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Abstract

Semantic role labeling usually models struc-001
tures using sequences, trees, or graphs. Past002
works focused on researching novel modeling003
methods and neural structures and integrating004
more features. In this paper, we re-examined005
the noise in neural semantic role labeling mod-006
els, a problem that has been long-ignored. By007
proposing a noisy channel model structure, we008
effectively eliminate the noise in the labeling009
flow and thus improve performance. Without010
relying on additional features, our proposed011
novel model significantly outperforms a strong012
baseline on multiple popular semantic role la-013
beling benchmarks, which demonstrates the014
effectiveness and robustness of our proposed015
model.016

1 Introduction017

Semantic role labeling (SRL) extracts shallow se-018

mantic structures such as agents, goals, temporal,019

patient/receiver, or locative arguments for predi-020

cates. It is a popular task in natural language pro-021

cessing and can be useful in a variety of down-022

stream tasks, such as information extraction (Chris-023

tensen et al., 2010), machine reading comprehen-024

sion (Zhang et al., 2019b), and machine translation025

(Liu and Gildea, 2010).026

SRL’s development has paralleled that of syntax027

and transferred from constituency to dependency028

structures. As a result, SRL is typically subdivided029

into span (constituency) SRL and dependency SRL030

based on the argument formalism. In span SRL,031

arguments are the constituent spans of the sentence,032

while in dependency SRL, the head words of the033

constituent spans are the arguments.034

A number of modeling approaches have been035

studied in recent work. SRL can be abstracted036

as the identification of predicates and arguments037

and the classification of their pairs, so SRL can038

be considered to a sequence-based labeling prob-039

lem either by identifying/giving the predicate in040

advance (Zhou and Xu, 2015; Marcheggiani et al., 041

2017a; He et al., 2017, 2018b; Li et al., 2018) or, 042

modeling SRL as a graph, the predicate is used as 043

the root node of the tree, the arguments are treated 044

as its child nodes, and the predicate-argument rela- 045

tionships are used for edge labels (Cai et al., 2018). 046

In methods using pre-identified predicates, argu- 047

ments are labeled one predicate at a time, while 048

when modeling SRL as a graph, all predicates, ar- 049

guments, and their pairs are identified and classified 050

in one-shot (He et al., 2018a; Li et al., 2019). These 051

modeling approaches, when coupled with large pre- 052

trained language models, currently comprise the 053

state-of-the-art SRL models. 054

While novel models are still introduced, few 055

studies have focused on SRL’s noise issue, an im- 056

portant performance bottleneck in SRL that we 057

focus on and aim to alleviate using a noisy channel 058

model. Neural models often introduce features that 059

are either do not help or even actively hurt target 060

prediction during representation encoding and neu- 061

ral network scoring; we call the inclusion of these 062

features the noise issue. Given an input sentence X , 063

an SRL model given as a channel P (Y |X) would 064

ideally transform the input X into the correct tar- 065

get Y . The model is noisy, however, making this 066

channel a noisy channel. The noisy channel model 067

refers to the models that can reduce the noise in 068

the channel. Using the premise that low probability 069

predictions (i.e. with larger uncertainty) are more 070

likely to contain errors resulting from noise than are 071

high probability predictions, we aim to minimize 072

the noise of this channel and thus call our model 073

the noisy channel model. We utilize this premise 074

and allow the model for modeling the likelihood 075

of making particular errors itself, instead of only 076

relying it as loss. 077

Specifically, we propose a novel hierarchical 078

network structure consisting of a traditional SRL 079

model that provides the noisy prediction and a 080

noise-estimating component that estimates the 081
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amount of noisy errors caused by this prediction.082

In order to make the noise controllable and remov-083

able, we introduce an external noise generator to084

produce and model noise for the input, giving us a085

source on which to base noise estimations. Based086

on the bottom noise estimator, we build a denoising087

SRL model in which a two-stream self-attention088

mechanism is adopted to incorporate the noisy pre-089

diction and the model noise-independent word rep-090

resentations of the bottom model. In our model,091

noise is explicitly added, estimated, and eventually092

eliminated. Our model differs from the traditional093

noise channel model as we do not seek to simply094

restore the original input and therefore provides a095

new alternative model for NLP labeling tasks. Fur-096

thermore, the noise within the model is random, so097

performing direct modeling is extremely difficult;098

however, we account for this by adding artificially099

synthetic noise for better denoising, a critical step100

for ensuring performance improvement.101

Our empirical evaluation is conducted on the102

popular multilingual dependency SRL benchmark103

CoNLL-2009 for multiple settings. The results104

show that our proposed model can effectively al-105

leviate the noise in the baseline model and con-106

sistently improve SRL performance. Notably, our107

model achieves the new state-of-the-art on several108

datasets. Additional ablation studies demonstrate109

that our proposed noisy channel model can effec-110

tively remove the inherent noise in the model; and111

thus obtain a higher quality output.112

2 The Method113

2.1 Overview114

We present our noisy channel model for SRL in this115

section. First, our full model is split into bottom116

and top components. The lower component is a117

variant of a regular SRL model. We choose a sim-118

ple and intuitive BiLSTM+MLP sequence labeling119

model as our basic model in the bottom component.120

We use this for noisy label prediction and noise esti-121

mation. The top component is designed to denoise122

the base model’s noisy predicted probabilities and123

result in a more accurate prediction. Specifically,124

for this top component, we adopt a two-stream125

self-attention denoiser. On the one hand, it encode126

the word-level representation with a word-based127

self-attention; and on the other hand it denoises128

the label representation using a word-label cross-129

attention based on a probability-soft embedding of130

the noisy label prediction. It then combines the two131

streams to make the final prediction. The overall 132

architecture of the noisy channel model is shown 133

in Figure 1. 134

2.2 Base Model 135

First, we explain the base SRL model of our bot- 136

tom component. Formally, given an input sen- 137

tence X = {x1, x2, ..., xn}, the SRL model pre- 138

dicts a semantic triple of the predicate and ar- 139

gument and the relationship between them; i.e. 140

Y = {(p, a, r)}, p ∈ X, a ∈ X, r ∈ R, where 141

R is the vocabulary of semantic relationships. Al- 142

though the target prediction is based on triples, in 143

the sequence-based modeling method, the triple 144

is transformed into several label sequences using 145

a task decomposition, and then sequence labeling 146

is performed separately. SRL is typically decom- 147

posed into four subtasks: predicate identification, 148

predicate disambiguation, argument recognition, 149

and argument classification. If the predicate is pre- 150

specified, the problem is changed to then only en- 151

tails identifying and classifying its arguments. 152

Following He et al. (2018b)’s practice, we
adopted a similar model structure and made some
necessary changes to meet our overall needs. To
vectorize sentence input X , we employed word
embeddings eword and a character CNN encoding
network echar, which not only takes into account
word information but also better handles the out-
of-vocabulary (OOV) problem. Other features like
Parts-of-Speech (POS, epos) and lemmas (elem) are
also integrated into the embeddings. Since the la-
beling of arguments is related to the predicate, pred-
icate awareness is crucial to the implementation of
the sequence labeling. Therefore, we use additional
predicate indicator embedding eind is used to indi-
cate which predicate is currently being processed.
A word is then represented by concatenating its
embeddings:

ewi = [eword
i ; echari ; eposi ; elemi ; eindi ],

where [·; ·] denotes a concatenation operation. Re- 153

cently, pre-trained language models like ELMo (Pe- 154

ters et al., 2018), BERT have further improved the 155

performance of many NLP tasks, our method can 156

also further enhance its embeddings by concatenat- 157

ing language model features eplm. 158

SRL is a context-related task, while the vec-
tor representation ei of word wi is context-
independent. To further contextualize the represen-
tation, we encode the word representation hi ∈ H
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Figure 1: The overall architecture of our noisy channel model for semantic role labeling.

using a Bidirectional Long Short-Term Memory
(LSTM) encoder (Hochreiter and Schmidhuber,
1997):

H = BiLSTM(ew1 , ..., e
w
n ).

The BiLSTM encoder was chosen to facilitate159

a more fair comparison with LSTM-based SRL160

works. Encoders such as CNN or Transformer can161

obviously also be adopted for contextualizing rep-162

resentations.163

We can employ Multi-layer Perceptron (MLP)
layers to project the contextualized representation
into the predicted probability distribution of each
position:

P (yi|X, θ) = Softmax(MLP(hi)),

where θ is the parameters of base model.164

2.3 Noise Estimation165

Since the inherent noise of the model will have a166

negative impact on the model’s prediction, further167

denoising is beneficial to performance improve-168

ment. We define the inherent noise of the base169

model as ζ. Since there is no direct way to model170

the real inherent noise as it may be unstructured171

and changing, we artificially synthesize a number172

of different noises and apply them to the same ex-173

ample so that the model can learn to capture and174

remove this noise.175

Following (Gui et al., 2020), we use sampling
based on Monte Carlo Dropout (Gal and Ghahra-
mani, 2016a) to create rational noise, which Gal

and Ghahramani refer to as uncertainty. We sam-
ple the dropout distribution M times for a single
example. Assuming that the noise generated by
sampling M times is N = {η1, η2, ..., ηM}, then
the predicted probability of the instance with the
k-th sampling noise can be written as:

P (yi|X, θ, ζ + ηk) = Softmax(MLP(hi(ηk))),

where hi(ηk) represents the contextual representa- 176

tion of wi with noise ηk. 177

According to the idea of boosting (Schapire,
2003; Wang et al., 2008), we combine these pre-
dicted probabilities with various synthetic noises,

P (yi|X, θ) =
1

M

M∑
k=1

P (yi|X, θ, ζ + ηk).

In terms of implementation, we repeat the input 178

batch M times to allow parallelization on the GPU; 179

and then use the standard dropout on the sentence 180

length dimension. Notably, we also enable this 181

dropout for synthesizing noise in the inference 182

phase. 183

The synthesized noise is thus integrated into 184

the predicted distribution. Since these probabil- 185

ity scores are computed by a probaiblistically- 186

weighted average of various noises, synthesized 187

noise that better resembles the true noise will be 188

emphasized in this averaging operation, and the 189

parts of true noise that are inconsistent with the 190

synthesized noise will be reduced by average oper- 191

ation. Reducing the artificial noise (as seen in the 192
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next step), should then lead to a reduction in real193

noise as well because of the isomorphism.194

Based on predicted probabilities, we obtain the
noisy label predictions ŷi and calculate entropy as
their noise estimation:

ŷi = Argmax(P (yi|X, θ)),

τi = −
∑
r∈R

P (yi = r|X, θ)logP (yi = r|X, θ).

Entropy τi is a good noise estimation since when195

τi is larger, the predicted label ŷi has a greater196

probability of being wrong, which means that the197

label in position i needs to be further processed by198

the denoiser.199

2.4 Denoiser200

The denoiser eliminates noise from the base201

model’s label prediction. We leverage a two-stream202

self-attention structure to be able to focus on both203

the original word sequence and the noisy label se-204

quence. Two-stream self-attention was first pro-205

posed in (Yang et al., 2019) to use two sets of206

hidden representations and model the two-stream207

interactions. In our work, the original word embed-208

ding (which lacks the inherent noise of the model)209

interacts with the soft embedding of the noisy label210

using the two-stream attention mechanism, which211

helps to remove the noise in the noisy label predi-212

tion from the base model.213

For the two-stream self-attention structure, we214

implement a multi-head self-attention (Vaswani215

et al., 2017) with relative position encoding follow-216

ing (Yang et al., 2019) as the basis. The calculation217

of two-stream attention between word sequence218

and noise label sequence can then be expressed as219

follows:220

ow2w = LayerNorm
(
ew+

RelMHAttn(ewWQ, e
wWK , ewWV )

)
,

hw = FeedForward(ow2w),

ow2l = LayerNorm
(
ew+

RelMHAttn(ewWQ, e
lWK , elWV )

)
,

hl = FeedForward(ow2l),

221

where RelMHAttn denotes relative multi-head at-222

tention, LayerNorm denotes layer normalization,223

and FeedForward denotes a feed forward layer.224

There are two reasons for using relative multi-head225

attention rather than ordinary multi-head attention.226

On the one hand, no additional position encoding227

features are introduced. New features like those 228

could corrupt the original features and have a neg- 229

ative impact on the denoising effect. On the other 230

hand, the relative distance between labels is a valu- 231

able feature that can be beneficial for denoising. 232

To make the gradient for the noisy label embed-
ding differentiable in the training phase, we did not
use the embedding of predicted label from argmax
operation directly; but rather adopted a soft embed-
ding technique, which can be expressed as:

eli =
∑
r∈R

P (yi = r|X, θ)Emb(label)(r),

in which Emb(label) represents the embedding 233

space for semantic role labels. The basic idea is 234

to weight sum all label embeddings using the pre- 235

dicted probabilities of each label as weights. 236

After two-stream encoding and denosing, we
concatenate the output features in the two streams
and use the MLP layer to project the features to the
label probability space:

P (yi|X, θ, ϕ) = Softmax(MLP([hli;h
w
i ])),

where ϕ denotes the parameters of the denoiser. 237

2.5 Training and Inference 238

Since our model makes two label predictions dur- 239

ing the training process, the total training loss natu- 240

rally consists of two parts: 241

L(θ) = −
n∑

i=1

P (yi = y∗
i |X, θ)logP (yi = y∗

i |X, θ),

L(θ, ϕ) = −
n∑

i=1

P (yi = y∗
i |X, θ, ϕ)logP (yi = y∗

i |X, θ, ϕ),

L = L(θ) + L(θ, ϕ).

242

To optimize the model, we use cross-entropy to 243

calculate the loss. The loss of the base model 244

is denoted by L(θ) and is used to make the base 245

model predict the correct label as much as possible. 246

L(θ, ϕ) is the loss of denoising during training and 247

not only trains the denoiser; but also optimizes the 248

whole model jointly. 249

In the inference stage, we do not directly take 250

the final prediction of the denoiser as the output 251

of the model. According to Ockham’s razor, “en- 252

tities should not be multiplied without necessity;" 253

we therefore only use the output of the denoiser for 254

some labels that are affected by noise and keep the 255

rest. In terms of implementation, we set a thresh- 256

old ρ for noise estimation τ and combine the two 257
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predictions thus:258

ŷfi =

{
Argmax(P (yi|X, θ)), τi < ρ,
Argmax(P (yi|X, θ, ϕ)), τi ≥ ρ.

259

3 Experiments and Analysis260

3.1 Setup261

We conducted experiments on the CoNLL-2009262

shared task’s multilingual dataset, which in-263

cludes Catalan, Chinese, Czech, English, German,264

Japanese, and Spanish. In the experiments, we265

used two settings: predicate-given and end-to-end.266

In the predicate-given setting, we use the official267

dataset’s pre-specified predicate but predict the268

predicate sense, argument, and semantic roles. In269

the end-to-end setting, all of the predicate and argu-270

ment must be predicted since they are all unknown.271

Additionally, in keeping with (He et al., 2018b), we272

use POS and lemma features in the model. These273

are the predicted POS tags and lemma as given by274

the CoNLL-2009 shared task for each language.275

To keep the model concise, we did not leverage276

syntactic tree information, which makes our model277

syntax-agnostic.278

Our model uses pre-trained fastText (Grave et al.,279

2018) embeddings as a word embedding initial-280

ization. Other POS embeddings, lemma embed-281

dings, and label embeddings are initialized ran-282

domly. In the case of using a pre-trained language283

model, the ELMo-original-5.5B model is used for284

ELMo feature extraction, while for BERT (De-285

vlin et al., 2019), BERT-large-cased is used for286

English and BERT-base-chinese for Chinese. To287

keep the results comparable to (Li et al., 2020a),288

BERT for other languages in multilingual bench-289

marks adopted is the same as them. All models are290

trained for up to 400 epochs, early stopping patient291

is set to 20, and the batch size is 64. We use the292

categorical cross-entropy as the objective and the293

Adam optimizer (Kingma and Ba, 2015). For other294

model hyper-parameters, please see Appendix A.1.295

3.2 Analysis296

Predicate-given Results In the CoNLL-2009297

multilingual benchmark, the English and Chinese298

datasets are used in the majority of SRL works. To299

compare with these works, we list the results from300

recent works and our models in Table 1. When301

comparing the baseline to our proposed full model,302

in the case when not using any pre-trained language303

models, our full model obtained 1.0+ Sem-F1 im- 304

provement on both the English in-domain (ID) and 305

out-of-domain (OOD) tests, as well as the Chinese 306

test set, demonstrating the effectiveness of our pro- 307

posed method. 308

As previously mentioned, when we compared 309

the SRL performance of previous works, we found 310

that the baseline results of different modeling meth- 311

ods differed. There is generally a trend in the 312

performance of the models: Graph > Tree > Se- 313

quence. This trend may be caused by the more 314

complex modeling methods (i.e, graph-based meth- 315

ods) taking into account more features. Conversely, 316

however, decoding speed follows its own trend: Se- 317

quence > Tree > Graph in terms of decoding speed 318

(for details see our speed analysis in Appendix 319

A.3). Without using pre-trained language models 320

or additional features such as syntax parse trees, 321

our method first achieves state-of-the-art among 322

sequence-based modeling approaches. Further- 323

more, our sequence-based model outperformed the 324

best results of the tree-based modeling approach 325

(Cai et al., 2018) and achieved results comparable 326

to those of the state-of-the-art graph-based mod- 327

eling work (Fei et al., 2021). This shows that our 328

proposed method is both fast and effective. 329

Whereas previous works that typically integrated 330

more features had disparities in their improvements 331

on ID and OOD results, our approach interestingly 332

boasts similar improvements both the ID and OOD 333

settings. That our approach provides an even im- 334

provement across both settings suggests that it does 335

reduce the noise inherent in the model, as this is a 336

problem that affects both settings. This contrasts 337

the development of new features, which are typi- 338

cally biased towards one of the two settings and 339

thus give disparate performance improvements. 340

The results in the predicate-given setting on 341

CoNLL-09 multilingual are shown in Table 2. The 342

study of multilingual SRL has resurfaced in recent 343

years, especially after the introduction of the mul- 344

tilingual pre-trained language model - BERT. The 345

improvements of our full models over the baselines 346

on the multilingual test sets are consistent. Al- 347

though the performance of our baseline (sequence- 348

based) lags behind that of tree-based (He et al., 349

2019) and graph-based models (Li et al., 2020), 350

our full model achieves comparable results to these 351

models in most cases and further obtains state-of- 352

the-art results in Catalan, Czech, and Japanese lan- 353

guages with the help of BERT. Furthermore, our 354
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System Modeling English ID English OOD Chinese

P R F1 P R F1 P R F1

Roth and Lapata (2016) S 90.0 85.5 87.7 78.6 73.8 76.1 83.2 75.9 79.4
Marcheggiani et al. (2017a) S 88.7 86.8 87.7 79.4 76.2 77.7 83.4 79.1 81.2
Marcheggiani and Titov (2017a) S 89.1 86.8 88.0 78.5 75.9 77.2 84.6 80.4 82.5
He et al. (2018b) (w/ ELMo) S 89.7 89.3 89.5 81.9 76.9 79.3 84.2 81.5 82.8
Cai et al. (2018) T 89.9 89.2 89.6 79.8 78.3 79.0 84.7 84.0 84.3
Li et al. (2018) (w/ ELMo) S 90.3 89.3 89.8 80.6 79.0 79.8 84.8 81.2 83.0
Li et al. (2019) (w/ ELMo) G 89.6 91.2 90.4 81.7 81.4 81.5 − − −
He et al. (2019) (w/ ELMo) T 90.00 90.65 90.32 − − − 84.44 84.95 84.70
He et al. (2019) (w/ BERT) T 90.41 91.32 90.86 − − − 86.15 86.70 86.42
Lyu et al. (2019a) (w/ ELMo) S − − 90.99 − − 82.18 − − 83.31
Chen et al. (2019) (w/ ELMo) S − − 91.06 − − 82.72 − − 81.65
Cai and Lapata (2019) (w/ ELMo) T 91.7 90.8 91.2 83.2 81.9 82.5 85.4 84.6 85.0
Kasai et al. (2019) S 89.0 88.2 88.6 78.0 77.2 77.6 − − −
Kasai et al. (2019) (w/ ELMo) S 90.3 90.0 90.2 81.0 80.5 80.8 − − −
Zhou et al. (2020a) G 88.73 89.83 89.28 82.46 83.20 82.82 − − −
Zhou et al. (2020a) (w/ BERT) G 91.21 91.19 91.20 85.65 86.09 85.87 − − −
Li et al. (2020a) G 91.60 88.95 90.26 82.6 78.75 80.63 88.35 83.82 86.02
Li et al. (2020a) (w/ BERT) G 92.59 90.98 91.77 86.49 83.80 85.13 89.07 87.71 88.38
Fei et al. (2021) G 90.8 90.0 90.4 80.7 79.3 80.2 − − −
Fei et al. (2021) (w/ BERT) G 92.5 92.5 92.5 85.6 85.3 85.4 − − −

Baseline S 89.06 88.54 88.80 78.57 77.10 77.83 84.87 80.46 82.61
Full Model S 90.66 89.01 89.83 80.35 77.46 78.88 86.28 81.83 84.00
Full Model (w/ ELMo) S 91.47 89.82 90.63 83.95 81.61 82.76 − − −
Full Model (w/ BERT) S 92.11 91.95 92.03 86.45 83.96 85.19 88.91 86.85 87.87

Table 1: Precision, recall and semantic F1-score on CoNLL-2009 English in-domain (ID), out-of-domain (OOD)
data and Chinese test sets with predicate-given setting. S, T, and G in the modeling column refers to sequence-based,
tree-based, and graph-based modeling approaches.

approach is neither limited to the sequence mod-355

eling model nor the SRL task. The noise channel356

model is a task-independent method of alleviating357

a model’s inherent noise, and our approach model-358

and task-independent. Thus, our method also can359

be transplanted to a tree or graph-based baseline.360

We leave this to future work since in this paper, we361

are primarily interested in enhancing performance362

by alleviating the model’s inherent noise in this363

paper.364

End-to-end Results The end-to-end setting ne-365

cessitates fewer external preset conditions and366

therefore better resembles realistic applications. Ta-367

ble 3 shows the results of our approach in this more368

challenging setting. The outcome of predicate iden-369

tification has a significant impact on the overall F1,370

but this has usually been overlooked in previous371

work. Inconsistent choices in predicate identifier372

often render findings significantly incomparable,373

so in this paper, we advocate for reporting the pred-374

icate’s F1 score as well so that we can ensure the375

overall Sem-F1 increase is due to better role label-376

ing rather than better predicate recognition. The re-377

sults show not only is our model’s improvement is378

stable in this challenge setting, but when compared379

to the previous results, our results are comparable 380

or even superior, despite using a simpler modeling 381

method and simpler neural structures. 382

Where did Denoising Work? For the base 383

model, the longer the sequence is, the more likely it 384

is affected by noise, so we hypothesize that denois- 385

ing should bring greater effect to longer sequences. 386

To verify our hypothesis, we compared the per- 387

formance of the baseline and the full model on 388

different length sentences, as shown in Figure 2(a). 389

According to the figure, the baseline model’s per- 390

formance is obviously better when handling short 391

sentences, which is common in sequence-based 392

modeling. This suggests that long sentences may 393

be more influenced by noise. The figure also shows 394

that our full model improves on this baseline and 395

its improvement grows when handling longer sen- 396

tences, which is consistent with our hypothesis. 397

Denoising, Refining, or Smoothing? Generally 398

speaking, if we do not use synthesized noise, our 399

approach can be thought of as refining; additionally, 400

if we do not use dropout but instead sum noise fea- 401

tures from distribution sampling, it can be thought 402

of as model smoothing. We thus performed two ex- 403

periments to contrast our method with these similar 404
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Model Catalan Chinese Czech English German Japanese Spanish

Hajič et al. (2009) 80.3 78.6 85.4 85.6 79.7 78.2 80.5
Zhao et al. (2009) 80.3 77.7 85.2 86.2 76.0 78.2 80.5
Roth and Lapata (2016) − 79.4 − 87.7 80.1 − 80.2
Marcheggiani et al. (2017a) − 81.2 86.0 87.7 − − 80.3
Mulcaire et al. (2018) 79.45 81.89 85.14 87.24 69.97 76.00 77.32
Kasai et al. (2019) (w/ ELMo) − − − 90.2 − − 83.0
Lyu et al. (2019a) (w/ ELMo) 80.91 83.31 87.62 90.99 75.87 82.54 80.53
Cai and Lapata (2019) − 85.00 − 91.20 83.80 − 82.90
He et al. (2019) 84.35 84.55 88.76 89.96 78.54 83.12 83.70
He et al. (2019) (w/ BERT) 85.14 86.42 89.66 90.86 80.87 83.76 84.60
Li et al. (2020a)† 85.37 86.02 90.60 90.26 76.41 83.25 84.39
Li et al. (2020a) (w/ BERT) 86.90 88.69 91.93 91.77 85.54 85.90 86.96

Baseline 81.42 83.20 88.60 88.80 77.26 81.34 80.52
Full Model 82.58 84.56 89.74 89.83 79.30 82.53 81.47
Full Model (w/ BERT) 87.05 87.96 92.24 92.03 83.55 86.04 85.65

Table 2: Semantic F1-score on the CoNLL-2009 in-domain multilingual test sets with the predicate-given setting.
† The predicate disambiguators in (Li et al., 2020a) in w/ BERT and w/ o BERT setting use the same sequence
labeling model (w/ BERT) which improves the overall Sem-F1, while two separate disambiguators are used in our
work, so the w/o BERT results are not entirely comparable.

Model Catalan Chinese Czech English German Japanese Spanish

PF1 F1 PF1 F1 PF1 F1 PF1 F1 PF1 F1 PF1 F1 PF1 F1

Li et al. (2020a)† − 84.07 − 82.01 − 89.45 − 86.16 − 60.48 − 74.20 − 83.11
Li et al. (2020a) (w/ BERT) − 85.82 − 85.68 − 91.22 − 88.70 − 67.15 − 78.88 − 86.00

Baseline 90.82 81.45 90.47 80.05 96.92 88.18 91.62 85.06 65.28 55.61 84.64 72.45 85.83 80.11
Full Model 90.82 82.91 90.47 81.22 96.92 89.50 91.62 85.98 65.28 57.02 84.64 73.86 85.83 81.27
Full Model (w/ BERT) 95.05 85.96 93.11 85.22 97.67 91.45 92.59 88.63 70.30 65.48 86.74 78.70 92.41 84.83

Table 3: Semantic F1-score on the CoNLL-2009 multilingual test sets with the end-to-end setting. PF1 denotes the
F1 score (includes predicate sense). † The predicate recognizer in (Li et al., 2020a) in w/ BERT and w/ o BERT
setting use the same sequence labeling model (w/ BERT) which improves the overall Sem-F1, while two separate
recognizer are used in our work, so the w/o BERT results are not entirely comparable.

approaches: 1) exclude noise sampling (Refining)405

and 2) sample Gaussian noise distribution as fea-406

tures (Smoothing).407

Table 4 presents this comparison. Refining408

(w/o Noise Sampling) and Smoothing (w/ Gaus-409

sian Noise) both obtained better results than the410

baseline, indicating that these two approaches are411

effective methods of improving SRL performance;412

however, in comparison to our full model, these413

approaches’ lead to lesser improvements, which414

demonstrates the superiority of our method.415

3.3 Ablation Study416

In our full model, we augmented the base model417

with several novel techniques. To illustrate the im-418

portance of introducing these novel techniques, we419

performed an ablation study as shown in the bot-420

tom of Table 4. Removing the relative position421

encoding, two-stream attention mechanism (using422

two separate Transformers instead), and soft la-423

bel embedding (using the embedding obtained on424

Method ID OOD

P R F1 P R F1

Baseline 89.06 88.54 88.80 78.57 77.10 77.83
Boosting Only 88.97 88.85 88.90 78.52 77.24 77.87
Full Model 90.66 89.01 89.83 80.35 77.46 78.88

w/o Noise Sampling 89.34 88.92 89.12 78.92 76.95 77.92
w/ Gaussian Noise 90.53 88.72 89.61 80.44 76.87 78.61

w/o Relative Pos 90.27 88.92 89.58 80.16 77.30 78.70
w/o Two-stream Self-attn 89.51 88.79 89.14 79.98 76.55 78.22
w/o Soft Label Emb 90.16 88.66 89.40 80.08 77.13 78.57

Table 4: Ablation study on CoNLL-09 English test set.

the argmax prediction) led to performance reduc- 425

tions of varying degrees. Among them, the removal 426

of the two-stream attention mechanism affected 427

model performance the most, which shows that 428

the interaction between the word representations 429

(without model noise) and the label representations 430

(with model noise) is critical for denoising. 431

Furthermore, we explore the sampling size M 432

in order to determine the optimal sampling size 433

for improving performance. Figure 2(b) depicts 434

7



Baseline Full Model
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(a) Sem-F1 score vs. sen-
tence length
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88.5

89

89.5
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pling size M

Figure 2: Sem-F1 score vs. sentence length and Sem-F1

score vs. sampling size M . The CoNLL-09 in-domain
test set is used for both comparisons.

the SRL performance curve with various sampling435

sizes M . The optimal sampling size, as shown in436

the figure, is 8. When it is less than 8, the per-437

formance improves as M becomes larger. After438

M reaches 8, the performance is essentially stable.439

which demonstrates that 8 is sufficient for denois-440

ing, and no additional gain will be available by441

increasing M further. Please refer to Appendix A.2442

for other ablation studies.443

4 Related Work444

Semantic Role Labeling SRL has been a heated445

research realm since the introduction of neural net-446

works. Early neural network-based methods (Wang447

et al., 2015) simply modeled semantic role labeling448

as a word classification task and employed recur-449

rent networks for annotation. Leveraging syntax is450

a common way of boosting performance for SRL.451

While using syntactic treebanks, Graph Convolu-452

tional Networks (GCN) can be applied for SRL453

for syntax-aware labeling (Marcheggiani and Titov,454

2017b), though syntax-agnostic models were also455

argued efficient by (Marcheggiani et al., 2017b).456

Still, there remains a strong connection between457

the studies of syntax and SRL (He et al., 2018c;458

Marcheggiani and Titov, 2020; Shi et al., 2020).459

Refinement on output from SRL models has460

been increasingly popular for research. Iterative461

refinement on SRL has been shown to outperform462

base models (Lyu et al., 2019b). Higher order scor-463

ers have also been used as a source of more accurate464

arc scores in semantic graph (Li et al., 2020b). Our465

model is similar to those refining models in pro-466

cess, but rather than just refining, our model also467

specifically focuses on removing noise.468

Noise Processing Noise, in NLP tasks, repre- 469

sented in the model as uncertainty when processing 470

complex information or structures. Denoising can 471

be leveraged to produce better results, as high cer- 472

tainty implicates faults for refinement. The noise 473

channel model, which applies Bayesian approxi- 474

mation constraints to eliminate noise in generated 475

outputs, has become a popular method in NLG 476

tasks, including NMT (Wang et al., 2019; Zhou 477

et al., 2020b) and summary generation (Xu et al., 478

2020). In domain of linguistic parsing, noise refers 479

to labels predicted with high uncertainty. (Zhang 480

et al., 2019a) applied an adaptive uncertainty-aware 481

decoder for semantic parsing. Dependency parsing 482

can also benefit from adaptive strategy based on 483

uncertainty detection, as demonstrated in (van der 484

Goot and van Noord, 2018). Uncertainty mecha- 485

nism has also been applied in suspense prediction 486

(Wilmot and Keller, 2020), spoken language assess- 487

ment (Malinin et al., 2017), and document class 488

prevalence inference (Keith and O’Connor, 2018). 489

Specifically speaking, mainstream noise process- 490

ing can be categorized into two topics: evaluation 491

and elimination. Noise elimination generally refers 492

to he works introduced above that discuss about 493

result refinement, while noise evaluation refers to 494

modeling the uncertainty of a model. In this topic, 495

Gal and Ghahramani (2016b) have suggested that 496

the softmax function may not be a solid indica- 497

tion of model uncertainty, which suggests that this 498

topic needs more research. Also on this topic, (He 499

et al., 2020) rectified confidence scores using their 500

MSD model to better evaluate result uncertainty, 501

and Ethayarajh (2020) measured the bias in classifi- 502

cation models using Bernstein-bounded unfairness. 503

5 Conclusion 504

In this paper, we propose a noisy channel model 505

for the SRL model’s inherent noise problem. In 506

our proposed model, synthesized noise is combined 507

and then averaged to best emphasize similar authen- 508

tic noise while weaken the different inherent noise, 509

and this noise is then reduced by a denoiser based 510

on two-stream attention to obtain the final output. 511

We demonstrated the effectiveness of our approach 512

by evaluating our models on the CoNLL-09 mul- 513

tilingual benchmark, and we also investigated the 514

differences between our method and refining and 515

smoothing techniques. Apart from being success- 516

ful in SRL, our approach is also notable because it 517

broadly applicable to other NLP tasks. 518
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A Appendix889

A.1 Hyper-parameters890

Embedding Dimension

Word Embed 100
Char 100
POS 64
Lemma 100
Label 400
Predicate Indicator 32
ELMo† 300
BERT† 300

Encoder Size

BiLSTMs 256× 2
BiLSTMs Layers 3
BiLSTMs Out MLP 128

Two Stream Attention Size

Transformer Hidden 512
Transformer FFN 1024
Transformer Heads 8
Transformer Layers 2

Dropout Probability

BiLSTM Input 0.33
BiLSTM Output 0.33
BiLSTMs [0.33, 0.33]
Transformers 0.05
Noise 0.15

Optimizer

Learning Rate 0.001
Adam µ 0.9
Adam ν 0.9999
Batch Size 64
Decay Rate 0.999995
Warmup Steps 100

Table 5: Model hyper-parameters. † denotes optional.

A.2 Noisy Channel Model on BERT Baseline891

The main experimental results show that BERT892

can significantly boost the performance of SRL.893

To demonstrate that our approach will continue to894

work on the strong BERT baseline, we present the895

w/ BERT baseline results in Table 6. The results896

show that, while BERT is a great help to the base-897

line performance, the use of our Noisy Channel898

Model can further play a useful role.899

A.3 Inference Speed Analysis900

To analyze the inference speed of different mod-901

eling approaches, we measured the total inference902

time on the CoNLL-2009 English in-domain test903

set with the scale of model parameters similar (i.e.,904

same hidden size, model layers). 5 runs are per-905

formed and then reported the average speed for906

Method ID OOD

P R F1 P R F1

Baseline 89.06 88.54 88.80 78.57 77.10 77.83
Baseline (w/ BERT) 91.97 91.23 91.59 85.50 83.87 84.67

Full Model 90.66 89.01 89.83 80.35 77.46 78.88
Full Model (w/ BERT) 92.11 91.95 92.03 86.45 83.96 85.19

Table 6: Performance comparison between baseline and
noisy channel model with BERT enhancement.

better stability. The comparison results are shown 907

in Table 7. From the comparison, the inference 908

speed order is Sequence > Tree > Graph, and our 909

full model only slightly decreases the speed due to 910

a good parallel design compared to the baseline. 911

Method Modeling Speed (sent./s)

(Cai et al., 2018) T 199.5
(Li et al., 2020a) G 165.9

Baseline S 245.1
Full Model S 240.6

Table 7: Inference speed for different modeling ap-
proaches.
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