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Abstract

This paper proposes a learning and scheduling algorithm to minimize the expected
cumulative holding cost incurred by jobs, where statistical parameters defining
their individual holding costs are unknown a priori. In each time slot, the server
can process a job while receiving the realized random holding costs of the jobs
remaining in the system. Our algorithm is a learning-based variant of the cµ rule
for scheduling: it starts with a preemption period of fixed length which serves
as a learning phase, and after accumulating enough data about individual jobs, it
switches to nonpreemptive scheduling mode. The algorithm is designed to handle
instances with large or small gaps in jobs’ parameters and achieves near-optimal
performance guarantees. The performance of our algorithm is captured by its regret,
where the benchmark is the minimum possible cost attained when the statistical
parameters of jobs are fully known. We prove upper bounds on the regret of our
algorithm, and we derive a regret lower bound that is almost matching the proposed
upper bounds. Our numerical results demonstrate the effectiveness of our algorithm
and show that our theoretical regret analysis is nearly tight.

1 Introduction

We consider the following algorithmic question: given a list of jobs, each of which requires a certain
number of time steps to be completed while incurring a random cost in every time step until finished,
learn the relative priorities of jobs and make scheduling decisions of which job to process in each
time step, with the objective of minimizing the expected total cumulative cost. Here, we need an
algorithm that seamlessly integrates learning and scheduling.

This question is motivated by several applications. Online social media platforms moderate content
items, and here, jobs correspond to reviewing content items while the jobs have random costs driven by
the number of accumulated views as views of harmful content items represent a community-integrity
cost. Then the content review jobs are prioritized based on popularity of content items [18]. More
generally, modern data processing platforms handle complex jobs whose characteristics are often
unknown in advance [10], but as a system learns more about the jobs’ features, it may flexibly adjust
scheduling decisions to serve jobs with high priority first. Another application is in optimizing energy
consumption of servers in data centers, where a job waiting to be served uses energy-consuming
resources [3, 7]. In emergency medical departments, patients undergo triage while being treated, and
schedules for serving patients are flexibly adjusted depending on their conditions [14, 15]. Note that
patients’ conditions may get worse while waiting, which corresponds to holding costs in our problem.
For aircraft maintenance, diagnosing the conditions of parts and applying the required measures to
repair them are conducted in a combined way [1].

We model and study the problem as a single-server scheduling system where job holding costs
are according to stochastic processes with independent and identically distributed increments with
unknown mean values, under the assumption that their mean service times are known. Recent works,
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e.g. [5], started investigating queuing system control policies under uncertainty about jobs’ mean
service time parameters, but restricting to the setting where job holding costs are assumed to be
deterministic (linear) functions of stochastic job waiting times. In our problem setting, job holding
costs are stochastic in a different way in that job holding costs themselves are according to some
stochastic processes. Under the aforementioned application scenarios, it is more natural to model
a job’s holding costs by a stochastic process. As the first step towards understanding the setting of
stochastic job holding costs, we consider a single-server scheduling with a fixed list of jobs.

Since the statistical parameters quantifying the random holding costs of jobs are unknown to the
decision-maker, the main challenge is to learn the parameters of jobs, thereby obtaining a near-
accurate priority ranking of jobs to find a scheduling policy minimizing the total accumulated cost.

Problem formulation

We consider a discrete-time scheduling with a single server and N jobs. The jobs, labelled by
i = 1, . . . , N , are present in the system from the beginning, and we assume no further job arrivals.
Every job remaining in a time slot incurs a random holding cost at the beginning of the time step,
and holding costs incurred by a job are according to a sub-Gaussian distribution and i.i.d. across
time slots. Sub-Gaussian distributions allow for different parametric distributions, e.g. Bernoulli
and Poisson, which are suitable for modeling jobs incurring random costs incrementally. The mean
holding costs of jobs are given by c1, . . . , cN whose values are a-priori unknown. The number of
required time steps to complete job i is given deterministically by T/µi for each i, where T is a
scaling parameter. Note that the larger the value of T the larger the number of per-job stochastic cost
observations. The larger value of T does not necessarily mean that mean job service times are large
in real time. In addition to the case of deterministic job service times, we also consider the case of
stochastic job service times, assumed to be according to geometric distributions, which is a standard
case studied in the context of queuing systems.

We analyze the performance of our scheduling policy against the minimum (expected) cumulative
holding cost that can be achieved when the jobs’ mean holding cost values are fully known. The
famous cµ rule, which sequentially processes jobs in the decreasing order of their ciµi values,
is known to guarantee the minimum cumulative holding cost, so we use this as our benchmark.
Assuming c1µ1 ≥ c2µ2 ≥ · · · ≥ cNµN , we can define the regret of a scheduling algorithm ϕ as

R(T ) := C(T )−
∑
i∈[N ]

ci
∑
j∈[i]

T/µj

where C(T ) is the expected cumulative holding cost of ϕ, i.e., C(T ) =
∑
i∈[N ] ciT

ϕ
i with Tϕi

denoting the completion time of job i and the second term on the right-hand side is the minimum
expected cumulative holding cost, achievable by the cµ rule. Note that R(T ) is a random variable, as
it may depend on randomness in the algorithm ϕ. We will consider E [R(T )], the expected regret of
the algorithm. When ci’s and µi’s are constants, the minimum cumulative holding cost is O(N2T ).
Here, our goal is to construct a policy whose expected regret is sublinear in T and subquadratic in N .

Previous work [5] has focused on the case when the values of µ1, . . . , µN are unknown while the
values of c1, . . . , cN are known. As the service time of a job is instantiated only after completing it,
this work relies on assumptions that there is a fixed list of classes and multiple jobs may belong to the
same class, which means that each µi can take one of a few values. In contrast, our paper is focused
on addressing the challenge of uncertain costs. Our framework allows jobs to differ from each other
(equivalently, each job corresponds to a unique class), but to make learning distinct jobs possible, we
assume that the factor T in the service times is large. We can think of the large T regime as the case
where the jobs’ features are observed frequently, as well as the setting of long job service times.

Our contributions

We develop our algorithm based on the empirical cµ rule, that is, the cµ rule applied with the current
estimates of the mean holding costs. Since the ranking of jobs based on the ĉi,tµi values, where
ĉi,t denotes the empirical mean of job i’s holding cost in time slot t, may change over time, it is
natural to come up with two types of the empirical cµ rule, preemptive and nonpreemptive. Under
the preemptive empirical cµ rule, the server selects a job for every single time slot. In contrast, under
the nonpreemptive version, once a job is selected in a certain time slot, the server has to commit to
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serving this job until its completion, and then, it may select the next job based on the empirical cµ
rule. The preemptive empirical cµ rule works well for instances with large gaps between the jobs’
mean holding costs, whereas the nonpreemptive one is better for cases where the jobs’ mean holding
costs are close. However, it turns out that, under both the preemptive and nonpreemptive cases, the
expected regret can grow linearly in T in the worst case. The preemptive case may result in undesired
delays especially for jobs with similar values, while the nonpreemptive case may suffer from early
commitment to a job with low priority.

Our policy, the preemptive-then-nonpreemptive empirical cµ rule, is basically a combination of the
preemptive and nonpreemptive empirical cµ rules. This variant of empirical cµ rule has a fixed length
of preemption phase followed by nonpreemptive scheduling of jobs. The preemption period is long
enough to separate jobs with large gaps in their mean holding costs, while it is not too long so that
we can control delay costs from the preemption phase to be small, thereby avoiding undesired delays
from continuous preemption and the risk of early commitment.

In Section 3, we give a theoretical analysis of our algorithm for the case of deterministic service
times. We prove that the expected regret of our empirical cµ rule is sublinear in T and subquadratic in
N . We also show that this is near-optimal by providing a lower bound on the expected regret of any
algorithm that has the same scaling in T while there is a small gap in terms of the dependence on N .
Furthermore, we give instance-dependent upper bounds that delineate how our algorithm performs
depending on the gaps between ciµi values. In Section 4, we consider the setting where the service
time of each job is stochastic and geometrically distributed. Our analysis reveals that the expected
regret of our algorithm for the case of geometrically distributed service times is also sublinear in
T and subquadratic in N . Lastly, in Section 5, we discuss results from numerical experiments that
demonstrate our algorithm’s performance and support our theoretical claims.

2 Related work

The scheduling problem asking to minimize the sum of weighted completion times for a given set of
jobs, with weights ci and processing times 1/µi, was studied in the seminal paper by Smith [13], who
showed that serving jobs in decreasing order of indices ciµi is optimal. This policy is often referred
to as the Smith’s rule. This policy corresponds to the weighted shortest processing time first (WSPT)
policy in the literature on machine scheduling. The Smith’s rule is also optimal for the objective of
minimizing the expected sum of weighted completion times when job processing times are random
with mean values 1/µi. We refer the reader to [11] for a comprehensive coverage of various results.

Serving jobs by using ciµi as the priority index is known to be an optimal scheduling policy for
multi-class, single-server queuing systems, with arbitrary job arrivals and random independent,
geometrically distributed job processing times with mean values 1/µi [2]. This policy is commonly
referred to as the cµ rule. A generalized cµ rule is known to be asymptotically optimal for convex
job holding cost functions in a heavy-traffic limit, where the generalization corresponds to using
a dynamic index defined as the product of the current marginal job holding cost and the mean
processing time of a job [17]. This generalized cµ rule is also known to be asymptotically optimal in
a heavy-traffic limit for multi-server queuing systems under a certain resource polling condition [9].

The work discussed above on the performance of Smith’s or cµ rule assumes that the values of
marginal job holding costs and mean processing time parameters are known to the scheduler. Only
some recent work considered the performance of these rules when some of these parameters are
unknown. In the line of work on scheduling with testing [6, 15], marginal job holding costs and
mean processing times of jobs are a-priori unknown, but their values for a job become known by
testing this job. The question there is about how to allocate the single server to processing and testing,
which cannot be done simultaneously. The optimal policy combines testing the jobs up to certain
time and serving the jobs according to the cµ rule policy. In [5], a multi-class queuing system is
considered under the assumption that mean job processing times are unknown to the scheduler. The
authors established that using the empirical cµ rule in the single-server case guarantees a finite regret
with respect to the cµ rule with known parameters as a benchmark. Similar result is established
for the multi-server case by using the empirical cµ rule combined with an exploration mechanism.
Unlike [5], in our setting, each job corresponds to a unique class, so an exploration phase is required
for each job. The preemption phase in our algorithm is for exploration within each job.
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Finally, our work is related to permutation or learning to rank problems, e.g. see [4, 8] and the
references therein, where the goal is to find a linear order of items based on some observed information
about individual items, or relations among them. Indeed, the objective of our problem can be seen
as finding a permutation π that minimizes the cost function

∑N
i=1 icπ(i), for the special case of

identical mean processing time parameter values. For example, we may interpret ci as a measure of
dissimilarity between item i and a reference item, and the goal is to sort items in decreasing order of
these dissimilarity indices. The precise objective is defined for a sequential learning setting where
irrevocable ranking decisions for items need to be made over time and the cost in each time step is
the sum of dissimilarity indices of items which are still to be ranked.

3 Algorithm and regret bounds

Before we formally describe our algorithm, we consider the case of N = 2 and µ1 = µ2 = 1 for
motivation. Without loss of generality, let us assume that c1 ≥ c2. Then processing job 1 first and
job 2 next is optimal, and the minimum expected cost is c1T + c2 · 2T . Recall that the empirical cµ
rule selects whichever job that has a higher estimated mean holding cost while the preemptive and
nonpreemptive versions differ in how frequently such selections are made.

The preemptive version is more flexible in that scheduling decisions may be adjusted in every time
slot as the empirical estimates of c1 and c2 are updated. This is indeed favorable when c1 is much
greater than c2, in which case, the empirical estimate of c1 would get significantly larger than that
of c2 soon. However, we can imagine a situation where c1 and c2 are so close that the empirical
estimates of c1 and c2 are almost identical for the entire duration of processing the jobs. Under this
scenario, the two jobs are chosen with almost equal probabilities, in which case, they are completed
around the same time. For example, job 1 stays in the system for 2T time periods, while job 2 remains
for 2T − 1 time steps. Then the regret is c1T − c2, which may be linear in T .

The issue is that both jobs may remain in the system and incur holding costs for the entire duration
of service 2T . In contrast, one job leaves the system after T time steps under the optimal policy.
Therefore, there is an incentive in completing one job early instead of keeping both jobs longer.

Inspired by this, we could consider the nonpreemptive version that selects a job in the beginning and
commits to it. However, under the nonpreemptive version, the probability of job 2 being selected first
is at least (1− c1)c2, and therefore, the expected regret of this policy is at least (1− c1)c2 · (c1− c2)T
as (c1 − c2)T = (c1 · 2T + c2T )− (c1T + c2 · 2T ). When c1 − c2 = Ω(1), the expected regret is
linear in T . Hence, the nonpreemptive version may suffer from undesired early commitment.

Our algorithm, which we call the preemptive-then-nonpreemptive empirical cµ rule, is a combination
of the above two policies. As the preemptive version, we start with a preemption phase in which the
server may try different jobs while learning the mean holding costs of jobs, thereby circumventing the
early commitment issue. At the same time, we limit the number of preemption steps, which allows
avoiding the issue of letting job 1 to stay in the system undesirably long for the case of 2 jobs.

Algorithm 1 Preemptive-then-nonpreemptive empirical cµ rule
Require: Ts is a predetermined length of the preemption period. J ← [N ].

(Preemption phase) For each time step t ∈ [Ts], select and serve a job in arg maxi∈[N ] ĉi,tµi.
(Nonpreemptive phase) While J is nonempty, select and complete a job j in arg maxi∈J ĉi,tµi
where t is the current time step index. Then J ← J \ {j}.

After the preemption period, we process jobs nonpreemptively, which means that once a job is chosen,
we commit the server to the job until it is done. If a job has a significantly higher empirical estimate
than the others, then we can easily choose the job. Even if not, we still stick to a job regardless of
whether the job turns out to be of lower cost than others later. Our algorithm’s performance heavily
depends on the length of the preemption phase, denoted Ts, which we will decide later in this section.

3.1 Regret upper and lower bounds

Recall that a random variable X with mean c is sub-Gaussian with parameter σ if E[Xλ(X−c)] ≤
exp(σ2λ2/2) for all λ ∈ R. Note that if X is sub-Gaussian with parameter σ, then for any σ′ ≥ σ, it
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is sub-Gaussian also with parameter σ′. Moreover, if X is sub-Gaussian with parameter σ, then X/β
is sub-Gaussian with parameter σ/β for any β > 0. As the total holding cost depends linearly on
c1, . . . , cN , we may assume that ci ∈ [0, 1] and σi = 1 for i ∈ [N ] without loss of generality.

Special warm-up case: two jobs We start with the setting of N = 2 and µ1 = µ2 = 1. When c1
and c2 are almost identical, Algorithm 1 would spend almost equal numbers of time steps for the
jobs during the preemption phase. This means that the job with the higher holding cost is delayed
for Ts/2 time steps, in which case, we can argue that the (expected) regret is linear in Ts. Hence,
to attain a regret upper bound that is sublinear in T , we need to set Ts to be sublinear in T . On the
other hand, we would want to have a sufficiently long period for learning the jobs to avoid the issue
of early commitment to the job of less priority. In fact, setting

Ts = κ · T 2/3(log T )1/3

for some constant κ > 0 minimizes the expected regret when N = 2 and µ1 = µ2 = 1.

Theorem 3.1. The expected regret of Algorithm 1 for 2 jobs is O(Ts + T
√

log(T/Ts)). When
Ts = Θ(T 2/3(log T )1/3), the expected regret is O(T 2/3(log T )1/3).

Let us give a proof sketch here. The worst case that gives rise to the regret upper bound in Theorem 3.1
occurs when c1 and c2 are so close that the algorithm selects job 2 after the preemption phase with
a nonnegligible probability, in which case, job 2 is completed first. In such case, job 1 stays in the
system for the entire duration of 2T time steps, while job 2 may spend up to Ts + T time slots
depending on how many times job 1 is chosen during the preemption phase, which results in delays for
job 2. Then the corresponding regret is (c1 ·2T +c2(Ts+T ))−(c1T +c2 ·2T ) = c2Ts+(c1−c2)T .
Here, c1 − c2 is sufficiently small, for otherwise, ĉ1,Ts+1 would be significantly larger than ĉ2,Ts+1

with high probability.

It turns out that there is a matching lower bound on the expected regret of any policy (up to a log T
factor), implying in turn that Algorithm 1 with Ts = Θ(T 2/3(log T )1/3) is asymptotically optimal.
Theorem 3.2. There is a family of instances, under which the expected regret of any fixed (random-
ized) scheduling algorithm is Ω(T 2/3), where the expectation is taken over the random choice of an
instance and the randomness in holding costs and the algorithm.

Our proof of Theorem 3.2 is similar in spirit to the standard argument for proving regret lower bounds
for the stochastic multi-armed bandit (MAB) problem. Basically, when the mean holding costs of two
jobs are very close, we can argue based on the Kullback–Leibler (KL) divergence that no algorithm
can tell which job has the higher mean holding cost with high probability for the first few time steps
(see [12]). The difference is that every job incurs a cost simultaneously, unlike the MAB setting
where only the arm played generates a reward, and that jobs leave after some number of time slots.

General case: arbitrary number of jobs We are interested in the setting where T is large and the
asymptotic regret analysis of Algorithm 1 with respect to T . Hence, we focus on the case where
µ1, . . . , µN are fixed constants, but the following condition is sufficient for our analysis.

Assumption. µi ≤ (T/log(NT ))
1/3

/2 for i ∈ [N ].

Up to scaling, we may also assume that µ1, . . . , µN ≥ 1 without loss of generality. We further assume
that T/µi for i ∈ [N ] are all integers. If T/µi is not an integer for some i, one may assume that the
service time of job i is dT/µie since job i needs "at least" this many time steps to be completed.

For the general case, we set the length Ts of the preemption period to

Ts = κ · (T/µmin)2/3(log(NT/µmin))1/3

for some constant κ > 0 where µmin := min {µi : i ∈ [N ]}. We assume that N is small enough so
that Ts = o(T ). Moreover, by the assumption, we may assume that Ts ≤ T/2µi for all i.

Let us briefly elaborate on why nonpreemptive scheduling makes sense after the preemption period
even for the general case. We explained in the previous section that for the case of two jobs, there
is an incentive to finish one job early because keeping both jobs long results in a large regret. The
same idea applies when there are many jobs, so after the preemption period, we choose a job and
complete it. After finishing the first job, denoted k, each of the remaining N − 1 jobs would have
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spent at least T/µk − Ts ≥ T/2µk time steps in the system, from which we would have collected
"enough data" to learn the mean holding costs of the jobs. Here, what we mean by enough data is
that (we will prove later that) the absolute error in the estimation of each job’s mean holding cost is
O(1/

√
T ) with high probability, so the regret while serving the other N − 1 jobs scales as the rate of

O(
√
T ), which is less than T 2/3. Hence, the dependence on T becomes not as critical, in contrast to

the period for serving the first job. Then it is intuitive to complete one job by one as soon as possible
so that we can quickly reduce the number of remaining jobs in the system. We will explain these
details while analyzing the expected regret of Algorithm 1. Let µmax = max {µi : i ∈ [N ]}.
Theorem 3.3. The expected regret of the preemptive-then-nonpreemptive empirical cµ rule is

O
(
N(T/µmin)2/3 (log(NT/µmin))

1/3
+
√
µmax/µminN

3/2(T/µmin)1/2 (log(NT/µmin))
1/2
)
.

In particular, when µ1, . . . , µN are fixed constants, the expected regret is

E [R(T )] = Õ
(

max
{
NT 2/3, N3/2T 1/2

})
(1)

where Õ hides additional logarithmic factors in NT .

Our argument is more involved for the general case than the case of two jobs. We argue that the
preemption phase results in O(NTs) regret due to job delays. Moreover, we analyze the regret due to
the possibility that the algorithm finishes the jobs in a completely different order from the optimal
sequence. Nevertheless, we use a technical lemma to compare the optimal cost and the cumulative
cost from any sequence, and the key idea is that whenever a pair of two jobs is reversed, we can argue
that the mean holding costs of the two jobs are close.

It turns out that this regret upper bound is near-optimal. We next provide a lower bound on the regret
of any algorithm that matches the upper bound up to a small gap in the dependence on N .
Theorem 3.4. For any (randomized) scheduling algorithm, there is a family of instances under which

E [R(T )] = Ω
(

max
{
µ
1/3
minµ

−5/3
max N

2/3T 2/3, µminµ
−3/2
max NT

1/2
})

where the expectation is taken over the random choice of an instance and the randomness in holding
costs and the algorithm.

By Theorem 3.4, when µ1, . . . , µN are constants, there exists a family of instances under which

E [R(T )] = Ω
(

max
{
N2/3T 2/3, NT 1/2

})
(2)

for any algorithm. Between (1) and (2), there are small gaps with respect to the dependence on N .

Our proof of Theorem 3.4 is similar to the KL divergence-based argument for the MAB problem, but
the key difference is that we observe the realized costs of all jobs, unlike the MAB setting where we
observe the reward of at most one arm. Moreover, jobs leave the system at some points under our
setting, and we also need to deal with the costs incurred by all jobs currently in the system.

3.2 Instance-dependent regret upper bounds

The upper and lower bounds on the expected regret in the previous section are independent of the
values of c1, . . . , cN . However, it is intuitive to expect that Algorithm 1’s performance depends on
the gaps between the values of c1µ1, . . . , cNµN , as it would be difficult to separate jobs i and j with
ciµi and cjµj being close. Motivated by this, we give regret upper bounds that have an explicit
dependence on the gaps between c1µ1, . . . , cNµN .

For the case of N = 2, the expected regret depends on the quantity ∆, defined as,

∆ := |c1µ1 − c2µ2|/(µ1 + µ2)

that captures the gap between c1µ1 and c2µ2.
Theorem 3.5. When N = 2 and µmin = min {µ1, µ2}, the expected regret of Algorithm 1 is

E [R(T )] = O

(
1

∆2
log(T/µmin)

)
.
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Note that the expected regret scales with a rate of ∆−2 but the dependence on T is logarithmic for
fixed ∆. For the general case, we consider the gap between c1µ1 and the other ciµi values. Let ∆min

and ∆max be defined as follows:

∆min := min
i 6=1
{|c1µ1 − ciµi|/(µ1 + µi)} , ∆max := max

i 6=1
{|c1µ1 − ciµi|/(µ1 + µi)} .

Theorem 3.6. For general N , the expected regret of Algorithm 1 is

E [R(T )] = O

((
1

∆2
min

N +
µmax

µmin
· ∆max

∆3
min

N +
µmax

µmin
· 1

∆min
N3/2

)
log(NT/µmin)

)
When µ1, . . . , µN are constants,

E [R(T )] = O

((
1

∆2
min

N +
∆max

∆3
min

N +
1

∆min
N3/2

)
log(NT )

)
.

Recall that µi ≥ 1 for all i ∈ [N ] and ∆max ≤ 1. Notice that the upper bound has a logarithmic
dependence on T when the gaps between c1µ1, . . . , cNµN are fixed. On the other hand, the largest
factor in N is still N2/3 as in the instance-independent upper bound (1).

4 Stochastic service times

What is described in Algorithm 2 is an extension of Algorithm 1 to the case of stochastic service
times. We assume that for i ∈ [N ], the mean of job i’s service time is given by T/µi and known to the
decision-maker. This incorporates the setting of deterministic service times as a special case. Unlike
the deterministic case, some jobs may be finished during the preemption phase in the stochastic case.

Algorithm 2 Preemptive-then-nonpreemptive empirical cµ rule for stochastic service times
Require: Ts is a predetermined length of the preemption period. J ← [N ].

(Preemption phase) For each t = 1, . . . , Ts, select and process a job j in arg maxi∈J ĉi,tµi.
If j is completed, update J ← J \ {j}.
(Nonpreemptive phase) While J is nonempty, select a job j in arg maxi∈J ĉi,tµi where t is the
current time step index.
Then keep processing job j until j is completed and update J ← J \ {j}.

We prove that when the service time of each job is geometrically distributed, the expected regret of
Algorithm 2 can be still sublinear in T and subquadractic in N . The probability that each job i is
completed when it is served in a time slot is µi/T . For this setting, we set Ts as

Ts = κ ·N2/3(T/µmin)2/3 (log(NT/µmin))
1/3

for some constant κ > 0. Based on the memoryless property of the geometric distribution, we obtain
the following regret upper bound.
Theorem 4.1. When the service time of each job i is geometrically distributed with mean µi/T , the
expected regret of Algorithm 2 is

E [R(T )] = O
(
N5/3(T/µmin)2/3 (log(NT/µmin))

1/3
)
. (3)

Compared to (1) and the upper bound given by Theorem 3.3 for the deterministic case, (3) has the
same scaling in T while it has an additional N2/3 factor. Although we think that there is still a room
for improvement in the regret analysis of Algorithm 2, it is interesting that the bound (3) already
achieves the T 2/3 scaling and a subquadratic dependence on N .

5 Experiments

We run experiments to assess the numerical performance of the preemptive-then-nonpreemptive
empirical cµ rule. We test the efficiency of Algorithm 1 compared to the preemptive empirical cµ rule
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and the nonpreemptive version. We also evaluate the tightness of the proposed upper and lower bounds
on regret by measuring how the expected regret behaves as a function of parameters N and T for ran-
domly generated instances. Our code for running experiments and obtained data are publicly available
in https://github.com/learning-to-schedule/learning-to-schedule. All experiments
are conducted on an Intel Core i5 3GHz processor with 6 cores and 32GB memory.

Figure 1 shows the first set of results for comparing Algorithm 1 against the preemptive and nonpre-
emptive versions. For Figure 1, we used instances with N = 20, T = 2000, µi = 1 for i ∈ [N ], and
c1, . . . , cN being sampled from the uniform distribution on [0.5− ε, 0.5 + ε), where ε is a parameter
that we vary. For each value of ε, we generated 100 instances, and for each of which, we recorded
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Figure 1: Comparing the three versions of the empirical cµ rule for the case of deterministic service
times and equal service times: (left) regret and (right) relative regret.

the expected regret of each algorithm where the expectation is taken over the randomness in holding
costs. The first plot in Figure 1 depicts how the (expected) regret changes by varying the value of ε,
and the second plot shows the (expected) relative regret, defined as the regret divided by the minimum
expected cumulative cost. As expected, the preemptive version suffers for instances of small ε where
the mean holding costs of jobs are close to each other, whereas the nonpreemptive cµ rule’s regret
does seem to increase for instances of large ε where there may be large gaps between the jobs’ mean
holding costs. Compared to these two algorithms, our preemptive-then-nonpreemptive empirical cµ
rule performs uniformly well over different values of ε. This trend continues even when jobs have
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Figure 2: Comparing the three versions of the empirical cµ rule for the case of deterministic and
heterogeneous service times: (left) regret and (right) relative regret.

heterogeneous service times. For the second set of results, we used the same setup as in the first ex-
periment, but following [16], we sampled the mean service times T/µ1, . . . , T/µN using a translated
(heavy-tailed) Pareto distribution so that T/µi ≥ 100 for i ∈ [N ]. More precisely, for each T/µi, we
sample a number xi from the distribution with the density function f(x) = 0.7

x1.7 for x ∈ [1,∞),
and then, we set T/µi = 99 + bxic. Here, the density function corresponds to the Pareto distribution
with shape parameter 0.71, which has infinite mean. As we assumed that each T/µi is an integer, we
take bxic, to which we add 99 to ensure that T/µi is at least 100. Figure 2 shows that our algorithm
achieves small regrets for all values of ε even for the case of heterogeneous service times.

To examine how the expected regret of Algorithm 1 grows as a function of T , we test instances with
N = 20 and different values of T from 20 to 1,000,000. To understand how the expected regret
depends on N , we also run experiment with instances with T = 1000 and different values of N
from 2 to 1000. For both experiments, we set µi = 1 for i ∈ [N ] and ε = 0.001, and the reason for
this choice is that the family of instances used for providing the regret lower bound (2) have jobs

1According to [16], Google’s 2019 workload data shows that the resource-usage-hours, corresponding to the
service times, of jobs follow the Pareto distribution with shape parameter 0.69 (see Figure 12 in [16]).
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whose mean holding costs are concentrated around 1/2 when µi = 1 for i ∈ [N ]. For each setup,
we generated 100 random instances by sampling c1, . . . , cN from [0.5 − ε, 0.5 + ε) uniformly at
random. The left of Figure 3 is the log-log plot delineating the regret’s dependence on T . The plot is
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Figure 3: Examining how the regret grows as a function of T (left) and N (right).

almost linear, and its slope is roughly 3.4/4.9 ' 0.69, which is close to the exponent 2/3 for the T
factors in both the upper bound (1) and the lower bound (2). The right of Figure 3 is the log-log plot
showing the regret’s dependence on N . As the left one, the plot is also almost linear, and its slope is
approximately 4.1/2.9 ' 1.41. This result suggests that the upper bound (1) is close to being exact
and that there may be a larger room for improving the lower bound (2).

6 Conclusion and future work

This paper proposes and studies the problem of finding a learning and scheduling algorithm to find a
schedule of jobs minimizing the expected cumulative holding cost under the setting that statistical
parameters defining individual jobs’ cost functions are unknown a priori. We develop our algorithm
as a learning-based variant of the well-known cµ rule for scheduling. The algorithm can be viewed
as a combination of preemptive and nonpreemptive scheduling in the sense that it starts with a
preemption phase that allows to learn enough about the jobs’ cost functions, and then schedules
jobs nonpreemptively. We provide a regret analysis of our algorithm where the benchmark is the
minimum possible cumulative holding cost that is achievable only when the statistical parameters
of jobs are fully known. We give bounds on the expected regret of our algorithm for both the case
of deterministic service times and the setting of geometrically distributed stochastic service times.
Lastly, we provide numerical results that support our theoretical findings.

Our theoretical analysis reveals that the algorithm achieves near-optimal performance guarantees,
but the results rely on the assumption that the parameters µ1, . . . , µN are constants. More precisely,
when there are large gaps between the parameters, the upper and lower bounds provided in this
paper have a large gap. Moreover, we also assumed that µi’s are sufficiently small to ensure that
the preemption period’s length is smaller than the minimum service time of a job. Hence, we leave
as an open question to provide matching upper and lower bounds on the expected regret of the
preemptive-then-nonpreemptive empirical cµ rule for the case of large gaps in µ1, . . . , µN .

Another open question concerns the case of geometrically distributed stochastic service times.
Although we have proved that the expected regret of our algorithm is sublinear in T and subquadratic
in N , we think that there exists a more refined regret analysis. Our argument is based on the
observation that the jobs remaining after the preemption phase will have generated Ts instantiated
holding costs. However, as the service times of jobs are stochastic, the number of observations for a
job is also a random variable, but we could not take this into account in our analysis.

One may also consider some variations of our problem by allowing for partial or delayed feedback.
We can imagine a situation where the learner observes stochastic holding costs only for a subset
of items in each time step, or another scenario is when there are some delays in receiving realized
holding costs so that the learner observes only accumulated costs of jobs over multiple time steps.
This may be of interest in real-world systems where only a limited information about stochastic
holding costs is accessible by the learner due to computation / communication constraints in each
time step.

Lastly, it is left for future work to study cases when both mean job holding costs and mean job service
times are unknown parameters. [5] considers unknown mean service times, whereas our work studies
the case of unknown mean job holding costs. Combining these two frameworks would be of interest.
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