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Abstract

Graphical structures estimated by causal learning algorithms from time series data
can provide misleading causal information if the causal timescale of the generating
process fails to match the measurement timescale of the data. Existing algorithms
provide limited resources to respond to this challenge, and so researchers must
either use models that they know are likely misleading, or else forego causal
learning entirely. Existing methods face up-to-four distinct shortfalls, as they
might a) require that the difference between causal and measurement timescales is
known; b) only handle very small number of random variables when the timescale
difference is unknown; c) only apply to pairs of variables; or d) be unable to
find a solution given statistical noise in the data. This paper addresses these
challenges. Our approach combines constraint programming with both theoretical
insights into the problem structure and prior information about admissible causal
interactions to achieve multiple orders of magnitude in speed-up. The resulting
system maintains theoretical guarantees while scaling to significantly larger sets
of random variables (> 100) without knowledge of timescale differences. This
method is also robust to edge misidentification and can use parametric connection
strengths, while optionally finding the optimal solution among many possible ones.

1 Introduction

Dynamic causal models play a pivotal role in modeling real-world systems in diverse domains,
including economics, education, climatology, and neuroscience. Given a sufficiently accurate causal
graph over random variables, one can predict, explain, and potentially control some system; more
generally, one can understand it. In practice, however, specifying or learning an accurate causal
model of a dynamical system can be challenging for both statistical and theoretical reasons.

One particular challenge arises when data are not measured at the speed of the underlying causal
connections. For example, fMRI scanning of the brain indirectly measures dynamical neural activity
by measuring the resulting bloodflow and oxygen level changes in different brain regions. However,
fMRI measures occur (at most) every second while the brain’s actual dynamics are known to proceed
at a faster rate (Oram & Perrett, 1992), though we do not know how much faster. In general, when
the measurement timescale is significantly slower than the causal timescale (as with fMRI), learning
can output vastly incorrect causal information. For instance, if we only measure every other timestep
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in Figure 1, then the true graph (top left) would di� er from the data graph (top right). We might
thus conclude that variable2 directly in�uences variable5, when variable3 is the actual direct cause.
These errors can lead to ine� cient or costly attempts at control. More generally, understanding of a
system depends on the timescale of the causal relations, not the timescale of measurements.

In this paper, we consider the problem of learning the causal structure at thecausaltimescale from
data collected at an unknownmeasurementtimescale. This challenge has received signi�cant attention
in recent years (Plis et al., 2015b; Gong et al., 2015; Hyttinen et al., 2017; Plis et al., 2015a), but all
current algorithms have signi�cant limitations (see Section 2) that make them unusable for many
real-world scienti�c challenges. Current algorithms show the theoretical possibility of causal learning
from undersampled data, but their practical applicability is limited to small graph sizes, perhaps
only a pair of variables (Gong et al., 2015). In contrast, we present a provably correct and complete
solution that can operate on 100-node graphs, and hence is potentially applicable in biological and
other domains, for learning causal timescale structure from undersampled data.

2 Related Work AndNotation

Figure 1: Causal graphG1 and
its undersampled versionG2: un-
rolled and compressed versions.

A directed dynamic causal model is a generalization of “regular”
causal models (Pearl et al., 2000; Spirtes et al., 1993): graphG
includesn distinct nodes for random variablesV = fV1;V2; :::;Vng
at both the current timestept (Vt), and also previous timesteps
(Vt� k) for which there is a direct cause of someVt

i . We assume
that the “true” underlying causal structure is �rst-order Markov: the
independenceVt ?? Vt� k j Vt� 1 holds for allk > 1.1 G is thus over
2V, and the only permissible edges areVt� 1

i ! Vt
j , where possibly

i = j. The quantitative component of the dynamic causal model is
fully speci�ed by parameters forP(VtjVt� 1). We assume that these
conditional probabilities are stationary over time, but the marginal
P(Vt) need not be stationary.

We denote the timepoints of the underlying causal structure as
ft0; t1; t2; :::;tk; :::g. The data are said to beundersampled at rate
u if measurements occur atft0; tu; t2u; :::;tku; :::g. We denote under-
sample rate with superscripts: the true causal graph (i.e., undersampled at rate1) is G1; the same
graph undersampled at rateu is Gu. To determine the impliedG for u > 1, the graph is �rst “unrolled”
by adding instantiations ofG1 at previous timesteps, whereVt� 2 bear the same causal relationships to
Vt� 1 thatVt� 1 bear toVt, and so forth. In this unrolled (time-indexed byt) graph, allV at intermediate
timesteps are unmeasured; this lack of measurement is equivalent to marginalizing out (the variables
in) those timesteps to yieldGu. The problem of moving fromG1 to Gu was structurally addressed by
Danks & Plis (2013), and parametrically addressed (for 2-variable systems) by Gong et al. (2015).

Various representations have been developed for graphs with latent confounders, including partially-
observed ancestral graphs (PAGs) (Zhang, 2008) and maximal ancestral graphs (MAGs) (Richardson
& Spirtes, 2002). However, these graph-types cannot easily capture the types of latents produced by
undersampling (Mooij & Claassen, 2020). Instead, we use compressed graphs, along with properties
that were previously proven for this representation (Danks & Plis, 2013). A compressed graph includes
only V, where temporal information is implicitly encoded in the edges. In particular, a compressed
graphG for dynamic causal graphG hasVi ! V j in G i� Vt� 1

i ! Vt
j is in G. Undersampling

(i.e., marginalizing intermediate timesteps) is a straightforward operation for compressed graphs:
(1) Vi ! V j in Gu i� there is a length-u directed path fromVi to V j in G1 i� there is a directed
path fromVt� u

i to Vt
j in G1; and (2)Vi $ V j in Gu i� there exists length-s < u directed paths from

Vk to Vi , and toV j , in G1 (i.e., Vk is an unobserved common cause inG1 fewer thanu timesteps
back). (See Appendix A for additional lemmas and proofs.) The bottom row of Figure 1 shows
compressed graphs for the unrolled ones on the top row; the left shows the causal timescale and
the right shows the graphs undersampled at rate2. (See Appendix B for more examples of graphs
through undersampling.)

1This assumption is relatively weak, as we do not assume that we measure at this causal timescale. The
causal timescale could be arbitrarily fast. This assumption is a form of causal su� ciency (Spirtes et al., 2000).
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Figure 2: Comparison of sRASL (red) with pre-
vious state-of-the-art RASL (blue).

Given this framework, the overall causal learning chal-
lenge can now be stated as: givenGu but notu (alter-
nately: given datasetD at unknown undersample rate),
what is the set of possibleG1? There will often be many
possibleG1 that appear the same after undersampling,
and so we use~H • to denote the equivalence class of
G1 that yieldH (the given causal graph inferred from
dataD) for someu. That is,~H • = fG1 : 9u(Gu = H )g.
There are2n2

possibleG1, so perhaps unsurprisingly,
the problem of inferring~H • is NP-complete:

Theorem 1(Hyttinen et al. (2017)[Theorem 1]). De-
ciding whether a consistentG1 exists for a givenH is
NP-complete, for all undersampling rates u� 2.2

Several algorithms exist for this problem.Mesochronal
Structure Learning (MSL)(Plis et al., 2015b) infers
~H • in a non-brute force manner given knownu. Every
edge inGu corresponds to one or more paths of length
u in G1, and soG1 can be constructed by identifying
u � 1 intermediate nodes for each edge inGu. MSL
uses Depth-First Search (DFS) through the state space
of possible identi�cations, where each implies aG1. If
Gu = H , thenG1 2 ~H • . Otherwise, search continues.
MSL backtracks in the DFS whenever someGu includes an edge that is absent fromH , as the
candidateG1 and all its supergraphs cannot be in~H • .

Although Plis et al. (2015b) showed that the concept of causal inference from undersampled data is
feasible, MSL is computationally intractable on even moderate-sized graphs. Hyttinen et al. (2017)
used the implied constraints to develop an Answer Set Programming (ASP) (Simons et al., 2002;
Niemelä, 1999; Gelfond & Lifschitz; Lifschitz, 1988) method that formulated this causal inference
challenge as a rule-based constraint satisfaction problem that is well-suited for ASP-type solvers.
In essence, the algorithm in Hyttinen et al. (2017) takes as input the measured causal graphH ,
determines the set of implied constraints onG1, and then uses the general-purpose Answer Set Solver
Clingo (Gebser et al., 2011) to determine the set of possibleG1 signi�cantly faster than MSL. The
same idea of using Boolean satis�ability solvers to integrate (in)dependent data constraints has been
used for various other causal learning challenges (Hyttinen et al., 2013; Trianta�llou et al., 2010).

Although the method in Hyttinen et al. (2017) is signi�cantly faster than MSL, one must specify the
undersampling rateu (or else run the method sequentially for all possibleu, thereby losing much of
the computational advantage). In contrast, theRate-Agnostic (Causal) Structure Learning (RASL)
approach (with several variants) (Plis et al., 2015a) makes no such assumption. RASL algorithms are
similar to MSL, but consider each possibleu for someG1. RASL reduces computational complexity
with two additional stopping rules for givenG1: (1) if someGk has previously been seen, then further
undersampling ofG1 will not produce new graphs; and (2) ifGk is not an edge-subset ofH for all k,
then do not consider any edge-superset ofG1 (Plis et al., 2015a). Despite these improvements, RASL
still faces memory and run-time constraints for even moderate numbers of nodes.

One key observation from all of these learning algorithms is the importance ofstrongly connected
components(SCCs) (Danks & Plis, 2013), where the variables in a compressed graphH can be fully
partitioned based on SCC membership.

De�nition 2.1. An SCC in compressed graphH is a maximal set of nodesS � V such that, for every
X;Y 2 S there is a directed path from X to Y .

SCCs can be highly stable despite undersampling: the node-membership of an SCC does not change
as we undersample, as long as the greatest common divisor (gcd) of the set of lengths of all simple
loops (directed cycles without repeated nodes) in the SCC is 1.3

2Proof provided in Hyttinen et al. (2017). In general, we omit previously published proofs.
3The condition easily holds, as it requires only (1) the graph is relatively dense with di� erent loop lengths, or

(2) at least one node in the SCC has a self-loop (i.e., is autocorrelated).
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Theorem 2(Danks & Plis (2013)[Theorem 3]). S is an SCC inGu 8u i� gcd(L S) = 1 for SCCS 2 G1

The algorithms in this paper all take as input the measurement timescale graphH , perhaps estimated
from data at an (unknown) undersampling rate. We do not here develop algorithms to learnH , as there
are many existing algorithms for learning graphical structure: at the measurement timescale (Chu
et al., 2008; Entner & Hoyer, 2010; Granger, 1969); for time series with latent confounders (Jabbari
et al., 2017; Malinsky & Spirtes, 2018; Gerhardus & Runge, 2020); or accounting for structured
latents such as those that occur in undersampling (Moneta et al., 2011; Cook et al., 2017).

In this paper, we developsRASL(for solver-based RASL), a novel solution to the rate-agnostic
structure learning problem that leverages multiple types of insights and constraints (e.g., Theorem 2),
and thereby signi�cantly outperforms previous methods. The contributions of this paper are threefold:
�rst, we reformulate the RASL algorithm from a search-based procedure to a constraint satisfaction
problem encoded in a declarative language (Fahland et al., 2009). Second, we show how to add
additional constraints based on SCC structure. Third, we ensure that sRASL provides a straight-
forward way to �nd approximate solutions whenH is an unreachable graph (i.e., when~H • = ; ).
These advances collectively provide up to three orders of magnitude improvements in speed, thereby
enabling causal inference given undersampling data involving over100nodes. Figure 2 compares
sRASL (red) with the previously-fastest RASL (Plis et al., 2015a) method (blue) on the same graphs.
For the exampleH , RASL required nearly1000minutes to compute~H • , but only6 seconds for
sRASL. Even the longest-to-compute~H • for sRASL took20:5 seconds vs.780minutes for RASL.

3 sRASL: OptimizedASP-basedCausalDiscovery

The sRASL approach takes as input a (potentially) undersampled graphH , whether learned from
dataD, expert domain knowledge, both of these, or some other source. sRASL's agnosticism about
the source of the input graph enables wider applicability, as we can use whatever information is
available (Danks & Plis, 2019). In the asymptotic (data) limit, the sRASL output is the full~H • .

sRASL leverages the fact that connectionsbetweenSCCs inH must form a directed acylic graph.
More speci�cally: if X ! Y with X 2 A;Y 2 B for SCCsA , B, thenC 8 D for all C 2 A; D 2
B.4 Theorem 2 provides the (weak) condition under which SCC membership is preserved under
undersampling. These two observations imply that structural features provide additional constraints
beyond the obvious ones (see Section 4.3). In particular, ifH has a roughly modular structure,
then sRASL generates many more constraints than the formulation of Hyttinen et al. (2017). (See
Appendix D for an ablation study of speed e� ects of these added constraints.)

Listing 1 shows theClingo (see Appendix F for a brief introduction) code5 of sRASL, which involves
exactly representing the conditioning and marginalization operations (from Section 2) in ASP. Line1
speci�es the �rst-order graph structure ofH (e.g., the edge1 ! 10 translates tohdirected(1;10)).
Line 2 encodes the second-order structure ofH , including the partition ofV into SCCs. Separate
code adds these predicates and basic descriptive information (Lines3; 4; 5) to theClingo code.maxu
on line3 speci�es the maximum undersampling rate; noter that there is provably au whereGu = Gk

for all k > u, under the same condition that leads to stable SCC membership:
Theorem 3(Plis et al. (2015a)[Theorem 3.1]). If gcd(L S) = 1 for all SCCsS � V, thenGu = Gu+1

for all u > f � nF +  + d + 1.

where is the transit number6, d is graph diameter7, andnF is the Frobenius number.8 In practice, the
plausible undersampling rate will often be much lower than the theoretical upper bound in Theorem 3,
and somaxucould be set by expert knowledge. For example, the underlying rate of brain activity
is generally thought to be� 100milliseconds and fMRI devices measure approximately every two
seconds. Hence,u = 20 is a plausible upper bound on undersampling in fMRI studies.9

4If C  D, then by de�nition of SCC, there exists� : X  : : :  C  D  : : :  Y. X;Y are thus
mutually reachable, so must be in the same SCC, contraA , B.

5The full code is available at https://gitlab.com/undersampling/gunfolds
6Length of the “longest shortest path” from a node that touches all simple loops of the SCC.
7Length of the “longest shortest path” between any two graph nodes.
8For setB of positive integers with gcd(B) = 1, nF is the max integer withnF ,

P b
i=1 � i Bi for � i � 0

9Of course, the actual undersample rate could be much lower than20. Voxels typically contain8 � 10 layers
of neurons, so the “causal timescale of a voxel” could easily be as high as 1000 ms (i.e.,u = 2).
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1 %( * input graph edge specifications here * e.g.: hdirected(1,5) ... )
2 %( * input graph SCC specifications here * e.g.: sccsize(0, 5). scc(1, 0) ...)
3 #const n = 10, maxu = 20
4 node(1..n).
5 1 {u(1..maxu)} 1.
6 {edge1(X,Y)} :- node(X), node(Y).
7 directed(X, Y, 1) :- edge1(X, Y).
8 directed(X, Y, L) :- directed(X, Z, L-1), edge1(Z, Y), L <= U, u(U).
9 bidirected(X, Y, U) :- directed(Z, X, L), directed(Z, Y, L), node(X;Y;Z), X < Y, L

< U, u(U).
10 :- directed(X, Y, L), not hdirected(X, Y), node(X;Y), u(L).
11 :- bidirected(X, Y, L), not hbidirected(X, Y), node(X;Y), u(L), X < Y.
12 :- not directed(X, Y, L), hdirected(X, Y), node(X;Y), u(L).
13 :- not bidirected(X, Y, L), hbidirected(X, Y), node(X;Y), u(L), X < Y.
14 % the following is only used when SCC accounting is enabled
15 :- edge1(X, Y), scc(X, K), scc(Y, L), K != L, sccsize(L, Z), Z > 1, not dag(K,L).

Listing 1: sRASL encoding in theclingo ASP-language

1 :~ directed(X, Y, L), no_hdirected(X, Y, W), node(X;Y), u(L). [W@1,X,Y]
2 :~ bidirected(X, Y, L), no_hbidirected(X, Y, W), node(X;Y), u(L), X < Y.

[W@1,X,Y]
3 :~ not directed(X, Y, L), hdirected(X, Y, W), node(X;Y), u(L). [W@1,X,Y]
4 :~ not bidirected(X, Y, L), hbidirected(X, Y, W), node(X;Y), u(L), X < Y.

[W@1,X,Y]

Listing 2: Integrity constraints to replace Lines 11-14 in Listing 1 to convert sRASL into optimization problem

Line 6 in Listing 1 stipulates that all edges inG1 are possible (by default), and so the output will
contain any possible model that does not violate the integrity constraints of lines11 � 15. Lines
7 and8 de�ne paths of lengthL in the graph (i.e., an edge inGL). As described in Section 2,
X ! Y 2 Gu () X

u
 Y 2 G1 where

u
 is a path of lengthu. Line 9 similarly de�nes bidirected

edges inGL: X $ Y 2 Gu () 9 Z; l : (X
l

f Z
l

 Y 2 G1).

Lines10� 13provide the core constraints that ensure sRASL returns onlyG1 for which there existsu
with Gu = H . Line 15adds the constraint of impermissibility of cycles between SCCs: if each SCC
is considered as asuper-node, Line 15 ensures that the graph of SCC connections inH is acyclic.

sRASL can return the empty set (i.e., there are no suitableG1), typically because of statistical noise
or other errors in estimating or specifyingH .10 We can instead run sRASL in an optimization mode
to �nd optimal (though not perfect) outputs (see Section 4.5 for details). In such cases, sRASL �nds
the set ofG1 that are, for someu, closest toH by the objective function:

G1� ; u� 2 arg min
X

e2H

I [e < Gu] � w(e 2 H ) +
X

e<H

I [e 2 Gu] � w(e < H ); (1)

where the indicator functionI(c) = 1 if c holds and0 otherwise.w(e 2 H ) indicates the importance
(i.e., reliability) of edgee; w(e < H ) indicates the reliability of the absence of an edge. SinceH
is an undersampled graph, it consists of directed and bidirected edges. We thus implement both
w(e 2 H ) andw(e < H ) as two pairs ofn � n matrices, one pair for existence and absence of directed
edges, and one pair for bidirected edges. To learn the optimal graph at the true causal timescale, the
correspondingGu of eachG1 in the solution set is compared toH , and penalized for the di� erence
according to the weights.

The reliability weights may also be based on strength of connection. For example, ifH is estimated
as a Granger Causality or Structural Vector Autoregressive (SVAR) (Granger, 1969; Lütkepohl,
2005) model, then the edge-weights may enableClingo to preferentially ignore edges with weaker

10Among all possible graphs that have a combination of both directed (2n2
) and bidirected (2(n

2)) edges, only a
fraction are possible by undersampling aG1.
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connection strength. In addition to using observed data to estimate the weights, prior knowledge can
play a key role: edges known to exist can be given a higher weight, while those known to not exist
could be given reduced (or zero) weight (See also Appendix D). The approach is �exible as it can
combine estimates from data and expert knowledge. Applications to fMRI data for causal structure
discovery at causal time scale are shown in Appendix E.

In order to incorporate Equation 1 in Listing 1, we replace its exact integrity constraints (Lines
10� 13) with the optimization formulation (Gebser et al., 2011) in Listing 2. In Listing 2, we specify
a weight for each edge (or lack there of) inH usingW, with importance speci�ed usingW@isyntax
with i being the importance.

3.1 sRASL Completeness andCorrectness

sRASL exhibits signi�cant improvements in computation time, so it is important to show that we do
not lose generality or theoretical guarantees. We demonstrate correctness and completeness using the
notion of adirect encodingof the problem (i.e., the space of solutions is fully characterized, and any
non-solution violates a constraint). We �rst prove (see Appendix A):
Theorem 4. Listing 1 is a direct encoding of the undersampling problem.

Clingo is a complete solver, based on CDNL (Con�ict-Driven Nogood Learning) (Drescher &
Walsh, 2011), itself based on CDCL (Con�ict-Driven Clause Learning) (Marques Silva & Sakallah,
1996; Marques-Silva & Sakallah, 1999). Hyttinen et al. (2014)[Theorem 2] and Hyttinen et al.
(2013)[Section5:2] show that, if the ASP encoding is the direct encoding of the problem, then
ASP will produce the complete set of solutions in the in�nite sample space limit. In other words,
Theorem 3.1 implies: since our algorithm yields at least one sound solution,Clingo will produce all
possible solutions. Therefore, soundness results in completeness. That is, sRASL's success is not due
to heuristics or some incomplete or not-everywhere-correct algorithmic step.11

4 Results

A major virtue of sRASL is its empirical performance, so we now consider a range of simulations
(where we have known ground truth) to understand this performance in more detail. These experiments
usedClingo in parallel mode using 10 threads computing onAMD EPYC 7551CPUs. Given
computational complexity, all experiments were run on aslurm cluster that submits jobs to one of
the 19 machines on the same network, each with 64 cores and 512 GB of RAM.

4.1 Comparing sRASL vs. RASL

We �rst compare sRASL with the existing RASL method, which struggles with graphs larger
than6 nodes (Plis et al., 2015a) (Figure 2). We generated100 6-node SCCs for each density in
[0:2;0:25;0:3], and then undersampled each graph by2;3, and4. Each column of Figure 2 consists
of graphs of approximately same density (increasing density from left-to-right), and subcolumns
represent di� erent undersample rates (for that density). As Figure 2 shows, sRASL is typically three
orders of magnitude faster than RASL, even on small graphs. A similar comparison with the method
of Hyttinen et al. (2017) that iteratively loops through possible values ofu can be found in Figure 9
of Appendix C.

4.2 ComparingGraphSize

It is perhaps unsurprising that sRASL runs much faster than RASL, as sRASL uses an ASP solver
(which were previously known to yield faster algorithms (Hyttinen et al., 2017)). We next explored
how large graphs could be that sRASL could handle. More generally, we aimed to better understand
how sRASL's computational performance scales with the number of nodes in single-SCC graphs.
The focus on single SCCs is motivated by the theoretical need to understand the size-speed tradeo� .
Moreover, many real-world systems consist of tightly coupled factors with many feedback loops (i.e.,
a single SCC). We consider multiple-SCC graphs in the next subsections.

11Simulation testing provides further evidence. We found that sRASL and RASL produced identical outputs
for 1000di� erent input graphs, and RASL is known to be correct and complete (Plis et al., 2015a)[Theorem3:6].
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Figure 3: Time behavior of graphs of size8;16, and
32. Redline shows experimental time-out of24 hours.
Green/Graydots represent input graphs that were/were
not solved within the 24-hours window.

Figure 4: Time behavior of graphs of size64 with
various SCC sizes. The time-out for this experiment
was 24 hours (1440 Minutes).

We generated50 random single-SCC graphs each of8;16, and32 nodes, all with average degree
of 1:4 outgoing edges per node. We then undersampled each graph by2;3, and4, and used each
individual undersampled graph as input to sRASL (i.e.,150di� erent input graphs for each size). We
used a 24-hour timeout (i.e., stopped the run if it did not �nish in 24 hours). Figure 3 shows the
increasing computational costs as both number of nodes and undersample rate increase. Notably,
sRASL was able to learn~H • for many32-node single-SCC graphs, though it reached timeout for all
32-nodeH at u = 4. That is, for lowu, sRASL scales to much larger single-SCC graphs than RASL.

4.3 ComparingSCC Size inMultiple -SCC Graphs

The other major innovation of sRASL is incorporation of constraints derived from the SCC structure.
We thus investigated the performance of sRASL on large, structured, multiple-SCC graphs. Many
real-world systems exhibit some degree of modularity, where there are dense or feedback connections
within a module or subsystem, and relatively sparser connections between modules or subsystems.
In theory, sRASL should perform well on these kinds of structures since it incorporates SCC-based
constraints. Please refer to Appendix D for an ablation study on the marginal bene�t provided by
these additional constraints for SCC structures.

We tested the value of SCC-based constraints using graphs with64nodes that di� ered in their SCC
structure. Speci�cally, we randomly generated50 graphs each of:32 size-2 SCCs;16 size-4 SCCs;8
size-8 SCCs;4 size-16SCCs; or2 size-32SCCs. We then undersampled each graph byu = 2; 3, or 4,
and ran sRASL (again with a 24-hour timeout).

Figure 4 shows the computation time for these graphs, with increasing SCC size (and decreasing
number of SCCs) from left to right. The �rst key observation is that sRASL successfully found
~H • for 64-node graphs, at least when there was some internal structure. Second, and relatedly, we
observe a wide range of computation times for these graphs, even though all had the same number
of nodes (64). We clearly see the impact of SCC structure, as sRASL was dramatically faster when
there were many small SCCs, rather than a few large SCCs. The results in Figure 3 might seem to
suggest an “upper bound” around30nodes for sRASL. But the results in Figure 4 make it clear that
any potential “upper bound” is primarily on the number of nodeswithin the SCCs, rather than the
total number of nodes in the graph.

4.4 ComparingGraphSizeWith Constant SCC Size

The previous results suggest that sRASL might be able to solve much larger graphs, as long as
the SCCs are not overly large. More generally, the previous simulations showed that sRASL's
computational cost scales (at least) exponentially in thesizeof the SCC, but did not reveal how it
scales in thenumberof SCCs.
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