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ABSTRACT

Large Language Models (LLMs) have recently made impressive strides in natural
language understanding tasks. Despite their remarkable performance, understand-
ing their decision-making process remains a big challenge. In this paper, we look
into bringing some transparency to this process by introducing a new explanation
dataset for question answering (QA) tasks that integrates knowledge graphs (KGs)
in a novel way. Our dataset includes 12,102 question-answer-explanation (QAE)
triples. Each explanation in the dataset links the LLM’s reasoning to entities and
relations in the KGs. The explanation component includes a why-choose explana-
tion, a why-not-choose explanation, and a set of reason-elements that underlie the
LLM’s decision. We leverage KGs and graph attention networks (GAT) to find the
reason-elements and transform them into why-choose and why-not-choose expla-
nations that are comprehensible to humans. Through quantitative and qualitative
evaluations, we demonstrate the potential of our dataset to improve the in-context
learning of LLMs, and enhance their interpretability and explainability. Our work
contributes to the field of explainable AI by enabling a deeper understanding of
the LLMs decision-making process to make them more transparent and thereby,
potentially more reliable, to researchers and practitioners alike. Our dataset is
available at: http://anonymous.4open.science/r/XplainLLM

1 INTRODUCTION

Large Language Models (LLMs) (Kenton & Toutanova, 2019; Liu et al., 2019; Brown et al., 2020;
Anil et al., 2023) have significantly influenced Natural Language Understanding (NLU) (Liu et al.,
2021; 2023), leading to performance improvements in various tasks. As these models continue to
make progress, it is important to understand the rationale behind their decision-making (Arrieta et al.,
2020). A deeper comprehension of the LLM decision-making process is crucial to fostering trust in
their predictions, enabling the design of more robust and reliable AI systems for end users.

Development of explainable AI (XAI) as an area of research has seen the emergence of a number
of methods that seek to explain the decision-making processes of machine learning models. Such
methods span from local explanation techniques such as LIME (Ribeiro et al., 2016) and SHAP
(Lundberg & Lee, 2017), to global explanation strategies such as feature importance (Casalicchio
et al., 2019). Despite substantial progress in explaining machine learning models, these methods
under-perform when deployed for LLMs, particularly in complex tasks such as question-answering
(QA), making the output difficult for humans to understand. The inherent complication and lack
of transparency in LLMs (Wu et al., 2022), combined with context-rich commonsense reasoning,
necessitates constructing more human-understandable and comprehensive explanations to faithfully
interpret their predictions.

Current explanation methods for LLMs primarily focus on attention mechanisms (Clark et al., 2019;
Bills et al., 2023) and feature-based interpretations (Jacovi et al., 2021). The former approach
bases the explanations on self-attention weights in models like BERT (Kenton & Toutanova, 2019)
and GPT-2 (Radford et al., 2019), and deduces correlations between input tokens and the model’s
predictions. However, the relationships highlighted in these generated explanations are difficult to
understand for humans. Moreover, attention can be difficult to interpret due to the typically complex
inter-layer interactions, and may not align the relative importance of tokens in the model’s reasoning
process (Hahn, 2020; Sajjad et al., 2022). Feature-based explanation methods, in contrast, aim to
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quantify the contribution of individual features or tokens to the model output, but they fail to capture
the wider context and relations that are fundamental to understanding the model’s reasoning (Molnar
et al., 2022).

We introduce XplainLLM, a dataset that addresses the growing need for transparency, explainability,
and understandability in the decision-making processes of LLMs. By integrating knowledge graphs
(KGs) and graph attention networks (GAT) (Veličković et al., 2018), our dataset provides a human-
understandable explanation of LLM decision-making in QA tasks. We link the LLM reasoning process
to the entities and relations within KGs to help provide an intuitive and interpretable representation
of the LLM’s decision-making process. Through the linked connections, researchers can gain deeper
insights into the underlying rationale for predictions. Our process can also help facilitate model
tuning, debugging, robustness evaluation and demonstration in in-context learning. XplainLLM
includes 12,102 question-answer-explanation (QAE) triples and aims to drive improvements in both
the performance and explainability of LLMs. Our evaluation shows that LLMs with explanations
enhance performance by an average of 2.4% when decision-making knowledge is transferred between
LLMs. LLMs with explanations outperform the benchmark, with a performance gap extending to
17%. The overall quality of explanations achieves an average score of 0.87/1 by human evaluators,
and an average of 0.89/1 by automated evaluators.

Contributions and significance of the dataset In this paper, we make several key contributions to
the field of explainable AI for LLMs:

• Bridging the Gap with Natural Language: To the best of our knowledge, XplainLLM is the
first dataset to capture the most influential elements behind the model reasoning and present
the decision-making process through human-understandable explanations. Our dataset
extends beyond merely explaining the “why”; we emphasize the “why not”, introducing a
novel paradigm in transparent AI explainability.

• Comprehensive Understanding of Model Reasoning: XplainLLM incorporates reason-
elements from KGs, top-ranked reason-elements, why-choose and why-not-choose expla-
nations. The goal is to empower the community to delve deeper into the decision-making
dynamics of LLMs. This work contributes to enhancing the knowledge and the transparency
of LLM reasoning.

• Aligning Human Understanding and Model Explainability: XplainLLM organizes the
decision-influencing elements into coherent natural language sentences. Our explanations
can be used in reinforcement learning from human feedback (RLHF) (Christiano et al.,
2017), to support related research. We evaluate the quality of our explanations through
both automated and human evaluations, and the results underscore our dataset’s quality on
multiple metrics.

2 RELATED WORK

Reasoning in LLMs XAI aims to address the issue of interpreting the outcomes of language
models (Li et al., 2023; Wiegreffe et al., 2021; Madsen et al., 2022). One of its goals is to generate
explanations that enable humans to easily understand the decision-making process. Zelikman et al.
(2022) introduce a method that iteratively generates the rationales step-by-step. Huang et al. utilize
the chain-of-thought (CoT) to find the rationale and apply the reasoning capabilities of LLMs to
robotic planning tasks. However, these explanations are inherently constrained in capturing prompt-
specific reasoning, limiting generalization to out-of-distribution scenarios and potentially missing the
decision-making process that our work focuses on.

Another goal is focused on explaining in a trustworthy way. Rajani et al. (2019a) introduces an
explainable factor to minimize the risk of unreasonable explanation generation. Chen et al. (2021)
integrate the external knowledge to generate why and why-not counterfactual explanations. Zelikman
et al. (2022) apply self-checker mechanism to ensure trusted rationals. However, these methods,
while enhancing performance or providing external explanations, fail to accurately capture the core
reasoning of LLMs. In contrast, our work enhances LLM trustworthiness and deepens human
understanding of its decision-making, improving the potential in end-user applications.
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Dataset Size Answer Format Expl. Format Source Model Match? Self-Explanatory? ”Why Not” Included?

CoS-E 9,500 MC NL Human × × ×
ECQA 10,962 MC NL Human × ✓ ×
Neuron 307,200 Neuron NL + Score Model ✓ × ×

XplainLLM 12,102 MC NL Model ✓ ✓ ✓

Table 1: Comparison of prevalent explanation datasets with ours, detailing instance count (Size),
answer types (Answer Format: e.g., multiple-choice (MC)), explanation styles (Explanation Format:
e.g., natural language (NL)), origin (Source), alignment with model reasoning (Model Match?),
necessity of human intervention to deduce the reasoning (Self-Explanatory?), and inclusion of
reasons for alternative answer rejection (”Why Not” Included?).

Explanation Datasets The explainable datasets for language models can be categorized into three
types (Wiegreffe & Marasovic, 2021): (1) highlights: provide input elements such as words and
phrases, as explanations to a predicted output (Camburu et al., 2018; DeYoung et al., 2020; Yin
et al., 2021; Bills et al., 2023); (2) free-text explanations: provide readable textual explanations
in words or sentences (Rajani et al., 2019b; Sap et al., 2020; Brahman et al., 2021); (3) structured
explanations: provide natural language explanation but are constrained by the explanation writing
process (Aggarwal et al., 2021; Jhamtani & Clark, 2020; Inoue et al., 2020). Different from these,
our explanation incorporates highlighted elements and guided instruction to generate a free-text
explanation. This unique combination can enhance both the trustworthiness and comprehensiveness
of the content. We present a comparison with prevalent explanation datasets ((Rajani et al., 2019b;
Aggarwal et al., 2021; Bills et al., 2023)) in Table 1.

3 METHODOLOGY

We choose QA as the context for studying the decision-making process of LLMs, as questions
facilitate an intuitive understanding of tasks and models. Given a pre-trained LLM M, our input
content Z includes question Q and a set of i possible answer choices A = {a1, a2, .., ai}. We denote
the answer chosen by the M with y. Our goal is to find an explanation Ewhy for why M chooses a
certain answer, and an explanation Ewhynot for why M does not choose the other options.

We introduce a GAT-based method to explain the decision-making process of M. We first tokenize
the combined sequence of Q and A into a content elements set X = {x1, x2, ..., xj}, where j
is the number of elements. Consider a graph ge with layers L = {l1, l2, ..., lk}, and nodes E =
{e1, e2, ..., en}, where k denotes the number of layers and n represents the node count. The nodes
and edges are constructed by pruning the retrieved sub-graph gk from the KG, guided by the input
content. We integrate ge and M for the final decision. Through a GAT model G, we obtain the
decision representations and convert them into meaningful, human-understandable explanations. We
delve into each step in the subsequent sections.

3.1 EXPLAINER MODEL

Our explainer model makes novel use of retrieved KG and GAT. Its architecture is illustrated in
Figure 1, and consists of three major stages: (a) graph construction, (b) decision interpretation, and (c)
controlled explanation generation. In this paper, interpretation refers to understanding of the model’s
weights by humans, e.g., attentions of concrete nodes or elements, or the weights in the model.
Explanation refers to explaining the model’s decision-making process in a manner comprehensible to
humans.

Graph Construction. To capture the pivotal components that impact the reasoning of M, we
construct a multi-relational graph, which fuses knowledge of M and gk. Given the input Q and A, we
follow (Yasunaga et al., 2021) to construct this graph, yielding an element-graph ge ⊆ gk. We begin
with question entities EQ and answer entities EA, both subsets of gk, indicating their respective
nodes can be located within gk. The gk is initially extracted from a KG, guided by EA and EQ,
and includes k-hop neighbors. Subsequently, gk is pruned based on the relevance score to yield
ge. Algorithm 1 (Appendix A.1) presents this procedure. ge serves as a compact and informative
representation of the important elements and relations in the decision-making process.
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Since the model identified keywords like delay and
taking care, it could infer that the clerk intends to hold 
onto the check for a certain period of time. 
Additionally, the keywords maintain and cease 
suggest that the clerk wants to keep the check in a 
secure location where it won't get lost or damaged. 
Lastly, the keyword delivery suggests that the clerk 
will eventually need to process the check, which is 
why the predicted option is cash register. This is 
where the check can be safely stored until it is ready 
to be deposited or processed.

The other potential choices can be ruled out due to 
the following reasons: Desk drawer and box: Too 
many potential locations to search through and not 
secure enough for holding financial documents. Pay
envelope: Not a common practice for clerks to use 
pay envelopes to store checks. Throw away: Not a 
feasible option as the clerk would need to keep the 
check for record-keeping purposes. Therefore, the 
predicted option of cash register remains the most 
likely choice.

Why-not-choose

Explanation

Figure 1: The data collection, processing and evaluation of XplainLLM dataset. In contrast to tradi-
tional black-box LLMs, our approach leverages external KG and GAT to interpret the decision-making
process of LLMs and extract the reason-elements. A generator model is involved in instruction-based
generation for why-choose and why-not-choose explanations. We evaluate the explanations with
experts, crowdsourcing and automated evaluators in eight various dimensions. The explanations can
benefit XAI, LLMs, RLHF and model understanding.

Decision Interpretation. Given the ge, we use GAT model G to obtain the representation of the
decision-making process. Consider any node et in ge, its neighboring nodes are denoted by N (et),
with a specific neighbor as es ∈ N (et). Each node has a feature-embedding hl

t at layer l, representing
its semantic features.

The feature-embedding hl
e of e is computed by the relevance score and three kinds of node embed-

dings: (1) node type-embeddings ut; (2) node feature-embeddings hl−1
t ; and (3) relation-embeddings

rt. The hl
t is calculated as following:

hl
t = fe(

∑
es∈N (et)∪{et}

αtsmts) + hl−1
t , (1)

where αts is the attention mechanism, mts is the message passing from es. The αts is used to discern
the critical connections in the decision-making process during the aggregation of message passing,
following the approach in (Veličković et al., 2018). The αts is calculated as following:

αts = softmax(et) =
exp(et)∑

v∈N (et)
exp(etv)

. (2)

The updated node features at the final layer of the G are considered as the final representations for
major reasoning. Further details of et, ut, rt and mts can be found in Appendix B.2.

In the learning and inference stage, the probability of selecting an answer is defined as P (a|q) ∝
exp(MLP (HM ,Hitp)), where Hitp = hl

t||Λ. Here, Λ represents the attention-based pooling of Ge,
and HM denotes the embedding from M. The representation of node E serves as a depiction of the
decision-making process. We identify E as the reason-elements for the later explanation generation.

Controlled Explanation Generation. After obtaining the reason-elements, they are converted
to human-understandable explanations by (1) extracting key reason-elements and (2) generating
explanations through instructions.

(1) We use the input content Z, predicted answer y of M, the reason-elements E, and attentions α to
identify explanation-critical nodes. The top m nodes, ranked by α, are selected and identified as key
reason-elements set R.

(2) We use R to guide the generation of precise and human-understandable explanations. We introduce
the generator model F, which imposes a structured format on the explanations: (1) a why-choose part
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Why-choose Why-not-choose Whole Explanation

Overall 59.92 59.48 119.39
Training Set 59.79 59.41 119.20

Dev Set 59.47 58.51 117.98
Testing Set 61.36 60.97 122.32

Table 2: The average word counts of why-choose explanation, why-not-choose explanation and whole
explanation in our XplainLLM dataset.

and (2) a why-not-choose part. The explanations provide the reasoning of M, detailing why specific
choices were made and others dismissed. The structures are defined as follows:

(1) W : [Z], P : [y], T : [O], C : [{R|R ∈ E}]; (2) I : [Ewhy], T̂ : [O],

where W , P , T , O, C, I and T̂ are the predefined structure guiding the generation process. Additional
details are elaborated in Appendix E.5.3.

3.2 DATA PREPARATION

The selection of M and the dataset plays an important role in studying the decision-making process
of LLM. Ideally, we hope our dataset to mirror common daily usage, helping the XAI community in
fostering future trust between humans and AI. As the first dataset explaining LLM decision-making
process in a human-understandable way, we commence our study from a foundational LLM.

The input question and answer choices are from the CommonsenseQA dataset (Talmor et al., 2019).
CommonsenseQA is a dataset about commonsense questions, sourced from human queries. We
use RoBERTa-Large (Liu et al., 2019) as our M, fine-tuning it on the official training set of Com-
monsenseQA. Given its foundational role in the LLM family (Zhou et al., 2023), understanding
its reasoning process is valuable. We utilize ConceptNet (Speer et al., 2017) as our KG to obtain
gk. This KG captures commonsense concepts and their interrelations. Our ge is structured as a
5-layer GNN model, and for F, we leverage GPT-3.5-turbo (Ouyang et al., 2022) to provide a natural
language explanation in a sentence or a paragraph. To ensure the quality of our dataset, we conduct
a post-generation evaluation. All explanations undergo human review. Human evaluators identify
inaccuracies, and any discrepancies in explanations, and return to F for refinement. This procedure
mitigates potential issues from model-generated explanations, guaranteeing clarity and relevance
aligned with human understanding. Further experimental specifics and data collection procedures are
provided in the Appendix E.5.1 and E.5.2.

3.3 DATASET DESCRIPTION

Schema. XplainLLM contains fields that correspond to the QA pair, the model’s predicted answer,
the ground-truth label, and an explanation set.

Explanations Set. The explanation set includes a set of 50 reason-elements E, e.g., words or phrases,
sorted by attentions, a set of top-5 reason-elements R, a why-choose explanation Ewhy in free-text
form, and a why-not-choose explanation Ewhynot also in free-text form. An example instance is
shown in Appendix D.4.

Statistics. XplainLLM includes 12,102 instances of explanations, split according to the official
CommonsenseQA’s partitioning into three sets: the training, development (dev), and testing sets. The
average word count of Ewhy and Ewhynot are 59.92 and 59.48 respectively, resulting in an aggregate
count of approximately 119.39 words per whole explanation. A more detailed breakdown of the
average word count is provided in Table 2. Additional statistics can be found in Appendix C.3.

Limitations. Committed to transparency and rigorous analysis, we acknowledge potential limitations
in our dataset. Since our R is originally derived from gk, any inherent limitations or inaccuracies
within gk could influence the quality of our explanations. Additionally, using different F might yield
variations.

Categorization. To evaluate the limitations and enhance comprehension of XplainLLM for future
applications, we classify the data into four categories according to the explanation set: (1) R is
effective for explanation generation; (2) additional knowledge is used in explanation generation; (3)
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#Examples Cat. (1) Cat. (2) Cat. (3) Cat. (4)

Overall 100 69.0% 12.0% 31.0% 4.0%
CP 74 71.6% 10.8% 27.0% 1.3%
IP 26 61.5% 15.4% 42.4% 11.5%

Table 3: The percentage distribution of the four categories: (1) utilizing reason-elements, (2) utilizing
alternative knowledge, (3) recognizing irrelevant reason-elements and (4) identifying incorrect
predicted answer, among 100 examples randomly sampled from our XplainLLM dataset.

R is irrelevant in explanation generation; and (4) Ewhy or Ewhynot indicates an incorrect y. Table 3
presents the percentage distribution of the 4 categories among 100 examples randomly sampled from
the testing set of XplainLLM, along with statistics for correct predicted answers (CP) and incorrect
predicted answers (IP). Note that each example may fall into multiple categories. The percentage
of Cat.(3) is lower for CP examples compared to IP examples, indicating the contribution of R to
the prediction performance. Additionally, Cat.(4) shows a similar distribution of real distribution,
demonstrating the effectiveness of R in improving model performance.

4 EXPERIMENTS AND EVALUATION

4.1 TASK SETTINGS AND MODELS

We demonstrate the XplainLLM dataset on two tasks: Task 1 (human-centered evaluation) - evaluating
explanation quality, and Task 2 (objective evaluation) - transferring explanation knowledge in LLMs.
Our baseline task is QA with no explanation.

Task 1: Evaluating Explanation Quality. Input = (Q,A, y,Ewhy,Ewhynot), Output = X .

In this task, we engaged three human experts to evaluate the quality of explanations. Each expert
has a graduate-level education (taught in English) and at least three years of research experience in
natural language processing (NLP). Additionally, we conducted evaluations with 50 general users
through crowdsourcing platforms to gauge their perception of the explanations and understand the
potential significance of the explanations in future human-centric applications. Specifically, we
utilized the Prolific platform (https://www.prolific.com) for these evaluations. Our participant pool
was gender-balanced, comprised of native English speakers with at least a high school education.
To mitigate human bias in evaluations, we adhered to the methodology outlined by (Hoffman et al.,
2018). We provided detailed instructions and examples to participants, to ensure consistent rating
standards. Details of these materials can be found in Appendix F.6. Inspired by EVAL1, we introduce
automated evaluator model A as complement to this task. We select two automated evaluators,
GPT-3.5-turbo and GPT-4, given their superior human-like comprehension and linguistic capabilities.
Their evaluation settings are the same as humans, provided with Q, A, y, Ewhy , Ewhynot, along with
instructions and examples. The output X is a set of normalized scores, standardized to maintain
consistent rating standards across various metrics. For a specific score XD based on evaluation metric
D is computed as follows:

XD = Fg(s̃D) (3)

Fg(s̃D|D,β) =

{
s̃D/max(sD), β = 1
min(sD)/s̃D, β = 0

(4)

where s̃D is an original score given by A or humans, Fg is a normalization function, sD is the
rating scale, and β is the metric type. Specifically, β = 1 implies a higher score indicates better
performance, whereas β = 0 suggests a lower score is preferable. In our study, the rating scale
bounds are given by max(sD) = 3 and min(sD) = 1.

Task 2: Transferring Explanation Knowledge in LLMs. Input = (Q,A,Ewhy), Output = ỹ.

In this task, we investigate the potential of transferring explanation knowledge to improve the
performance of other LLMs, denoted as L. Given the Q, A and Ewhy, L is to identify the correct
answer choice ỹ ∈ A. The task seeks to find

ỹ = argmaxỹ∈AP(ỹ | Q,A,Ewhy) (5)

1Evals is a framework introduced by OpenAI, designed for the automated evaluation of LLMs:
https://github.com/openai/evals.
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whereP is the probability of answer choice. The goal is to evaluate if the inclusion of decision-making
explanations can enhance the accuracy of L’s answers. While models like GPT-3.5 are powerful in
many tasks, they may fail in commonsense questions compared to the supervised models (Khashabi
et al., 2020; Yasunaga et al., 2021; Zhang et al., 2022b). We evaluate under three settings: vanilla,
CoT, and self-consistency (Wang et al., 2022). The vanilla approach processes QA pairs directly.
In contrast, CoT leverages examples with human-labeled reasoning steps, and the self-consistency
approach employs a majority voting strategy. For this task, we utilize GPT-3.5-turbo as our L.

Baseline Task: Question Answering without Explanation. Input = (Q,A), Output = ỹ.

In this task, we explore the capabilities of LLMs in a pure QA task. The input only consists of Q and
A. The LLM L then produces a predicted answer ỹ. The problem is formulated as follows:

ỹ = argmaxỹ∈AP(ỹ | Q,A) (6)

We use GPT-3.5, BLOOM 176B (Scao et al., 2022), GPT-NeoX (Black et al., 2022), Bloomberg GPT
(Wu et al., 2023), and OPT 66B (Zhang et al., 2022a) as L in this task.

4.2 EVALUATION METRICS

We evaluate the quality of explanations from both human and objective perspectives. Our goal is a
comprehensive and fair evaluation. We aim to present a thorough and fair evaluation of the expla-
nations. These dual perspectives help us discern the strengths and weaknesses of the explanations,
guiding potential directions for their improvement.

Human-centered Metrics. (Task 1) We follow (Hoffman et al., 2018) to measure the quality and
relevance of the explanations. Each explanation is presented with eight evaluative questions, repre-
senting distinct evaluation dimensions. Our human-centered evaluation metrics encompass: overall
quality, understandability, trustworthiness, satisfaction, detail sufficiency, irrelevance, completeness,
and accuracy. Detailed definitions and the specific survey questions are provided in the Appendix
F.6.2 and F.6.1. Evaluators allocate scores to these questions using a three-point Likert scale: 1
(disagree), 2 (neutral), and 3 (agree). Subsequently, scores are normalized by Fg to the range [0, 1].
Higher scores suggest better quality.

Objective Metrics. (Task 2, Baseline Task) We use model accuracy, a foundational metric of
performance, to evaluate the ability of LLMs M or L in selecting the correct answers. Accuracy is
determined by the ratio of questions where the model’s selected answer aligns with the ground truth.
A higher accuracy implies that the model is more capable of choosing the correct answer among
alternatives.

5 RESULTS AND DISCUSSION

5.1 HUMAN-CENTERED EVALUATION

We conducted human-centered evaluations to go beyond the technical evaluation of the explanations
and see how they are rated by humans, to determine potential for use in future human-centered
applications. In this evaluation, participants were asked to evaluate a set of 20 QAE triples, randomly
selected from our dataset.

5.1.1 EXPERT AND AUTOMATED EVALUATION

In this evaluation, the feedback from human experts highlighted the distinctiveness of our explanations
compared to previous methods. One expert remarked, ”In comparison to prior explanations, these
explanations provide a more intuitive understanding of the model’s decision-making process. The
explanations are cogent, and even in instances of erroneous predictions, the underlying reasoning
remains transparent and comprehensible.” This feedback underscores the clarity and transparency of
our explanations.

The detailed scores provided by human experts are shown in Table 4. Across eight evaluation
metrics, the explanations received an impressive average score of 0.93. Notably, the metrics of
“understandability” and “completeness” garnered the highest average scores, reflecting the success of
our approach in delivering human-understandable insights into the LLM’s decision-making process.
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Overall Quality Understandability Trustworthiness Satisfaction Sufficiency of detail Irrelevance Completeness Accuracy

GPT-3.5 0.98 0.98 0.98 0.98 0.98 0.53 0.98 0.98
GPT-4 0.90 0.93 0.87 0.87 0.88 0.69 0.87 0.88

Human Expert 0.91 0.97 0.95 0.89 0.98 0.85 0.97 0.93

Table 4: Evaluation by automated evaluator GPT-3.5, GPT-4, and human experts, on 8 evaluation
metrics.

However, it’s worth noting that the metric of “irrelevance” received a slightly lower score of 0.85,
suggesting that there might be instances where our explanations include some irrelevant details. This
is an area we aim to refine in the future work.

Overall Quality

Understandability

Trustworthiness

Satisfaction

Sufficiency of Detail

Irrelevance

Completeness

Accuracy

0 0.2 0.4 0.6 0.8 1

GPT-3.5
GPT-4
Expert

Loading [MathJax]/extensions/MathMenu.js

Figure 2: Evaluation by hu-
man experts, automated eval-
uator GPT-3.5 and GPT-4.

The automated evaluator A follows in-context learning to simulate
human expert evaluation. Both GPT-3.5 and GPT-4 demonstrated
a commendable ability to discern the quality of explanations. The
results show in Table 4 and Figure 2. Notably, the performance
of these automated evaluators aligns closely with human expert
evaluations across most dimensions.

Further insights into the human-like understanding of automated
evaluators and their assessment of explanations are detailed in Table
5. This data shows a significant agreement between the automated
evaluators and human experts. The scores assigned by A correlate
with those given by human experts, underscoring A’s adeptness in
evaluating explanations. Such findings further support the credibility
and value of our explanations.

5.1.2 CROWDSOURCING EVALUATION

Expert - GPT-3.5 Expert - GPT-4 GPT-3.5 - GPT-4

R 0.70 0.60 0.66

Table 5: Correlation coefficient between overall quality
scores evaluated by expert, GPT-3.5 and GPT-4. R denotes
the correlation coefficient.

The average scores from crowdsourcing
on eight metrics are shown in Figure 3.
We show the average score of the overall
explanations, explanations for correct
predictions (CP), and explanations for
incorrect predictions (IP). The detailed
analysis is shown below.

Participants rated our explanations with
a high average score of 0.87 for overall
quality, suggesting a favorable perception. As this score is closer to the maximum, it underscores the
above-average quality of our explanations and highlights the efficacy of our method in clarifying the
decision-making process of LLMs.

Overall quality
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Satisfaction

Sufficiency of detail

Irrelevance

Completeness

Accuracy

0 0.2 0.4 0.6 0.8 1

Overall
CP
IP

Loading [MathJax]/extensions/MathMenu.js

Figure 3: Evaluation on ex-
planations, Overall, CP and
IP, by humans. Note that CP
aligns closely with the over-
all score.

Our explanations achieved an average understandability score of
0.89, indicating a high level of clarity for participants. A variance
score of 0.26 suggests consistent comprehension. However, a deeper
dive reveals a disparity based on the LLM’s prediction accuracy.
Correct predictions (CP) had a strong average score of 0.91 and a
variance of 0.26, underscoring their clarity. In contrast, incorrect
predictions (IP) had a lower average of 0.74 and a variance of 0.65,
suggesting they were less clear and elicited more varied responses
from participants.

Our explanations exhibited notable trustworthiness, averaging a
score of 0.88 in CP. We also examined the correlation between trust-
worthiness and understandability. A Pearson coefficient of 0.71
indicates a strong positive relationship, suggesting that as partici-
pants better understood the explanations, their trust in the LLM’s output correspondingly increased.

Participants expressed broad satisfaction with our explanations, with 86% indicating they met or
surpassed expectations. A notable 97.36% of explanations were deemed to have sufficient detail.
While a minor 4.54% were viewed as containing irrelevant details, the majority consensus underscored
the focus and relevance of our explanations.
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GPT-3.5 BLOOM176B GPT-NeoX Bloomberg GPT OPT66B

Acc. 72.3% 64.2% 60.4% 65.5% 66.4%
Gap 5.1% 13.2% 17.0% 11.9% 11.0%

Table 7: The benchmark of various LLMs on CommonsenseQA test set. For ease of comparison, we
include the performance gap relative to the “GPT-3.5+explanations (self-consistency)”. The reported
results for BLOOM, GPT-NeoX, Bloomberg GPT, and OPT are sourced from (Wu et al., 2023).

Our completeness received an average score of 0.81, suggesting overall satisfactory coverage. Notably,
the median score was the maximum of 1, meaning over half of participants deemed our explanations
entirely complete. This split might reflect differences in evaluators’ AI backgrounds or occasional
oversimplification by the model.

Our explanations achieved an accuracy score of 0.84, reflecting a positive perception. However, a
deeper dive reveals a disparity: explanations for correct predictions (CP) scored 0.87, while incorrect
predictions (IP) averaged 0.64. This highlights that the LLM’s prediction accuracy significantly
influences explanation accuracy. Furthermore, a Pearson correlation of 0.68 between accuracy and
trustworthiness suggests that more accurate explanations are deemed more trustworthy.

Crowdsourcing evaluations provide a robust validation of our explanations. The positive feedback
highlights the effectiveness of our approach in conveying the complexities of the LLM’s decision-
making in a manner that is clear, trustworthy, and satisfying to humans.

5.2 OBJECTIVE EVALUATION
Accuracy GPT-3.5 GPT-3.5

+explanations Improvement KG+LM
fine-tuned (Ours)

Vanilla 72.3% 75.0% 2.7% 77.3%
CoT 73.7% 75.9% 2.2% ——

Self-consistency 75.2% 77.4% 2.2% ——

Table 6: Comparison of accuracy of various methods w/ and
w/o explanation in a QA task.

We introduce Ewhy explanations
representing the decision-making
process of a LLM, as additional
context to the evaluation LLMs.
Ewhy captures the reasoning be-
hind selecting certain answers. We conducted the evaluation using the zero-shot setting.

We demonstrate the results in Table 6. When evaluating the impact of incorporating explanations, we
observe substantial gains in model accuracy. Specifically, we note enhancements of 2.7%, 2.2%, and
2.2% under the vanilla, CoT, and self-consistency settings respectively. This increase is an indication
that the understanding of decision-making processes can be effectively transferred between language
models. We also compare the evaluation model with our fine-tuned KG+LM model (as shown in
Figure 1). LLMs with explanations exhibit competitive performance compared to the fine-tuned
KG+LM model, even within zero-shot settings. As demonstrated in the baseline benchmark (Table
7), LLMs with explanations outperform others, with an advantage reaching up to 17%.

6 CONCLUSION

In this work, we pioneer a knowledge-enhanced method to explain the decision-making process of
LLMs. This innovative approach not only generates reasoning explanations but also deepens our
understanding of how LLMs operate. Based on this method, we create XplainLLM, a comprehensive
dataset that comprises 12,102 commonsense questions, each accompanied by a why-choose and a
why-not-choose explanation that reveals the LLM’s reasoning behind its response. Furthermore, our
work provides a human-centered and objective evaluation, confirming the quality and faithfulness of
the generated explanations. The results demonstrate the value of our explanations in revealing the
LLMs’ decision-making processes.

Our work opens up new avenues for improving the explainability of LLMs and aligning their decision-
making to something that is more human-understandable. We believe that XplainLLM, combined
with our knowledge-enhanced approach, will prove to be a valuable resource for further research
in these directions, fostering increased transparency and understanding of LLM decision-making
processes.
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A.1 GRAPH CONSTRUCTION ALGORITHM

Algorithm 1: Graph Construction
Data: Graph g with nodes n, input content z, encoding function of M fenc, MLP fscore,

Number of top nodes to select N
Result: Pruned graph ge (element-graph)

1 begin
2 Initialize an empty list node scores ;
3 for each node n in g do
4 Obtain the embedding of n: B ← fenc(n||z) ;
5 Compute the relevance score of n: nscore ← sigmoid(fscore(B)) ;
6 Append (n, nscore) to node scores ;
7 end
8 Sort node scores in descending order based on nscore ;
9 Select the top N nodes from the node scores list ;

10 Create a new graph ge with the selected L nodes, preserving their edges and properties ;
11 return ge ;
12 end

B.2 ADDITIONAL DETAILS OF DECISION INTERPRETATION

In section 3.1, we introduce the method for interpreting the decision-making process. We provide
supplementary calculations in this section.

A k-layers GAT G is used to extract the representation from element-graph Ge. As introduced in the
main paper, the node feature hl

t is determined as follows:

hl
t = fe(

∑
es∈N (et)∪{et}

αtsmts) + hl−1
t , (7)

The G plays a role in updating a node feature by aggregating neighbours messages. The message
mts is computed according to the node properties:

mes = fn(h
l
t, ut, rts), (8)

where fn is linear transformation, ue is the one-hot vector corresponding to the type of node et, and
rts is the relation embedding that indicates the relation information in the edge (Yasunaga et al.,
2021). rts is obtained by

rts = fθ(ets, uts) = fθ(ets, ut||us), (9)
where uts is an one-hot vector for the type of connection between et and es, and ues is the concatena-
tion of ut and us.

The attention αts of node et is computed by a query vector qe and a key vector ke,

αts = softmax(et) =
exp(et)∑

v∈N (et)
exp(etv)

= softmax

(
q⊤
t ks√
D

)
(10)

where D is the feature dimension. qe and ke are computes by:

qt = fq(h
l
t, ut, nscore),ks = fk(h

l
t, ut, nscore, rts), (11)

where fq and fk are linear transformations, and nscore represents the relevance score as computed in
Algorithm 1.

C.3 EXPLANATION STATISTICS

Figure 4 is a word cloud showing the most frequently appearing words in the why-choose explanations.
From this figure, we have a clear indication that why-choose explanations focus on explaining,
comprehension, and interpreting predictions made by the target model.
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Figure 4: why-choose explanations. Figure 5: why-not-choose explanations.

Figure 5 presents a word cloud for why-not-choose explanations. We note that these explanations
outline the reasons behind the non-selection of specific options as predicted answers. Furthermore,
why-not-choose explanations emphasize how the target model determines the likelihood of different
answer choices. We also observe that the target model handles a wide array of topics, which can be
crucial components in the “why not” reasoning process.

D.4 INSTANCE EXAMPLE

We present an example from our dataset to illustrate the data instance.

Explanation Example

Question: The people danced to the music, what was the music like for them?
Answers: soothing, vocal or instrumental, loud, universal, enjoyable
Label: enjoyable
Predicted Label Index: 4
Label Matched: true
Reason-elements: play mozart, listening to classical music, together, abnd, dancefest, irrita-
tion, ...
Top-k Reason-elements: play mozart, listening to classical music, together, abnd, dancefest
Explanation (Why): Since the words ”play mozart” and ”listening to classical music”
suggest that the music was likely of high quality and enjoyable to listen to, and since the
words ”together” and ”dancefest” suggest that the people were likely in a social and festive
setting, the model predicts that the music was enjoyable for them. Therefore, the predicted
option is ”enjoyable”.
Explanation (Why-Not): The other potential choices can be combined into three categories:
1) ”soothing” and ”vocal or instrumental” do not match with the festive and social setting
suggested by the words ”together” and ”dancefest”; 2) ”loud” is not necessarily correlated
with enjoyment and could be unpleasant for some people; 3) ”universal” does not give any
indication of the quality or character of the music, and is therefore too vague to be a valid
choice.

The format of our dataset is as follows:

Data Schema Description

question: typeof(string)
answers: typeof(list of strings)
label: typeof(string)
predicted label: typeof(string)
label matched: typeof(boolean)
concept: typeof(list of strings)
topk: typeof(list of strings)
explanation why: typeof(string)
explanation why not: typeof(string)
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E.5 EXPERIMENTS

In this section, we describe the details of our evaluation that were omitted in Section 4 due to space
constraints.

E.5.1 MODEL PARAMETERS

To train our M, we use a dropout rate of 0.2, a batch size of 64, and a learning rate of 1e-5, optimized
with RAdam. The model is fine-tuned on a single NVIDIA A100 GPU for approximately 3 hours.
Our gk containing 799,273 nodes and 2,487,810 edges. Our ge is pruned based on gk to retain 200
high-ranking nodes with a hop size of 2. The G, specifically, consists of 200 dimensions and 5 layers.
The learning rate in our experiments is 1e-3.

For GPT-3.5 and GPT-4, we set the temperature, the frequency penalty and the presence penalty to be
0.0, and the top probability to be 1.0. All experiments involving GPT-3.5/4 are conducted through the
available online API. The example of in-context learning in the CoT setting (i.e. Table 6) follows
the original work (Lu et al., 2022). For self-consistency setting in Table 6, we sampled 5 possible
answers for each question and picked the most likely one.

E.5.2 DATA COLLECTION

1⃣  Model Decision-making Process

 Input 

[ ] A person writes a check to a 
clerk, where does the clerk put 
them?                            
[ ] A. reading B. meditate C. fall 
asleep D. bunk E. think

q

a

LLM + GAT Model

2⃣  Process Interpretation

AnswerRanked  
reason-elements

3⃣  Controlled Explanation Generation

 Stage 1: why-choose Explanation   Stage 2: why-not-choose Explanation  

Question Answer Ranked REs Instruction why-chooseStage 1 Elements Instruction(Stage 1 Output)

4⃣  Refinement

Human 
evaluations

Figure 6: Data Collection Process.

Figure 6 shows the process of data collection:

(1) Given a question, we retrieve its relevant knowledge using the KG. The retrieved graph is then
pruned based on scores influenced by the LLM, resulting in what we term the element-graph. The
element-graph is processed by a specialized GAT model (known formally as Decision Interpretation).
Leveraging attention mechanisms, we obtain the essential representations for interpretation.
(2) The model’s decision-making is interpreted through the ranked reason-elements and the predicted
answer.
(3) A controllable dual-stage process generates the explanations: Stage 1: The initial phase focuses
on generating the “why-choose” explanations. Stage 2: Building upon the outputs and elements of
Stage 1, we then generate the “why-not-choose” explanations.
(4) We conduct a human evaluation to identify errors in the explanations. If discrepancies arise,
explanations are reverted to Step 3 for refinement. This process not only helps prevent potential
issues arising from bad explanations generated by the LLM but also maintains human-aligned clarity
and relevance.

E.5.3 INSTRUCTIONS FOR EXPLANATION GENERATION

The generator model F generates why-choose and why-not-choose explanations of the LLM M’s
behavior based on a predefined set of instructions.
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Recall that explanations are generated using instructions of the form

(1) W : [Z], P : [y], T : [O], C : [{R|R ∈ E}]; (2) I : [Ewhy], T̂ : [O], (12)

Specifically, the instruction symbols W , P , T , O, C, I and T̂ have the following meanings:

1. W represents “The question is ...”
2. P represents “The predicted choice is ...”
3. T represents “According to the model top reason-elements, explain the model reasoning process
using ...”
4. O represents ⟨since..., ....⟩
5. C represents “The top reason-elements are”.
6. I represents “According to ...”

7. T̂ represents “Explain why the model doesn’t choose other answers ...”

F.6 EVALUATION MATERIALS

F.6.1 QUESTIONS AND EVALUATION INSTRUCTIONS

For each QAE triple, we provide eight questions for evaluators. Each question includes three score
levels: 1 for disagree, 2 for neutral, and 3 for agree. The questions and instructions in our evaluation
are as follows:

Q0: This is a good explanation
1 (Disagree) The explanation is illogical or inconsistent with the question and/or does not adequately cover the answer choices.
2 (Neutral) The explanation is somewhat logical and consistent with the question but might miss some aspects of the answer choices.
3 (Agree) The explanation is logical, consistent with the question, and adequately covers the answer choices.

Q1: I understand this explanation of how the AI model works.
1 (Disagree) The explanation is unclear or contains overly complex terms or convoluted sentences.
2 (Neutral) The explanation is somewhat understandable but might contain complex terms or convoluted sentences.
3 (Agree) The explanation is clear, concise, and easy to understand.

Q2: I trust this explanation of how the AI model works.
1 (Disagree) The explanation is unclear or contains overly complex terms or convoluted sentences.
2 (Neutral) The explanation is somewhat credible but contains some elements that I find doubtful or questionable.
3 (Agree) The explanation is credible and aligns with my understanding of how AI models work.

Q3: This explanation of how the AI model works is satisfying.
1 (Disagree) The explanation does not meet my expectations and leaves many questions unanswered.
2 (Neutral) The explanation somewhat meets my expectations but leaves some questions unanswered.
3 (Agree) The explanation meets my expectations and satisfies my query.

Q4: This explanation of how the AI model works has sufficient detail.
1 (Disagree) The explanation lacks detail and does not adequately cover the AI model’s decision-making.
2 (Neutral) The explanation provides some detail but lacks thoroughness in covering the AI model’s decision-making.
3 (Agree) The explanation is thorough and covers all aspects of the AI model’s decision-making.

Q5: This explanation of how the AI model works contains irrelevant details.
1 (Disagree) The explanation does not contain any irrelevant details.
2 (Neutral) The explanation contains some irrelevant details.
3 (Agree) The explanation contains many irrelevant details.

Q6: This explanation of how the AI model works seems complete.
1 (Disagree) The explanation does not adequately cover the answer choices and leaves many aspects unexplained.
2 (Neutral) The explanation covers most answer choices but leaves some aspects unexplained.
3 (Agree) The explanation covers all answer choices and leaves no aspect unexplained.

Q7: This explanation of how the AI model works is accurate.
1 (Disagree) The explanation does not accurately reflect the AI model’s decision-making.
2 (Neutral) The explanation somewhat reflects the AI model’s decision-making but contains some inaccuracies.
3 (Agree) The explanation accurately reflects the AI model’s decision-making.

F.6.2 DETAILS OF HUMAN-CENTERED METRICS

The meaning of metrics used in the human-centered evaluation are as follows:
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1. Overall quality reflects the overall effectiveness of explainability. It reveals how effectively
explanations convey the decision-making process of the AI models to the human users.
2. Understandability evaluates how well a human can comprehend the model’s output and explana-
tions. It captures the clarity and coherence of the generated text.
3. Trustworthiness measures the human evaluator’s confidence in the model’s outputs and ex-
planations. It evaluates whether the explanations appear reliable, credible, and based on sound
reasoning.
4. Satisfaction captures the overall contentment of the evaluator with the explanations. It measures
whether the outputs meet the evaluator’s needs and expectations in terms of quality, relevance, and
utility.
5. Sufficiency of detail evaluates whether the explanations provide a sufficient level of detail. It
evaluates whether the responses are adequately descriptive and provide all necessary information to
fully answer the question or task.
6. Irrelevance evaluates whether the explanations include any unnecessary or irrelevant information.
7. Completeness measures whether the explanations address the decision behaviors of the model.
8. While we also measure accuracy objectively, the human evaluation of accuracy assesses whether
the explanations align with the evaluator’s knowledge or expectations. It measures whether the
explanations can reflect if the model’s outputs are factually correct and contextually appropriate.
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