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ABSTRACT

State-of-the-art (SOTA) reinforcement learning (RL) methods have enabled vision-
language model (VLM) agents to learn from interaction with online environments
without human supervision. However, these methods often struggle with learning
inefficiencies when applied to complex, real-world decision-making tasks with
sparse rewards and long-horizon dependencies. We propose a novel framework,
Variational Subgoal-Conditioned Reinforcement Learning (VSC-RL), advancing
the VLM agents in resolving challenging decision-making tasks. Fundamentally
distinct from existing methods, VSC-RL reformulates the decision-making problem
as a variational subgoal-conditioned RL problem with the newly derived optimiza-
tion objective, Subgoal Evidence Lower BOund (SGC-ELBO), which comprises
two key components: (a) maximizing the subgoal-conditioned return, and (b) mini-
mizing the divergence from a reference goal-conditioned policy. We theoretically
and empirically demonstrate that the VSC-RL can efficiently improve the learning
efficiency without compromising performance guarantees. Across a diverse set
of challenging benchmarks, including mobile device and web control tasks, VSC-
RL consistently outperforms existing SOTA methods, achieving superior learning
efficiency and performance.

1 INTRODUCTION

Recently, the large language models (LLMs) and vision-language models (VLMs) have demonstrated
remarkable capabilities in content understanding and commonsense reasoning Yang et al. (2023a);
Shen et al. (2024); Hong et al. (2023), achieving notable success in various real-world applications,
such as visual question answering and visual captioning Bai et al. (2023); Chen et al. (2024). These
advancements highlight the strong potential of VLMs to tackle complex real-world decision-making
problems (e.g., mobile device Toyama et al. (2021) and web control Zhou et al. (2023) tasks) via
building intelligent VLM agents through the advanced VLMs Zhang et al. (2023); Zheng et al.
(2024). Meanwhile, after achieving impressive results in board games Silver et al. (2017) and video
games Berner et al. (2019), reinforcement learning (RL) methods have been applied in online training
VLM agents for tackling sequential decision-making tasks Bai et al. (2024); Qi et al. (2024).

Overall, based on the specific training paradigm, VLM agents can be categorized into three main
types: prompting-based, imitation-based, and RL-based agents. Directly leveraging VLMs (e.g.,
Gemini-1.5-Pro Team et al. (2024) and GPT-4V OpenAI (2023)) to capture the critical information
from the multimodal content, prompting-based agents aim to generate action via prompting engi-
neering and retrieving techniques Zhang et al. (2023); Yang et al. (2023b). The performance of the
prompting-based agents is usually limited, as the weights of these VLMs cannot be updated. To
address this limitation, some studies Zhang & Zhang (2023); Hong et al. (2024) employ imitation
learning techniques to fine-tune the open-source VLMs using human demonstrations. However,
the performance of imitation-based agents is highly dependent on the quality and diversity of the
demonstrations. Consequently, imitation-based agents may struggle with generalization and often
underperform on out-of-distribution and unseen tasks. Recently, RL-based agents have emerged as a
promising solution. By incorporating RL techniques, these agents enable VLMs to tackle complex
sequential decision-making problems Bai et al. (2024); Qi et al. (2024). Nevertheless, existing
RL-based agents often suffer from the learning efficiency issue in addressing challenging control
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tasks with sparse reward signals and complicated goals. In many real-world scenarios, tasks require
executing long sequences of actions, with rewards only provided upon successful completion. This
delayed feedback poses a significant challenge for learning, fundamentally impacting the efficiency
of RL-based agents. Some existing works attempt to address this issue by introducing implicit cur-
riculum Andrychowicz et al. (2017) or hand-crafted subgoals Dayan & Hinton (1992); Chane-Sane
et al. (2021). However, these existing approaches often fail to learn a proper policy in the real-world
complex sequential decision-making task due to the complicated subgoal generation and curriculum
design methodologies.

To address the fundamental limitations of RL-based agents mentioned above, we introduce Varia-
tional Subgoal-Conditioned RL (VSC-RL), a novel RL-based VLM agent method for enhancing
learning efficiency in real-world complex sequential decision-making tasks. Based on the perspec-
tive of variational inference, VSC-RL reformulates the decision-making task as the variational
subgoal-conditioned RL problem, which is later efficiently solved by utilising extensive optimization
techniques. Additionally, VSC-RL utilises the significant reasoning and planning capabilities of VLM
to autonomously decompose the complex goal into feasible subgoals. Given the generated subgoals,
VSC-RL optimizes the objective of SubGoal-Conditioned Evidence Lower BOund (SGC-ELBO),
thus effectively improving learning efficiency, consisting of (a) maximizing the subgoal-conditioned
return of the target agent and (b) minimizing the subgoal-conditioned difference with the reference
agent. We theoretically derive the new objective of SGC-ELBO from the original optimization objec-
tive, ensuring both improved efficiency and performance guarantees. Empirical results on various
benchmarks validate our statement that VSC-RL significantly outperforms SOTA VLM agents in
both sample efficiency and final performance.

In this paper, literature related to VLM agents and RL methods is discussed in Section 2. We introduce
notations related to goal-conditioned RL, variational RL and subgoal generator in Section 3. In
Section 4, we illustrate how to formulate the sequential decision-making problem as a variational
subgoal-conditioned RL problem and derive the new optimization objective: SGC-ELBO, followed
by the practical implementation of VSC-RL. In Section 5, the experimental results over various
benchmarks exhibit that our VSC-RL agent can achieve superior performance compared to existing
SOTAs. Overall, the main contributions of this paper are summarised as follows:

• We propose VSC-RL, a novel variational subgoal-conditioned RL method for enhancing
VLM agents in resolving real-world sequential decision-making problems.

• We theoretically show that SGC-ELBO, the optimization objective of the VSC-RL, can
effectively improve learning efficiency while maintaining the performance guarantee.

• We experimentally show that VSC-RL significantly outperforms various SOTAs in both
learning efficiency and final performance on various challenging benchmarks.

2 RELATED WORKS

2.1 VLM AGENTS FOR DECISION-MAKING

In real-world complex control tasks requiring capacities in reasoning, planning and content under-
standing, it is necessary to enable agents with the vision-language models (VLMs). In particular, the
VLMs can process and abstract the image and language content for challenging decision-making
tasks, especially in mobile device and web control tasks Toyama et al. (2021); Liu et al. (2024).
Existing VLM agents can be categorized as prompting-based, imitation-based, and RL-based agents
based on the corresponding learning paradigms. Additionally, some recent works explore using VLM
to enhance agents’ abilities.

Prompting-based Agent. Leveraging the inherent reasoning and planning abilities of prosperity
VLMs (e.g., Gemini-1.5-Pro Team et al. (2024) and GPT-4V OpenAI (2023)), the prompting-
based agent makes decision via prompting engineering and retrieving techniques. For instance,
AppAgent Zhang et al. (2023) first introduces a unified prompting-based agent method to enable the
vision-language model to directly interact with mobile applications by providing the prompts with
details of actions. Set-of-Marks Yang et al. (2023b) proposes a new prompting method to enhance
the visual grounding ability of VLM. However, the performance of these prompting-based agents
is always sensitive to the prompts required to be manually and carefully designed. Therefore, it is
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challenging for the prompting-based agent to directly output the correct and desired actions to address
real-world complex control problems.

Imitation-based Agent. The imitation-based agent learns to mimic the expert behaviours by fine-
tuning the policy on human demonstration. Recently, Android in the Wild (AitW) Rawles et al.
(2024) collected large-scale datasets of mobile device control tasks, enabling agents to directly learn
from human experience. AutoUI Zhang & Zhang (2023) and CogAgent Hong et al. (2024) fine-tune
the VLM-based policies with the AitW dataset, remarkably outperforming the prompting-based
agent. In order to adapt the fine-tuned agent to the online environment, Filtered BC Pan et al. (2024b)
introduces online imitation mechanisms to learn from successful online experiences. Unfortunately,
these methods rely heavily on high-quality human demonstrations and often struggle to generalize to
unseen tasks, limiting their application in diverse real-world scenarios.

RL-based Agent. Different to prompting-based and imitation-based agents, the RL-based agent
can autonomously optimize the policy through trial-and-error interactions with environments, without
human supervision. DigiRL Bai et al. (2024) introduces a unified offline-to-online RL framework
that enables agents to learn directly from real-time interactions in dynamic environments, improving
performance without the need for curated datasets. DistRL Wang et al. (2024) builds an asynchronous
distributed RL system, allowing training multiple agents in parallel across different environments,
thus significantly enhancing scalability and convergence speed. WebRL Qi et al. (2024) introduces a
self-evolving online curriculum RL framework, enabling effective training of web agents through
adaptive task generation in web control tasks. However, these RL-based agents still fundamentally
suffer from the learning efficiency issue in challenging sequential decision-making tasks with sparse
rewards and long horizons.

Enhancing RL with VLM. Recent works have shown that VLM can enhance the RL method
via its remarkable capacities of reasoning, planning, and content understanding. Recent works
suggest adopting VLM in reward-shaping for RL. For instance, VLM-RMs Rocamonde et al. (2023)
demonstrate that VLMs can serve as effective reward models for learning complex skills. VLM can
also generate the subgoals to guide the learning process for autonomous driving Pan et al. (2024a)
and robot Yang et al. (2024) tasks. Nonetheless, it is still an open problem how to effectively integrate
the VLM-generated subgoals into RL.

To mitigate the above issues, we present VSC-RL, which can autonomously decompose the goal into
feasible subgoals by advanced VLM, and then efficiently resolve each subgoal from the principle of
variational inference.

2.2 GOAL-CONDITIONED AND VARIATIONAL RL

Goal-conditioned RL. Sequential decision-making tasks can be viewed as the goal-conditioned
RL problem Liu et al. (2022a). Based on the current state, the agent aims to find the optimal
policy that guides progress toward the given goal for maximizing the return. Hindsight experience
replay Andrychowicz et al. (2017) introduces an implicit curriculum learning method to enhance
learning efficiency and robustness. With the perspective of divide-and-conquer, some approaches
suggest guiding the agent with subgoals as intermediate reward signals via imagination Chane-Sane
et al. (2021); Nair & Finn (2019) and tree-search Jurgenson et al. (2020); Parascandolo et al. (2020).

Variational RL. The RL problem can be viewed as the variational inference problem Levine
(2018), which can be resolved by utilising extensive optimization tools, thus effectively improving the
learning efficiency. Applying the expectation-maximization algorithm in the actor-critic method in
RL, VIP Neumann (2011) presents a unified variational inference framework. MPO Abdolmaleki et al.
(2018a;b) proposes a series of off-policy RL with entropy regulation in the manner of expectation-
maximization. VDPO Wu et al. (2024) and CVPO Liu et al. (2022b) apply the variational inference
techniques in addressing the RL problem with delayed signals and safety constraints, respectively.

This paper aims to show how to formulate the control problem as a variational subgoal-conditioned
RL problem from the perspective of variational inference, which allows us to resolve the complicated
control task by utilising extensive optimization tools.
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3 PRELIMINARIES

Finite-Horizon Goal-Conditioned MDP. We formulate the RL problem as the finite horizon goal-
conditioned Markov Decision Process (MDP), denoted by the tuple < G,S,A,R, T , H > where G
is the goal set, S is the state space, A is the action space, T : S × A × S → [0, 1] is the dynamic
function, R is the reward function and H is the horizon. At each timestep t, the agent takes action
at ∈ A (e.g., typing text, press button or slide the screen) based on its policy π : S ×G ×A → [0, 1],
the current screenshot st ∈ S, and a specific goal g ∈ G (e.g., search a new TV at Best Buy)
selected in the beginning of each episode. The agent only receives the reward rt = 1 if the goal g is
accomplished, otherwise the reward rt = 0. The objective of the agent is to find the policy π which
can accomplish all goals from the goal set G within the finite horizon H .

Variational RL. RL can be viewed as a variational inference problem. We denote the optimality of
a trajectory τ is the event O, and the corresponding probability of the trajectory optimality is denoted
as p(O|τ) ∝ exp

(
J (τ)
α

)
where J(τ) :=

∑H
t=0 γ

tR(st, at) is the discounted return of the trajectory

τ := {st, at}Ht=0 and α is the temperature. Therefore, the objective transforms to finding a policy
π with the highest log evidence: maxπ log pπ(O). Furthermore, the Evidence Lower BOund of the
objective is:

E
τ∼q(τ)

[log p(O|τ)]− KL(q(τ)||pπ(τ)), (1)

where pπ(τ) is the trajectory distribution induced by policy π, q(τ) is the prior trajectory distribution
and KL is the Kullback-Leibler divergence. Thus, the objective of Variational RL is maximizing the
ELBO (Equation (1)).

Subgoal Generator. For challenging control tasks with sparse and long-term reward signals, it
is difficult to learn a useful policy that arrives at the final goal within a finite horizon. Therefore,
subgoal generation is particularly useful in providing the intermediate signals to facilitate learning.
Then, we introduce the assumption of the existence of subgoals for the given goal, aiming to bring
the goal-conditioned RL problem to the subgoal-conditioned RL problem as follows.
Assumption 3.1 (Existence of Subgoals). Given a trajectory τ and the corresponding goal g, it
always exists a sequence of sub-trajectories and corresponding subgoals {τi, sgi}Ni=1(1 ≤ N ≤ H)
induced from the τ and g.

Commonly adopted in literature Sutton et al. (1999), the above assumption is mild and usually
holds. For instance, when N = 1, the subgoals and sub-trajectories are the original goal and
trajectory, respectively. When N = H , each sub-trajectory is composed of one single transition-tuple
(st, at, rt, st+1) with its corresponding subgoal.

4 OUR APPROACH: VSC-RL

In this section, we present our approach, Variational Subgoal-Conditioned Reinforcement Learning
(VSC-RL) for enhancing VLM agents in solving real-world decision-making tasks. First, we
formulate the sequential decision-making task as the variational goal-conditioned RL problem
(Section 4.1). Next, we derive the new subgoal-conditioned optimization objective, SGC-ELBO,
consisting of (a) maximizing the subgoal-conditioned return (Proposition 4.1) and (b) minimizing the
subgoal-conditioned difference (Proposition 4.2). We also theoretically show the derivation of new
optimization objective, ensuring both improved learning efficiency and performance guarantees. In
Section 4.3, we demonstrate that VLMs can effectively generate feasible subgoals from the complex
goal for VSC-RL. The practical implementation is illustrated in Section 4.4. We present the overall
pipeline of VSC-RL in Figure 1, and the pseudo-code of VSC-RL is summarised in Algorithm 1.

4.1 PROBLEM FORMULATION

We first formulate the sequential decision-making as the variational goal-conditioned RL problem.
In this context, similar to Equation (1), the objective is to find a goal-conditioned policy π with the
highest log evidence: maxπ log pπ(O|g) for a given goal g. Then, we have the Goal-Conditioned
ELBO (GC-ELBO) of log pπ(O|τ, g) as follows:

4
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GC-ELBO(π, πref, g) = E
τ∼pπ(τ |g)

[log p(O|τ, g)]− KL(pπ(τ |g)||pπref(τ |g)), (2)

where pπref(τ |g) is the prior trajectory distribution of the goal-conditioned reference policy πref for
the given goal g. Therefore, from Equation (2), the objective becomes maximizing the GC-ELBO:
maxπ GC-ELBO(π, πref, g).

Target Agent

Target Policy 
  Subgoals  :
    "Open a broswer.",
    "Search for \"latest news in astrophysics\".",
    "Select a reputable news source from the search results.",
    "Browse the articles on the website to find the latest news."

(b) Maximizing subgoal-wise return: 

(c) Minimizing subgoal-wise difference: 

Vision Language Model

Subgoal Generator

(a) Decomposing goal to subgoals by subgoal generator

"What's the latest news in astrophysics?"
Goal  :

Reference Agent

Reference Policy 

Environment

Figure 1: The pipeline of VSC-RL. (a) VLM autonomously decomposes the goal g to the subgoals
{sgi}Ni=1. VSC-RL optimizes the objective of SGC-ELBO consisting of (b) maximizing the subgoal-
conditioned return and (c) minimizing the subgoal-conditioned difference.

Algorithm 1 VSC-RL

Input: goal g, subgoal generator VLM, reference policy πref, target policy π, value function V ;
for Epoch = 1, · · · do

Generate Subgoals {sgi}Ni=1 ∼ VLM(g)
Collect (τi, sgi)Ni=1 from π for the given goal g
# Optimize the SGC-ELBO (Equation (4))
Maximize Subgoal-conditioned Return via Equation (5) and Equation (6)
Minimize Subgoal-conditioned Behavior Difference via Equation (7)

end for
Output: updated policy π

4.2 VARIATIONAL SUBGOAL-CONDITIONED RL

With the assumption of the subgoals (Assumption 3.1), we demonstrate that the former term of
GC-ELBO (Equation (2)) is equivalent to the maximizing subgoal-conditioned RL objective (Proposi-
tion 4.1) and the latter term of GC-ELBO can be transformed to the minimizing subgoal-conditioned
difference (Proposition 4.2).

Based on Equation (2), we show that the former term, Eτ∼pπ(τ |g) [log p(O|τ, g)], can be reformulated
in the subgoal-conditioned RL objective with shorter-horizon in the following Proposition 4.1.
Proposition 4.1 (Subgoal-Conditioned Optimization Objective, Proof in Proposition C.1). Given
a goal g with corresponding subgoals {sgi}Ni=1 and a subgoal-conditioned target policy π, the
objective of

max
π

E
τ∼pπ(τ |g)

[log p(O|τ, g)]

is equivalent to the objective of

max
π

N∑
i=1

[
E

τi∼pπ(τi|sgi)
[log p(O|τi, sgi)]

]
.

In the above proposition, the goal-wise objective has been transformed into the subgoal-conditioned
objective, which is composed of N subgoals with corresponding shorter horizons. Thus, the agent
can learn from these reward signals from the subgoals, thus effectively improving the learning
efficiency Jiang & Agarwal (2018).

Next, we show that the latter term in Equation (2), KL(pπ(τ |g)||pπref(τ |g)), has the subgoal-
conditioned upper bound in the following proposition.

5
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Proposition 4.2 (Subgoal-conditioned Difference Bound, Proof in Proposition C.2). Given goal-
conditioned reference policy πref and subgoal-conditioned target policy π, the goal-conditioned
KL divergence of a given goal g has the upper bound of subgoal-conditioned KL divergence of
corresponding subgoals {sgi}Ni=1 as follows:

KL(pπ(τ |g)||pπref(τ |g)) ≤
N∑
i=1

[
KL(pπ(τi|sgi)||pπref(τi|g))

]
.

Therefore, from Proposition 4.2, we can directly minimize the N subgoal-conditioned KL divergences,
which is the upper bound of the goal-conditioned KL divergence.

Based on Proposition 4.1 and Proposition 4.2, the newly-derived optimization objective of SubGoal-
Conditioned ELBO (SGC-ELBO) is as follows:

SGC-ELBO(π, πref, sgi, g) = E
τi∼pπ(τi|sgi)

[log p(O|τi, sgi)]− KL(pπ(τi|sgi)||pπref(τi|g)). (3)

Equation (3) consists of two key components: (a) maximizing the subgoal-conditioned return of the
target policy π and (b) minimizing the subgoal-conditioned difference between π and the reference
policy πref. Therefore, the agent can directly learn to resolve the subgoal sgi with a shorter horizon
requirement, effectively improving the learning efficiency. The newly derived optimization objective
of SGC-ELBO (Equation (3)) can improve learning efficiency without compromising performance
guarantees.

4.3 AUTONOMOUS SUBGOAL GENERATION VIA VISION-LANGUAGE MODELS

Vision Language Model

Goal : 
What's the US dollar exchange rate against the Euro? Subgoal : 

Open a browser
Subgoal : 

Search for "US dollar to Euro exchange rate"
Subgoal : 

View the exchange rate

Figure 2: Autonomous subgoal generation in AitW task. The VLM autonomously decomposes the
goal of the complicated mobile device control task into easily achievable subgoals.

For real-world complex decision-making, it is challenging to handcraft and design the subgoals
for each goal manually. VLM has exhibited a unique reasoning ability in image captioning, visual
question answering, and multimodal reasoning via integrating and interpreting visual and textual
information to derive meaningful insights for VLM agents. Therefore, we use VLM as the subgoal
generator, which autonomously decomposes the given goal g into the feasible subgoals {sgi}Ni=1.
As demonstrated in the AitW task example (Figure 2), VLM can autonomously decompose the
goal: "What’s the US dollar exchange rate against the Euro?" into more specific and easily solvable
subgoals, including "Open a browser", "Search for "US dollar to Euro exchange rate", and "View
the exchange rate". Therefore, we can tell that the VLM can serve as the subgoal generator in the
general case. Additionally, we also provide the example of subgoal generation in Appendix J. In the
context of VLM as the autonomous vision-language subgoal generator, the optimization objective
(Equation (3)) can be written as

max
π

 ∑
{sgi}N

i=1∼VLM(g)

[SGC-ELBO(π, πref, sgi, g)]

 , (4)

where subgoals {sgi}Ni=1 are generated by a VLM through prompting with the original goal g.

4.4 PRACTICAL IMPLEMENTATION

As a unified RL-based agent framework, most existing RL-based methods can easily be embedded
in VSC-RL. In this paper, we mainly consider the mobile device and web control tasks to evaluate
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the VSC-RL, a representative and challenging real-world decision-making task which has drawn
attention recently. Specifically, the reference agent πref and target agent π are both initialised as
the AutoUI-Base agent Zhang & Zhang (2023), which is pre-trained on the Android in the Wild
(AitW) datasets. To maximize the subgoal-conditioned RL objective in Equation (3), VSC-RL uses
the Advantage-Weighted Regression (AWR) algorithm Peng et al. (2019) modified by DigiRL Bai
et al. (2024) as follows:

argmax
π

E
s,a,sgi∼D

[
log π(a|s, sgi) exp

(
A(s, a, sgi)

β

)]
, (5)

where D is the replay buffer, β is the hyperparameter and A(s, a, sgi) := Ri − V (s, a, sgi) is the
advantage function. Specifically, V (s, a, sgi) is the subgoal-conditioned value function which aims
to predict the return Ri of the subgoal sgi as follows:

argmin
V

E
s,a,sgi,Ri∼D

[||Ri − V (s, a, sgi)||] , (6)

where Ri is the binary return evaluated by the VLM Pan et al. (2024b). VSC-RL minimizes the
subgoal-conditioned KL divergence in Equation (3) via imitation loss as follows:

argmax
π

E
aref∼πref(·|s,g)

s,sgi,g∼D

[log π(aref|s, sgi)] , (7)

where aref is the reference action. Similar to DigiRL Bai et al. (2024), VSC-RL additionally learns
the instruction-level value function for filtering the sub-trajectories and accelerating the learning.
VSC-RL adopts Gemini-1.5-Pro Team et al. (2024) as the subgoal generator. Specifically, we in-
context prompt the VLM to generate the subgoals for a given goal, including human demonstration
as examples. The prompt example is provided in Appendix J. Overall, the pseudo-code of VSC-RL is
summarised in Algorithm 1.

5 EXPERIMENTS

In this section, we empirically demonstrate that our VSC-RL can achieve better sample efficiency and
a higher success rate than various state-of-the-art (SOTA) agents in various challenging benchmarks,
including AitW Rawles et al. (2024) and WebArena-Lite Liu et al. (2024). We also present the
ablation results for evaluating the key components of VSC-RL. The implementation details and
hyperparameter settings are listed in Appendix B. Additionally, we present the additional experiments
on MiniGrid Chevalier-Boisvert et al. (2019) in Appendix D. Additional experiments investigating
the subgoal generator in VSC-RL are presented in Appendix E.

5.1 EXPERIMENTAL SETTINGS

Benchmarks. For the complex and challenging problem, we mainly consider AitW General and
Web Shopping tasks Rawles et al. (2024), two kinds of the most challenging device control tasks for
evaluation. The horizons of General and Web Shopping tasks are set to 10 and 20 steps, respectively.
The success of the task is autonomously evaluated by the Gemini-1.5-Pro Team et al. (2024) via the
in-context prompting approach. We also evaluate VSC-RL on WebArena-Lite Liu et al. (2024), a
human-verified subset of the WebArena benchmark Zhou et al. (2023) containing 165 realistic web
tasks across five websites. Each task involves complex HTML-based observations with 30 steps of
horizon. Following WebRL Qi et al. (2024), we adopt the pretrained outcome-supervised reward
model (ORM) to autonomously evaluate the task’s success.

Baselines. For the AitW tasks, we compare our VSC-RL with various SOTA baselines, including
prompting-based agents (Set-of-Marks Yang et al. (2023b) and AppAgent Zhang et al. (2023)),
imitation-based agents (AutoUI Zhang & Zhang (2023), CogAgent Hong et al. (2024) and Filtered
BC Pan et al. (2024b)) and RL-based agents (DigiRL Bai et al. (2024)). Each method is tested on 3
independent runs, consistent with existing works Bai et al. (2024). For the WebArena-Lite tasks, we
compare VSC-RL with several SOTA baselines adapted to web environments, including supervised
fine-tuning (SFT), Filtered BC Pan et al. (2024b), and RL-based agents (AWR Peng et al. (2019),
DigiRL Bai et al. (2024), and WebRL Qi et al. (2024)). Specifically, to ensure a fair comparison, we
remove the curriculum learning component of WebRL so that all methods are trained solely on the
same task set. Each method is tested on 1 single run, consistent with existing works Qi et al. (2024).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.2 EXPERIMENTAL RESULTS AND ANALYSIS
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Figure 3: Learning curves on AitW (a) General and (b) Web Shopping tasks.

Table 1: The performance on General and Web Shopping tasks. The best performance is highlighted.

Task Set-of-Marks AppAgent CogAgent AutoUI Filtered BC DigiRL VSC-RL (ours)

General Train 32.3% 14.6% 25.0% 12.5% 53.5% 64.9% 73.9%
Test 16.7% 16.7% 25.0% 14.6% 62.5% 67.7% 72.9%

Web Shopping Train 6.3% 5.2% 31.3% 14.6% 53.6% 55.3% 64.6%
Test 11.5% 8.3% 38.5% 17.7% 54.2% 41.3% 58.3%

AitW. The learning curves of AitW General and Web Shopping are summarised in Figure 3. Overall,
our VSC-RL outperforms other baselines significantly in both the General and Web Shopping tasks.
The RL-based agents (DigiRL and VSC-RL) both show leading performance in the AitW General
task. After reaching a similar performance of 65.0% success rate with DigiRL in 250 trajectories, our
VSC-RL outperforms all baselines significantly, arriving at the best final performance of 75% success
rate. Similarly, RL-based agents (DigiRL and VSC-RL) dominate all other types of agents remarkably
in the Web Shopping task. Specifically, our VSC-RL can finally achieve around 60.0% success rate,
significantly outperforming 50.0% success rate of DigiRL. We also evaluate the generalization of our
VSC-RL on the test datasets, including a range of unseen tasks, respectively. The results summarised
in Table 1 tell us that our VSC-RL shows significant superiority in both the train and test datasets.
Especially, in the general tasks, VSC-RL performs approximately +13.9% and +7.7% better than
the second-best baseline on the train and test datasets, respectively. Similarly, VSC-RL achieves the
best performance on both the train and test datasets of web shopping tasks. Overall, VSC-RL can
exhibit consistent performance on unseen tasks, showing remarkable generalization ability.

WebArena-Lite. As shown in Figure 4, we present the learn curves on the WebArena-Lite. The
imitation-based agents, SFT and Filtered BC achieve relatively limited performance, with success
rates stagnating around 20.6% and 23.0%, respectively. AWR achieves approximately 28.5% success
rate via solely leveraging the offline RL technique, which is still limited compared to the online RL
methods. DigiRL and WebRL exhibit similar performance trends, both plateauing around a 31.0%
success rate. Our VSC-RL consistently outperforms the other methods, achieving the highest success
rate of approximately 34.5%. Overall, our VSC-RL can achieve superior learning efficiency and
final performance on the WebArena-Lite. Specifically, the additional results shown in Appendix F
demonstrate that our VSC-RL can achieve the best performance across all types of tasks on the
WebArena-Lite.

Ablation Results of VSC-RL. The ablation results on the Web Shopping task, shown in Table 2,
evaluate the impact of various key components of VSC-RL. Introducing subgoals to AutoUI can
yield a marginal improvement (+1.6%) on the average success rate from 16.2% to 17.8%, which
offers limited benefit without involving the RL process. For VSC-RL, removing subgoals entirely
leads to a substantial performance drop (−7.8%) compared to providing limited (50% less) subgoals
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Figure 4: Learning curves on WebArena-Lite.

Table 2: Ablation results of VSC-RL on the Web
Shopping. The best performance is highlighted.

Method Web Shopping
Train Test Average

AutoUI 14.6% 17.7% 16.2%
w/ subgoals 16.7% 18.8% 17.8%

VSC-RL 64.6% 58.3% 61.5%
w/o subgoals 55.2% 52.1% 53.7%
w/ limited (50% less) subgoals 57.3% 55.2% 56.3%
w/o policy gradient (Equation (5)) 56.3% 51.0% 53.7%
w/o imitation loss (Equation (7)) 55.2% 46.9% 51.1%

(−5.2%). These results imply that subgoals can efficiently improve performance by providing
immediate informative reward signals in the RL process. Additionally, we investigate the different
optimization components of SGC-ELBO(Equation (3)) in VSC-RL. Removing the policy gradient
(Equation (5)) and imitation loss (Equation (7)) result in decreased performance with −7.8% and
−10.4%, respectively. Overall, each optimization component of VSC-RL contributes meaningfully
to its effectiveness, aligning with our main statements in Section 4.2. Ablation studies on subgoal
quality and subgoal generator are provided in Appendix G and Appendix H, respectively. We also
analyze the failure cases of VSC-RL in Appendix I.

5.3 LIMITATIONS AND CHALLENGES

We have empirically demonstrated that our VSC-RL can effectively address the learning efficiency
issue commonly existing in complex sequential decision-making tasks. However, there are still some
limitations and challenges in VSC-RL, as discussed below.

Fine-tuning VLM as Subgoal Generator. Benefiting from the general reasoning ability of the
proprietary VLM, we empirically found that the performance of VSC-RL is improved by the feasible
subgoals. However, for the control task from a specific domain, it is worth fine-tuning the open-source
VLM as the subgoal generator.

Hierarchical RL Approaches. Additionally, the VLM in VSC-RL cannot only be viewed as the
subgoal generator, but also as the high-level policy in the context of hierarchical RL. It is valuable to
investigate enhancing VSC-RL with the hierarchical RL approaches Zhao et al. (2024); Zhou et al.
(2024) with re-planning ability (Zeng et al., 2025).

Future Challenging Applications. In this work, we mainly consider the mobile device and web
control tasks, two representative complex control problems, as the evaluation benchmarks. The
theoretical and empirical results presented in this work imply that VSC-RL has great potential in
addressing other challenging open problems, such as MCP-enabled control tasks (Liu et al., 2025;
Yan et al., 2025; Lumer et al., 2025).

6 CONCLUSION

This work investigates advancing VLM agents in resolving real-world complex sequential decision-
making tasks. Existing promising RL-based agents often suffer from the learning efficiency issue in
solving tasks with complicated goals and sparse reward signals. To address this issue, we propose
VSC-RL, which can autonomously decompose the goal to subgoals and resolve them efficiently.
VSC-RL reformulates the decision-making task as a variational subgoal-conditioned RL problem
with the new derived optimization objective of SGC-ELBO, thus effectively improving the learning
efficiency without compromising the performance guarantee. In various benchmarks, especially
in challenging mobile device and web control tasks, we empirically show that VSC-RL exhibits
significant performance improvement and learning efficiency, remarkably outperforming existing
methods.
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A LLM USAGE STATEMENT

In this work, the use of LLMs was restricted to writing support and language refinement. Specifically,
LLMs assisted in enhancing the clarity and coherence of the manuscript. LLMs were not used in
the design of algorithms, the development of theoretical results, or the execution of experiments,
ensuring that all core scientific contributions are entirely the work of the authors.

B IMPLEMENTATION DETAILS

As shown in Table 3, we summarize LLMs and VLMs used in VSC-RL. For AitW tasksRawles et al.
(2024), we built our VSC-RL on the open repository of DigiRL Bai et al. (2024). Hyperparameter
settings are listed in Table 4, and each run of VSC-RL takes approximately 24 hours on 1 NVIDIA
GeForce RTX 4090 GPU and 8 Intel Xeon CPUs. For WebArena-Lite tasks Liu et al. (2024), we
built our VSC-RL on the open repository of WebRL Qi et al. (2024) and followed the online RL loop
of interaction, filtering, and update. To ensure a fair comparison, we remove WebRL’s curriculum
learning component so that all methods are trained solely on the same task set. For VSC-RL and
other baselines, we apply the same actor perplexity-based filtering strategy as WebRL to select replay
data, ensuring consistency in experience quality. Hyperparameter settings are listed in Table 5, and
each run of VSC-RL takes approximately 24 hours on 8 NVIDIA GeForce RTX 4090 GPUs and 8
Intel Xeon CPUs. Specifically, we report some results on AitW (Set-of-Marks, AppAgent, CogAgent,
AutoUI, and Filtered BC) and WebArena-Lite (SFT, Filtered BC, and AWR) from the literature Bai
et al. (2024); Qi et al. (2024).

Table 3: The summary of LLMs and VLMs used in VSC-RL.

Component Task DescriptionAitW WebArena-Lite
Subgoal Generator Gemini-1.5-Pro Gemini-1.5-Pro Autonomously decompose the goal into subgoals.
Reference Actor πref AutoUI-Base Llama-3.1-8B Provide reference action for imitation.
Target Actor π AutoUI-Base Llama-3.1-8B Make decisions to maximize subgoal-conditioned return.
Evaluator Gemini-1.5-Pro Llama-3.1-8B Autonomously evaluate the goal’s or subgoal’s success.

Table 4: Hyperparameters settings of VSC-RL on AitW tasks.

Hyperparameter Value
Batch Size 4

Total Trajectories 1,000
Discount Factor 0.5
Learning Rate 1e-4

Update Epoch (Actor Equation (5)) 20
Update Epoch (Critic Equation (6)) 5
Update Epoch (Actor Equation (7)) 20

Update Epoch (Instruction-level Critic) 5
Maximum Gradient Norm 0.01

Table 5: Hyperparameter settings of VSC-RL on WebArena-Lite tasks.

Hyperparameter Value
Batch Size 128

Total Trajectories 1,000
Discount Factor 0.9
Learning Rate 1e-6

Update Epoch (Actor Equation (5)) 1
Update Epoch (Critic Equation (6)) 1
Update Epoch (Actor Equation (7)) 1

Maximum Gradient Norm 1.0
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C THEORETICAL ANALYSIS

Proposition C.1 (Subgoal-Conditioned Optimization Objective). Given a goal g with corresponding
subgoals {sgi}Ni=1 and a subgoal-conditioned target policy π, the objective of

max
π

E
τ∼pπ(τ |g)

[log p(O|τ, g)]

is equivalent to the objective of

max
π

N∑
i=1

[
E

τi∼pπ(τi|sgi)
[log p(O|τi, sgi)]

]
.

Proof. We have

log p(O|τ, g) ∝ exp

(
J (τ |g)

α

)
= exp

(∑N
i=1 [J (τi|sgi)]

α

)
.

So, we have
E

τ∼pπ(τ |g)
[log p(O|τ, g)]

= E
τ∼pπ(τ,g)

[J (τ, g)]

= E
τ∼

∏N
i=1 pπ(τi,sgi)

[J (τ |g)]

= E
τ∼

∏N
i=1 pπ(τi,sgi)

[
N∑
i=1

J (τi|sgi)

]

=

N∑
i=1

[
E

τi∼pπ(τi,sgi)
[J (τi|sgi)]

]
Due to the fact that

log p(O|τi, sgi) ∝ exp

(
J (τi|sgi)

α

)
.

Therefore, we have

max
π

E
τ∼pπ(τ |g)

[log p(O|τ, g)] ⇒ max
π

N∑
i=1

[
E

τi∼pπ(τi|gi)
[log p(O|τi, sgi)]

]

Proposition C.2 (Subgoal-conditioned Difference Bound). Given goal-conditioned reference policy
πref and subgoal-conditioned target policy π, the goal-conditioned KL divergence of a given goal g
has the upper bound of subgoal-conditioned KL divergence of corresponding subgoals {sgi}Ni=1 as
follows:

KL(pπ(τ |g)||pπref(τ |g)) ≤
N∑
i=1

[
KL(pπ(τi|sgi)||pπref(τi|g))

]
.

Proof. We have

pπ(τ |g) = ρ(s0)

H∏
t=0

P (st+1|st, at)π(at|st, g),

=

N∏
i=1

pπ(τi|sgi).

≤ pπ(τi|sgi)(i = 1, · · · , N)
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Similarly, we have

pπref(τ |g) =
N∏
i=1

pπref(τi|g)

Therefore,
KL(pπ(τ |g)||pπref(τ |g))
= E

τ∼pπ(τ |g)
[log pπ(τ |g)− log pπref(τ |g)]

= E
τ∼pπ(τ |g)

[
N∑
i=1

log pπ(τi|sgi)−
N∑
i=1

log pπref(τi|g)

]

=

N∑
i=1

[
E

τ∼pπ(τ |g)
[log pπ(τi|sgi)− log pπref(τi|g)]

]

≤
N∑
i=1

[
E

τi∼pπ(τi|sgi)
[log pπ(τi|sgi)− log pπref(τi|g)]

]

=

N∑
i=1

[KL(pπ(τi|sgi)||pπref(τi|g))]
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D ADDITIONAL EXPERIMENTS: MINIGRID

We also evaluate our VSC-RL on the toy vision-language decision-making tasks, MiniGrid Chevalier-
Boisvert et al. (2019). We select the PPO Schulman et al. (2017) as the baseline, and we apply VSC-RL
in the PPO for a fair comparison. We built our VSC-RL on the open repository of babyAI Chevalier-
Boisvert et al. (2019), hyperparameter settings are listed in Table 6. Overall, as shown in Figure 5,
our VSC-RL outperforms the baseline in all tasks remarkably, especially in the difficult task with the
increasing number of rooms. From the result of MultiRoom-N2-v0 shown in Figure 5(a), we can tell
that although PPO and VSC-RL both successfully reach 100% success rate, our VSC-RL shows a
better sample efficiency. For MultiRoom-N4-v0 (Figure 5(b)) and MultiRoom-N6-v0 (Figure 5(c))
where PPO is not able to learn any useful policy, while VSC-RL exhibits strong performance of 100%
and 80% success rate, respectively.

Table 6: Hyperparameter settings of VSC-RL on MiniGrid.

Hyperparameter Value
Batch Size 256
Total Steps 200,000

Discount Factor 0.99
Learning Rate 1e-3

Network Layers (Image) 3
Network Layers (Text) 1

Network Layers (Actor) 2
Network Layers (Critic) 2

Update Epoch (Actor Equation (5)) 4
Update Epoch (Critic Equation (6)) 4
Update Epoch (Actor Equation (7)) 4

Activation ReLU
Optimizer Adam
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(a) MultiRoom-N2-v0
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Figure 5: Learning curves on MultiRoom tasks of (a) 2 rooms, (b) 4 rooms, and (c) 6 rooms.
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E ADDITIONAL EXPERIMENTS: SUBGOAL GENERATOR IN VSC-RL

Improvement from Subgoal Generator. We investigate the importance of the subgoal generator
in our VSC-RL on the Web Shopping subsets with different horizon lengths (short, medium and
long). We implement VSC-RL with the original goal instead of the subgoals generated from VLM.
As shown in Figure 6, the subgoal generator can effectively improve the performance across all types
of Web Shopping tasks via autonomously decomposing the original goal into subgoals. Especially,
the subgoal generator can effectively enhance the 50% and 32% performance in the Web Shopping
medium and long tasks, respectively.
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Figure 6: Success rate on Web Shopping (a) Short, (b) Medium and (c) Long tasks of VSC-RL with
and without subgoal generator.

Verification of Subgoal Generator. To investigate the quality and feasibility of the generated
subgoals, we manually verify the results of the subgoal generator on 135 trajectories from the AitW
human demonstration. There are 135(100%) goals that are decomposed into feasible subgoals
successfully, and the final goal can be accomplished by reaching these subgoals sequentially. Specifi-
cally, there are 123(91.1%) goals that are decomposed into subgoals completely aligning with the
human demonstration. For the remaining 12(8.9%) goals, the subgoal generator provides alternative
subgoals different from human demonstration, but still can successfully arrive at the final goal.
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F ADDITIONAL EXPERIMENTS: WEBARENA-LITE

As shown in Table 7, we present the evaluation performance on specific WebArena-Lite tasks,
including Reddit, Gitlab, CMS (online store content management system), Map (OpenStreetMap),
and OSS (OneStopShop). We also provide the learning curves in Figure 7. These empirical results
demonstrate that our VSC-RL achieve the best performance across on all types of tasks, significantly
surpassing existing SOTAs.

Table 7: The evaluated performance on WebArena-Lite. The best performance is highlighted.

Method Task (# Ratio)
Reddit (12.7%) Gitlab (19.4%) CMS (21.2%) Map (18.8%) OSS (27.9%) All (100.0%)

SFT 36.8% 6.7% 20.0% 33.3% 17.8% 20.6%
Filtered BC 52.6% 20.0% 31.4% 23.3% 8.9% 23.0%
AWR 57.9% 26.7% 31.4% 26.7% 17.8% 28.5%
DigiRL 52.4% 28.1% 37.1% 32.3% 15.2% 30.3%
WebRL 57.1% 28.1% 34.3% 35.5% 15.2% 30.9%
VSC-RL (ours) 61.9% 31.3% 40.0% 35.5% 19.6% 34.5%
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Figure 7: Learning curves on (a) Reddit, (b) Gitlab, (c) CMS, (d) Map, (e) OSS, and (f) All tasks.
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G ADDITIONAL EXPERIMENTS: INCORRECT SUBGOALS

To assess the robustness of VSC-RL with respect to subgoal quality, we conducted an ablation study
in which the agent was intentionally provided with incorrect subgoals (e.g., incorrect websites or
irrelevant search items) during training. As shown in Table 8, VSC-RL fails to learn effectively under
these conditions, resulting in a substantial drop in performance. These results highlight the critical
importance of subgoal quality in the learning process and emphasize the necessity of reliable subgoal
generation for VSC-RL.

Table 8: Performance of VSC-RL with incorrect subgoals.

Correct Incorrect
Train 64.6% 19.8%
Test 58.3% 17.7%

H ADDITIONAL EXPERIMENTS: ABLATIONS ON SUBGOAL GENERATOR

We additionally integrated Qwen2.5-VL-72B and Qwen2.5-VL-3B (Bai et al., 2025) into VSC-RL,
respectively. As shown in Table 9, Gemini-1.5-Pro consistently outperforms all Qwen2.5-VL models
on both the train and test sets. Among the Qwen2.5-VL models, Qwen2.5-VL-72B outperforms
Qwen2.5-VL-3B, suggesting it produces higher-quality subgoals. The result indicates that the choice
of VLM significantly affects the quality of generated subgoals, which in turn impacts performance.
In future work, we plan to fine-tune the open-source VLM for generating subgoals with high quality
in the specific domain.

Table 9: Performance comparison with different VLM-based subgoal generators.

Gemini-1.5-Pro Qwen2.5-VL-72B Qwen2.5-VL-3B
Train 64.6% 60.4% 58.3%
Test 58.3% 56.3% 55.2%
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I FAILURE CASES ANALYSIS

We analyze the failure cases of VSC-RL on the Web Shopping test sets. We manually evaluate the
failure tasks and summarise the reasons as follows, categorising them as "Stuck Issue", "Wrong
Navigation", and "Technical Issue". Specifically, for our VSC-RL,

• "Stuck Issue" (37.5%), common failure modes include being unable to close the Chrome
started pop-up (12.5%) and repeatedly typing in the search bar without submitting the query
(25.0%). These indicate challenges in interface interaction and accurate action execution.

• "Wrong Navigation" (30.0%), the agent often reaches the correct website but deviates
from the target task by entering unrelated categories, showing challenges in interpreting
navigation menus.

• "Technical Issue" (32.5%) comprises cases such as getting stuck at CAPTCHA verification
(12.5%), page loading failures (2.5%), and LLM misjudgments (7.5%), which reflect either
site-level obstacles or model-level perception errors.

To align with the ablation results, Figure 8 shows the failure case distribution in the ablation results
of VSC-RL. Removing subgoals and policy gradient mainly increases "Wrong Navigation" errors,
while removing imitation loss raises both "Wrong Navigation" and "Stuck Issue".
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Figure 8: Failure case distribution in the ablation results of VSC-RL on the Web Shopping tasks.
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J PROMPT EXAMPLE

We provide the prompt example of the subgoal generator in our VSC-RL for a given goal and
corresponding decomposed subgoals in the MultiRoom (Figure 9), AitW (Figure 10) and WebArena-
Lite (Figure 11) tasks.

Prompt
=====Example=====
Q: Based on the provided {example_image} of the maze, 
      PLEASE provide the sequence of rooms for the agent (RED triangle) to reach 
      the goal (GREEN square).

A: To reach the goal, the agent need to open to doors to across rooms:
       1. Open the YELLOW DOOR
       2. Open the GREEN DOOR
       3. Open the PURPLE DOOR
       4. Open the YELLOW DOOR
       5. Open the RED DOOR
       6. Reach the GREEN GOAL

=====Your Turn=====
Respond in this format:
Q: Based on the provided {image} of the maze, 
      PLEASE provide the sequence of rooms for the agent (RED triangle) to reach 
      the goal (GREEN square).
      
A: To reach the goal, the agent need to open to doors to across rooms
       < DOORS >

Response
Q: Based on the provided {test_image} of the maze, 
      PLEASE provide the sequence of rooms for the agent (RED triangle) to reach 
      the goal (GREEN square).

A: To reach the goal, the agent need to open to doors to across rooms:
       1. Open the BLUE DOOR
       2. Open the GREEN DOOR
       3. Open the YELLOW DOOR
       4. Open the RED DOOR
       5. Open the GREEN DOOR
       6. Reach the GREEN GOAL

example_image

test_image

Figure 9: Prompt example for our subgoal generator for MultiRoom Benchmark. The generator
decomposes the goal of navigating the maze into subgoals like opening specific doors sequentially.
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Figure 10: Prompt example for our subgoal generator for tasks in AitW dataset. The generator
decomposes user commands into actionable subgoals, such as opening a browser, searching for items,
and selecting desired results.
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Figure 11: Prompt example for our subgoal generator for WebArena-Lite tasks. The subgoal generator
decomposes a user task into a sequence of more specific and actionable instructions based on the
provided HTML context.
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K QUALITATIVE EXAMPLE

We provide qualitative examples of VSC-RL applied to MultiRoom (Figure 12), AitW General
(Figure 13), AitW Web Shopping (Figure 14), WebArena-Lite Map (Figure 15), and WebArena-Lite
CMS (Figure 16).

Figure 12: Qualitative example of VSC-RL on the Multiroom task.

Figure 13: Qualitative example of VSC-RL on the AitW General task.
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Figure 14: Qualitative example of VSC-RL on the AitW Web Shopping task.

Figure 15: Qualitative example of VSC-RL on the WebArena-Lite Map task.

Figure 16: Qualitative example of VSC-RL on the WebArena-Lite CMS task.
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