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Abstract
In this work we test the use of state-of-the-art001
neural language model representations to pre-002
dict behavioral traits that cannot be easily ex-003
tracted from the textual input alone. We take004
the task of automated job interview scoring005
and make predictions on behavioral traits such006
as hirability, engagement, or friendliness. We007
find that representing text using neural mod-008
els trained only on text already leads to better009
overall prediction results compared to a fea-010
ture engineering approach that uses a combina-011
tion of linguistic and extra-linguistic materials.012
Moreover, we show that combining word em-013
beddings and prosodic features improves the014
results even further, highlighting the value of015
adding information from modalities other than016
text when evaluating human performance.017

1 Introduction018

Recent advances in neural networks have enabled019

machines to perform tasks such as natural language020

inference or textual similarity to a very high level021

of accuracy (Devlin et al., 2019; Wang et al., 2018).022

A point of investigation relatively new and not023

completely explored is the ability of neural lan-024

guage models (NLMs) to also capture latent in-025

formation that is not directly detectable at the lex-026

ical level. These are tasks requiring more than027

the simple inspection of the meaning of words in028

context because they aim at evaluating humans’029

performance based both on the communicative030

form and intent: e.g., the evaluation of commu-031

nication skills (Rasipuram and Jayagopi, 2016),032

proficiency levels (Oh et al., 2017), quality of re-033

views or posts (Danescu-Niculescu-Mizil et al.,034

2013; Cheong et al., 2019), and engagement level035

of public speeches (Acharyya et al., 2020). Another036

clear example is automatic job interview scoring;037

this task requires the system to identify and analyze038

linguistic and stylistic information that is critical039

to successfully evaluate the competence, and con-040

sequent hirability, of the candidates (Rasipuram041

and Jayagopi, 2018; Nguyen et al., 2014; DeGroot 042

and Gooty, 2009). The evaluation of such systems 043

generally requires paragraph-long responses rather 044

than single words or sentences because it is very dif- 045

ficult to judge someone’s skills based on responses 046

that are too short (Batrinca et al., 2011). 047

In this paper, we use job interview scoring as a 048

testbed for our analyses. We investigate the abil- 049

ity of NLMs to process paragraph-long texts and 050

successfully predict behavioral variables such as 051

hirability or friendliness, by simply using latent 052

information expressed in the language. Our contri- 053

butions are threefold. First, we use word embed- 054

dings generated by state-of-the-art neural language 055

models instead of manually created features as pre- 056

dictors in our task. Second, we show how the com- 057

bination of word embeddings to capture paragraph 058

level information significantly outperforms existing 059

feature engineering approaches. Third, we perform 060

predictions using regression models instead of clas- 061

sification models, which allows for a more precise 062

comparison between the performance of humans 063

and neural models. 064

2 Background and Related Work 065

The automatic evaluation of human performance 066

is often carried out by using feature engineering 067

approaches, in which manually extracted features 068

from the lexical, acoustic or visual modalities are 069

selected and fed into the prediction models. Rasipu- 070

ram and Jayagopi (2016) designed a model that 071

predicts the communication skills of people based 072

on prosody and visual cues from their interview 073

videos. Oh et al. (2017) designed a DNN-based lan- 074

guage proficiency assessment classifier that assigns 075

the speech responses of non-native speakers into 076

acceptance or rejection by extracting meaning fea- 077

tures and grammar features. Cheong et al. (2019) 078

performed automatic detection of the thoughtful- 079

ness of a post in an online discussion forum, us- 080

ing both structural and syntactic features. Zong 081
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et al. (2020) performed a forecasting skill predic-082

tion combining textual and cognitive factors and083

concluded that the textual materials are sufficient084

for the task. Agrawal et al. (2020), Naim et al.085

(2018), and Nguyen et al. (2014) performed the086

task of predicting performance scores of job inter-087

views using several manually crafted features.088

3 Experiments089

3.1 Data090

We use the job interview dataset provided by Naim091

et al. (2018), which consists of transcripts, videos,092

and scores of 138 paragraph-long responses (747093

tokens on average) by MIT students in a mock094

job interview. Below is an example of a potential095

response taken from Naim et al. (2018).096

"I led the team by showing how to program the097
robot. The students did a wonderful job! In ten098
weeks, we made the robot play soccer. It was a099
lot of fun."100

Each response was evaluated by 9 human raters101

on a scale from 1 to 7 for diverse behavioral traits102

such as friendliness, engagement, or hirability,103

many of which require access to information that104

is not directly available in the linguistic input (see105

Figure 1 for the full list of traits and Naim et al.106

(2018) for their description).107

3.2 Language Modeling and Paragraph108

Representation109

As shown in Table 1, we build the linguistic repre-110

sentations for our experiments by using the output111

of: a) four static neural language models (word2vec112

(Mikolov et al., 2014), fastText-wiki, fastText-113

crawl (Mikolov et al., 2018), gloVe (Pennington114

et al., 2014)), and b) four different combinations of115

BERT embeddings (Devlin et al., 2019). We follow116

Devlin et al. (2019) to select and combine the best117

four output layers of a BERT-base model.118

To represent the entire paragraph, we take the119

average and the sum of the embeddings of each120

word in it and produce one vector representation121

for each paragraph. This approach was inspired by122

Arora et al. (2017), who reported that this method123

outperformed more sophisticated approaches for124

sentence representations by about 10–30%. We125

expand this approach to paragraph level and create126

one numerical representation for each paragraph.127

3.3 Experimental Setup 128

We treat our task as a regression problem, with the 129

target scores being continuous numbers averaged 130

among the nine human raters. In this work, we 131

perform two experiments and compare the use of 132

information embedded in different neural language 133

model representations alone and in combination 134

with prosodic information against manually crafted 135

features (baseline). 136

Baseline As baseline we take the best perfor- 137

mance from Naim et al. (2018), who uses hand- 138

picked features from three modalities (linguistic, 139

prosodic, and facial) as input parameters of two 140

regression models (Lasso Regression and Support 141

Vector Regression). Their linguistic features, 23 142

of which are obtained from the software LIWC 143

(Tausczik and Pennebaker, 2010), include features 144

like content word categories, positive/negative emo- 145

tion words, or function word categories. Their 146

prosodic features include information such as fun- 147

damental frequency (F0) and intensity. Their facial 148

features include information regarding movements 149

of eyebrows and lips, nods and head-shakes. In all 150

the subsequent comparisons, the baseline results 151

are the ones obtained by combining features from 152

all three modalities. 153

Our experiments We perform two experiments. 154

In Experiment 1, only linguistic information –in the 155

form of paragraph embeddings– is used as features 156

for the regression models. In Experiment 2, the lin- 157

guistic information is combined with the prosodic 158

information provided by Naim et al. (2018) to 159

probe for potential improvement in the model per- 160

formance while providing multimodal information 161

to the system. We exclude facial features from our 162

experiments because, in the original study, the im- 163

provement in prediction results obtained by adding 164

facial features was minimal and limited to certain 165

features such as friendliness or excitement (See Fig- 166

ure 5 in Naim et al. (2018)). This is probably due 167

to the fact that visual features were automatically 168

extracted from the video recordings and, conse- 169

quently, are extremely noisy. For both experiments, 170

we use Lasso Regression and Support Vector Re- 171

gression for comparisons of the prediction results 172

against Naim et al. (2018). Due to the small size of 173

the dataset provided, we consider these models the 174

only valid options to obtain reliable results. 175

Setup The prediction experiments are performed 176

using the sklearn library in Python. A five-fold 177

cross-validation is performed to avoid overfitting. 178
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Name Type Description and Trained Corpora
word2vec S word embeddings produced by word2vec (Google News)
gloVe S word embeddings produced by gloVe (Wikipedia and Gigaword)
wiki S word embeddings produced by fastText (Wikipedia)
crawl S word embeddings produced by fastText (Common Crawl)
BERT-all C row-wise sum of the weights from all 12 Transformer output layers
BERT-s2l C the weights from the second-to-last Transformer output layer
BERT-4sum C row-wise sum of the weights from the last four Transformer output layers
BERT-4cat C row-wise concatenation of the weights from the last four Transformer output layers

Table 1: Overview of the 8 word embedding types used in our experiments. The top four embeddings are static
embeddings (S) and the bottom four embeddings are contextualized embeddings (C). Finally, each word embedding
is either summed or averaged across paragraphs resulting in a total of 16 representations.

Pearson’s correlation coefficient between human-179

generated and machine-generated scores is used as180

our evaluation metric as in Naim et al. (2018). The181

grid search algorithm is used to tune hyperparame-182

ters that elicit better results for the majority of the183

traits.184

4 Results185

4.1 Experiment 1186

After comparing the performance of the 16 possible187

paragraph representations as predictors of the two188

regression methods (Lasso and SVR), we find very189

similar and consistent results.1 Because of limited190

space and for clarity, in the following sections we191

only report the results from our best combination192

of models and regression methods: Lasso regres-193

sion on word2vec (summed) from the static models194

and BERT-all (summed) from the contextualized195

models.196

As shown in Figure 1, with the exception of197

Excited, recommendHire, and noFillerWords, our198

paragraph-based language models outperform the199

baseline approach with a varying degree per trait.200

We perform a pairwise t-test to statistically com-201

pare the average performance improvement (in the202

form of correlation coefficients) of our models com-203

pared to the baseline. The t-test analysis shows204

that word2vec (M = 0.71 ± 0.07) significantly out-205

performs the baseline approach (M = 0.57 ± 0.16,206

p-value < 0.007). Moreover, as indicated by the big207

reduction in the standard deviation values, the neu-208

1The full results for the 8 word embed-
ding types summed and averaged can be found
at: http://osf.io/6gzyq/?view_only=
700678d4764e4feba545c0dddb0df6f5

1To attenuate the problem of multiple comparisons, all p-
values have been alpha-corrected: ∗∗ = p-value ≤ 0.007,***
= p-value ≤ 0.0007

ral models obtain more even performances across 209

the predicted individual traits compared to the base- 210

line (SD baseline = 0.16 vs. word2vec = 0.07, 211

BERT-all = 0.10). This indicates that our mod- 212

els are robust on a wider range of traits compared 213

to the feature engineering approach. Compared to 214

the baseline model, which especially struggles for 215

traits like notStressed or eyeContact, even though 216

the information from the prosodic and facial modal- 217

ities was leveraged, our static models show signif- 218

icantly better results. Also BERT-all leads to a 219

slight yet non-significant improvement (M = 0.66 ± 220

0.10, p = 0.07) compared to the baseline although 221

it does not outperform word2vec (p = 0.10). It 222

is worth noting that neural models entirely based 223

on lexical cues significantly outperform a model 224

that combines features extracted from three differ- 225

ent modalities. Particularly interesting traits are 226

notStressed, eyeContact, calm, authentic, smiled, 227

focused, and paused, which show highly improved 228

results compared to the baseline even though, in- 229

tuitively, making judgments on such traits should 230

require more than just textual information. 231

4.2 Experiment 2 232

In Experiment 2 we test how adding prosodic in- 233

formation affects the overall model performance. 234

We combine linguistic and prosodic inputs by con- 235

catenating the corresponding two vector represen- 236

tations. Adding prosodic features to word2vec 237

(word2vec+pro; M = 0.76 ± 0.07) leads to a 238

slight but non-significant improvement (p = 0.10); 239

whereas the addition of prosodic features to BERT- 240

all (BERT-all+pro; M = 0.77 ± 0.08) leads to a 241

significant improvement (p < 0.007). Furthermore, 242

BERT-all+pro does not outperform the language- 243

only representation by word2vec (p = 0.06). This 244

last result indicates that the use of textual represen- 245
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Figure 1: Experiment 1 – Pearson’s correlation coef-
ficients for each trait predicted by a Lasso Regression
model using: manual features from Naim et al. (2018)
(baseline; black circle), word2vec (red triangle), and
BERT-all (blue square).

tations obtained by pre-trained word2vec alone is246

comparable to the use of BERT representations to-247

gether with the prosodic features (see Figure 2 for248

statistical significance between different groups). A249

possible interpretation of these results is that, even250

though prosody in general plays a contributing role251

in predicting behavioral traits, its effect becomes252

more relevant when the linguistic representation253

alone is not sufficient to perform a specific task and254

requires external supporting materials.255

5 Conclusion256

Our study shows that neural embeddings generally257

outperform manually elicited features from multi-258

ple modalities in a task that evaluates human perfor-259

mance and on traits that are not easily measurable260

via shallow access to text. Compared to the fea-261

ture engineering approach previously adopted, the262

use of pre-trained embeddings clearly constitutes a263

step forward in guaranteeing replicability and in re-264

ducing implementation issues. Moreover, we show265

that we can successfully build paragraph-level rep-266

resentations by combining the embedding of each267

word and still obtain mid-high correlations with hu-268

man judgments for all the 16 traits (especially with269

word2vec). Also, our approach performs well on270

a relatively small dataset, which is valuable given271

that for many tasks a high amount of data is sim-272

ply not available or difficult to collect. Finally, we273

observe that the addition of prosodic features im-274

ns
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0.2
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0.8

1.0

baseline word2Vec word2Vec+pro BERT−all BERT−all+pro

Figure 2: Boxplots representing average Pearson’s
correlation coefficients across trait for different lan-
guage modeling types (baseline from Naim et al.
(2018) (black), word2vec (red), and BERT-all (blue).
word2vec+pro and BERT-all+pro show the average re-
sults after combining linguistic and prosodic informa-
tion. The lines indicate the medians and the dots the
mean values across all predicted traits. We provide the
significant results from the pairwise t-tests (ns = non-
significant, ∗∗ = p ≤ 0.007; ∗ ∗ ∗ = p ≤ 0.0007)

proves the prediction performance even further, es- 275

pecially for models with a lower performance in the 276

language-only setup. This model behavior has an 277

interesting similarity with the way humans process 278

and understand language: when not enough linguis- 279

tic cues are available at the lexical-semantic level, 280

additional extra-linguistic materials are required 281

to successfully process the information provided 282

(Zhang et al., 2021). 283
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