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Abstract— Pushing objects through cluttered scenes is a
challenging task, especially when the objects to be pushed have
initially unknown dynamics and touching other entities has to
be avoided to reduce the risk of damage. In this paper, we
approach this problem by applying deep reinforcement learning
to generate pushing actions for a robotic manipulator acting
on a planar surface where objects have to be pushed to goal
locations while avoiding other items in the same workspace.
With the latent space learned from a depth image of the scene
and other observations of the environment, such as contact
information between the end effector and the object as well as
distance to the goal, our framework is able to learn contact-rich
pushing actions that avoid collisions with other objects. As the
experimental results with a six degrees of freedom robotic arm
show, our system is able to successfully push objects from start
to end positions while avoiding nearby objects. Furthermore, we
evaluate our learned policy in comparison to a state-of-the-art
pushing controller for mobile robots and show that our agent
performs better in terms of success rate, collisions with other
objects, and continuous object contact in various scenarios.

I. INTRODUCTION

Pushing is often used for re-positioning and re-orientating
objects since it simplifies the object manipulation in com-
parison to pick-and-place approaches. Furthermore, pushing
allows for moving large, heavy, and irregularly shaped, as
well as small and fragile objects to target positions and can
be used for reducing uncertainty in the position of objects [1].
Hereby, the term pushing is separated in non-prehensile
pushing [2] and prehensile pushing (push-grasp) [3], [4].
For example, in limited space [5], [6] and when dealing
with fragile objects, non-prehensile pushing is the preferred
manipulation action, since grasping increases the risk of
damage. In the past, pushing has been used to separate
objects for better grasping [7], [8] or to sort objects from a
table into a bin [9] and is assumed to be more time-efficient
than grasping to overcome short distances [10].

In general, pushing actions should be contact-rich with
smooth arm motions. Furthermore, the contact to other
objects in the workspace should be avoided to prevent any
damages and changes the configuration of the scene. While
for a long time, pushing behaviors were created using expert
knowledge in an analytical way, more and more work is
focusing on reinforcement learning (RL) to solve this task.
Especially the ability to learn from environment interactions
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Fig. 1: Targeted application scenario of our system within the
RePAIR-project1. The goal is to push the small fragment to the
desired goal pose (green). Shown in magenta is the best pushing
path, which maintains a safety distance to the other objects.

and own experiences makes RL a useful way to learn
challenging new skills. Start-to-goal pushing with a RL-agent
has been tackled before [13] and serves as a benchmark
for RL [14], however, pushing in cluttered environments
where collisions with other objects have to be avoided is
a less researched area. While there are already approaches
for mobile bases [15], [16], they have not been transferred
to robotic manipulators so far.

In this paper, we present a framework to train a RL-agent
that is able to realize obstacle-aware pushing in a contact-rich
manner to guide objects with initially unknown dynamics
on a planar surface to desired target configurations with a
robotic manipulator. As representation of the workspace, we
use a depth image taken from a bird’s eye view. To reduce the
size of the observation space and therefore the complexity,
we use the latent space of a variational autoencoder. To
accelerate learning, we calculate subgoals from an optimal
2D path in a grid representation of the environment generated
from the depth image. In addition, we use further observa-
tions, such as contact information between the end effector
of the manipulator and the object as well as the distance
to the goal. The output of our system is an incremental
motion of the current (x, y, θ)-position of the robot’s end
effector. Fig. 1 illustrates a targeted application scenario from



the RePAIR-project1. The goal is to push the small fresco
fragment to the desired position in a gentle manner while not
damaging it or any other fragment on the assembly table.

Regarding related work, we differ compared to Bejjani et
al. [4] in terms of object avoidance, use relative coordinates,
like Migimatsu et al. [17] and include tactile force informa-
tion, as proposed by Lee et al. [18] and Lin et al. [13].
Furthermore, we used for our approach ideas from Krivic et
al. [15] and Regier et al. [19].

The key contributions of our work are the following

• A model-free RL system that learns to generate smooth
pushing paths, with contact-rich pushing actions to
reach the object’s target positions in cluttered environ-
ments, thereby avoiding contact to other, nearby objects.

• A qualitative and quantitative evaluation in simulation in
comparison to a state-of-the-art pushing controller [15],
which we adapted to our scenario.

As the experiments show, our system leads to reliable push-
ing, while achieving better performance compared to [15]
with respect to success rate, collisions with other objects,
and continuous object contact in various scenarios.

II. PROBLEM DESCRIPTION

In this work we consider the following problem. In a
tabletop environment, a robotic arm is supposed to move an
object from its current position to a 2D goal configuration.
To achieve this, we consider the end effector (EE) of the arm
moving in planar space (x, y, θ). The robotic arm can be of
any degree of freedom (DOF). In addition to the pushing
object, there are other objects which need to be considered
as obstacles and which might obstruct the direct path to the
end configuration. The obstacles have to be avoided by the
EE and the object at all time. The goal of the RL-agent is to
determine the best incremental movement (∆x,∆y,∆θ) of
its EE position at each time step, to move the object with the
EE as fast, but also as safe as possible to the goal position
while avoiding obstacles on the way. An RGB-D camera
is mounted centered above the scene in bird’s eye view to
obtain observations of the objects in the workspace.

III. OUR APPROACH

We apply deep reinforcement learning to solve the task
described above. This is motivated by the fact that we expect
to obtain smoother trajectories as we would get with a pure
control-based approach. Especially for traversing narrow
passages, the lack of parameter tuning can be beneficial. We
use a variational auto encoder (VAE) to decouple the feature
extraction of the given depth image from the policy learning
process [20]. Fig. 2 shows an overview of our proposed
system. In the following, we describe our RL framework
in detail.

1https://www.repairproject.eu

A. Reinforcement Learning

For the implementation, we followed some ideas proposed
by Regier et al. [19], which proposed a RL-framework to
navigate in cluttered environments with a mobile robot. In
the following we define the action and observation space,
the reward function, the used RL-algorithm, the experience
replay buffer strategy, as well as the learning strategy.

1) Action Space: Our action space consists of the three
values, (∆x,∆y,∆θ), which are the increment to the current
x and y position, as well as the yaw angle θ of the gripper.
We set the maximum value of (∆x,∆y,∆θ) to the maximum
distance change possible during one predefined time window.

2) Observation Space: The observation space of our RL-
agent consists of 49 values, namely: The latent space (32),
the EE position (5), the 6D joint angles (6), the 2D subgoal
at t-1 and t-5 (2 ∗ 2), an EE contact with obstacle indication
(1) and the object to goal distance (1). To give the agent
an indication of the best pushing direction, we include two
subgoals of different time steps into the observation that
we calculate from the current shortest path. The shortest
path is calculated on a binary map, gathered from the depth
image, where all obstacles are inflated according to half of
the object’s diameter. The agent never receives the complete
shortest path in its observation and re-calculates it at each
time step. Therefore, our agent is not constructed as a path
following agent but learns the best pushing behavior during
training.

3) Reward: Our reward function consists of following
three components:

rdist =

{
50, if goal reached

−rg dist − ro dist , otherwise
(1)

rcollison =

{
−10, if object out of bounds

−5 if collision occurred
(2)

rtouch =

{
ro dist , contact to object

0 otherwise
(3)

The first equation encourages the agent toward a faster
learning behavior since it penalizes higher distances between
object and goal as well as object and EE with rg dist and
ro dist . rcollison penalizes each collision of the object with
clutter in the scene or if the object gets pushed out of bounds.
The last part of the reward rtouch considers the suggestion
of Lin et al. [13]. Since we calculate the distance between
the EE and the center of the object, a small distance value
remains, even if the EE has contact to the object. Therefore,
we negate the ro dist penalty of rdist each time the EE has
contact to the object, to encourage a contact-rich behavior.

Together all three parts form the reward function rtotal of
our agent:

rtotal = rdist + rcollision + rtouch
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Fig. 2: Overview of our deep reinforcement learning pushing framework. Our system receives a depth image of the environment taken
from an RGB-D camera. We calculate an object centered egocentric local window and feed it into the variational auto encoder to get the
latent space. Furthermore, a global path from the current object position to the goal position, including subgoals, is calculated. The latent
space, the subgoals, and further observations from the environments are used as the concatenated observation for the policy network of
the deep RL which calculates the best 3D incremental motion.

(a) (b) (c) (d) (e) (f)

Fig. 3: Figures (a) to (c) depict example environments used for training and the quantitative evaluation. (d) and (e) shows unseen, complex
environments to further evaluate the performance of our system and (f) the objects to be pushed. All objects have the same weight but
differ in their geometrical shape. As pushing object during training we used the red cube. In a curriculum learning manner, we rotated
the obstacle in (a) and vary its size during the training. Furthermore, the distance between the obstacles in (b) and (c) decreased from 20
cm to 10 cm, making the task more difficult.

4) RL-Algorithm: We evaluated two popular off-policy
algorithms, namely Soft Actor-Critic [21] and Twin Delayed
Deep Deterministic policy gradient (TD3) [22], as well as
Truncated Quantile Critics (TQC) [23]. During our experi-
ment, TQC led to the best and the most reproducible results
and is therefore used for our experiments.

5) Attentive Experience Replay: The experience replay
strategy enables agents to learn from previous experiences
they made while interacting with the environment. We use the
Attentive Experience Replay (AER) strategy, which samples
entries in the replay buffer according to the similarities
between the entry’s state and the current state of the agent.

6) Learning Strategy: As the agent’s learning strategy, we
chose curriculum learning, which divides the task into sub-
tasks and learns the subtasks one after another in increasing
difficulty. We began the training with a maximum start-goal
Euclidean distance of 0.06 m and increase it during training
to up to 0.6 m. As training environments, we used the scenes
shown in Fig. 3. The agent was trained for 7e6 iterations.
Without curriculum learning, the agent was not able to learn
the task.

IV. EXPERIMENTS

The goal of our experiments is to demonstrate the per-
formance of our system qualitatively and quantitatively in
free space as well as in obstacle-laden environments in
terms of success rate, object contact, number of collisions,
and shortest path deviation, i.e., normalized inverse path
length (SPL) [24]. Furthermore, we provide a comparative
evaluation against a state-of-the-art pushing control approach
by Krivic et al. [15]. We performed the evaluation in pybul-
let [25] with a 6 DOF UR52 with a Robotiq 2f85 two-finger
gripper3. The implementation of our learning framework with
all hyperparameters as well as the reimplementation of the
baseline approach is available at GitHub4.

A. Quantitative Evaluation

The quantitative evaluation consists of three parts, i.e.,
pushing with known and unknown objects in scenes with
obstacles, and in previously unseen, highly cluttered scenes.
All metrics except the success rate and the SPL are evaluated
only on episodes that both methods could solve successfully.

2https://www.universal-robots.com/products/ur5-robot/
3https://robotiq.com/products/2f85-140-adaptive-robot-gripper
4https://github.com/NilsDengler/cluttered-pushing



(a) Ours (b) Baseline [15]

Fig. 4: Qualitative results from the quantitative evaluation of our
approach (a) in comparison to the baseline [15] (b). Red indicates
the start, green the goal position and magenta is the initial shortest
path calculated by Lazy Theta* [26]. The path taken by the end
effector is shown in black and the path of the object in blue. The
grey area in (b) shows the increased traversal costs around obstacles,
used for the baseline approach, while the obstacles in our approach
(a) are inflated only by a small amount according to the half of the
object’s diameter.

object avoidance Success Rate Object Contact Rate ∗ Collision Rate SPL Path Length ∗
Ours 0.980 0.995 ± 0.02 0.008 ± 0.04 0.910 0.523 ± 0.18

Krivic et al. [15] 0.955 0.850 ± 0.10 0.011 ± 0.05 0.952 0.513± 0.16

(a)

Fragment Success Rate Object Contact Rate ∗ Collision Rate ∗ SPL Path Length ∗
Ours 0.867 0.980 ± 0.05 0.05 ± 0.11 0.71 0.630± 0.29

Ours re-trained 0.867 0.980 ± 0.05 0.05 ± 0.11 0.71 0.630± 0.29

Krivic et al. [15] 0.953 0.868± 0.11 0.024± 0.07 0.951 0.501 ± 0.16

(b)

complex task Success Rate Object Contact Rate ∗ Collision Rate ∗ SPL Path Length

Ours 0.88 0.977 ± 0.06 0.065 ± 0.13 0.779 0.492± 0.13

Krivic et al. [15] 0.72 0.566 ± 0.11 0.01 ± 0.05 0.720 0.550 ± 0.18

(c)

TABLE I: Quantitative evaluation of pushing in cluttered envi-
ronments,. wrt. success rate, object contact, collisions, normalized
inverse path length (SPL), and path length in meters. The values are
the average over 500 runs for (a) and (b) and 50 for (c). The results
are in comparison to the approach by Krivic et al. [15] where the
metrics marked with a ∗ are significant according to the paired t-test
with a chosen p-value of 0.05. As shown, our approach achieves
overall better results in terms of success rate, object contact rate,
and collision rate. Please refer to the text for more details.

The object contact rate is evaluated for each episode, once
the EE first touched the object. Both, object contact rate
and collision rate are the average of each episode, averaged
over all episodes. For all experiments, we randomly sampled
the distance between start and goal within 0.2 to 0.6 m. As
pushing object during training, we used the red object shown
in Fig. 3.

1) Pushing in Scenes With Obstacles: We generated dif-
ferent environments as shown in Fig 3 (a) to (c) and evaluated
them with the learned object shown in (f), together with the
completely unknown complex fragment shown in Fig. 1. We
sampled the orientation and size of the obstacle in (a) as
well as the distance between the obstacles in (b) to (c).
For each object, we randomly generated 1,000 start-goal

configurations within the randomly sampled environments.
The results are shown in Tab. Ia and b. With both objects,
our approach achieves a significantly higher object contact
rate in comparison to the baseline, which shows the benefit of
our approach in terms of gentle pushing through contact-rich
behavior. In terms of the SPL, the baseline achieves better
results while there is no significantly increased path length.
The higher SPL can be explained with the higher obstacle
inflation necessary for the baseline approach and is illustrated
in Fig. 4 that depicts example trajectories of the experiments.
As can be seen, our agent has learned to safely navigate
around objects, without strictly following the initial shortest
path. This is a key advantage in comparison to the baseline
approach, which follows the shortest path as tight as possible
due to the properties of the controller method and is crucial
if the parameters are not fine-tuned. Example 4 of Fig. 4
shows a scenario where our agent pushes a more efficient
path, since it does not rely on any cost map and therefore on
no parameter tuning. As the fragment was never seen during
training, we retrained the agent and achieved similar results
as with the red object. This underlines, that our system can
be used for serving a general purpose but also retrained to
specify on given scenarios.

2) Pushing in Unseen, Complex Environments : Finally,
we designed more complex tasks with the goal to evaluate
the capabilities of our trained agent in unseen environments
with a higher density of clutter. We randomly sampled 50
start-goal configurations of the two scenarios (Fig. 3d and e),
which contain many narrow passages. The results in Tab. Ic
show the good performance in complex and completely
unseen environments. Our agent achieved better results than
Krivic et al. [15] in each metric except the collision rate.
Especially, the contact rate is significantly increased. As
already mentioned, our agent has not been trained on such
scenarios, accordingly, the success rate is a bit lower in
comparison to the other evaluations with the small cube.
Regier et al. [19] showed that the agent will benefit, if it
continues training in the unknown environment for a short
time period.

V. CONCLUSION

We presented a novel deep reinforcement learning ap-
proach for object pushing in cluttered tabletop environments.
We demonstrated the efficacy of our approach in multiple
simulated experiments, where the results show the increased
performance in comparison to an existing control-based
method with respect to various metrics. We showed that the
pushing behavior highly benefits from our learning approach
in terms of constant object contact and smooth trajectories
avoiding obstacles while maintaining equal path length in
comparison to the baseline method [15]. The evaluation of
the runtime highlights that our system is capable of online
pushing. The code of our system can be found on Github4

and a video on our web page5.

5https://www.hrl.uni-bonn.de/publications/dengler22iros-final.mp4
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