√

2

Finally, combining the above equalities, ∇θI−1
θ (s) can be written as

∇θI−1
θ (s) = σ(θ)

1√
2

(
1− 1

1 + 2λ⋆L(θ)

)

This proof the result defining f(s,θ) as:

f(s,θ) =
1√
2

(
1− 1

1 + 2λ⋆L(θ)

)

where λ⋆ depends directly on s.

Proposition 12. For any θ ∈ Θ, the inverse rate function I−1
θ (s) can be expressed as:

I−1
θ (s) = ∇λJθ(λ

∗).

where λ∗ is defined as:

λ∗ = arg inf
λ

(
s+ Jθ(λ)

λ

)
.

Proof. We are given that the inverse rate function I−1
θ (s) is defined as:

I−1
θ (s) = inf

λ

(
Jθ(λ) + s

λ

)
.

To find the optimal value λ∗ that minimizes this expression, we differentiate the objective function
with respect to λ and set the derivative equal to zero:

∂

∂λ

(
Jθ(λ) + s

λ

)
= 0.

First, compute the derivative:

∂

∂λ

(
Jθ(λ) + s

λ

)
=

λdJθ

dλ − (Jθ(λ) + s)

λ2
.
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Setting this equal to zero gives the first-order optimality condition:

λ
dJθ
dλ

= Jθ(λ) + s.

At the optimal point λ∗, we obtain the relation:

λ∗ dJθ
dλ

∣∣∣∣
λ=λ∗

= Jθ(λ
∗) + s.

Thus, solving for I−1(s) in terms of λ∗ and the gradient of Jθ(λ) with respect to λ, we have:

I−1(s) = ∇λJθ(λ
∗).

This concludes the proof.

Proposition 13. For any θ ∈ Θ, it verifies that

dJθ(λ)

dλ
= L(θ)− Eνλ

[ℓ(y,x,θ)] ,

where νλ is a tilted probability measure given by

νλ(y,x) :=
e−λℓ(y,x,θ)ν(y,x)

Eν

[
e−λℓ(y,x,θ)

] .

Proof. We begin with the definition of the cumulant generating function J(λ) as

J(λ) = lnZ(λ) ,

where Z(λ) = Eν

[
eλ(L(θ)−ℓ(y,x,θ))

]
is the moment generating function. To compute the gradient

of J(λ) with respect to λ, we apply the chain rule:

dJ

dλ
=

1

Z(λ)

dZ(λ)

dλ
.

Next, we differentiate Z(λ) with respect to λ:

dZ(λ)

dλ
= Eν

[
(L(θ)− ℓ(y,x,θ))eλ(L(θ)−ℓ(y,x,θ))

]
.

Substituting this result into the expression for dJ
dλ , we get:

dJ

dλ
=

1

Z(λ)
Eν

[
(L(θ)− ℓ(y,x,θ))eλ(L(θ)−ℓ(y,x,θ))

]
.

We now introduce the tilted distribution νλ(y,x), defined as

νλ(y,x) =
eλ(L(θ)−ℓ(y,x,θ))ν(y,x)

Z(λ)
=

e−λℓ(y,x,θ)ν(y,x)

Eν

[
e−λℓ(y,x,θ)

] ,

which allows us to rewrite the expectation as

dJ

dλ
= Eνλ

[L(θ)− ℓ(y,x,θ)] .

Since L(θ) is constant with respect to y and x, this simplifies to

dJ

dλ
= L(θ)− Eνλ

[ℓ(y,x,θ)] ,

which completes the proof.

Proposition 14. For any θ ∈ Θ, it verifies that

∇θJθ(λ) = λ (∇θL(θ)− Eνλ
[∇θℓ(y,x,θ)]) .

where νλ is a tilted probability measure given by

νλ(y,x) :=
e−λℓ(y,x,θ)ν(y,x)

Eν

[
e−λℓ(y,x,θ)

] .
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Proof. To expand the gradient of Jθ(λ) with respect to θ, let’s start from the definition of Jθ(λ).
Recall that

Jθ(λ) = lnEν

[
eλ(L(θ)−ℓ(y,x,θ))

]
,

where L(θ) = Eν [ℓ(y,x,θ)] is the expected loss, and (y,x) ∼ ν. Taking the gradient with respect
to θ, we use the chain rule:

∇θJθ(λ) =
1

Eν

[
eλ(L(θ)−ℓ(y,x,θ))

] · ∇θ

(
Eν

[
eλ(L(θ)−ℓ(y,x,θ))

])
.

Now, let’s expand ∇θ

(
Eν

[
eλ(L(θ)−ℓ(y,x,θ))

])
:

∇θEν

[
eλ(L(θ)−ℓ(y,x,θ))

]
= Eν

[
∇θe

λ(L(θ)−ℓ(y,x,θ))
]
.

Using the chain rule again on the exponential function, we have:

∇θe
λ(L(θ)−ℓ(y,x,θ)) = eλ(L(θ)−ℓ(y,x,θ)) · λ (∇θL(θ)−∇θℓ(y, x,θ)) .

Therefore,

∇θJθ(λ) =
Eν

[
eλ(L(θ)−ℓ(y,x,θ)) · λ (∇θL(θ)−∇θℓ(y,x,θ))

]

Eν

[
eλ(L(θ)−ℓ(y,x,θ))

] .

We can simplify this expression as

∇θJθ(λ) = λ (∇θL(θ)− Eνλ
[∇θℓ(y,x,θ)]) ,

where νλ is a tilted probability measure given by

νλ(y,x) =
eλ(L(θ)−ℓ(y,x,θ))ν(y,x)

Eν

[
eλ(L(θ)−ℓ(y,x,θ))

] =
e−λℓ(y,x,θ)ν(y,x)

Eν

[
e−λℓ(y,x,θ)

] .

Thus, the gradient of Jθ(λ) with respect to θ is

∇θJθ(λ) = λ (∇θL(θ)− Eνλ
[∇θℓ(y,x,θ)]) .

Proposition 15. For any θ ∈ Θ, it verifies that

∇θI−1
θ (s) = ∇θL(θ)− Eνλ⋆ [∇θℓ(y,x,θ)]

where λ⋆ := argminλ
s+Jθ(λ)

λ .

Proof. Given that the inverse rate can be written as

I−1
θ (s) = Gθ(s, λ

⋆(θ)),

where
Gθ(s, λ) :=

s+ Jθ(λ)

λ
,

and
λ⋆(θ) = argmin

λ

s+ Jθ(λ)

λ
,

we want to compute the gradient ∇θI−1
θ (s). Using the chain rule:

∇θI−1
θ (s) =

∂Gθ(s, λ)

∂λ

∣∣∣∣
λ=λ∗(θ)

· ∂λ
⋆(θ)

∂θ
+

∂Gθ(s, λ)

∂θ

∣∣∣∣
λ=λ⋆(θ)

.

Since λ⋆(θ) minimizes Gθ(s, λ), the derivative with respect to λ is zero at λ = λ⋆(θ).The expression
simplifies to:

∇θI−1
θ (s) =

∂Gθ(s, λ)

∂θ

∣∣∣∣
λ=λ⋆(θ)

.

Since Gθ(s, λ) =
s+Jθ(λ)

λ , differentiating with respect to θ yields:

∇θI−1
θ (s) =

∇θJθ(λ
⋆(θ))

λ⋆(θ)

Using Proposition 14 we have that

∇θI−1
θ (s) = ∇θL(θ)− Eνλ⋆ [∇θℓ(y,x,θ)]
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Proposition 16. Let νλ(y,x) be the tilted distribution defined as

νλ(y,x) =
e−λℓ(y,x,θ)ν(y,x)

Eν

[
e−λℓ(y,x,θ)

] .

Then, the cumulant generating function Jθ(λ) can be expressed as the Kullback-Leibler divergence
between ν and νλ:

Jθ(λ) = KL(ν ∥ νλ) .

Proof. We start by computing the KL divergence KL(ν ∥ νλ):

KL(ν ∥ νλ) =
∫

ν(y,x) ln

(
ν(y,x)

νλ(y,x)

)
dy dx

=

∫
ν(y,x) ln


 ν(y,x)

e−λℓ(y,x,θ)ν(y,x)

Eν [e−λℓ(y,x,θ)]


 dy dx

=

∫
ν(y,x) ln

(
Eν

[
e−λℓ(y,x,θ)

]

e−λℓ(y,x,θ)

)
dy dx

= lnEν

[
e−λℓ(y,x,θ)

]
+ λ

∫
ν(y,x)ℓ(y,x,θ) dy dx

= lnEν

[
e−λℓ(y,x,θ)

]
+ λL(θ) .

Recall that the cumulant generating function J(λ) can be rewritten as:

J(λ) = lnEν

[
eλ(L(θ)−ℓ(y,x,θ))

]

= ln
(
eλL(θ)Eν

[
e−λℓ(y,x,θ)

])

= λL(θ) + lnEν

[
e−λℓ(y,x,θ)

]
.

Comparing the expressions for KL(ν ∥ νλ) and J(λ), we find that:

KL(ν ∥ νλ) = λL(θ) + lnEν

[
e−λℓ(y,x,θ)

]
= J(λ) .

Therefore,
J(λ) = KL(ν ∥ νλ) ,

which completes the proof.

Proposition 17. For any a′ ≥ a ≥ 0, it holds that

Jθ(λ
⋆(a′)) ≥ Jθ(λ

⋆(a)) .

where
λ⋆(α) = arg sup

λ
λα− Jθ(λ) ,

Proof. Since Jθ(λ) is convex and differentiable, its derivative ∇λJθ(λ) exists and is monotonically
increasing. The Legendre transform relates λ⋆(a) and a via the derivative of J :

∇λJθ(λ
⋆(a)) = a .

Similarly, for a′,
∇λJθ(λ

⋆(a′)) = a′ .

Given that a′ ≥ a and ∇λJ(λ) is increasing, it follows that

∇λJθ(λ
⋆(a′)) = a′ ≥ a = ∇λJθ(λ

⋆(a)) .

Therefore,
λ⋆(a′) ≥ λ⋆(a) .
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Now, since J(λ) is convex, it satisfies the property that for any λ1 ≤ λ2,

Jθ(λ1) ≤ Jθ(λ2) .

Applying this property to λ⋆(a) and λ⋆(a′), we have

Jθ(λ
⋆(a′)) ≥ Jθ(λ

⋆(a)) .

This completes the proof.

Proposition 18. Let νλ(y,x) be the tilted distribution defined as

νλ(y,x) =
e−λℓ(y,x,θ)ν(y,x)

Eν

[
e−λℓ(y,x,θ)

] .

if the loss function ℓ(y,x,θ) is M -Lipschitz with respect to (y,x), then,

∥∇θL(θ)− Eνλ
[∇θℓ(y,x,θ)]∥ ≤ M

√
2DKL(ν∥νλ).

Proof. Let us rewrite the difference in expectations:

∥Eν [∇θℓ(y, x,θ)]− Eνλ⋆ [∇θℓ(y, x,θ)]∥ =

∥∥∥∥
∫

∇θℓ(y, x,θ) (ν(y, x)− νλ(y, x)) dy dx

∥∥∥∥

By applying Hölder’s inequality, we can bound this by:
∥∥∥∥
∫

∇θℓ(y, x,θ) (ν(y, x)− νλ(y, x)) dy dx

∥∥∥∥ ≤
∫

∥∇θℓ(y, x,θ)∥ |ν(y, x)− νλ(y, x)| dy dx

Notice that the total variation distance between ν and νλ, defined as

dTV (ν, νλ) =
1

2

∫
|ν(y, x)− νλ(y, x)| dy dx

The bound then becomes:

∥Eν [∇θℓ(y, x,θ)]− Eνλ[∇θℓ(y, x,θ)]∥ ≤ sup
(y,x)

∥∇θℓ(y, x,θ)∥ · 2dTV (ν, νλ)

Pinsker’s inequality states that for two probability densities ν and νλ,

dTV (ν, νλ) ≤
√

1

2
DKL(ν∥νλ⋆).

Chaining Pinsker’s inequality into the above bound gives:

∥Eν [∇θℓ(y, x,θ)]− Eνλ[∇θℓ(y, x,θ)]∥ ≤ sup
(y,x)

∥∇θℓ(y, x,θ)∥ · 2
√

1

2
DKL(ν∥νλ).

The bound can be further simplified as:

∥Eν [∇θℓ(y, x,θ)]− Eνλ[∇θℓ(y, x,θ)]∥ ≤ sup
(y,x)

∥∇θℓ(y, x,θ)∥ ·
√
2DKL(ν∥νλ).

Finally, assuming that the loss function ℓ(y, x,θ) is M-Lipchitz, we prove the inequality, because in
this case we have

sup
(y,x)

∥∇θℓ(y, x,θ)∥ ≤ M

Proposition 19. For any θ ∈ Θ, n > 0 and D ∼ νn, there exists a distribution γ(y,x) that depends
on θ and α(D,θ), such that,

∇θL̂(D,θ) = ∇θEγ [ℓ(y,x,θ)] (32)
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Proof.

Theorem 7 For any θ ∈ Θ, n > 0 and D ∼ νn, there exists a distribution γ(y,x) that depends on θ
and α(D,θ), such that,

∇θL̂(D,θ) = ∇θEγ [ℓ(y,x,θ)] (33)

and KL (ν | γ) is monotonically increasing with α(D,θ) and KL (ν | γ) = 0 if α(D,θ) = 0.
Furthermore, if the loss function ℓ(y,x,θ) is M -Lipschitz with respect to (y,x). Then,

∥∇θI−1
θ (s)|s=α(D,θ) ∥2 ≤ M

√
2 KL (ν | γ) . (34)

Proof. Part I: Let us start proving that

∇θL̂(D,θ) = ∇θEγ [ℓ(y,x,θ)]

From Proposition 12, we have that

I−1
θ (α(D,θ)) = ∇λJθ(λ

∗).

where λ∗ is defined as:

λ∗ = arg inf
λ

(
α(D,θ) + Jθ(λ)

λ

)
.

From Proposition 13, we have that

I−1
θ (α(D,θ)) = ∇λJθ(λ

⋆) = L(θ)− Eνλ∗ [ℓ(y,x,θ)] ,

where νλ∗ is a tilted probability measure given by

νλ∗(y,x) :=
e−λ∗ℓ(y,x,θ)ν(y,x)

Eν

[
e−λ∗ℓ(y,x,θ)

] .

From Proposition 3 we have that

L̂(D,θ) = L(θ)− I−1
θ (α(D,θ)) .

Replacing the above terms,

L̂(D,θ) = L(θ)−
(
L(θ)− Eνλ∗ [ℓ(y,x,θ)]

)
.

Simplifying, we arrive to
L̂(D,θ) = Eνλ∗ [ℓ(y,x,θ)]

where the titled distribution νλ⋆ is the distribution γ referred in the statement of the theorem.

Part II: Here we will prove that KL (ν | γ) is monotonically increasing with α(D,θ) and
KL (ν | γ) = 0 if α(D,θ) = 0.

By Proposition 16, we have that
KL(ν ∥ νλ⋆) = Jθ(λ

⋆) .

And Proposition 17 states that any a′ ≥ a, it holds that

Jθ(λ
⋆(a′)) ≥ Jθ(λ

⋆(a)) .

From here we deduce that if the level of abnormality for one data set D′ is higher than for other
dataset D, i..e, α(D′,θ) > α(D,θ), then

Jθ(λ
⋆(α(D′,θ))) ≥ Jθ(λ

⋆(α(D,θ))) .

From where we can deduce that the KL(ν ∥ νλ⋆) is monotonically increasing with the level of
abnormality.

Finally, we have that if α(D,θ) = 0, then KL(ν ∥ νλ⋆) = 0
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Since Jθ(λ) is convex and differentiable, its derivative ∇λJθ(λ) exists and is monotonically increas-
ing. The Legendre transform relates λ⋆(a) and a via the derivative of J :

∇λJθ(λ
⋆(a)) = a .

Then, we deduce that
λ⋆(0) = 0

In consequence, when α(D,θ) = 0, νλ⋆ will be equal to ν and the KL divergence between ν and
νλ⋆ is equal to zero.

Part III: Here we prove that if the loss function ℓ(y,x,θ) is M -Lipschitz with respect to (y,x).
Then,

∥∇θI−1
θ (s)|s=α(D,θ) ∥2 ≤ M

√
2 KL (ν | γ) .

By Proposition 15, we have

∇θI−1
θ (s)|s=α(D,θ) = ∇θL(θ)− Eνλ⋆ [∇θℓ(y,x,θ)]

By Proposition 18, and using that the loss function ℓ(y,x,θ) is M -Lipschitz with respect to (y,x),
then,

∥∇θL(θ)− Eνλ∗ [∇θℓ(y,x,θ)]∥ ≤ M
√
2DKL(ν∥νλ∗).

By combining the last two inequalites, we finalize the proof.
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