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Abstract

Semantic role labeling usually models struc-
tures using sequences, trees, or graphs. Past
works focused on researching novel modeling
methods and neural structures and integrating
more features. In this paper, we re-examined
the noise in neural semantic role labeling mod-
els, a problem that has been long-ignored. By
proposing a noisy channel model structure, we
effectively eliminate the noise in the labeling
flow and thus improve performance. Without
relying on additional features, our proposed
novel model significantly outperforms a strong
baseline on multiple popular semantic role la-
beling benchmarks, which demonstrates the
effectiveness and robustness of our proposed
model.

1 Introduction

Semantic role labeling (SRL) extracts shallow se-
mantic structures such as agents, goals, temporal,
patient/receiver, or locative arguments for predi-
cates. It is a popular task in natural language pro-
cessing and can be useful in a variety of down-
stream tasks, such as information extraction (Chris-
tensen et al., 2010), machine reading comprehen-
sion (Zhang et al., 2019b), and machine translation
(Liu and Gildea, 2010).

SRL’s development has paralleled that of syntax
and transferred from constituency to dependency
structures. As a result, SRL is typically subdivided
into span (constituency) SRL and dependency SRL
based on the argument formalism. In span SRL,
arguments are the constituent spans of the sentence,
while in dependency SRL, the head words of the
constituent spans are the arguments.

A number of modeling approaches have been
studied in recent work. SRL can be abstracted
as the identification of predicates and arguments
and the classification of their pairs, so SRL can
be considered to a sequence-based labeling prob-
lem either by identifying/giving the predicate in

advance (Zhou and Xu, 2015; Marcheggiani et al.,
2017a; He et al., 2017, 2018b; Li et al., 2018) or,
modeling SRL as a graph, the predicate is used as
the root node of the tree, the arguments are treated
as its child nodes, and the predicate-argument rela-
tionships are used for edge labels (Cai et al., 2018).
In methods using pre-identified predicates, argu-
ments are labeled one predicate at a time, while
when modeling SRL as a graph, all predicates, ar-
guments, and their pairs are identified and classified
in one-shot (He et al., 2018a; Li et al., 2019). These
modeling approaches, when coupled with large pre-
trained language models, currently comprise the
state-of-the-art SRL models.

While novel models are still introduced, few
studies have focused on SRL’s noise issue, an im-
portant performance bottleneck in SRL that we
focus on and aim to alleviate using a noisy channel
model. Neural models often introduce features that
are either do not help or even actively hurt target
prediction during representation encoding and neu-
ral network scoring; we call the inclusion of these
features the noise issue. Given an input sentence X,
an SRL model given as a channel P(Y|X) would
ideally transform the input X into the correct tar-
get Y. The model is noisy, however, making this
channel a noisy channel. The noisy channel model
refers to the models that can reduce the noise in
the channel. Using the premise that low probability
predictions (i.e. with larger uncertainty) are more
likely to contain errors resulting from noise than are
high probability predictions, we aim to minimize
the noise of this channel and thus call our model
the noisy channel model. We utilize this premise
and allow the model for modeling the likelihood
of making particular errors itself, instead of only
relying it as loss.

Specifically, we propose a novel hierarchical
network structure consisting of a traditional SRL
model that provides the noisy prediction and a
noise-estimating component that estimates the



amount of noisy errors caused by this prediction.
In order to make the noise controllable and remov-
able, we introduce an external noise generator to
produce and model noise for the input, giving us a
source on which to base noise estimations. Based
on the bottom noise estimator, we build a denoising
SRL model in which a two-stream self-attention
mechanism is adopted to incorporate the noisy pre-
diction and the model noise-independent word rep-
resentations of the bottom model. In our model,
noise is explicitly added, estimated, and eventually
eliminated. Our model differs from the traditional
noise channel model as we do not seek to simply
restore the original input and therefore provides a
new alternative model for NLP labeling tasks. Fur-
thermore, the noise within the model is random, so
performing direct modeling is extremely difficult;
however, we account for this by adding artificially
synthetic noise for better denoising, a critical step
for ensuring performance improvement.

Our empirical evaluation is conducted on the
popular multilingual dependency SRL benchmark
CoNLL-2009 for multiple settings. The results
show that our proposed model can effectively al-
leviate the noise in the baseline model and con-
sistently improve SRL performance. Notably, our
model achieves the new state-of-the-art on several
datasets. Additional ablation studies demonstrate
that our proposed noisy channel model can effec-
tively remove the inherent noise in the model; and
thus obtain a higher quality output.

2 The Method

2.1 Overview

We present our noisy channel model for SRL in this
section. First, our full model is split into bottom
and top components. The lower component is a
variant of a regular SRL model. We choose a sim-
ple and intuitive BILSTM+MLP sequence labeling
model as our basic model in the bottom component.
We use this for noisy label prediction and noise esti-
mation. The top component is designed to denoise
the base model’s noisy predicted probabilities and
result in a more accurate prediction. Specifically,
for this top component, we adopt a two-stream
self-attention denoiser. On the one hand, it encode
the word-level representation with a word-based
self-attention; and on the other hand it denoises
the label representation using a word-label cross-
attention based on a probability-soft embedding of
the noisy label prediction. It then combines the two

streams to make the final prediction. The overall
architecture of the noisy channel model is shown
in Figure 1.

2.2 Base Model

First, we explain the base SRL model of our bot-
tom component. Formally, given an input sen-
tence X = {1, x9,...,z,}, the SRL model pre-
dicts a semantic triple of the predicate and ar-
gument and the relationship between them; i.e.
Y = {(p,a,m)},p € X,a € X,r € R, where
‘R is the vocabulary of semantic relationships. Al-
though the target prediction is based on triples, in
the sequence-based modeling method, the triple
is transformed into several label sequences using
a task decomposition, and then sequence labeling
is performed separately. SRL is typically decom-
posed into four subtasks: predicate identification,
predicate disambiguation, argument recognition,
and argument classification. If the predicate is pre-
specified, the problem is changed to then only en-
tails identifying and classifying its arguments.

Following He et al. (2018b)’s practice, we
adopted a similar model structure and made some
necessary changes to meet our overall needs. To
vectorize sentence input X, we employed word
embeddings " and a character CNN encoding
network "¢ which not only takes into account
word information but also better handles the out-
of-vocabulary (OOV) problem. Other features like
Parts-of-Speech (POS, eP°?) and lemmas (e'e™) are
also integrated into the embeddings. Since the la-
beling of arguments is related to the predicate, pred-
icate awareness is crucial to the implementation of
the sequence labeling. Therefore, we use additional
predicate indicator embedding "™ is used to indi-
cate which predicate is currently being processed.
A word is then represented by concatenating its
embeddings:

w __ [,word, char, pos, Jlem, _ind
= [6- ]’

€; i 26 6 6 56

where [-; | denotes a concatenation operation. Re-
cently, pre-trained language models like ELMo (Pe-
ters et al., 2018), BERT have further improved the
performance of many NLP tasks, our method can
also further enhance its embeddings by concatenat-
ing language model features P,

SRL is a context-related task, while the vec-
tor representation e; of word w; is context-
independent. To further contextualize the represen-
tation, we encode the word representation h; € H
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Figure 1: The overall architecture of our noisy channel model for semantic role labeling.

using a Bidirectional Long Short-Term Memory
(LSTM) encoder (Hochreiter and Schmidhuber,
1997):
H = BiLSTM(e!, ..., ep).

The BiLSTM encoder was chosen to facilitate
a more fair comparison with LSTM-based SRL
works. Encoders such as CNN or Transformer can
obviously also be adopted for contextualizing rep-
resentations.

We can employ Multi-layer Perceptron (MLP)
layers to project the contextualized representation
into the predicted probability distribution of each
position:

P(y;i|X,0) = softmax(MLP(h;)),
where 6 is the parameters of base model.

2.3 Noise Estimation

Since the inherent noise of the model will have a
negative impact on the model’s prediction, further
denoising is beneficial to performance improve-
ment. We define the inherent noise of the base
model as ¢. Since there is no direct way to model
the real inherent noise as it may be unstructured
and changing, we artificially synthesize a number
of different noises and apply them to the same ex-
ample so that the model can learn to capture and
remove this noise.

Following (Gui et al., 2020), we use sampling
based on Monte Carlo Dropout (Gal and Ghahra-
mani, 2016a) to create rational noise, which Gal

and Ghahramani refer to as uncertainty. We sam-
ple the dropout distribution M times for a single
example. Assuming that the noise generated by
sampling M times is N = {n1,n2, ..., na }, then
the predicted probability of the instance with the
k-th sampling noise can be written as:

P(yl|X7 97 < + 77/6) = SOftmaX(MLP(hi(nk>))a

where h;(ny) represents the contextual representa-
tion of w; with noise 7.

According to the idea of boosting (Schapire,
2003; Wang et al., 2008), we combine these pre-
dicted probabilities with various synthetic noises,

M
PilX,6) = 223" PilX, 0, + o).

k=1
In terms of implementation, we repeat the input
batch M times to allow parallelization on the GPU;
and then use the standard dropout on the sentence
length dimension. Notably, we also enable this
dropout for synthesizing noise in the inference
phase.

The synthesized noise is thus integrated into
the predicted distribution. Since these probabil-
ity scores are computed by a probaiblistically-
weighted average of various noises, synthesized
noise that better resembles the true noise will be
emphasized in this averaging operation, and the
parts of true noise that are inconsistent with the
synthesized noise will be reduced by average oper-
ation. Reducing the artificial noise (as seen in the



next step), should then lead to a reduction in real
noise as well because of the isomorphism.

Based on predicted probabilities, we obtain the
noisy label predictions ¢; and calculate entropy as
their noise estimation:

U; = Argmax(P(y;| X, 0)),

Ti = — Z P(yz = T|X7 Q)IOgP(yi = T|X7 6)
reR
Entropy 7; is a good noise estimation since when
7; 1s larger, the predicted label ¢; has a greater
probability of being wrong, which means that the
label in position ¢ needs to be further processed by
the denoiser.

2.4 Denoiser

The denoiser eliminates noise from the base
model’s label prediction. We leverage a two-stream
self-attention structure to be able to focus on both
the original word sequence and the noisy label se-
quence. Two-stream self-attention was first pro-
posed in (Yang et al., 2019) to use two sets of
hidden representations and model the two-stream
interactions. In our work, the original word embed-
ding (which lacks the inherent noise of the model)
interacts with the soft embedding of the noisy label
using the two-stream attention mechanism, which
helps to remove the noise in the noisy label predi-
tion from the base model.

For the two-stream self-attention structure, we
implement a multi-head self-attention (Vaswani
et al., 2017) with relative position encoding follow-
ing (Yang et al., 2019) as the basis. The calculation
of two-stream attention between word sequence
and noise label sequence can then be expressed as
follows:

oV = Laye rNorm(ew—i—

RelMHAttn(e"Wg, "Wk, e"Wy)),

h"Y = FeedForward(o”?"),

o¥? = Laye rNorm(ew—i—

RelMHAttn(e"Wo, e Wk, e'Wy)),

h! = FeedForward(o®?),

where Re 1MHAt tn denotes relative multi-head at-
tention, LayerNorm denotes layer normalization,
and FeedForward denotes a feed forward layer.
There are two reasons for using relative multi-head
attention rather than ordinary multi-head attention.
On the one hand, no additional position encoding

features are introduced. New features like those
could corrupt the original features and have a neg-
ative impact on the denoising effect. On the other
hand, the relative distance between labels is a valu-
able feature that can be beneficial for denoising.

To make the gradient for the noisy label embed-
ding differentiable in the training phase, we did not
use the embedding of predicted label from argmax
operation directly; but rather adopted a soft embed-
ding technique, which can be expressed as:

el =3 Ply: = r[X, 0)zmp e (r),
reER

in which Emb(®*¢) represents the embedding
space for semantic role labels. The basic idea is
to weight sum all label embeddings using the pre-
dicted probabilities of each label as weights.

After two-stream encoding and denosing, we
concatenate the output features in the two streams
and use the MLP layer to project the features to the
label probability space:

P(yi|X.0,¢) = softmax(MLP([hj; b)),
where ¢ denotes the parameters of the denoiser.

2.5 Training and Inference

Since our model makes two label predictions dur-
ing the training process, the total training loss natu-
rally consists of two parts:

i=1

L(0,¢) == Py = yi|X,0,8)logP(yi = y; |X,0,9),

=1

L=L(0)+L(0,)

To optimize the model, we use cross-entropy to
calculate the loss. The loss of the base model
is denoted by £(#) and is used to make the base
model predict the correct label as much as possible.
L(0, ¢) is the loss of denoising during training and
not only trains the denoiser; but also optimizes the
whole model jointly.

In the inference stage, we do not directly take
the final prediction of the denoiser as the output
of the model. According to Ockham’s razor, “en-
tities should not be multiplied without necessity;"
we therefore only use the output of the denoiser for
some labels that are affected by noise and keep the
rest. In terms of implementation, we set a thresh-
old p for noise estimation 7 and combine the two



predictions thus:

@{z{

3 Experiments and Analysis

Argmax(P(y’i|Xa 0))7 Ti < p,
Argmax(P(y;|X,0,9)), 7 > p.

3.1 Setup

We conducted experiments on the CoNLL-2009
shared task’s multilingual dataset, which in-
cludes Catalan, Chinese, Czech, English, German,
Japanese, and Spanish. In the experiments, we
used two settings: predicate-given and end-to-end.
In the predicate-given setting, we use the official
dataset’s pre-specified predicate but predict the
predicate sense, argument, and semantic roles. In
the end-to-end setting, all of the predicate and argu-
ment must be predicted since they are all unknown.
Additionally, in keeping with (He et al., 2018b), we
use POS and lemma features in the model. These
are the predicted POS tags and lemma as given by
the CoNLL-2009 shared task for each language.
To keep the model concise, we did not leverage
syntactic tree information, which makes our model
syntax-agnostic.

Our model uses pre-trained fastText (Grave et al.,
2018) embeddings as a word embedding initial-
ization. Other POS embeddings, lemma embed-
dings, and label embeddings are initialized ran-
domly. In the case of using a pre-trained language
model, the ELMo-original-5.5B model is used for
ELMo feature extraction, while for BERT (De-
vlin et al., 2019), BERT-large-cased is used for
English and BERT-base-chinese for Chinese. To
keep the results comparable to (Li et al., 2020a),
BERT for other languages in multilingual bench-
marks adopted is the same as them. All models are
trained for up to 400 epochs, early stopping patient
is set to 20, and the batch size is 64. We use the
categorical cross-entropy as the objective and the
Adam optimizer (Kingma and Ba, 2015). For other
model hyper-parameters, please see Appendix A.1.

3.2 Analysis

Predicate-given Results In the CoNLL-2009
multilingual benchmark, the English and Chinese
datasets are used in the majority of SRL works. To
compare with these works, we list the results from
recent works and our models in Table 1. When
comparing the baseline to our proposed full model,
in the case when not using any pre-trained language

models, our full model obtained 1.0+ Sem-F1 im-
provement on both the English in-domain (ID) and
out-of-domain (OOD) tests, as well as the Chinese
test set, demonstrating the effectiveness of our pro-
posed method.

As previously mentioned, when we compared
the SRL performance of previous works, we found
that the baseline results of different modeling meth-
ods differed. There is generally a trend in the
performance of the models: Graph > Tree > Se-
quence. This trend may be caused by the more
complex modeling methods (i.e, graph-based meth-
ods) taking into account more features. Conversely,
however, decoding speed follows its own trend: Se-
quence > Tree > Graph in terms of decoding speed
(for details see our speed analysis in Appendix
A.3). Without using pre-trained language models
or additional features such as syntax parse trees,
our method first achieves state-of-the-art among
sequence-based modeling approaches. Further-
more, our sequence-based model outperformed the
best results of the tree-based modeling approach
(Cai et al., 2018) and achieved results comparable
to those of the state-of-the-art graph-based mod-
eling work (Fei et al., 2021). This shows that our
proposed method is both fast and effective.

Whereas previous works that typically integrated
more features had disparities in their improvements
on ID and OOD results, our approach interestingly
boasts similar improvements both the ID and OOD
settings. That our approach provides an even im-
provement across both settings suggests that it does
reduce the noise inherent in the model, as this is a
problem that affects both settings. This contrasts
the development of new features, which are typi-
cally biased towards one of the two settings and
thus give disparate performance improvements.

The results in the predicate-given setting on
CoNLL-09 multilingual are shown in Table 2. The
study of multilingual SRL has resurfaced in recent
years, especially after the introduction of the mul-
tilingual pre-trained language model - BERT. The
improvements of our full models over the baselines
on the multilingual test sets are consistent. Al-
though the performance of our baseline (sequence-
based) lags behind that of tree-based (He et al.,
2019) and graph-based models (Li et al., 2020),
our full model achieves comparable results to these
models in most cases and further obtains state-of-
the-art results in Catalan, Czech, and Japanese lan-
guages with the help of BERT. Furthermore, our



System Modeling English ID English OOD Chinese

P Fy P R Fi P R F,
Roth and Lapata (2016) S 90.0 855 87.7 786 738 761 832 759 794
Marcheggiani et al. (2017a) S 88.7 868 877 794 762 717 834 791 812
Marcheggiani and Titov (2017a) S 89.1 86.8 880 785 759 772 846 804 825
He et al. (2018b) (w/ ELMo) S 89.7 893 895 819 769 793 842 815 828
Cai et al. (2018) T 899 892 896 79.8 783 79.0 847 840 843
Li et al. (2018) (w/ ELMo) S 903 893 898 8.6 790 79.8 848 812 83.0
Li et al. (2019) (w/ ELMo) G 89.6 912 904 817 814 815 — — —
He et al. (2019) (w/ ELMo) T 90.00 90.65 90.32 — — — 84.44 8495 84.70
He et al. (2019) (w/ BERT) T 90.41 91.32 90.86 — - — 86.15 86.70 86.42
Lyu et al. (2019a) (w/ ELMo) S — — 90.99 — — 82.18 — — 83.31
Chen et al. (2019) (w/ ELMo) S — — 91.06 — - 82.72 — — 81.65
Cai and Lapata (2019) (w/ ELMo) T 91.7 90.8 912 832 819 825 854 846 850
Kasai et al. (2019) S 89.0 882 886 780 772 776 - — -
Kasai et al. (2019) (w/ ELMo) S 903 90.0 902 81.0 805 808 — — —
Zhou et al. (2020a) G 88.73 89.83 89.28 8246 83.20 82.82 - — —
Zhou et al. (2020a) (w/ BERT) G 91.21 91.19 9120 85.65 86.09 85.87 — — —
Li et al. (2020a) G 91.60 8895 90.26 82.6 7875 80.63 88.35 83.82 86.02
Li et al. (2020a) (w/ BERT) G 92.59 9098 91.77 86.49 8380 85.13 89.07 87.71 88.38
Fei et al. (2021) G 90.8 90.0 904 807 793 80.2 — — —
Fei et al. (2021) (w/ BERT) G 925 925 925 856 853 854 — — —
Baseline S 89.06 88.54 88.80 78.57 77.10 77.83 84.87 80.46 82.61
Full Model S 90.66 89.01 89.83 8035 77.46 78.88 86.28 81.83 84.00
Full Model (w/ ELMo) S 91.47 89.82 90.63 83.95 81.61 82.76 — — —
Full Model (w/ BERT) S 92.11 9195 92.03 86.45 8396 85.19 8891 86.85 87.87

Table 1: Precision, recall and semantic F;-score on CoNLL-2009 English in-domain (ID), out-of-domain (OOD)
data and Chinese test sets with predicate-given setting. S, T, and G in the modeling column refers to sequence-based,

tree-based, and graph-based modeling approaches.

approach is neither limited to the sequence mod-
eling model nor the SRL task. The noise channel
model is a task-independent method of alleviating
a model’s inherent noise, and our approach model-
and task-independent. Thus, our method also can
be transplanted to a tree or graph-based baseline.
We leave this to future work since in this paper, we
are primarily interested in enhancing performance
by alleviating the model’s inherent noise in this

paper.

End-to-end Results The end-to-end setting ne-
cessitates fewer external preset conditions and
therefore better resembles realistic applications. Ta-
ble 3 shows the results of our approach in this more
challenging setting. The outcome of predicate iden-
tification has a significant impact on the overall Fy,
but this has usually been overlooked in previous
work. Inconsistent choices in predicate identifier
often render findings significantly incomparable,
so in this paper, we advocate for reporting the pred-
icate’s F1 score as well so that we can ensure the
overall Sem-F; increase is due to better role label-
ing rather than better predicate recognition. The re-
sults show not only is our model’s improvement is
stable in this challenge setting, but when compared

to the previous results, our results are comparable
or even superior, despite using a simpler modeling
method and simpler neural structures.

Where did Denoising Work? For the base
model, the longer the sequence is, the more likely it
is affected by noise, so we hypothesize that denois-
ing should bring greater effect to longer sequences.
To verify our hypothesis, we compared the per-
formance of the baseline and the full model on
different length sentences, as shown in Figure 2(a).
According to the figure, the baseline model’s per-
formance is obviously better when handling short
sentences, which is common in sequence-based
modeling. This suggests that long sentences may
be more influenced by noise. The figure also shows
that our full model improves on this baseline and
its improvement grows when handling longer sen-
tences, which is consistent with our hypothesis.

Denoising, Refining, or Smoothing? Generally
speaking, if we do not use synthesized noise, our
approach can be thought of as refining; additionally,
if we do not use dropout but instead sum noise fea-
tures from distribution sampling, it can be thought
of as model smoothing. We thus performed two ex-
periments to contrast our method with these similar



Model Catalan Chinese Czech English German Japanese Spanish
Hajic et al. (2009) 80.3 78.6 85.4 85.6 79.7 78.2 80.5
Zhao et al. (2009) 80.3 71.7 85.2 86.2 76.0 78.2 80.5
Roth and Lapata (2016) — 79.4 — 87.7 80.1 — 80.2
Marcheggiani et al. (2017a) — 81.2 86.0 87.7 — — 80.3
Mulcaire et al. (2018) 79.45 81.89 85.14 8724 69.97 76.00 77.32
Kasai et al. (2019) (w/ ELMo) — — — 90.2 — — 83.0
Lyu et al. (2019a) (w/ ELMo) 80.91 83.31 87.62  90.99 75.87 82.54 80.53
Cai and Lapata (2019) — 85.00 — 91.20 83.80 — 82.90
He et al. (2019) 84.35 84.55 88.76  89.96 78.54 83.12 83.70
He et al. (2019) (w/ BERT) 85.14 86.42  89.66  90.86 80.87 83.76 84.60
Li et al. (2020a)" 85.37 86.02  90.60 90.26 76.41 83.25 84.39
Li et al. (2020a) (w/ BERT) 86.90 88.69 9193 91.77 85.54 85.90 86.96
Baseline 81.42 8320 88.60  88.80 77.26 81.34 80.52
Full Model 82.58 84.56  89.74  89.83 79.30 82.53 81.47
Full Model (w/ BERT) 87.05 87.96 9224 9203 83.55 86.04 85.65

Table 2: Semantic F;-score on the CoNLL-2009 in-domain multilingual test sets with the predicate-given setting.
T The predicate disambiguators in (Li et al., 2020a) in w/ BERT and w/ o BERT setting use the same sequence
labeling model (w/ BERT) which improves the overall Sem-F;, while two separate disambiguators are used in our
work, so the w/o BERT results are not entirely comparable.

Model Catalan Chinese Czech English German Japanese Spanish
PR ¥ PR F PR F PR F PFRL F PFR F PFL F
Li et al. (2020a)" - 8407 - 801 - 845 - 8616 — 6048 — 7420 — 83.11
Lietal. (2020a) (w/ BERT) — 8582 — 8568 — 9122 — 8370 — 6715 — 7888 — 86.00
Baseline 90.82 81.45 90.47 80.05 96.92 88.18 91.62 85.06 65.28 55.61 84.64 72.45 85.83 80.11
Full Model 90.82 8291 90.47 81.22 96.92 89.50 91.62 85.98 65.28 57.02 84.64 73.86 85.83 81.27
Full Model (w/ BERT) 95.05 85.96 93.11 85.22 97.67 91.45 92.59 88.63 70.30 65.48 86.74 78.70 92.41 84.83

Table 3: Semantic F;-score on the CoNLL-2009 multilingual test sets with the end-to-end setting. PF; denotes the
F, score (includes predicate sense). I The predicate recognizer in (Li et al., 2020a) in w/ BERT and w/ o BERT
setting use the same sequence labeling model (w/ BERT) which improves the overall Sem-F;, while two separate
recognizer are used in our work, so the w/o BERT results are not entirely comparable.

approaches: 1) exclude noise sampling (Refining) Method ID 00D

and 2) sample Gaussian noise distribution as fea- P R K P R B

; Baseline 89.06 88.54 88.80 78.57 77.10 77.83
tures (Smoothing). . . ) Boosting Only 88.97 88.85 88.90 78.52 77.24 77.87
Table 4 presents this comparison. Refining Full Model 90.66 89.01 89.83 80.35 77.46 78.88

89.34 88.92 89.12 78.92 76.95 77.92
90.53 88.72 89.61 80.44 76.87 78.61

w/o Relative Pos 90.27 88.92 89.58 80.16 77.30 78.70
w/o Two-stream Self-attn  89.51 88.79 89.14 79.98 76.55 78.22
w/o Soft Label Emb 90.16 88.66 89.40 80.08 77.13 78.57

w/o Noise Sampling
w/ Gaussian Noise

(w/o Noise Sampling) and Smoothing (w/ Gaus-
sian Noise) both obtained better results than the
baseline, indicating that these two approaches are
effective methods of improving SRL performance;
however, in comparison to our full model, these
approaches’ lead to lesser improvements, which
demonstrates the superiority of our method.

Table 4: Ablation study on CoNLL-09 English test set.

the argmax prediction) led to performance reduc-
tions of varying degrees. Among them, the removal
of the two-stream attention mechanism affected
model performance the most, which shows that

3.3 Ablation Study

In our full model, we augmented the base model
with several novel techniques. To illustrate the im-

portance of introducing these novel techniques, we
performed an ablation study as shown in the bot-
tom of Table 4. Removing the relative position
encoding, two-stream attention mechanism (using
two separate Transformers instead), and soft la-
bel embedding (using the embedding obtained on

the interaction between the word representations
(without model noise) and the label representations
(with model noise) is critical for denoising.
Furthermore, we explore the sampling size M
in order to determine the optimal sampling size
for improving performance. Figure 2(b) depicts
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Figure 2: Sem-F; score vs. sentence length and Sem-F;
score vs. sampling size M. The CoNLL-09 in-domain
test set is used for both comparisons.

the SRL performance curve with various sampling
sizes M. The optimal sampling size, as shown in
the figure, is 8. When it is less than 8, the per-
formance improves as M becomes larger. After
M reaches 8, the performance is essentially stable.
which demonstrates that 8 is sufficient for denois-
ing, and no additional gain will be available by
increasing M further. Please refer to Appendix A.2
for other ablation studies.

4 Related Work

Semantic Role Labeling SRL has been a heated
research realm since the introduction of neural net-
works. Early neural network-based methods (Wang
et al., 2015) simply modeled semantic role labeling
as a word classification task and employed recur-
rent networks for annotation. Leveraging syntax is
a common way of boosting performance for SRL.
While using syntactic treebanks, Graph Convolu-
tional Networks (GCN) can be applied for SRL
for syntax-aware labeling (Marcheggiani and Titov,
2017b), though syntax-agnostic models were also
argued efficient by (Marcheggiani et al., 2017b).
Still, there remains a strong connection between
the studies of syntax and SRL (He et al., 2018c;
Marcheggiani and Titov, 2020; Shi et al., 2020).
Refinement on output from SRL models has
been increasingly popular for research. Iterative
refinement on SRL has been shown to outperform
base models (Lyu et al., 2019b). Higher order scor-
ers have also been used as a source of more accurate
arc scores in semantic graph (Li et al., 2020b). Our
model is similar to those refining models in pro-
cess, but rather than just refining, our model also
specifically focuses on removing noise.

Noise Processing Noise, in NLP tasks, repre-
sented in the model as uncertainty when processing
complex information or structures. Denoising can
be leveraged to produce better results, as high cer-
tainty implicates faults for refinement. The noise
channel model, which applies Bayesian approxi-
mation constraints to eliminate noise in generated
outputs, has become a popular method in NLG
tasks, including NMT (Wang et al., 2019; Zhou
et al., 2020b) and summary generation (Xu et al.,
2020). In domain of linguistic parsing, noise refers
to labels predicted with high uncertainty. (Zhang
et al., 2019a) applied an adaptive uncertainty-aware
decoder for semantic parsing. Dependency parsing
can also benefit from adaptive strategy based on
uncertainty detection, as demonstrated in (van der
Goot and van Noord, 2018). Uncertainty mecha-
nism has also been applied in suspense prediction
(Wilmot and Keller, 2020), spoken language assess-
ment (Malinin et al., 2017), and document class
prevalence inference (Keith and O’Connor, 2018).

Specifically speaking, mainstream noise process-
ing can be categorized into two topics: evaluation
and elimination. Noise elimination generally refers
to he works introduced above that discuss about
result refinement, while noise evaluation refers to
modeling the uncertainty of a model. In this topic,
Gal and Ghahramani (2016b) have suggested that
the softmax function may not be a solid indica-
tion of model uncertainty, which suggests that this
topic needs more research. Also on this topic, (He
et al., 2020) rectified confidence scores using their
MSD model to better evaluate result uncertainty,
and Ethayarajh (2020) measured the bias in classifi-
cation models using Bernstein-bounded unfairness.

5 Conclusion

In this paper, we propose a noisy channel model
for the SRL model’s inherent noise problem. In
our proposed model, synthesized noise is combined
and then averaged to best emphasize similar authen-
tic noise while weaken the different inherent noise,
and this noise is then reduced by a denoiser based
on two-stream attention to obtain the final output.
We demonstrated the effectiveness of our approach
by evaluating our models on the CoNLL-09 mul-
tilingual benchmark, and we also investigated the
differences between our method and refining and
smoothing techniques. Apart from being success-
ful in SRL, our approach is also notable because it
broadly applicable to other NLP tasks.
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A Appendix

A.1 Hyper-parameters

Embedding Dimension
Word Embed 100
Char 100
POS 64
Lemma 100
Label 400
Predicate Indicator 32
ELMo' 300
BERT' 300
Encoder Size
BiLSTMs 256 x 2
BiLSTMs Layers 3
BiLSTMs Out MLP 128
Two Stream Attention Size
Transformer Hidden 512
Transformer FEN 1024
Transformer Heads 8
Transformer Layers 2
Dropout Probability
BiLSTM Input 0.33
BiLSTM Output 0.33
BiLSTMs [0.33,0.33]
Transformers 0.05
Noise 0.15
Optimizer

Learning Rate 0.001
Adam p 0.9
Adam v 0.9999
Batch Size 64
Decay Rate 0.999995
Warmup Steps 100

Table 5: Model hyper-parameters. T denotes optional.

A.2 Noisy Channel Model on BERT Baseline

The main experimental results show that BERT
can significantly boost the performance of SRL.
To demonstrate that our approach will continue to
work on the strong BERT baseline, we present the
w/ BERT baseline results in Table 6. The results
show that, while BERT is a great help to the base-
line performance, the use of our Noisy Channel
Model can further play a useful role.

A.3 Inference Speed Analysis

To analyze the inference speed of different mod-
eling approaches, we measured the total inference
time on the CoNLL-2009 English in-domain test
set with the scale of model parameters similar (i.e.,
same hidden size, model layers). 5 runs are per-
formed and then reported the average speed for
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Method D 00D

P R Fy P R F.
Baseline 89.06 88.54 88.80 78.57 77.10 77.83
Baseline (w/ BERT)  91.97 91.23 91.59 85.50 83.87 84.67
Full Model 90.66 89.01 89.83 80.35 77.46 78.88

Full Model (w/ BERT) 92.11 91.95 92.03 86.45 83.96 85.19

Table 6: Performance comparison between baseline and
noisy channel model with BERT enhancement.

better stability. The comparison results are shown
in Table 7. From the comparison, the inference
speed order is Sequence > Tree > Graph, and our
full model only slightly decreases the speed due to
a good parallel design compared to the baseline.

Method Modeling  Speed (sent./s)
(Caiet al., 2018) T 199.5
(Li et al., 2020a) G 165.9
Baseline S 245.1
Full Model S 240.6

Table 7: Inference speed for different modeling ap-
proaches.



