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ABSTRACT

Large-scale training data and third-party checkpoints make training convenient
but also leave room for poisoning-based backdoor attacks. These attacks embed
a backdoor through data poisoning in the training set: the infected model behaves
normally on clean inputs but predicts an attacker-chosen label whenever the trig-
ger appears. The stealthiness poses risks for security-sensitive deployment and
model reuse. Post-training fine-tuning has become a practical default defense as
it is computationally efficient and does not require control over the original train-
ing pipeline. However, existing fine-tuning methods rely on a clean set to unlearn
the backdoor indirectly. This assumption is fragile in reality: curation errors or
undetected triggers can contaminate the “clean” set. As a result, state-of-the-art
clean-only fine-tuning often fails to purify the backdoor behavior while maintain-
ing the original functionality. We propose Partition-Losses Fine-Tuning (PL), a
simple, architecture- and domain-agnostic loss modification that leverages both
clean and flagged malicious samples. PL jointly minimizes benign loss and max-
imizes target-class loss, explicitly pushing the model away from the implanted
trigger-to-target association. Comprehensive experiments show that PL matches
or surpasses clean-only fine-tuning methods under the same computational budget
while halving the required clean samples. Crucially, PL remains effective under
realistic contamination of both fine-tuning sets and is stable across hyperparame-
ter choices and data availability.

1 INTRODUCTION

Deep neural networks (DNN) have achieved state-of-the-art performance across diverse
tasks (Canziani et al., 2016). This success is powered by large-scale training data and third-party pre-
training, which provide rich representations and accelerate progress. At the same time, this reliance
creates security risks. Uncurated data can be poisoned, and pretrained checkpoints may already
contain hidden vulnerabilities, which can persist unnoticed in downstream deployment. In particu-
lar, poisoning-based backdoor attacks inject a hidden trigger-to-target mapping through the training
data. This enables models to behave normally on clean inputs while misclassifying triggered inputs
into an attacker-chosen label (Carlini et al., 2024; Goldblum et al., 2022; Shejwalkar et al., 2022).
Because the model’s accuracy on clean data remains high, these attacks are difficult to detect with
standard validation, posing significant challenges to security-sensitive deployment and model reuse
(Carlini & Terzis, 2022; Qin et al., 2023).

Various defenses have been proposed targeting different stages of the pipeline. Pre-training defenses
aim to filter suspected poisoned samples or neutralize poisoned samples, for example, through
anomaly detection, trigger localization before training (Doan et al., 2020; Liu et al., 2017). In-
training defenses intervene in optimization to inhibit backdoor injection (Wu et al., 2022). However,
both approaches require access to and control over the training process, which is often impracti-
cal and costly for large models (Min et al., 2023; Huang et al., 2022; Zeng et al., 2021). Post-
training defenses, particularly fine-tuning, have therefore become a practical default. It operates on
an already-trained (infected) model, assumes minimal prior knowledge, and is broadly compatible
across architectures while requiring lightweight computation (Min et al., 2023).

However, existing fine-tuning methods typically rely on a small, trusted clean set. In practice, this
assumption is fragile. Labeling errors and undetected poisoned samples frequently contaminate the
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“clean” curation. Our experiments show that state-of-the-art clean-only fine-tuning often fails to
reduce attack success rate without harming benign accuracy even under mild contamination. The
failure is structural: optimizing benign loss where triggers are absent can leave the trigger-to-target
association intact.

Operational pipelines often include steps such as monitoring and incident response, which can flag
a handful of suspicious inputs and a hypothesized target class. Rather than ignoring these auxiliary
signals, we adopt a more reasonable post-training setting: the defender has an infected model fθ, a
small benign pool Db, and a small quarantined malicious pool Dm of flagged triggered inputs with
the known target class t. Both pools may be imperfect with possible contamination.

With this setting, we propose Partition-Losses Fine-Tuning (PL), a simple loss-level modification
that jointly minimizes benign loss while maximizing the target-class loss on the triggered inputs,
directly unlearning the backdoor. When no triggered examples are available, PL reduces to standard
clean-only fine-tuning. PL requires no architectural changes and adds only one extra forward pass
per iteration (see Section 3). To summarize, our contributions are:

1. Realistic post-training setting. We formalize fine-tuning with two small tuning pools: a benign
pool Db and a quarantined malicious pool Dm with known target t. Contamination in both pools
is allowed and controlled by false-positive and false-negative rates.

2. Novel post-training defense paradigm: Partition-Losses Fine-Tuning (PL). To our knowl-
edge, PL is the first fine-tuning defense that directly leverages triggered samples and their target
label in a joint objective. It minimizes benign loss while maximizing the target-class loss onDm.
PL explicitly unlearns the trigger-to-target mapping.

3. Robust empirical performance. Under the same tuning budget, PL matches or surpasses state-
of-the-art clean-only fine-tuning using 2 − 2.5× fewer clean samples. The dominance persists
under nonzero contamination in both pools, across datasets and attacks, and remains stable over
reasonable choices of PL regularization weight α and data volume.

4. Practicality. PL is a plug-in loss modification. It is domain- and architecture-agnostic and adds
only a minor per-iteration overhead.

The rest of the paper is organized as follows. First, Section 2 discusses related works. Second,
Section 3 introduces our proposed method. Next, Section 4 provides a comprehensive experimental
analysis. Finally, Section 5 discusses conclusions and implications.

2 RELATED WORK

Backdoor attacks. Backdoor attacks preserve a model’s intended behavior while injecting an ad-
ditional association between a trigger and an adversarial behavior. In targeted attacks, any input
stamped with the trigger is mapped to a fixed class. This behavior is learned from a poisoned
dataset, where the attacker embeds a trigger in a small fraction of training inputs and relabels them
to the target class (Carlini & Terzis, 2022; Chen et al., 2017; Goldblum et al., 2022; Gu et al., 2019;
Li et al., 2021b; Turner et al., 2019). Despite growing interest in language models (Chen et al., 2021;
Cui et al., 2022; Pan et al., 2022; Liu et al., 2022), computer vision is the primary and predominantly
focused field of backdoor mechanisms and benchmarks (Wu et al., 2022). In this paper, we focus
on image classification, though the proposed defense strategy is agnostic to both input modality and
model architecture. Evaluation on other tasks is deferred to future work.

Backdoor defenses. Existing defenses span three stages of the pipeline. Pre-training defenses aim
to detect or neutralize poisoned samples before training through anomaly detection or trigger local-
ization (Doan et al., 2020; Liu et al., 2017). In-training defenses intervene during optimization via
regularization or representation learning-based screening to inhibit backdoor injection as the model
learns (Wu et al., 2022). These two families require full access to and modification to the training
pipelines, which are computationally expensive (Huang et al., 2022; Li et al., 2021a; Zeng et al.,
2021). Post-training defenses operate on the trained (infected) model. General strategies include
trigger inversion (Wang et al., 2019; 2022; 2023; Xu et al., 2024), neuron or channel pruning (Liu
et al., 2018; Min et al., 2023; Wu & Wang, 2021; Zhu et al., 2023), and fine-tuning (Liu et al., 2018;
Wu & Wang, 2021; Zheng et al., 2022; Min et al., 2023; Zeng et al., 2021; Zhu et al., 2023). While
inversion and pruning can reduce backdoors, they often degrade benign accuracy and transfer poorly
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across architectures (Min et al., 2023). Therefore, fine-tuning has become a practical default due to
its minimal assumptions and broad compatibility. However, existing fine-tuning approaches exhibit
a critical limitation. Although real-time monitoring and incident-response pipelines routinely flag
malicious inputs with the target class, current fine-tuning methods ignore these signals and rely only
on a small trusted clean set. They could only indirectly suppress the backdoor behavior by optimiz-
ing the benign loss. To address this problem, we propose Partition-Losses Fine-Tuning (PL), which
incorporates triggered inputs with the target label into a joint objective that maximizes target-class
loss while minimizing benign loss. PL naturally reduces to clean-only fine-tuning when no triggered
samples are available.

3 PARTITION-LOSSES FINE-TUNING (PL)

This section provides a detailed explanation of our proposal, Partition-Losses Fine-Tuning. Figure 1
shows an overview of the method.

Figure 1: Overview of Partition-Losses Fine-Tuning (PL) (in orange). Compared to clean-only fine-
tuning (dashed gray), PL leverages both clean and poisoned samples. It remains effective even in
contaminated or diluted scenarios. Note that PL does not use more data: while previous methods
assume all fine-tuning samples are clean, we explicitly allow that some portion may be malicious,
yet the total number of fine-tuning samples remains comparable to clean-only approaches.

Problem settings. We consider an infected model fθ, where θ denotes the model parameters, and
assume the defender has standard fine-tuning access. Crucially, the defender can run forward or
backward passes and update θ. We assume that the defender has two small tuning pools: a benign
pool Db which contains clean samples and a malicious pool Dm of triggered samples associated
with a known target class t ∈ {1, . . . , C}. Let Pclean denote the distribution of clean samples (X,Y )

and Ptrigger be the distribution of triggered samples (Z̃, T ) with T ≡ t.

Both pools may be imperfect. The malicious poolDm can include clean samples that are incorrectly
flagged as triggered samples (false positives), while the benign pool Db can contain triggered sam-
ples that are not flagged (false negatives). We denote the contamination rates as follows: ϵb ∈ [0, 1]
is the false negative rate in Db, which measures the fraction of triggered samples present in the
benign pool and ϵm ∈ [0, 1] is the false positive rate in Dm, which measures the fraction of clean
samples in the malicious pool. Therefore, the two tuning pools with some contaminations can be
represented as:

D(ϵb)
b = (1− ϵb)Pclean + ϵb Ptrigger, D(ϵm)

m = (1− ϵm)Ptrigger + ϵm Pclean.

With this setup, we introduce our method, which requires no architectural changes, no knowledge
of trigger generation, no access to the original training set, and no clean labels for Dm.

Proposed method. In contrast to clean-only fine-tuning methods, which reduce the backdoor indi-
rectly by optimizing on the clean samples, the availability of triggered samples allows us to intro-
duce explicit unlearning signals. Specifically, for a triggered input z̃, we apply gradient ascent on the
target-class cross-entropy. This suppresses the target-class logits and redistributes probability mass
to other classes. As a result, the backdoor association is weakened without requiring knowledge of
the unknown clean label for z̃.
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Therefore, we propose Partition-Losses Fine-Tuning (PL), which leverages clean and triggered data
to purify the infected model. PL jointly minimizes the cross-entropy loss on Db while maximizing
the loss on Dm. Mathematically, we aim to solve the following problem:

min
θ
LPL(θ), where LPL(θ) = E

(x,y)∼D(ϵb)

b

[
CE

(
fθ(x), y

)]
−αE

(z̃,t)∼D(ϵm)
m

[
CE

(
fθ(z̃), t

)]
, (1)

with α > 0 controlling the trade-off between benign accuracy and backdoor unlearning. A smaller
α prioritizes benign accuracy, whereas a larger α promotes backdoor forgetting at the risk of clean
accuracy degradation. Compared to clean-only fine-tuning, PL adds one additional forward pass
on Dm per iteration, and the computational cost for this extra step is small. Note that PL reduces
exactly to clean-only fine-tuning when no flagged triggered samples are available.

Optimization procedure. We keep α fixed throughout fine-tuning. At each tuning iteration, we
sample one benign mini-batch and one malicious mini-batch of equal size n. Using the class logits
fθ(x) for clean samples and fθ(z̃) for triggered samples, we compute the corresponding cross-
entropy losses. For triggered samples, the loss is always evaluated with the target label t rather than
its unknown true label. PL then updates θ using Adam (Kingma & Ba, 2015) on the gradient of the
empirical loss LPL. The complete procedure is summarized in Algorithm 1.

Algorithm 1: Partition-Losses Fine-Tuning (PL)

Input: Infected model fθ; benign pool D(ϵb)
b ; malicious pool D(ϵm)

m ; target t
Output: Purified model fθ(I)

Parameters: α > 0; learning rate η; tuning iterations I; batch size n; false negative proportion
ϵb; false positive proportion ϵm

for i = 1 to I do
Sample a mini-batch from benign pool Bb = {(xk, yk)}nk=1 ⊆ D

(ϵb)
b

Calculate cross-entropy loss from benign batch LBenign ← 1
n

∑n
k=1 CE

(
fθ(xk), yk

)
Sample a mini-batch from quarantined malicious pool Bm = {(z̃j , t)}nj=1 ⊆ D

(ϵm)
m

Calculate cross-entropy loss from malicious batch LMalicious ← 1
n

∑n
j=1 CE

(
fθ(z̃j), t

)
Form PL objective LPL ← LBenign − αLMalicious

Update model parameters θ(i+1) ← θ(i) − η∇θ(i)LPL

return fθ(I)

Next, we analyze how optimization of the PL objective influences the attack success rate through its
surrogate formulation. The following theorem shows conditions under which PL training provides
robustness guarantees over clean-only fine-tuning. The proof is provided in the Appendix A.
Assumption 1. Let fθ : X → ∆C be a classifier with parameters θ, where ∆C denotes the
probability simplex over C classes. Let (X,Y ) ∼ Pclean denote a clean input–label pair, and
(Z̃, T ) ∼ Ptrigger a triggered input paired with the fixed target label T ≡ t. For contamination levels
ϵb, ϵm ∈ [0, 1], define the (mixture) tuning distributions Dϵb

b = (1 − ϵb)Pclean + ϵb Ptrigger,Dϵm
m =

(1− ϵm)Ptrigger + ϵm Pclean. The PL objective is

LPL(θ) = E(X,Y )∼Dϵb
b

[
CE

(
fθ(X), Y

)]
− αE(Z̃,T )∼Dϵm

m

[
CE

(
fθ(Z̃), t

)]
, α > 0.

The (true) attack success rate is ASR(fθ) = Pr(Z̃,T )∼Ptrigger
[fθ(Z̃) = t]. Since ASR

is non-differentiable, we analyze the surrogate ÃSR(fθ) = E(Z̃,T )∼Ptrigger
[log fθ(Z̃)t] =

−E(Z̃,T )∼Ptrigger
[CE(fθ(Z̃), t)].

Theorem 1 (Robustness under imperfect pools via surrogate ASR). Suppose Assumption 1 holds.
Let gtrig := E(Z̃,T )∼Ptrigger

[
∇θ CE

(
fθ(Z̃), t

)]
, gclean := E(X,Y )∼Pclean

[
∇θ CE

(
fθ(X), t

)]
. As-

sume ∥gclean∥ ≤ ∥gtrig∥. Then:

1. (Relative improvement) If ϵm < 1
2 (i.e., a strict majority ofDϵm

m are truly triggered), the expected
gradient step of (stochastic) gradient descent on LPL strictly decreases the surrogate attack
success ÃSR(fθ) more than clean-only fine-tuning, for any α > 0.
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2. (Absolute decrease) Moreover, a sufficient condition for LPL itself to strictly decrease the surro-
gate attack success is

α >
max{0, ⟨gtrig,∇Lb⟩}

(1− ϵm)∥gtrig∥2 + ϵm⟨gtrig, gclean⟩
.

In particular, when ϵm < 1
2 , such an α always exists.

Theorem 1 shows that when the mixed pool is not overly contaminated, the PL objective leverages
triggered examples to reduce the surrogate attack success rate more effectively than clean-only fine-
tuning. Moreover, with an appropriate choice of α, PL training is guaranteed to strictly decrease the
surrogate ASR. In other words, as long as the majority of the mixed pool consists of true triggers,
PL can systematically suppress the backdoor attack at each optimization step.

4 EXPERIMENTS

In the experiments, we aim to answer the following questions: Q1. Under ideal partitioning, i.e.,
ϵb = ϵm = 0, how effective is PL in defending against poisoning-based backdoor attacks (Section
4.1)? Q2. How robust is PL when fine-tuning with contaminated sets, i.e., when ϵb > 0 or ϵm > 0
(Section 4.2)? Q3. How do different values of α and the amount of available tuning data affect the
performance of PL (Section 4.3)?

Datasets and Models. We evaluate PL on three widely used benchmark datasets in the backdoor
learning literature: CIFAR-10 (Krizhevsky et al., 2009), GTSRB (Stallkamp et al., 2012), and Tiny-
ImageNet (Chrabaszcz et al., 2017). Following previous works (Min et al., 2023; Huang et al.,
2022; Liu et al., 2018; Nguyen & Tran, 2021; Wu et al., 2022), we use ResNet-18 (He et al., 2016)
on CIFAR-10 and GTSRB, and a Swin Transformer (Liu et al., 2021) on Tiny-ImageNet.

Attack Settings. To demonstrate the defense effectiveness of PL, we consider five representa-
tive dirty-label backdoor attacks from recent works: 1) BadNet (Gu et al., 2019), 2) Blended At-
tack (Chen et al., 2017), 3) SSBA (Li et al., 2021b), 4) WaNet (Nguyen & Tran, 2021), and 5)
Adaptive Blend (Qi et al., 2023). The target label is set to t = 0 for all attacks, and the poison rate
is 15%. A more detailed experimental setup can be found in Appendix B.

Defense Baselines. We compare PL with four tuning-based defenses: vanilla fine-tuning (FT) (Min
et al., 2023), fine-tuning with sharpness-aware minimization (FT+SAM) (Zhu et al., 2023), implicit
backdoor adversarial unlearning (I-BAU) (Zeng et al., 2021), and feature shift tuning (FST) (Min
et al., 2023). The detailed experimental settings are provided in Appendix B.

4.1 PL CAN EFFECTIVELY DEFEND AGAINST BACKDOOR ATTACKS

Under the ideal partitioning, where ϵb = ϵm = 0, we compare PL with α = 0.2 against four clean-
only fine-tuning baselines across three datasets and five attacks. We report both attack success rate
(ASR) and clean accuracy (C-ACC). We evaluate two tuning-budget regimes: (i) PL-5: PL uses 5%
of the training data as the tuning set, while clean-only baselines use 10%; (ii) PL-2: PL uses 2% of
the training data as the tuning set, while clean-only baselines use 5%.

Let N be the total number of training samples and set the poison rate ρ = 0.15. The tuning set
comprises a benign pool Dϵb

b and malicious pool Dϵm
m ; under ideal partitioning, we have ϵb = ϵm =

0. Clean-only baselines exclude poisoned samples from their subsets, so their effective tuning set
sizes are (1 − ρ)× subset sizes. For the total tuning budget, at PL-5, baselines use 1.7× more data
than PL (8.5%N vs 5%N ); at PL-2, baselines use 2.13×more data than PL (4.25%N vs 2%N ). For
the clean sample budget, at PL-5, baselines use 2× more clean data than PL (8.5%N vs 4.25%N );
at PL-2, baselines use 2.5× more clean data than PL (4.25%N vs 1.7%N ).

Despite having access to substantially fewer clean samples, PL still matches or outperforms clean-
only baselines. Table 1a shows that under the PL-5 regime, across all datasets and attack strategies,
PL achieves the lowest ASR (grand mean: 0.004) while maintaining C-ACC (grand mean: 0.784)
comparable to the best clean-only baseline. Specifically, on CIFAR-10, PL outperforms all baselines
on ASR with a small C-ACC drop compared to the best clean-only method. On GTSRB, PL has
zero ASR across all attacks, while preserving C-ACC close to the best baseline. On Tiny-ImageNet,
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although I-BAU and FST also reduce ASR to zero, they suffer substantial utility loss (mean C-ACC:
I-BAU=0.005, FST=0.401). In contrast, PL maintains much higher C-ACC with a mean of 0.693.
Meanwhile, FT and FT+SAM maintain high C-ACC but also suffer from very high ASR (mean
ASR: FT=0.712, FT+SAM=0.759), leaving the model highly vulnerable. Overall, PL provides the
best safety-utility trade-off: near-zero ASR with competitive C-ACC.

Table 1b shows that under the PL-2 regime, PL again achieves the lowest ASR (grand mean
ASR=0.005) across all dataset–attack combinations. PL also preserves strong clean accuracy (grand
mean C-ACC=0.758), close to the best clean-only baselines. The advantage of PL we observe under
the PL-5 regime persists even under a substantially smaller budget, highlighting PL’s data efficiency.

Table 1: Performance of PL compared with four baselines under ideal partitioning (ϵb = ϵm = 0).
Results are reported across three datasets and five attacks. Each entry shows attack success rate
(ASR, lower is better) and clean accuracy (C-ACC, higher is better). Bold values indicate the lowest
ASR in each row. Panel (a) shows the PL-5 regime, and panel (b) shows the PL-2 regime. PL
achieves the lowest ASR and competitive C-ACC compared to baselines in both settings.

FST FT I-BAU FT+SAM PL (Ours)
Data Attack ASR C-ACC ASR C-ACC ASR C-ACC ASR C-ACC ASR C-ACC

(a) PL-5: PL uses 5% of the training data vs. baselines use 10% of the training data.

CIFAR-10

Blended 0.018 0.791 0.128 0.811 0.547 0.187 0.552 0.83 0.006 0.795
Adaptive Blend 0.05 0.799 0.157 0.813 0.606 0.154 0.389 0.82 0.012 0.785
SSBA 0.039 0.78 0.041 0.806 0.795 0.147 0.079 0.81 0.013 0.774
BadNet 0.049 0.805 0.253 0.825 0.889 0.131 0.906 0.826 0.021 0.774
WaNet 0.035 0.797 0.046 0.824 1 0.1 0.13 0.819 0.008 0.771
Mean 0.038 0.794 0.125 0.816 0.767 0.144 0.411 0.821 0.012 0.78

GTSRB

Blended 0 0.88 0.001 0.896 0 0.142 0.013 0.914 0 0.873
Adaptive Blend 0 0.869 0.026 0.89 0 0.191 0.419 0.91 0 0.859
SSBA 0 0.874 0.003 0.895 0.007 0.197 0.005 0.905 0 0.887
BadNet 0 0.908 0 0.922 0.006 0.221 0 0.918 0 0.896
WaNet 0.001 0.895 0.015 0.906 0.006 0.09 0.076 0.904 0 0.882
Mean 0 0.885 0.009 0.902 0.004 0.168 0.103 0.91 0 0.879

Tiny-ImageNet

Blended 0 0.412 0.996 0.717 0 0.005 0.992 0.757 0 0.697
Adaptive Blend 0 0.412 0.996 0.717 0 0.004 0.992 0.757 0 0.697
SSBA 0 0.387 0.972 0.703 0 0.006 0.961 0.76 0 0.727
BadNet 0 0.394 0.986 0.719 0 0.005 0.993 0.766 0 0.72
WaNet 0.005 0.399 0.468 0.702 0 0.005 0.424 0.757 0 0.626
Mean 0.001 0.401 0.884 0.712 0 0.005 0.872 0.759 0 0.693

Grand Mean 0.013 0.693 0.339 0.81 0.257 0.106 0.462 0.83 0.004 0.784

(b) PL-2: PL uses 2% of the training data vs. baselines use 5% of the training data.

CIFAR-10

Blended 0.013 0.795 0.143 0.81 0.635 0.213 0.649 0.82 0.006 0.789
Adaptive Blend 0.049 0.794 0.159 0.806 0.054 0.131 0.357 0.817 0.017 0.79
SSBA 0.045 0.779 0.045 0.798 0.558 0.234 0.114 0.796 0.015 0.768
BadNet 0.036 0.795 0.237 0.817 0.571 0.23 0.917 0.82 0.025 0.77
WaNet 0.026 0.797 0.042 0.809 0.983 0.111 0.147 0.81 0.005 0.784
Mean 0.034 0.792 0.125 0.808 0.56 0.184 0.437 0.813 0.014 0.78

GTSRB

Blended 0 0.852 0 0.877 0 0.152 0.006 0.905 0 0.841
Adaptive Blend 0 0.836 0.003 0.869 0 0.213 0.008 0.901 0 0.823
SSBA 0 0.862 0.005 0.888 0.003 0.254 0.008 0.896 0 0.841
BadNet 0 0.882 0 0.905 0.106 0.247 0 0.911 0 0.879
WaNet 0.001 0.871 0.019 0.897 0 0.037 0.134 0.895 0 0.841
Mean 0 0.861 0.005 0.887 0.022 0.181 0.031 0.902 0 0.845

Tiny-ImageNet

Blended 0 0.295 0.999 0.721 0.051 0.579 0.752 0.74 0 0.66
Adaptive Blend 0 0.295 0.999 0.721 0.051 0.579 0.752 0.74 0 0.663
SSBA 0 0.309 0.954 0.706 0 0.005 0.944 0.745 0 0.65
BadNet 0 0.285 0.965 0.72 0 0.005 0.99 0.748 0 0.656
WaNet 0.003 0.29 0.946 0.715 0 0.005 0.71 0.744 0 0.618
Mean 0.001 0.295 0.973 0.717 0.02 0.235 0.83 0.743 0 0.649

Grand Mean 0.012 0.649 0.368 0.804 0.201 0.2 0.433 0.819 0.005 0.758

4.2 PL IS ROBUST TO CONTAMINATION IN FINE-TUNING DATASETS

The “benign” tuning pool may contain triggered samples for two main reasons. First, crowd-sourced
or large-scale annotation pipelines can introduce inconsistent labels, naturally leading to mislabeled
samples (Northcutt et al., 2021). Second, because backdoor defenses and attacks co-evolve, we
may not have the optimal screener that generalizes universally, leaving some triggered samples
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undetected (Dong et al., 2021; Hayase et al., 2021). The malicious pool may also include some clean
samples. Therefore, collecting perfectly clean or poisoned fine-tuning datasets is often infeasible.

To test the robustness of PL under more realistic conditions, we evaluate the same two tuning regimes
as in Section 4.1: PL-5 (PL uses 5% of the training data vs. baselines use 10% of the training
data) and PL-2 (PL uses 2% of the training data vs. baselines use 5% of the training data). Let
Ntune = |Dϵb

b | + |Dϵm
m | be the total number of fine-tuning samples, which consists of the benign

pool Dϵb
b and malicious pool Dϵm

m . Under each regime, we vary contamination in the two pools and
evaluate three cases: (a) contamination in the benign pool (ϵb = 0.1, ϵm = 0), (b) contamination in
the malicious pool (ϵb = 0, ϵm = 0.1), and (c) contamination in both pools ϵb = 0.1, ϵm = 0.1.
Results are shown in Table 2 and Table 3 (Appendix C).

Contamination in the benign pool (ϵb = 0.1, ϵm = 0): Table 2a shows that under the PL-2
regime, PL preserves the best safety–utility trade-off, achieving low ASR (grand mean: 0.107) with
competitive C-ACC (0.760). In comparison, baselines fail to remove the backdoor while maintaining
functionality. For example, I-BAU reaches near-zero ASR on the GTSRB dataset in four out of five
attacks but spikes to one for the remaining attack. On CIFAR-10 and Tiny-ImageNet, its ASR spans
from near-zero to near-one while substantially sacrificing C-ACC (grand mean: 0.132). FT+SAM
maintains the highest utility (C-ACC grand mean: 0.818), leaving the model infected (ASR grand
mean: 0.787). FST and FT have moderately high ASR on CIFAR-10 and GTSRB, yet reach near-
one ASR on Tiny-ImageNet.

Contamination in the malicious pool (ϵb = 0, ϵm = 0.1): We perturb the data by moving ϵm
fraction of clean samples into the malicious pool. This reduces the benign pool available to the
clean-only baselines and dilutes PL’s malicious pool. Under this setting, Table 2b shows that PL
again provides the strongest defense, with the lowest ASR (grand mean: 0.002) and competitive
utility (C-ACC grand mean: 0.656). FT and FT+SAM achieve the highest utility (C-ACC grand
mean: 0.809 and 0.819, respectively), but at the cost of high ASR (grand means: 0.389 and 0.512).
I-BAU produces low ASR in some cases at the cost of utility (C-ACC grand mean: 0.133). FST
provides a more balanced performance (grand mean ASR 0.017, C-ACC 0.653).

Contamination in both benign and malicious pools (ϵb = 0.1, ϵm = 0.1): This is the most chal-
lenging yet most realistic setting: the benign pool contains triggered samples while the malicious
pool is diluted with clean samples. Therefore, clean-only baselines face fewer and impure clean
samples, and PL has to deal with conflicts in both benign and malicious tuning sets. Despite these
challenges, PL consistently achieves near-zero ASR (grand mean: 0.010) while preserving reason-
able utility (C-ACC grand mean: 0.661) as shown in Table 2c. In contrast, FT, FT+SAM, and FST
maintain high utility (C-ACC grand means: 0.807, 0.857, and 0.656) but leave the model heavily
poisoned (ASR grand means: 0.618, 0.857, and 0.523). I-BAU performs worst overall in this setting,
returning extremely low C-ACC (grand mean: 0.192) and high ASR (grand mean: 0.615).

Across all contamination settings under the PL-2 regime, our method PL consistently achieves the
lowest ASR with competitive C-ACC, demonstrating robustness even when both tuning pools are
corrupted. More importantly, it does so while using less than half the tuning data (PL: 2%N vs.
baseline: 4.25%N ). Similar results hold under the PL-5 regime in Table 3 (Appendix C).

4.3 ABLATION STUDIES FOR PL

In this section, we conduct ablation studies for PL concerning the trade-off parameter α and the
fine-tuning dataset’s size.

4.3.1 SENSITIVITY ANALYSIS ON PL TRADE-OFF PARAMETER α

We study the stability of PL under different α values by evaluating α ∈ {0.1, 0.2, 0.3, 0.4, 0.5} on
the CIFAR-10 dataset under both the perfect partition (ϵb = ϵm = 0) and the realistic contamination
in both pools (ϵb = ϵm = 0.1). Figure 2 shows consistent patterns across five attacks in both
settings: (i) ASR decreases as α increases; (ii) C-ACC decays gradually as α grows. (iii) α balances
the safety–utility trade-off. Overall, PL does not show oscillatory behavior over the grid and supports
a single default choice (we use α = 0.2 in Section 4.1 and 4.2) without per-attack tuning.
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Table 2: The performance of PL was compared with four baselines on contaminated fine-tuning data
under the PL-2 regime and evaluated under three contamination settings. Bold values indicate the
best performance (lowest ASR). PL consistently outperforms baselines on the safety-utility trade-off
across all three settings.

FST FT I-BAU FT+SAM PL (Ours)
Data Attack ASR C-ACC ASR C-ACC ASR C-ACC ASR C-ACC ASR C-ACC

(a) Benign pool contamination ϵb = 0.1, ϵm = 0

CIFAR-10

Blended 0.225 0.787 0.336 0.809 0.344 0.264 0.885 0.818 0.061 0.789
Adaptive Blend 0.245 0.797 0.339 0.808 0.562 0.159 0.879 0.811 0.091 0.787
SSBA 0.075 0.769 0.063 0.801 0.694 0.16 0.221 0.794 0.018 0.773
BadNet 0.205 0.793 0.349 0.815 0.808 0.232 0.957 0.823 0.057 0.773
WaNet 0.092 0.798 0.128 0.812 0.999 0.102 0.507 0.802 0.033 0.78
Mean 0.168 0.789 0.243 0.809 0.681 0.183 0.69 0.81 0.052 0.78

GTSRB

Blended 0.363 0.875 0.481 0.89 0 0.127 0.939 0.907 0.324 0.839
Adaptive Blend 0.382 0.853 0.505 0.878 0 0.157 0.927 0.9 0.37 0.822
SSBA 0.37 0.882 0.536 0.9 0.013 0.189 0.93 0.9 0.298 0.86
BadNet 0.318 0.88 0.524 0.9 0.091 0.114 0.936 0.905 0.299 0.868
WaNet 0.107 0.875 0.181 0.897 0.998 0.006 0.625 0.899 0.058 0.844
Mean 0.308 0.873 0.445 0.893 0.22 0.119 0.871 0.902 0.27 0.847

Tiny-ImageNet

Blended 1 0.32 1 0.722 1 0.014 1 0.744 0 0.677
Adaptive Blend 1 0.32 1 0.722 1 0.014 1 0.744 0 0.665
SSBA 0.994 0.307 0.998 0.718 0.996 0.428 0.997 0.749 0 0.654
BadNet 0.993 0.326 0.995 0.724 0.99 0.013 0.995 0.751 0 0.651
WaNet 0.991 0.333 0.992 0.702 0 0.005 0.001 0.726 0 0.625
Mean 0.996 0.321 0.997 0.718 0.797 0.095 0.799 0.743 0 0.654

Grand Mean 0.491 0.661 0.562 0.807 0.566 0.132 0.787 0.818 0.107 0.76

(b) Malicious pool contamination ϵb = 0, ϵm = 0.1

CIFAR-10

Blended 0.033 0.805 0.218 0.818 0.66 0.2 0.629 0.818 0 0.757
Adaptive Blend 0.088 0.801 0.252 0.814 0.349 0.25 0.514 0.818 0.001 0.758
SSBA 0.035 0.784 0.054 0.802 0.373 0.306 0.147 0.797 0.006 0.745
BadNet 0.073 0.808 0.27 0.819 0.643 0.325 0.637 0.822 0.007 0.74
WaNet 0.025 0.799 0.051 0.812 1 0.102 0.196 0.807 0.004 0.759
Mean 0.051 0.799 0.169 0.813 0.605 0.237 0.425 0.812 0.004 0.752

GTSRB

Blended 0 0.881 0 0.897 0 0.159 0 0.905 0.001 0.748
Adaptive Blend 0 0.859 0 0.892 0 0.142 0.001 0.897 0 0.697
SSBA 0 0.866 0 0.893 0.001 0.167 0 0.892 0 0.631
BadNet 0 0.889 0.013 0.907 0 0.286 0.51 0.904 0.004 0.701
WaNet 0.001 0.882 0.035 0.896 0 0.034 0.17 0.895 0 0.731
Mean 0 0.875 0.01 0.897 0 0.158 0.136 0.899 0.001 0.702

Tiny-ImageNet

Blended 0 0.282 0.999 0.714 0 0.006 0.999 0.743 0 0.476
Adaptive Blend 0 0.282 0.999 0.714 0 0.006 0.999 0.743 0 0.496
SSBA 0 0.289 0.976 0.717 0 0.005 0.966 0.744 0 0.547
BadNet 0 0.287 0.985 0.714 0 0.005 0.992 0.751 0 0.53
WaNet 0 0.287 0.981 0.727 0 0.005 0.918 0.743 0 0.527
Mean 0 0.285 0.988 0.717 0 0.005 0.975 0.745 0 0.515

Grand Mean 0.017 0.653 0.389 0.809 0.202 0.133 0.512 0.819 0.002 0.656

(c) Both pools contamination ϵb = 0.1, ϵm = 0.1

CIFAR-10

Blended 0.333 0.801 0.475 0.819 0.751 0.15 0.888 0.821 0.049 0.716
Adaptive Blend 0.282 0.796 0.425 0.812 0.217 0.218 0.873 0.814 0.033 0.74
SSBA 0.088 0.783 0.105 0.797 0.418 0.258 0.273 0.796 0.012 0.739
BadNet 0.323 0.798 0.539 0.816 0.772 0.181 0.955 0.822 0.004 0.722
WaNet 0.126 0.794 0.179 0.812 1 0.1 0.493 0.8 0.026 0.746
Mean 0.23 0.794 0.345 0.811 0.632 0.181 0.696 0.811 0.025 0.733

GTSRB

Blended 0.462 0.875 0.587 0.894 0.004 0.197 0.921 0.902 0.006 0.729
Adaptive Blend 0.413 0.875 0.549 0.895 0.028 0.193 0.938 0.902 0.01 0.76
SSBA 0.308 0.883 0.57 0.9 0.001 0.231 0.952 0.893 0.002 0.756
BadNet 0.344 0.881 0.607 0.897 0.609 0.205 0.939 0.902 0.006 0.695
WaNet 0.187 0.874 0.236 0.895 0.481 0.014 0.632 0.893 0.004 0.754
Mean 0.343 0.878 0.51 0.896 0.225 0.168 0.876 0.898 0.006 0.739

Tiny-ImageNet

Blended 1 0.307 1 0.704 0.984 0.36 1 0.738 0 0.512
Adaptive Blend 1 0.307 1 0.704 0.984 0.36 1 0.738 0 0.493
SSBA 0.998 0.284 0.999 0.722 0.999 0.393 0.999 0.746 0 0.557
BadNet 0.995 0.297 0.995 0.716 0.976 0.011 0.994 0.739 0 0.537
WaNet 0.991 0.286 0.997 0.723 1 0.005 0.995 0.744 0.002 0.462
Mean 0.997 0.296 0.998 0.714 0.989 0.226 0.998 0.741 0 0.512

Grand Mean 0.523 0.656 0.618 0.807 0.615 0.192 0.857 0.817 0.01 0.661

4.3.2 SENSITIVITY ANALYSIS ON TUNING DATASET SIZE

In addition, we study the impact of the fine-tuning data availability by varying tuning fraction of
the training set. We use the fraction {2%, 5%, 10%} under two conditions: (i) perfect partition
(ϵb = ϵm = 0) and (ii) realistic contamination in both pools (ϵb = ϵm = 0.1). Figure 3 shows

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: Sensitivity of PL to the trade-off parameter α on CIFAR-10. Results are shown under
perfect partition and realistic contamination. Increasing α consistently reduces ASR at a modest
cost to C-ACC across five attacks. Within the test α range, PL maintains low ASR while preserving
reasonable utility under both perfect partition and realistic contamination.

that PL consistently achieves the lowest ASR across tuning budgets (purple line) while maintaining
C-ACC close to the best clean-only baselines in both settings. Increasing the fraction of the tuning
data generally improves performance for all methods, but PL achieves strong safety–utility trade-offs
even at the smallest budget, highlighting its data efficiency.

Figure 3: Sensitivity of PL and baselines to tuning data availability on CIFAR-10. Results are
shown under perfect partition and realistic contamination, with different per-pool tuning fractions.
PL consistently achieves the lowest attack success rate (ASR) while maintaining clean accuracy (C-
ACC), which is close to the best clean-only baselines, showing its data efficiency across budgets.

5 CONCLUSION

This paper proposes Partition-Losses Fine-Tuning (PL), a new defense method for mitigating
poisoning-based backdoor attacks. Unlike existing clean-only baselines, which rely on the unre-
alistic assumption of perfectly clean tuning data, PL explicitly incorporates a small set of flagged
malicious samples during fine-tuning. It does so by minimizing the benign loss while simultaneously
maximizing the malicious loss, providing a direct unlearning signal for the backdoor. Extensive ex-
periments across multiple datasets and attacks show that PL uses fewer tuning samples than existing
baselines, yet consistently achieves the lowest attack success rate while maintaining competitive
clean accuracy. These results hold under both ideal partitioning and realistic contamination, and
sensitivity analyses confirm PL’s stability across a wide range of hyperparameter values and data
budgets.

This work broadens the design space of practical backdoor defenses by showing that quarantined
malicious samples can be effectively leveraged rather than discarded. The proposed method is sim-
ple, model-agnostic, and data-efficient, making it well-suited for deployment in real-world settings
where annotation noise and undetected triggers are unavoidable. In the broader context, PL provides
a step toward building more trustworthy and resilient machine learning systems, with potential ben-
efits for safety-critical applications such as healthcare, autonomous driving, and cybersecurity.
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ETHICS STATEMENT

This work studies defenses against poisoning-based backdoor attacks in deep learning models. We
propose Partition-Losses Fine-Tuning (PL), a defense method to purify an infected model. No hu-
man subjects or personally identifiable information are involved. We do not foresee ethical concerns
related to fairness, privacy, or confidentiality beyond standard considerations for public benchmark
datasets, and we comply with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We provide a complete description of our method in Section 3. Details of hyperparameters, data
splits, and evaluation metrics are given in Section 4 and Appendix B. All experiments are conducted
on publicly available benchmark datasets (CIFAR-10, GTSRB, and Tiny-ImageNet). We will release
code upon acceptance to facilitate replication.
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A PROOF FOR THEOREM 1

Proof. The expected gradient of LPL is

∇θLPL = E(X,Y )∼Dϵb
b

[
∇θ CE(fθ(X), Y )

]︸ ︷︷ ︸
=:∇Lb

− α E(Z̃,T )∼Dϵm
m

[
∇θ CE(fθ(Z̃), t)

]︸ ︷︷ ︸
=:∇Lm

. (2)

Note that

∇Lm = (1− ϵm)EPtrigger

[
∇CE(fθ(Z̃), t)

]
+ ϵmEPclean

[
∇CE(fθ(X), t)

]
= (1− ϵm)gtrigger + ϵmgclean. (3)

For a small step size η > 0, the parameter update is θ+ = θ − η∇θL(θ). The change in surrogate
ASR is ∆ÃSR = ÃSR(fθ+)− ÃSR(fθ). By a first-order Taylor expansion of ÃSR around θ,

∆ÃSR ≈
〈
∇θÃSR(fθ), θ

+ − θ
〉
.

Substituting the update rule gives

∆ÃSR ≈ −η
〈
∇θÃSR(fθ), ∇θL(θ)

〉
. (4)

Since ÃSR(fθ) = −EPtrigger

[
CE(fθ(Z̃), t)

]
, we have ∇θÃSR(fθ) = −gtrig. Equation 4 simplifies

to

∆ÃSR ≈ η
〈
gtrig, ∇θL(θ)

〉
.

Substituting equation 2 and equation 3 gives

∆ÃSR ≈ η
(
⟨gtrig,∇Lb⟩ − α(1− ϵm)∥gtrig∥2 − α ϵm⟨gtrig, gclean⟩

)
.

By comparison, clean-only fine-tuning corresponds to α = 0, in which case

∆ÃSRclean ≈ η⟨gtrig,∇Lb⟩.
Therefore, the difference between PL and clean-only is

∆ÃSR−∆ÃSRclean ≈ −ηα
(
(1− ϵm)∥gtrig∥2 + ϵm⟨gtrig, gclean⟩

)
. (5)

By Cauchy–Schwarz and the assumption ∥gclean∥ ≤ ∥gtrig∥, we have

⟨gtrig, gclean⟩ ≥ −∥gtrig∥ ∥gclean∥ ≥ −∥gtrig∥2.
Therefore the bracketed term in equation 5 admits the lower bound

(1− ϵm)∥gtrig∥2 + ϵm⟨gtrig, gclean⟩ ≥ (1− ϵm)∥gtrig∥2 − ϵm∥gtrig∥2

= (1− 2ϵm) ∥gtrig∥2.

If ϵm < 1
2 , the right-hand side is strictly positive. Plugging this into equation 5 yields

∆ÃSR−∆ÃSRclean ≈ − ηα
(
(1− ϵm)∥gtrig∥2 + ϵm⟨gtrig, gclean⟩

)
< 0,

This shows that the PL update always reduces the surrogate ASR more than clean-only fine-tuning
whenever ϵm < 1

2 , for any α > 0.

Finally, to obtain an absolute decrease guarantee, note from

∆ÃSR ≈ η
(
⟨gtrig,∇Lb⟩ − α(1− ϵm)∥gtrig∥2 − αϵm⟨gtrig, gclean⟩

)
that a sufficient condition for ∆ÃSR < 0 is

α >
max{0, ⟨gtrig,∇Lb⟩}

(1− ϵm)∥gtrig∥2 + ϵm⟨gtrig, gclean⟩
.

In particular, when ϵm < 1
2 , such an α always exists.

13
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B EXPERIMENTAL SETUP

Datasets and Models. Following previous works (Min et al., 2023; Huang et al., 2022; Liu et al.,
2018; Nguyen & Tran, 2021; Wu et al., 2022), we evaluate on three widely used benchmark datasets
in the backdoor learning literature: CIFAR-10, GTSRB, and Tiny-ImageNet. CIFAR-10 and GT-
SRB contain images of 32 × 32 resolution of 10 and 43 categories. We use ResNet-18 to build a
backdoor model for those two datasets. Tiny-ImageNet contains images of 64 × 64 resolution and
100 categories. They are resized to 224× 224. We used a pre-trained SwinTransformer provided by
PyTorch to implement the backdoor.

Attack Settings. We conducted all the experiments with 4× NVIDIA RTX A6000 GPUs (48 GiB
each). We implement five representative backdoor attacks from recent works: BadNet, Blended,
SSBA, WaNet, and Adaptive Blend. For BadNet (Gu et al., 2019), we use a white square as the
backdoor trigger and stamp the pattern at the lower right corner of the image; for Blended (Chen
et al., 2017), we adopt the uniform noise as the trigger and set the blend ratio as 0.1 for both the
training and inference phases; for WaNet (Nguyen & Tran, 2021), we set the size of the backward
warping field as four and the strength of the wrapping field as 0.5; for Adaptive Blend (?) and for
SSBA (Li et al., 2021b), we utilized the official implementation codes and poisoning rate as 0.15.
All backdoor models are trained for 50 epochs with an initial learning rate of 0.0001. Then, we
fine-tune each model for 10 epochs.

Defenses Settings. We compare four tuning-based defenses and one extra state-of-the-art defense
strategy, I-BAU. For tuning-based defenses, we mainly consider FT-init, FT+SAM, and FST. For all
the defense settings, set the batch size as 128 on CIFAR-10 and GTSRB, and set the batch size as 32
on Tiny-ImageNet due to the memory limit. I-BAU utilizes the implicit hypergradient to account for
the interdependence between inner and outer optimization (Zeng et al., 2021). FT-Init randomly re-
initializes the linear head and fine-tunes the whole model architecture (Min et al., 2023). FT+SAM
replace the optimizer in FT-Init with SAM (Min et al., 2023; Zhu et al., 2023). FST shifts features
by encouraging the discrepancy between the tuned classifier weight and the original backdoored
classifier weight (Min et al., 2023).

C PERFORMANCE UNDER CONTAMINATED PARTITION OF TUNING SETS.

Contamination in the benign pool (ϵb = 0.1, ϵm = 0): Table 3a shows that under the PL-5
regime, PL preserves the best safety–utility trade-off, achieving low ASR (grand mean: 0.063) with
competitive C-ACC (0.784). In comparison, baselines fail to remove the backdoor while maintaining
functionality. For example, I-BAU reaches near-zero ASR on the GTSRB dataset in four out of five
attacks but spikes to around 0.9 for the remaining attack. On CIFAR-10 and Tiny-ImageNet, its
ASR spans from near-zero to near-one while substantially sacrificing C-ACC (grand mean: 0.104).
FT+SAM maintains the highest utility (C-ACC grand mean: 0.827), leaving the model infected
(ASR grand mean: 0.791). FST and FT have moderately high ASR on CIFAR-10 and GTSRB, yet
reach near-one ASR on Tiny-ImageNet.

Contamination in the malicious pool (ϵb = 0, ϵm = 0.1): We perturb the data by moving ϵm
fraction of clean samples into the malicious pool. This reduces the benign pool available to the
clean-only baselines and dilutes PL’s malicious pool. Under this setting, Table 3b shows that PL
again provides the strongest defense, with the lowest ASR (grand mean: 0.002) and competitive
utility (C-ACC grand mean: 0.598). FT and FT+SAM achieve the highest utility (C-ACC grand
mean: 0.813 and 0.828, respectively), but at the cost of high ASR (grand means: 0.363 and 0.513).
I-BAU produces low ASR in some cases at the cost of utility (C-ACC grand mean: 0.092). FST
provides a more balanced performance (grand mean ASR 0.015, C-ACC 0.693).

Contamination in both benign and malicious pools (ϵb = 0.1, ϵm = 0.1): This is the most
challenging yet most realistic setting: the benign pool contains triggered samples while the mali-
cious pool is diluted with clean samples. Therefore, clean-only baselines face fewer and impure
clean samples, and PL has to deal with conflicts in both benign and malicious tuning sets. Despite
these challenges, PL consistently achieves near-zero ASR (grand mean: 0.034) while preserving
reasonable utility (C-ACC grand mean: 0.615) as shown in Table 3c. In contrast, FT, FT+SAM, and
FST maintain high utility (C-ACC grand means: 0.815, 0.829, and 0.7) but leave the model heavily
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poisoned (ASR grand mean: 0.639, 0.797, and 0.548). I-BAU performs worst overall in this setting,
returning extremely low C-ACC (grand mean: 0.099) and high ASR (grand mean: 0.797).

Across all contamination settings under the PL-5 regime, our method PL consistently achieves the
lowest ASR with competitive C-ACC, demonstrating robustness even when both tuning pools are
corrupted. More importantly, it does so while using around half of the tuning data compared to the
baselines (Baseline 8.5%N vs PL 5%N ).

D USE OF LLMS

We used a large language model (LLM) to aid and polish the writing of this paper. All ideas,
methodology, experiments, and analyses are original contributions of the authors.
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Table 3: Performance of PL compared with four baselines under contaminated fine-tuning data
under the PL-5 regime, evaluated under three contamination settings. Bold values indicate the best
performance (lowest ASR or highest C-ACC). PL consistently outperforms baselines on the safety-
utility trade-off across all three settings.

FST FT I-BAU FT+SAM PL (Ours)
Data Attack ASR C-ACC ASR C-ACC ASR C-ACC ASR C-ACC ASR C-ACC

(a) Benign pool contamination ϵb = 0.1, ϵm = 0

CIFAR-10

Blended 0.216 0.8 0.343 0.815 0.416 0.212 0.869 0.829 0.063 0.783
Adaptive Blend 0.243 0.797 0.328 0.81 0.475 0.19 0.856 0.819 0.09 0.787
SSBA 0.066 0.792 0.057 0.808 0.113 0.191 0.217 0.81 0.019 0.776
BadNet 0.204 0.807 0.335 0.823 0.597 0.193 0.955 0.829 0.05 0.778
WaNet 0.126 0.798 0.127 0.819 1 0.1 0.458 0.816 0.037 0.78
Mean 0.171 0.799 0.238 0.815 0.52 0.177 0.671 0.821 0.052 0.781

GTSRB

Blended 0.3 0.881 0.437 0.903 0.013 0.17 0.927 0.917 0.173 0.875
Adaptive Blend 0.393 0.872 0.502 0.893 0.001 0.193 0.95 0.914 0.212 0.858
SSBA 0.296 0.879 0.567 0.897 0.005 0.162 0.975 0.9 0.117 0.893
BadNet 0.322 0.911 0.495 0.914 0.014 0.109 0.941 0.917 0.12 0.89
WaNet 0.107 0.894 0.161 0.909 0.864 0.018 0.651 0.905 0.061 0.877
Mean 0.284 0.887 0.432 0.903 0.179 0.13 0.889 0.911 0.137 0.879

Tiny-ImageNet

Blended 1 0.413 1 0.688 1 0.005 1 0.744 0 0.696
Adaptive Blend 1 0.413 1 0.688 0 0.003 1 0.744 0 0.696
SSBA 0.999 0.41 0.999 0.719 1 0.005 1 0.757 0 0.715
BadNet 0.994 0.406 0.994 0.716 0.985 0.004 0.994 0.756 0 0.734
WaNet 0.986 0.413 0.986 0.726 0 0.005 0.068 0.746 0 0.628
Mean 0.996 0.411 0.996 0.707 0.597 0.004 0.812 0.749 0 0.694

Grand Mean 0.483 0.699 0.555 0.809 0.432 0.104 0.791 0.827 0.063 0.784

(b) Malicious pool contamination ϵb = 0, ϵm = 0.1

CIFAR-10

Blended 0.03 0.802 0.193 0.821 0.45 0.227 0.306 0.827 0.001 0.616
Adaptive Blend 0.049 0.793 0.173 0.817 0.173 0.137 0.231 0.82 0.002 0.568
SSBA 0.028 0.785 0.035 0.809 0.584 0.196 0.065 0.805 0.014 0.747
BadNet 0.081 0.803 0.376 0.822 0.176 0.251 0.805 0.829 0.004 0.63
WaNet 0.035 0.8 0.074 0.819 0.986 0.118 0.209 0.818 0.007 0.704
Mean 0.045 0.797 0.17 0.818 0.474 0.186 0.323 0.82 0.006 0.653

GTSRB

Blended 0.001 0.903 0.017 0.917 0 0.071 0.297 0.919 0 0.671
Adaptive Blend 0 0.891 0.276 0.904 0 0.143 0.803 0.911 0 0.575
SSBA 0 0.896 0 0.905 0 0.049 0.001 0.903 0 0.514
BadNet 0 0.894 0.016 0.917 0.005 0.113 0.203 0.916 0.009 0.551
WaNet 0.002 0.888 0.017 0.902 0 0.047 0.077 0.902 0 0.765
Mean 0.001 0.894 0.065 0.909 0.001 0.085 0.276 0.91 0.002 0.615

Tiny-ImageNet

Blended 0 0.383 0.951 0.712 0 0.005 0.981 0.756 0 0.56
Adaptive Blend 0 0.383 0.951 0.712 0 0.005 0.981 0.756 0 0.56
SSBA 0 0.384 0.979 0.714 0 0.005 0.989 0.753 0 0.616
BadNet 0 0.384 0.988 0.721 0 0.005 0.992 0.758 0 0.618
WaNet 0 0.413 0.399 0.702 0 0.006 0.762 0.753 0 0.282
Mean 0 0.389 0.854 0.712 0 0.005 0.941 0.755 0 0.527

Grand Mean 0.015 0.693 0.363 0.813 0.158 0.092 0.513 0.828 0.002 0.598

(c) Both pools contamination ϵb = 0.1, ϵm = 0.1

CIFAR-10

Blended 0.312 0.794 0.442 0.819 0.695 0.163 0.83 0.828 0.103 0.644
Adaptive Blend 0.329 0.792 0.44 0.812 0.496 0.153 0.851 0.816 0.118 0.652
SSBA 0.078 0.79 0.097 0.808 0.17 0.163 0.258 0.805 0.031 0.717
BadNet 0.289 0.803 0.515 0.824 0.89 0.147 0.955 0.827 0.121 0.656
WaNet 0.179 0.796 0.197 0.82 0.999 0.102 0.515 0.811 0.06 0.734
Mean 0.237 0.795 0.338 0.817 0.65 0.146 0.682 0.817 0.087 0.681

GTSRB

Blended 0.442 0.908 0.607 0.918 0.006 0.155 0.937 0.923 0.023 0.663
Adaptive Blend 0.474 0.897 0.617 0.905 0.011 0.138 0.935 0.914 0.001 0.488
SSBA 0.283 0.882 0.649 0.9 0.017 0.227 0.974 0.905 0 0.517
BadNet 0.684 0.918 0.793 0.923 0.152 0.164 0.948 0.924 0.002 0.614
WaNet 0.168 0.891 0.246 0.906 0.736 0.012 0.659 0.903 0.045 0.741
Mean 0.41 0.899 0.582 0.91 0.184 0.139 0.891 0.914 0.014 0.605

Tiny-ImageNet

Blended 1 0.403 1 0.719 0.991 0.026 1 0.756 0 0.546
Adaptive Blend 1 0.403 1 0.719 0.991 0.026 1 0.756 0 0.546
SSBA 0.999 0.415 1 0.715 1 0.005 1 0.757 0 0.579
BadNet 0.994 0.397 0.995 0.725 0.976 0.005 0.994 0.761 0.001 0.559
WaNet 0.993 0.406 0.992 0.713 0 0.005 0.1 0.748 0 0.563
Mean 0.997 0.405 0.997 0.718 0.792 0.013 0.819 0.756 0 0.559

Grand Mean 0.548 0.7 0.639 0.815 0.542 0.099 0.797 0.829 0.034 0.615
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