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Abstract

Graphical structures estimated by causal learning algorithms from time series data
can provide misleading causal information if the causal timescale of the generating
process fails to match the measurement timescale of the data. Existing algorithms
provide limited resources to respond to this challenge, and so researchers must
either use models that they know are likely misleading, or else forego causal
learning entirely. Existing methods face up-to-four distinct shortfalls, as they
might a) require that the difference between causal and measurement timescales is
known; b) only handle very small number of random variables when the timescale
difference is unknown; c) only apply to pairs of variables; or d) be unable to
find a solution given statistical noise in the data. This paper addresses these
challenges. Our approach combines constraint programming with both theoretical
insights into the problem structure and prior information about admissible causal
interactions to achieve multiple orders of magnitude in speed-up. The resulting
system maintains theoretical guarantees while scaling to significantly larger sets
of random variables (> 100) without knowledge of timescale differences. This
method is also robust to edge misidentification and can use parametric connection
strengths, while optionally finding the optimal solution among many possible ones.

1 Introduction

Dynamic causal models play a pivotal role in modeling real-world systems in diverse domains,
including economics, education, climatology, and neuroscience. Given a sufficiently accurate causal
graph over random variables, one can predict, explain, and potentially control some system; more
generally, one can understand it. In practice, however, specifying or learning an accurate causal
model of a dynamical system can be challenging for both statistical and theoretical reasons.

One particular challenge arises when data are not measured at the speed of the underlying causal
connections. For example, fMRI scanning of the brain indirectly measures dynamical neural activity
by measuring the resulting bloodflow and oxygen level changes in different brain regions. However,
fMRI measures occur (at most) every second while the brain’s actual dynamics are known to proceed
at a faster rate (Oram & Perrett, 1992), though we do not know how much faster. In general, when
the measurement timescale is significantly slower than the causal timescale (as with fMRI), learning
can output vastly incorrect causal information. For instance, if we only measure every other timestep
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in Figure 1, then the true graph (top left) would differ from the data graph (top right). We might
thus conclude that variable 2 directly influences variable 5, when variable 3 is the actual direct cause.
These errors can lead to inefficient or costly attempts at control. More generally, understanding of a
system depends on the timescale of the causal relations, not the timescale of measurements.

In this paper, we consider the problem of learning the causal structure at the causal timescale from
data collected at an unknown measurement timescale. This challenge has received significant attention
in recent years (Plis et al., 2015b; Gong et al., 2015; Hyttinen et al., 2017; Plis et al., 2015a), but all
current algorithms have significant limitations (see Section 2) that make them unusable for many
real-world scientific challenges. Current algorithms show the theoretical possibility of causal learning
from undersampled data, but their practical applicability is limited to small graph sizes, perhaps
only a pair of variables (Gong et al., 2015). In contrast, we present a provably correct and complete
solution that can operate on 100-node graphs, and hence is potentially applicable in biological and
other domains, for learning causal timescale structure from undersampled data.

2 RelatedWork And Notation

Figure 1: Causal graph G1 and
its undersampled version G2: un-
rolled and compressed versions.

A directed dynamic causal model is a generalization of “regular”
causal models (Pearl et al., 2000; Spirtes et al., 1993): graph G
includes n distinct nodes for random variables V = {V1,V2, ...,Vn}

at both the current timestep t (Vt), and also previous timesteps
(Vt−k) for which there is a direct cause of some V t

i . We assume
that the “true” underlying causal structure is first-order Markov: the
independence Vt ⊥⊥ Vt−k | Vt−1 holds for all k > 1.1 G is thus over
2V, and the only permissible edges are V t−1

i → V t
j, where possibly

i = j. The quantitative component of the dynamic causal model is
fully specified by parameters for P(Vt |Vt−1). We assume that these
conditional probabilities are stationary over time, but the marginal
P(Vt) need not be stationary.

We denote the timepoints of the underlying causal structure as
{t0, t1, t2, ..., tk, ...}. The data are said to be undersampled at rate
u if measurements occur at {t0, tu, t2u, ..., tku, ...}. We denote under-
sample rate with superscripts: the true causal graph (i.e., undersampled at rate 1) is G1; the same
graph undersampled at rate u is Gu. To determine the implied G for u > 1, the graph is first “unrolled”
by adding instantiations of G1 at previous timesteps, where Vt−2 bear the same causal relationships to
Vt−1 that Vt−1 bear to Vt, and so forth. In this unrolled (time-indexed by t) graph, all V at intermediate
timesteps are unmeasured; this lack of measurement is equivalent to marginalizing out (the variables
in) those timesteps to yield Gu. The problem of moving from G1 to Gu was structurally addressed by
Danks & Plis (2013), and parametrically addressed (for 2-variable systems) by Gong et al. (2015).

Various representations have been developed for graphs with latent confounders, including partially-
observed ancestral graphs (PAGs) (Zhang, 2008) and maximal ancestral graphs (MAGs) (Richardson
& Spirtes, 2002). However, these graph-types cannot easily capture the types of latents produced by
undersampling (Mooij & Claassen, 2020). Instead, we use compressed graphs, along with properties
that were previously proven for this representation (Danks & Plis, 2013). A compressed graph includes
only V, where temporal information is implicitly encoded in the edges. In particular, a compressed
graph G for dynamic causal graph G has Vi → V j in G iff V t−1

i → V t
j is in G. Undersampling

(i.e., marginalizing intermediate timesteps) is a straightforward operation for compressed graphs:
(1) Vi → V j in Gu iff there is a length-u directed path from Vi to V j in G1 iff there is a directed
path from V t−u

i to V t
j in G1; and (2) Vi ↔ V j in Gu iff there exists length-s < u directed paths from

Vk to Vi, and to V j, in G1 (i.e., Vk is an unobserved common cause in G1 fewer than u timesteps
back). (See Appendix A for additional lemmas and proofs.) The bottom row of Figure 1 shows
compressed graphs for the unrolled ones on the top row; the left shows the causal timescale and
the right shows the graphs undersampled at rate 2. (See Appendix B for more examples of graphs
through undersampling.)

1This assumption is relatively weak, as we do not assume that we measure at this causal timescale. The
causal timescale could be arbitrarily fast. This assumption is a form of causal sufficiency (Spirtes et al., 2000).
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Figure 2: Comparison of sRASL (red) with pre-
vious state-of-the-art RASL (blue).

Given this framework, the overall causal learning chal-
lenge can now be stated as: given Gu but not u (alter-
nately: given dataset D at unknown undersample rate),
what is the set of possible G1? There will often be many
possible G1 that appear the same after undersampling,
and so we use ⟦H⟧ to denote the equivalence class of
G1 that yieldH (the given causal graph inferred from
data D) for some u. That is, ⟦H⟧ = {G1 : ∃u(Gu = H)}.
There are 2n2

possible G1, so perhaps unsurprisingly,
the problem of inferring ⟦H⟧ is NP-complete:

Theorem 1 (Hyttinen et al. (2017)[Theorem 1]). De-
ciding whether a consistent G1 exists for a givenH is
NP-complete, for all undersampling rates u ≥ 2.2

Several algorithms exist for this problem. Mesochronal
Structure Learning (MSL) (Plis et al., 2015b) infers
⟦H⟧ in a non-brute force manner given known u. Every
edge in Gu corresponds to one or more paths of length
u in G1, and so G1 can be constructed by identifying
u − 1 intermediate nodes for each edge in Gu. MSL
uses Depth-First Search (DFS) through the state space
of possible identifications, where each implies a G1. If
Gu = H , then G1 ∈ ⟦H⟧. Otherwise, search continues.
MSL backtracks in the DFS whenever some Gu includes an edge that is absent from H , as the
candidate G1 and all its supergraphs cannot be in ⟦H⟧.

Although Plis et al. (2015b) showed that the concept of causal inference from undersampled data is
feasible, MSL is computationally intractable on even moderate-sized graphs. Hyttinen et al. (2017)
used the implied constraints to develop an Answer Set Programming (ASP) (Simons et al., 2002;
Niemelä, 1999; Gelfond & Lifschitz; Lifschitz, 1988) method that formulated this causal inference
challenge as a rule-based constraint satisfaction problem that is well-suited for ASP-type solvers.
In essence, the algorithm in Hyttinen et al. (2017) takes as input the measured causal graph H ,
determines the set of implied constraints on G1, and then uses the general-purpose Answer Set Solver
Clingo (Gebser et al., 2011) to determine the set of possible G1 significantly faster than MSL. The
same idea of using Boolean satisfiability solvers to integrate (in)dependent data constraints has been
used for various other causal learning challenges (Hyttinen et al., 2013; Triantafillou et al., 2010).

Although the method in Hyttinen et al. (2017) is significantly faster than MSL, one must specify the
undersampling rate u (or else run the method sequentially for all possible u, thereby losing much of
the computational advantage). In contrast, the Rate-Agnostic (Causal) Structure Learning (RASL)
approach (with several variants) (Plis et al., 2015a) makes no such assumption. RASL algorithms are
similar to MSL, but consider each possible u for some G1. RASL reduces computational complexity
with two additional stopping rules for given G1: (1) if some Gk has previously been seen, then further
undersampling of G1 will not produce new graphs; and (2) if Gk is not an edge-subset ofH for all k,
then do not consider any edge-superset of G1 (Plis et al., 2015a). Despite these improvements, RASL
still faces memory and run-time constraints for even moderate numbers of nodes.

One key observation from all of these learning algorithms is the importance of strongly connected
components (SCCs) (Danks & Plis, 2013), where the variables in a compressed graphH can be fully
partitioned based on SCC membership.

Definition 2.1. An SCC in compressed graphH is a maximal set of nodes S ⊆ V such that, for every
X,Y ∈ S there is a directed path from X to Y .

SCCs can be highly stable despite undersampling: the node-membership of an SCC does not change
as we undersample, as long as the greatest common divisor (gcd) of the set of lengths of all simple
loops (directed cycles without repeated nodes) in the SCC is 1.3

2Proof provided in Hyttinen et al. (2017). In general, we omit previously published proofs.
3The condition easily holds, as it requires only (1) the graph is relatively dense with different loop lengths, or

(2) at least one node in the SCC has a self-loop (i.e., is autocorrelated).
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Theorem 2 (Danks & Plis (2013)[Theorem 3]). S is an SCC in Gu
∀u iff gcd(LS) = 1 for SCC S ∈ G1

The algorithms in this paper all take as input the measurement timescale graphH , perhaps estimated
from data at an (unknown) undersampling rate. We do not here develop algorithms to learnH , as there
are many existing algorithms for learning graphical structure: at the measurement timescale (Chu
et al., 2008; Entner & Hoyer, 2010; Granger, 1969); for time series with latent confounders (Jabbari
et al., 2017; Malinsky & Spirtes, 2018; Gerhardus & Runge, 2020); or accounting for structured
latents such as those that occur in undersampling (Moneta et al., 2011; Cook et al., 2017).

In this paper, we develop sRASL (for solver-based RASL), a novel solution to the rate-agnostic
structure learning problem that leverages multiple types of insights and constraints (e.g., Theorem 2),
and thereby significantly outperforms previous methods. The contributions of this paper are threefold:
first, we reformulate the RASL algorithm from a search-based procedure to a constraint satisfaction
problem encoded in a declarative language (Fahland et al., 2009). Second, we show how to add
additional constraints based on SCC structure. Third, we ensure that sRASL provides a straight-
forward way to find approximate solutions whenH is an unreachable graph (i.e., when ⟦H⟧ = ∅).
These advances collectively provide up to three orders of magnitude improvements in speed, thereby
enabling causal inference given undersampling data involving over 100 nodes. Figure 2 compares
sRASL (red) with the previously-fastest RASL (Plis et al., 2015a) method (blue) on the same graphs.
For the exampleH , RASL required nearly 1000 minutes to compute ⟦H⟧, but only 6 seconds for
sRASL. Even the longest-to-compute ⟦H⟧ for sRASL took 20.5 seconds vs. 780 minutes for RASL.

3 sRASL: Optimized ASP-based Causal Discovery

The sRASL approach takes as input a (potentially) undersampled graphH , whether learned from
data D, expert domain knowledge, both of these, or some other source. sRASL’s agnosticism about
the source of the input graph enables wider applicability, as we can use whatever information is
available (Danks & Plis, 2019). In the asymptotic (data) limit, the sRASL output is the full ⟦H⟧.

sRASL leverages the fact that connections between SCCs inH must form a directed acylic graph.
More specifically: if X → Y with X ∈ A,Y ∈ B for SCCs A , B, then C ↚ D for all C ∈ A,D ∈
B.4 Theorem 2 provides the (weak) condition under which SCC membership is preserved under
undersampling. These two observations imply that structural features provide additional constraints
beyond the obvious ones (see Section 4.3). In particular, if H has a roughly modular structure,
then sRASL generates many more constraints than the formulation of Hyttinen et al. (2017). (See
Appendix D for an ablation study of speed effects of these added constraints.)

Listing 1 shows the Clingo (see Appendix F for a brief introduction) code5 of sRASL, which involves
exactly representing the conditioning and marginalization operations (from Section 2) in ASP. Line 1
specifies the first-order graph structure of H (e.g., the edge 1 → 10 translates to hdirected(1, 10)).
Line 2 encodes the second-order structure of H , including the partition of V into SCCs. Separate
code adds these predicates and basic descriptive information (Lines 3, 4, 5) to the Clingo code. maxu
on line 3 specifies the maximum undersampling rate; noter that there is provably a u where Gu = Gk

for all k > u, under the same condition that leads to stable SCC membership:
Theorem 3 (Plis et al. (2015a)[Theorem 3.1]). If gcd(LS) = 1 for all SCCs S ⊆ V, then Gu = Gu+1

for all u > f ≤ nF + γ + d + 1.

where γ is the transit number6, d is graph diameter7, and nF is the Frobenius number.8 In practice, the
plausible undersampling rate will often be much lower than the theoretical upper bound in Theorem 3,
and so maxu could be set by expert knowledge. For example, the underlying rate of brain activity
is generally thought to be ∼ 100 milliseconds and fMRI devices measure approximately every two
seconds. Hence, u = 20 is a plausible upper bound on undersampling in fMRI studies.9

4If C ← D, then by definition of SCC, there exists π : X ← . . . ← C ← D ← . . . ← Y . X,Y are thus
mutually reachable, so must be in the same SCC, contra A , B.

5The full code is available at https://gitlab.com/undersampling/gunfolds
6Length of the “longest shortest path” from a node that touches all simple loops of the SCC.
7Length of the “longest shortest path” between any two graph nodes.
8For set B of positive integers with gcd(B) = 1, nF is the max integer with nF ,

∑b
i=1 αiBi for αi ≥ 0

9Of course, the actual undersample rate could be much lower than 20. Voxels typically contain 8 − 10 layers
of neurons, so the “causal timescale of a voxel” could easily be as high as 1000 ms (i.e., u = 2).

4
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1 %( * input graph edge specifications here * e.g.: hdirected(1,5) ... )
2 %( * input graph SCC specifications here * e.g.: sccsize(0, 5). scc(1, 0) ...)
3 #const n = 10, maxu = 20
4 node(1..n).
5 1 {u(1..maxu)} 1.
6 {edge1(X,Y)} :- node(X), node(Y).
7 directed(X, Y, 1) :- edge1(X, Y).
8 directed(X, Y, L) :- directed(X, Z, L-1), edge1(Z, Y), L <= U, u(U).
9 bidirected(X, Y, U) :- directed(Z, X, L), directed(Z, Y, L), node(X;Y;Z), X < Y, L

< U, u(U).
10 :- directed(X, Y, L), not hdirected(X, Y), node(X;Y), u(L).
11 :- bidirected(X, Y, L), not hbidirected(X, Y), node(X;Y), u(L), X < Y.
12 :- not directed(X, Y, L), hdirected(X, Y), node(X;Y), u(L).
13 :- not bidirected(X, Y, L), hbidirected(X, Y), node(X;Y), u(L), X < Y.
14 % the following is only used when SCC accounting is enabled
15 :- edge1(X, Y), scc(X, K), scc(Y, L), K != L, sccsize(L, Z), Z > 1, not dag(K,L).

Listing 1: sRASL encoding in the clingo ASP-language

1 :~ directed(X, Y, L), no_hdirected(X, Y, W), node(X;Y), u(L). [W@1,X,Y]
2 :~ bidirected(X, Y, L), no_hbidirected(X, Y, W), node(X;Y), u(L), X < Y.

[W@1,X,Y]
3 :~ not directed(X, Y, L), hdirected(X, Y, W), node(X;Y), u(L). [W@1,X,Y]
4 :~ not bidirected(X, Y, L), hbidirected(X, Y, W), node(X;Y), u(L), X < Y.

[W@1,X,Y]

Listing 2: Integrity constraints to replace Lines 11-14 in Listing 1 to convert sRASL into optimization problem

Line 6 in Listing 1 stipulates that all edges in G1 are possible (by default), and so the output will
contain any possible model that does not violate the integrity constraints of lines 11 − 15. Lines
7 and 8 define paths of length L in the graph (i.e., an edge in GL). As described in Section 2,
X → Y ∈ Gu ⇐⇒ X

u
⇝ Y ∈ G1 where

u
⇝ is a path of length u. Line 9 similarly defines bidirected

edges in GL: X ↔ Y ∈ Gu ⇐⇒ ∃Z, l : (X
l
f Z

l
⇝ Y ∈ G1).

Lines 10− 13 provide the core constraints that ensure sRASL returns only G1 for which there exists u
with Gu = H . Line 15 adds the constraint of impermissibility of cycles between SCCs: if each SCC
is considered as a super-node, Line 15 ensures that the graph of SCC connections inH is acyclic.

sRASL can return the empty set (i.e., there are no suitable G1), typically because of statistical noise
or other errors in estimating or specifyingH .10 We can instead run sRASL in an optimization mode
to find optimal (though not perfect) outputs (see Section 4.5 for details). In such cases, sRASL finds
the set of G1 that are, for some u, closest toH by the objective function:

G1∗, u∗ ∈ arg min
∑
e∈H

I[e < Gu] · w(e ∈ H) +
∑
e<H

I[e ∈ Gu] · w(e < H), (1)

where the indicator function I(c) = 1 if c holds and 0 otherwise. w(e ∈ H) indicates the importance
(i.e., reliability) of edge e; w(e < H) indicates the reliability of the absence of an edge. Since H
is an undersampled graph, it consists of directed and bidirected edges. We thus implement both
w(e ∈ H) and w(e < H) as two pairs of n × n matrices, one pair for existence and absence of directed
edges, and one pair for bidirected edges. To learn the optimal graph at the true causal timescale, the
corresponding Gu of each G1 in the solution set is compared toH , and penalized for the difference
according to the weights.

The reliability weights may also be based on strength of connection. For example, ifH is estimated
as a Granger Causality or Structural Vector Autoregressive (SVAR) (Granger, 1969; Lütkepohl,
2005) model, then the edge-weights may enable Clingo to preferentially ignore edges with weaker

10Among all possible graphs that have a combination of both directed (2n2
) and bidirected (2(n

2)) edges, only a
fraction are possible by undersampling a G1.
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connection strength. In addition to using observed data to estimate the weights, prior knowledge can
play a key role: edges known to exist can be given a higher weight, while those known to not exist
could be given reduced (or zero) weight (See also Appendix D). The approach is flexible as it can
combine estimates from data and expert knowledge. Applications to fMRI data for causal structure
discovery at causal time scale are shown in Appendix E.

In order to incorporate Equation 1 in Listing 1, we replace its exact integrity constraints (Lines
10 − 13) with the optimization formulation (Gebser et al., 2011) in Listing 2. In Listing 2, we specify
a weight for each edge (or lack there of) inH using W, with importance specified using W@i syntax
with i being the importance.

3.1 sRASL Completeness and Correctness

sRASL exhibits significant improvements in computation time, so it is important to show that we do
not lose generality or theoretical guarantees. We demonstrate correctness and completeness using the
notion of a direct encoding of the problem (i.e., the space of solutions is fully characterized, and any
non-solution violates a constraint). We first prove (see Appendix A):
Theorem 4. Listing 1 is a direct encoding of the undersampling problem.

Clingo is a complete solver, based on CDNL (Conflict-Driven Nogood Learning) (Drescher &
Walsh, 2011), itself based on CDCL (Conflict-Driven Clause Learning) (Marques Silva & Sakallah,
1996; Marques-Silva & Sakallah, 1999). Hyttinen et al. (2014)[Theorem 2] and Hyttinen et al.
(2013)[Section 5.2] show that, if the ASP encoding is the direct encoding of the problem, then
ASP will produce the complete set of solutions in the infinite sample space limit. In other words,
Theorem 3.1 implies: since our algorithm yields at least one sound solution, Clingo will produce all
possible solutions. Therefore, soundness results in completeness. That is, sRASL’s success is not due
to heuristics or some incomplete or not-everywhere-correct algorithmic step.11

4 Results

A major virtue of sRASL is its empirical performance, so we now consider a range of simulations
(where we have known ground truth) to understand this performance in more detail. These experiments
used Clingo in parallel mode using 10 threads computing on AMD EPYC 7551 CPUs. Given
computational complexity, all experiments were run on a slurm cluster that submits jobs to one of
the 19 machines on the same network, each with 64 cores and 512 GB of RAM.

4.1 Comparing sRASL vs. RASL

We first compare sRASL with the existing RASL method, which struggles with graphs larger
than 6 nodes (Plis et al., 2015a) (Figure 2). We generated 100 6-node SCCs for each density in
[0.2, 0.25, 0.3], and then undersampled each graph by 2, 3, and 4. Each column of Figure 2 consists
of graphs of approximately same density (increasing density from left-to-right), and subcolumns
represent different undersample rates (for that density). As Figure 2 shows, sRASL is typically three
orders of magnitude faster than RASL, even on small graphs. A similar comparison with the method
of Hyttinen et al. (2017) that iteratively loops through possible values of u can be found in Figure 9
of Appendix C.

4.2 Comparing Graph Size

It is perhaps unsurprising that sRASL runs much faster than RASL, as sRASL uses an ASP solver
(which were previously known to yield faster algorithms (Hyttinen et al., 2017)). We next explored
how large graphs could be that sRASL could handle. More generally, we aimed to better understand
how sRASL’s computational performance scales with the number of nodes in single-SCC graphs.
The focus on single SCCs is motivated by the theoretical need to understand the size-speed tradeoff.
Moreover, many real-world systems consist of tightly coupled factors with many feedback loops (i.e.,
a single SCC). We consider multiple-SCC graphs in the next subsections.

11Simulation testing provides further evidence. We found that sRASL and RASL produced identical outputs
for 1000 different input graphs, and RASL is known to be correct and complete (Plis et al., 2015a)[Theorem 3.6].
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Figure 3: Time behavior of graphs of size 8, 16, and
32. Red line shows experimental time-out of 24 hours.
Green/Gray dots represent input graphs that were/were
not solved within the 24-hours window.

Figure 4: Time behavior of graphs of size 64 with
various SCC sizes. The time-out for this experiment
was 24 hours (1440 Minutes).

We generated 50 random single-SCC graphs each of 8, 16, and 32 nodes, all with average degree
of 1.4 outgoing edges per node. We then undersampled each graph by 2, 3, and 4, and used each
individual undersampled graph as input to sRASL (i.e., 150 different input graphs for each size). We
used a 24-hour timeout (i.e., stopped the run if it did not finish in 24 hours). Figure 3 shows the
increasing computational costs as both number of nodes and undersample rate increase. Notably,
sRASL was able to learn ⟦H⟧ for many 32-node single-SCC graphs, though it reached timeout for all
32-nodeH at u = 4. That is, for low u, sRASL scales to much larger single-SCC graphs than RASL.

4.3 Comparing SCC Size inMultiple-SCC Graphs

The other major innovation of sRASL is incorporation of constraints derived from the SCC structure.
We thus investigated the performance of sRASL on large, structured, multiple-SCC graphs. Many
real-world systems exhibit some degree of modularity, where there are dense or feedback connections
within a module or subsystem, and relatively sparser connections between modules or subsystems.
In theory, sRASL should perform well on these kinds of structures since it incorporates SCC-based
constraints. Please refer to Appendix D for an ablation study on the marginal benefit provided by
these additional constraints for SCC structures.

We tested the value of SCC-based constraints using graphs with 64 nodes that differed in their SCC
structure. Specifically, we randomly generated 50 graphs each of: 32 size-2 SCCs; 16 size-4 SCCs; 8
size-8 SCCs; 4 size-16 SCCs; or 2 size-32 SCCs. We then undersampled each graph by u = 2, 3, or 4,
and ran sRASL (again with a 24-hour timeout).

Figure 4 shows the computation time for these graphs, with increasing SCC size (and decreasing
number of SCCs) from left to right. The first key observation is that sRASL successfully found
⟦H⟧ for 64-node graphs, at least when there was some internal structure. Second, and relatedly, we
observe a wide range of computation times for these graphs, even though all had the same number
of nodes (64). We clearly see the impact of SCC structure, as sRASL was dramatically faster when
there were many small SCCs, rather than a few large SCCs. The results in Figure 3 might seem to
suggest an “upper bound” around 30 nodes for sRASL. But the results in Figure 4 make it clear that
any potential “upper bound” is primarily on the number of nodes within the SCCs, rather than the
total number of nodes in the graph.

4.4 Comparing Graph SizeWith Constant SCC Size

The previous results suggest that sRASL might be able to solve much larger graphs, as long as
the SCCs are not overly large. More generally, the previous simulations showed that sRASL’s
computational cost scales (at least) exponentially in the size of the SCC, but did not reveal how it
scales in the number of SCCs.
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Figure 5: Time behaviour of graphs with the same SCCs sizes but with multiple number of SCCs. Top row:
graphs of SCC size 7 with 1, 2, ..., 14 number of SCCs. Middle row: graphs of SCC size 8. Bottom row: graphs
of SCC size 10. Bottom-right corner shows an example of a structured graph with 98 nodes composed of 14
SCCs of size 7. Each color represents one SCC.

We again generated 50 different graphs for each of several settings. We used SCCs with 7, 8, and 10
nodes, and varied the number of SCCs within a graph (again for u = 2, 3, and 4). Figure 5 shows
the computational cost of sRASL, where each row includes graphs whose SCCs are the same size,
and the number of SCCs increases from left-to-right. The critical observation here is that the time
complexity grows approximately linearly in the number of SCCs, rather than exponentially (or worse).
For example, the graph shown in Figure 5 has 98 nodes, but sRASL successfully computes ⟦H⟧ in
approximately 20 minutes. (Recall that RASL took 17 hours to compute a graph with only 6 nodes.)

This simulation demonstrates that sRASL is usable on relatively large graphs, as long as there is
appropriate internal structure. One might worry, though, whether real-world systems have the right
structure. For fMRI (brain) data, Sanchez-Romero et al. (2019) recently aggregated a number of
simulations of realistic causal graphs for brain processes studied with fMRI, and the largest SCC in
these widely-accepted models has only 7 nodes. Moreover, typical brain parcellations contain only
50 − 100 regions (= nodes), and sRASL can easily handle 100-node graphs if SCCs are 8 − 10 nodes.

The results in this subsection suggest that we could potentially find ⟦H⟧ for even larger graphs
(n > 100), as long as they were composed of reasonably-sized SCCs. However, we found that the
Clingo language and solver seems to be limited in the number of atoms that it can handle. In our
simulations, graphs of size 100 seem to be the limit for Clingo to handle all the predicates. An open
question is whether sRASL can be optimized to produce fewer predicates (or Clingo improved to
handle more atoms).

4.5 Optimization

Finally, we explored the optimization capability of Clingo. Recall that sometimes ⟦H⟧ = ∅ due
to statistical errors or other noise in learningH . Clingo can solve an optimization problem based
on user-specified weights and priorities, and output a single solution with minimum cost function
(along with u for this solution). In particular, we can use Clingo to find G1 whose Gu (for some u)
are closest (relative to the edge weights) toH .12

12If ⟦H⟧ , ∅, then this optimization will simply return a single graph from ⟦H⟧.
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Figure 6: The omission (top) and commission (bottom) error of different graph sizes and undersampling of two,
three and four from left to right.

In this simulation, we first randomly generate G1 and undersample at a random u to get Gu = H such
that ⟦H⟧ , ∅. We then assign weights to the edges ofH and randomly delete one edge inH . We run
sRASL on this “broken”H to learn a suitable G1. Red bars in Figure 6 show the edge omission and
commission errors for this approach. We see that, except for high undersamplings, the optimization
capability of Clingo can be used to frequently retrieve the true G1; that is, this version of sRASL is
robust to small errors inH in many settings.

A more complex approach is to first run the optimization method to identify a solution G1
opt and

undersample rate uopt. We can then undersample this solution G1
opt by uopt to get Gu

opt. We then use
sRASL to obtain ⟦Gu

opt⟧ (i.e., the full equivalence class of the undersampled graph that is “nearest” to
H). We then compute the error based on the minimum error among all G1 ∈ ⟦Gu

opt⟧; that is, we ask
whether the true graph was found somewhere in ⟦Gu

opt⟧. This approach is motivated by the intended
use of sRASL by domain scientists, where they can use domain knowledge to help select graph(s)
from the equivalence class. Blue bars in Figure 6 show that this more complex method provides
improved performance compared to regular optimization.

5 Conclusion and Discussion

Real-world scientific problems frequently involve measurement processes that operate at a different
timescale than the causal structure of the system under study. As causal learning and analysis
methods are increasingly used to address societal and policy challenges, it is increasingly critical that
we use methods that reveal usable information (while also being clear when we cannot infer some
information). Obviously, like any method, sRASL could yield information that is misused, but the aim
here is to provide another useful tool in the scientists’ and policy-makers’ toolboxes. If measurements
occur at a slower rate than the causal influences, then causal discovery from those undersampled
data can yield highly misleading outputs. Multiple methods have been developed to infer aspects
of the underlying causal structure from the undersampled data/graph. However, the assumptions or
computational complexities of those algorithms make them unusable for most real-world challenges.
In this paper, we have developed and tested sRASL, a novel approach that is less subject to those
same limitations. More specifically, sRASL provides all consistent solutions (without knowledge
of exact undersampling rate) for large (100-node) graphs in a usable amount of time. sRASL also
shows reasonable robustness to statistical error in the estimated graph by finding the closest consistent
solution. Future research will focus on application of sRASL to actual neuroimaging data, and
extensions to situations with multiple measurement modalities.
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A Appendix

We start with proving some results used in conversion of the DBN structures to their compressed
graph representations.

Lemma 1. For all u, Gu contains no directed edges between variables at the same time step.

Proof. vvu = 1 holds by assumption for G1. For u > 1, every directed edge corresponds to a directed
path of length u in G1. Since all directed edges in G1 are from t − 1 to t (or more generally, from t − k
to t − (k + 1)), every directed path in G1 is from an earlier time step to the current one. Hence, no
directed edge in Gu can be from V t

i to V t
j. □

Lemma 2. If the Markov order of G1 is 1, then the Markov order of all Gu is also 1 (relative to
measurement at rate u).

Proof. The Markov order of a dynamic causal graph is the smallest m such that Vt is independent of
Vt−r given Vt−1, . . . ,Vt−m for all r > m. If the Markov order of G1 is 1, then all paths from Vt−r to Vt

must be blocked by Vt−1 for r > 1. Since graphical structure is replicated across timesteps, it follows
that all paths from Vt−r to Vt must be blocked by Vt−u for r > u. Therefore, the Markov order of Gu
is u, which corresponds to Markov order 1 for measurements at rate u. □

The following theorem demonstrates correctness of our ASP algorithm.

Theorem 4. Listing 1 is a direct encoding of the undersampling problem.

Proof. We will prove this by contradiction. Let us call the undersampled input graph to the algorithm
H , considering that is the undersampled version of a graph G1

true at rate utrue. By definition, every
directed edge inH corresponds to a path of length utrue in G1

true. Similarly, every bidirected edge in
H corresponds to an unobserved common cause fewer than utrue timesteps back(refer to Section 2 for
exact definition). Line 7 − 11 in Listing 1 considers all such G1s without exclusion. Let us call the
set all the pairs of graphs and corresponding undersampling rates u described by Listing 1 S.

Let us assume there is a pair G1
a and ua that is in S but if we undersample G1

a by ua, let us call it Gu
a,

will not be the same as H . If Gu
a has an extra directed(bidirected) edge, this will contradict with

line 12(13) of Listing 1. Similarly, if H has a directed(bidirected) edge that in not present in Gu
a,

it will contradict with line 14(16). Therefore, Listing 1 is a direct encoding of the undersampling
problem. □

B Examples of changes in graphs through undersampling

In this section, we provide additional examples to visualize how graphs will change through under-
sampling.

C Comparing sRASL and a modified version the Hyttinen et al. (2017)

As mentioned in Section 2, Hyttinen et al. (2017) specifies the undersampling rate u. Therefore,
a comparison of their method with ours will not be a fair one. However, one can iterate over
undersampling rates to find all the solution at different undersampling rates. In this section, we
compare the performance of this modified version of Hyttinen et al. (2017) to our proposed method.
Figure 9 summarizes this experiment. As we can see, proposed method in Hyttinen et al. (2017)
performs compatibly with our method in small graphs. However, as the graphs grow larger, the
advantage of our method gains significance. Specifically, Hyttinen et al. (2017) struggles with large
graphs and larger undersampling rates. Most of the test cases on graphs larger than 30 nodes and
undersampling greater than 3 did not complete in the dedicated 24-hour period. While our method
was able to compute the equivalence class of all the graphs much faster than 24 hours.
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Figure 7: Example of a 7-node graph undersampled 6 time.
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Figure 8: Example of a 12-node graph undersampled 11 time.
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24 hours

Method

Ours

Modified
Hyttinen 
et al. 2017

10 47 49 27 31 2 19 33 3 5 9

Figure 9: Time behavior of the same set of graphs when solved with our proposed method (blue) and modified
version of Hyttinen et al. (2017) with iterating over undersampling rates (orange). The time out for this
experiment was 24 hours and the numbers in orange indicate number of examples that was not completed in
24-hour period.

D The Effects of Accounting for SCCs In sRASL

In this section, we show the results of additional experiments on the effects of accounting for strongly
connected components (SCCs) when the graph has a modular structure (i.e., consists of several
interconnected strongly connected components). For this experiment, we generated 50 random
graphs sized 8 to 15 with multiple SCCs as described in Table1. Then on the same set of graphs,
we ran sRASL once with using our additional constraints for SCC structures and once without
accounting for the modular structure. We limited the computational resources available to each run to
24 hours time cutoff with a RAM limit of 50 GB. The results presented in Figure11 show that using
additional constraints to account for SCC structure dramatically reduces the time and memory needed
to compute equivalent classes for undersampled graphs. Furthermore, the difference between time
and memory requirements to solve for these graphs with and without constraints for SCCs increases
for larger graphs as the computational requirements for the latter grow at a much faster pace. This
result allows us to handle much larger graphs as shown in Figure 5 of the main paper.

36 3811 223
3 7 10 9 8

2

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

50G RAM
24 hours

Figure 10: Time behavior of the same set of graphs when solved with and without accounting for additional
constraints accounting for the SCC structure. While sRASL most of the 15-node graphs in a 24 hours period
without the SCC constraints due to either timeout or Out Of Memory error(OOM), the longest it takes to solve
a 15-node graph with SCC constraints is 14 seconds. None of the graphs failed to compute the complete
equivalence class within the time and memory allocated when solved accounting for the SCC structure.

Table 1: Number of SCCs and nodes per SCC of the graphs in the benchmark dataset

Num Nodes 8 9 10 11 12 13 14 15
Num SCCs 2 3 3 3 3 3 3 3
SCC Sizes 4,4 3,3,3 3,3,4 3,4,4 4,4,4 4,4,5 4,5,5 5,5,5
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0.3 0.3 0.3 0.3 0.3 0.3

SCC Flase (original)

SCC False (with
domain knowledge)

Figure 11: A knowledge of a definite presence of an edge in G1 between, for example, nodes 3 and 4, i.e.
V t

3 → V t+1
4 , can be easily encoded by adding ‘ edge1(3,4).‘ to Listing 1. In this experiment, we have added

knowledge about a pair of arbitrary selected edges of G1 to the problem specification (orange dots) and compared
the run time with the ASP specification that does not include this additional information about the solution (blue
dots). The time out for the new computation was set to 1 hours and the examples were all the same as the ones
already shown in Figure 1. The speed up with the additional constraints is clearly visible on the plots.

E sRASL applied to real fMRI data

1
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Figure 12: Estimated graph from fMRI data of resting state left hemisphere medial temporal lobe using sRASL
after obtaining measurement time scale graph by applying Granger Causality. Regions of interest include cornu
ammonis 1 (CA1), and dentate gyrus together (CA23DG); entorhinal cortex (ERC); perirhinal cortex divided in
Brodmann areas (BA35 and BA36); and parahippocampal cortex (PHC)..

In order to demonstrate the the application of our method, we used publicly available data from
(Sanchez-Romero et al., 2019) and applied our method on the resting-state fMRI data. We used the
10 datasets of concatenated recording for 10 individuals, comprising seven regions of interest from
medial temporal lobe, each containing 4,210 datapoints.

We first generated estimated graphsH from the fMRI data using Granger Causality (Granger, 1969;
Cook et al., 2017). Note that these estimated graphs are at the measurement timescale (they include
bidirected edges) and due to statistical and measurment error are often not reachable from any graph
at causal time scale G1. Therefore, we apply sRASL optimization onH to get the closest reachable
graph at causal time scale. Figure12 shows the result of our estimated graph at causal time scale. It is
important to note that with empirical data, we do not have fully defined ground truth to assess our
findings.
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Following our approach on Section 4.5, we use the estimated graph G1
opt in Figure 12 and undersample

it by the rate that our sRASL optimization has found, i.e. uopt to get Gu
opt. We then use sRASL to

obtain ⟦Gu
opt⟧ (i.e., the full equivalence class of the undersampled graph that is “nearest” toH). In

the case of resting state fMRI data from left hemisphere medial temporal lobe, the full equivalence
class consists of 23 graphs that are shown in Figure 13. From this class of equally possible underlying
causal graphs, psychologists and experts can examine and determine with causal graph is the most
reasonable one.

F Brief Introduction on clingo and Answer Set Programming (ASP)

clingo (Gebser et al., 2011) combines a grounder gringo and a solver clasp. clingo is a
declarative programming system based on logic programs and their answer sets, used to accelerate
solutions of computationally involved combinatorial problems. The grounder converts all parts of a
clingo program to “atoms,” (grounds the statements) and the solver finds “stable models.” In ASP,
the answer set is a model in which all the atoms are derived from the program and each “answer” is a
stable model where all the atoms are simultaneously true.

A general clingo program includes three main sections, which we show below using our algorithm
as an example:

1. Facts: these are the known elements of the problem. For example, the input to Listing 1 is a
graph for which we know the edges. A directed edge from node 1 to node 5 is in H translates to
hdirected(1,5) (line 1) or if node 1 is part of the SCC number 2, we state this fact in clingo by
scc(1,2) (line 2).
2. Rules: much like an if-else statement, a rule in clingo consists of a body and a head, formatted
as head :- body. If all the literals in the body are true, then the head must also be true. Rules can
include variables (starting with capital letters), and they are used to derive new facts after grounding.
For example:

directed(X, Y, 1) :- edge1(X, Y). (2)
means that for any instantiations of the variables X and Y , if we have an edge from X to Y , there is a
directed path from X to Y of length 1. Before this line, if the model contained the fact edge1(2,3),
this line would generate a new fact: directed(2,3,1).
Another type of rule is the “choice rule” that describes all the possible ways to choose which atoms
are included in the model. For example, in line 5 of Listing 1 we used a choice rule to state that the
undersampling rate u can be anything from 1 to maxu. The cardinality constraint:

{u(1..20)}. (3)

will generate 220 different models (they will not all actually be generated if they conflict with other
predicate in each model, or else it would not be possible). In each of these 220 models, one subset
of all possible atoms generated with this choice rule exists (ϕ, {u(1)}, {u(1), u(2)}, . . . ). An
example of an unconstrained choice rule is line 6 in Listing 1, where we want to generate one model
for each possible way edges can be present in a graph between two nodes X and Y . We can also limit
the choice rule. In our problem, only one undersampling rate is present at each solution. We limit the
cardinality constraint to have only one member in each model:

1 {u(1..20)} 1. (4)

the 1 on the left is the minimum instantiations of this atom in the model and the 1 on the right is
the maximum. Therefore, we only generate

(
20
1

)
= 20 models with this rule, namely one for each

undersampling rate. Having several choice rules will multiply the number of generated models by
each choice rule.
3. Integrity Constraints: if choice rules are to generate new models, integrity constraints are there
to remove the wrong models from the answers set. More specifically, an integrity constraint is of the
form:

:- L0, L1, ... . (5)
where literals L0, L1, .... cannot be simultaneously positive. For example, in line 16 of Listing1, we
have:

:- edge1(X, Y), scc(X, K), scc(Y, L), K != L,

sccsize(L, Z), Z > 1, not dag(K,L).
(6)
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Figure 13: Equivalence class (⟦Gu
opt⟧) of all possible graphs at causal time scale (G1s) that can be undersampled

to and reachGu
opt. Psychologists and experts can examine and determine with causal graph is the most reasonable

one
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for cases where the graph consists of several SCCs that are connected using a DAG. If the SCCs are
connected by a cyclic directed graph, then the whole graph will become one big Strongly Connected
Component. Integrity constraint 6 states that if there is not a directed edge from a node in SCC K to a
node in SCC L as part of the initial DAG, there cannot be such edge1(X, Y) from node X to node
Y, if node X is in SCC K and node Y is in SCC L.
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