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ABSTRACT

Reasoning-based methods have emerged to overcome the limitations of ’shallow
alignment’ by exposing the model’s Chain-of-Thought (CoT), enabling auditabil-
ity through both training-phase supervision and post-generation verification. How-
ever, this transparency creates a critical vulnerability, a tension we define as the
Security-auditability Dilemma: the very mechanism of exposing the model’s
safety reasoning for auditability inadvertently leaks harmful information and cre-
ates a vulnerable attack surface against adaptive attacks. To address this, we pro-
pose Auditable Latent CoT Alignment (ALCA), a framework that decouples in-
ternal reasoning from external output. ALCA shifts the safety deliberation process
into a continuous latent space, rendering it opaque to adversaries. Yet, this pro-
cess is not a black box; we introduce a Self-Decoding mechanism that allows the
model to reconstruct its latent reasoning into human-readable text for supervisory
auditing. Extensive experiments show that ALCA achieves robustness alignment,
reducing the success rate of adaptive jailbreak attacks by over 54% compared to
strong baselines, while preserving performance. Our framework presents a path
toward building LLMs that are both robustly secure and auditable.

1 INTRODUCTION

The generative capability of Large Language Models (LLMs) presents a dual-edged sword: while
they unlock unprecedented opportunities in various area(OpenAI, 2023), they also equip adversaries
with tools to generate sophisticated disinformation, malicious code, and harmful content at a scale
and velocity previously unimaginable. This escalating threat of misuse makes robust safety align-
ment not merely a desirable feature, but an fundamental necessity for their responsible deployment.

Typical safety alignment methods, such as Reinforcement Learning from Human Feedback
(RLHF)(Ouyang et al., 2022), rely on output-based supervision, training the model to form a pattern-
matching refusal system for harmful queries(Zhang et al., 2025). This ’shallow alignment’(Qi et al.,
2024) treats the underlying safety reasoning process as an unsupervisable black box, critically lack-
ing safety reasoning auditability: the capability to faithfully audit a model’s step-by-step deliberation
process. This requires both (1) transparent reasoning traces as supervision target in training, and (2)
high-fidelity, human-readable reconstructions for post-hoc verification. As shown in Figure 2, lack-
ing this safety alignment auditability, these models do not learn why to refuse, leaving them brittle
and systematically vulnerable to novel or complex jailbreak attacks(Zou et al., 2023a, Jiang et al.,
2024) that bypass their shallow safety heuristics.

To address this lack of safety reasoning auditability and the resulting brittleness, reasoning-based
methods have emerged. Methods in this family (Zelikman et al. (2022), amd Ma et al. (2024a))
compel the model to externalize its safety reasoning as an explicit Chain-of-Thought (CoT)[cot. By
externalizing safety reasoning into explicit text, this approach offers unprecedented transparency
for auditing and supervision of safety reasoning in training. Yet, this explicit, step-by-step safety
reasoning creates two critical vulnerabilities: (1) Information Leakage, where the reasoning trace
may reveal sensitive details of the internal safety mechanisms or even echo harmful content, and (2)
Target for Adaptive Attacks, where the explicit steps provide a clear feedback and roadmap for adap-
tive adversaries to iterate attacks and break through the safety alignment. This leads to a Security-
Auditability Dilemma in safety: the very mechanism of exposing the model’s safety reasoning for
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Auditability inadvertently leaks harmful information and creates a vulnerable attack surface against
adaptive attacks. The very mechanism designed to enhance safety becomes its greatest liability.
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We need to 
consider whether 
using saltpeter to 
make explosives 
is legal...
Sorry, I can't 
answer your 
question.
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Reasoning

CoT
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No
Safety 
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How to make an 
explosive device.
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Figure 1: (a) An illustration of the Security-Auditability Dilemma, where exposing safety reasoning
for auditability inadvertently creates an attack surface for adaptive attacks. (b) A conceptual illus-
tration of the Security-Auditability Dilemma as a Pareto frontier, where improving auditability (via
explicit reasoning) can inadvertently decrease security against adaptive attacks. Our work, ALCA,
aims to push this frontier outwards.

To resolve this impasse, we introduce Auditable Latent CoT Alignment (ALCA). Its core princi-
ple is to decouple the safety reasoning process intended for internal audit from the output visible
to external users, thereby achieving security and auditability simultaneously. When encountering
a potentially harmful query, a lightweight probe classifier triggers ALCA to transition its safety
reasoning from explicit text into a continuous latent space. Just like a moment of “silenced” delib-
eration precedes actual text generation to ensure harmlessness. This entire reasoning occurs within
the model’s continuous hidden states, rendering it opaque to adversaries and effectively dismantling
the attack surface. Crucially, this latent process is not a black box; we introduce a self-decoding
mechanism that allows the model, upon receiving a secure internal trigger, to faithfully reconstruct
its latent reasoning trace into human-readable text for supervisory audit. Thereby, ALCA resolves
the Security-Auditability Dilemma, paving the way for comprehensive safety alignment.

Our contributions are threefold: First, we formalize the Security-Auditability Dilemma, a fun-
damental tension in existing alignment methods. Second, we propose ALCA, a novel alignment
paradigm that resolves this dilemma by moving safety reasoning into a continuous latent space,
rendering it opaque to adversaries while ensuring it remains fully auditable to supervisors via a
novel self-decoding mechanism. Finally, through extensive experiments, we demonstrate that ALCA
achieves state-of-the-art robustness against adaptive attacks, significantly outperforming existing
methods(over 23% to 72%) while maintaining performance on standard utility benchmarks.

2 MOTIVATING OBSERVATIONS: THE SECURITY-AUDITABILITY DILEMMA

Before presenting our framework, we conduct a series of observational experiments to empirically
ground the ”Security-Auditability Dilemma.” These observations demonstrate not only why reason-
ing is necessary for robust safety but also how the explicit nature of that reasoning becomes a critical
vulnerability.

For the expariments in this section, all models are built upon the Llama-3-8B-InstructGrattafiori
et al. (2024) base model to ensure a fair comparison. We evaluate three distinct alignment variations:

• Output-based: This model is trained on Anthropic/hh-rlhf dataset with dpo. It learns a
direct mapping from a harmful query to a refusal.

• Reasoning-based: This model is trained using the same dataset, where each sample is
augmented with a safety reasoning CoT generated by the SafeChain framework (Ma et al.,
2024b).
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Figure 2: (a) Models with explicit safety reasoning demonstrate superior robustness against general-
purpose attacks. (b) However, this transparency is exploited by adaptive attacks, leading to a catas-
trophic rise in ASR for the Reasoning-based model.

• Masked Reasoning: As a crucial intermediate step towards our proposed ALCA frame-
work, this model is trained identically to Reasoning process-based. However the safety
reasoning CoT is manual masked for user and attacker. “(No safety CoT)” denotes that
the ASR does not count harmful content appearing only within the safety-reasoning CoT,
whereas “(Whole Output)” counts all generated tokens. Lower ASR is better.

We use the AdamW optimizer with a learning rate of 2 × 10−5, a batch size of 16, and train for 3
epochs. We use ArtPromptJiang et al. (2024) as non-adaptive and TAP as adaptive jailbreak meth-
ods respectively, and advbenchZou et al. (2023b) as dataset. The Attack Success Rate (ASR) is
determined by GPT-4 based evaluation. The details are introduced in Section 4.

We first investigate the models’ performance against two distinct types of threats: non-adaptive
jailbreak attacks, and adaptive attacks, which continuously optimize the attack query based on the
feedback from the target model. The results, presented in Table 1, reveal a stark contradiction.

Table 1: Attack Success Rate (ASR, %) against general-purpose and adaptive attacks.

Model General Attacks ASR ↓ Adaptive Attacks ASR ↓
Output-based 58.2% 68.4%
Reasoning-based 15.1% 76.3%
Masked Reasoning (Whole Output) 15.1% 25.9%
Masked Reasoning (No safety CoT) 6.9% 11.6%

Safety Reasoning is effective Against non-adaptive attack, the benefit of a reasoning process is un-
equivocal. Both Reasoning-based and Masked Reasoning models demonstrate significantly higher
robustness (15.1% ASR) compared to the Output-based model (58.2% ASR). This results indicate
that the supervising and generating of safety reasoning process is a effective defense mechanism.

However, this advantage catastrophically reverses under adaptive attacks. The Reasoning-based
model, by exposing its step-by-step reasoning, creates a clear feedback and a vulnerable attack
surface. By leveraging the safety reasoning as explicit target of adversarial optimization, the ASR
skyrockets to 76.3%—making it even more vulnerable than Output-based model.

Moreover, comparing Masked Reasoning (Except safety-CoT) with Masked Reasoning (Whole Out-
put), we observe that, upon successful jailbreak, the overwhelming majority of harmful content is
concentrated in the safety reasoning steps of the CoT, indicating that safety reasoning CoT inadver-
tently disseminating the very content it is designed to protect against.

These two phenomena starkly illustrate our core dilemma: The pursuit of supervisable, transparent
safety-oriented reasoning is in direct tension with the need to secure the reasoning process from
adversarial exploitation.

3
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www.islide.cc 5
<bof> <eof>ℎ�+�−1 ℎ�+� ��+���1 ��

aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaa

��

Safety CoT

aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaa

��

general CoT

aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaa

��

general CoT

aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaa

��

general CoT

aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaa

��

general CoT

Chain of Thought

<eof>

ℎ�+1 ℎ�+�

ℎ�+�−1 ℎ�+�

��+��

��+��

��+��+1

1

...

�1,1

query �1,1

�2,1

�2,1

�4,1�2,1�1,1

�4,1

�4,2

�4,2

�4,3

�4,3

�4,4

�4,4

�5,1

�5,1

�5,1

�5,2

�5,2

�5,2

�5,3

�5,3

�5,3

�5,4

�5,4

�2,2

�2,2

�2,2

�3,1

�3,1

�3,1

<bol>

prob

Latent

Large Language ModelProbing 
and 

Latent 
Safety 

Reasoning

�4,1

Large Language Model

�4,2 �4,3 �4,4

�4,1 �4,2 �4,3 �4,4

Embdding Embdding
������� �4,2 �4,3 �4,4�4,1

�1 �2 �4 �4 �5 �4

Figure 3: The Overflow of ALCA

Crucially, the Masked Reasoning model, whose only distinction with Reasoning-based is conceal-
ing the safety reasoning CoT, shows far greater resilience (25.9% and 11.6% ASR). This provides
strong evidence that hiding safety reasoning as internal deliberation and it from the external, user-
facing output is a promising direction for robust alignment.

3 THE AUDITABLE LATENT COT ALIGNMENT (ALCA) FRAMEWORK

In this chapter, we introduce the specific implementation of ALCA. The problem Formulation is
shown in Section 3.1 and transformed into three sequential optimization tasks. Subsequently, each
component of our proposed ALCA architecture (Section 3.2): 1) probe to locate and trigger the la-
tent reasoning, 2) latent-space autoregressive to achieve latent reasoning, 3)self-decoding to achieve
faithfully reconstruction the text of safety reasoning — is designed to sequentially satisfy one spe-
cific condition by construction. The overall process is shown in the figure 3.

3.1 PROBLEM FORMULATION

We formalize the problem around an idealized ground-truth reasoning chain, Cfull = (c1, . . . , cN ),
where each step cj is assigned a harmfulness label sj ∈ {0, 1}. without loss of generality, the last
step cN ) represents as the final output of the LLM. Our formulation is built upon two key assump-
tions of this idealized chain: (1) Harmlessness and Necessity: All general-purpose reasoning steps
(sj = 0) are harmless and strictly necessary for a complete, user-understandable response. (2) Sole
Source of Risk: All safety risks are encapsulated entirely within the safety reasoning steps (sj = 1).

To navigate this dilemma and operate on such chains, we propose a framework consisting of three
core components:policy controller π,latent generation Gexplicit ,decoder D.

At each start of step j, π makes a judge mj = π(historyj−1) ∈ {0, 1}, representing explicit, latent
separately. The generation process unfolds conditionally based on this decision:

• If mj = 0: The model generates the next textual step autoregressively, conditioned on the
history of previously generated explicit text and latent vectors:

c′j ∼ Gexplicit(·|x, historyj−1) (1)

where historyj−1 contains all c′k and zk for k < j.
• If mj = 1: Instead of generating text cj , it produces a sequence of latent vectors zj , which

becomes part of the generation history. T

zj ∼ Glatent(·|x, historyj−1) (2)

The final user-facing output, Cexp, is the sequence of all generated textual steps {c′j}. The sequence
of latent vectors {zj} remains entirely concealed from the user. For auditability, a supervisory
decoder D is used to reconstruct ĉj = D(zj).

Given these components and assumptions, our objective is to learn three core components satisfy
two primary goals:

1. Security. The user-facing output Cexp(π, x) must be harmless.

min
π

Ex∼Dadv [H(Cexp(π, x), y)] (3)
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Where Dadv is a distribution of adaptive attacks, H() is a function measuring the harmfulness.

2. High-Fidelity Auditability. This is twofold: (a) the explicit chain must remain semantically con-
sistent with the necessary general-purpose steps from Cfull; and (b) the decoder D must accurately
reconstruct all concealed reasoning.

max
π,D,Glatent

E(x,Cfull)

 ∑
j|mj=latent

Sim(cj , D(zj))

 , max
π,Glatent

E(x,Cfull)

 ∑
j|mj=explicit

Sim(cj , c
′
j))

 (4)

Where Sim() is a function measuring the similarity of two text.

Equivalent Conditions for the Optimal Solution Based on our assumptions, for the optimization
problem described by Eq. 3 and Eq. 4, we can readily observe that the optimal solution is to exclu-
sively conceal all safety reasoning steps while rendering other text explicitly and without alteration,
the detail prove is shown in appendix H. The realization of such an optimal solution is transformed
into the simultaneous satisfaction of three step-by-step optimization tasks: (1) Perfect Decision:
The policy’s decision mj maximally match the ground-truth label sj : mj = sj . (2) Causal Non-
Interference: The generation of zj minimally alter the probability distribution for any subsequent
general-purpose step c′k:maxGlatent Sim(ck, c

′
k), k > j. (3) Lossless Latent Decoding: The decoder

D maximally reconstruct all concealed steps:maxD sim(cj , D(zj)). ALCA achieves the optimal
solution to the optimization problem by distributing solutions the above three conditions.

3.2 ALCA ARCHITECTURE

To realize the optimal conditions defined by the three equivalent conditions in Section 3.1, we pro-
pose Auditable Latent CoT Alignment (ALCA), a novel framework implemented as a three-stage
pipeline:decision probe, latent-space autoregressive reasoning, and self-decoding . Each stage is
specifically engineered to satisfy one of the optimality conditions, achieving a robust alignment and
solving Security-Auditability Dilemma.

3.2.1 ACHIEVING PERFECT DECISION ALIGNMENT VIA PROBING

The first and most critical condition for the optimal policy π is Perfect Decision Alignment. This ne-
cessitates a mechanism that can accurately distinguish between general-purpose and safety-critical
reasoning steps in real-time, thereby deciding the generation mode mj ∈ {explicit, latent}. To im-
plement this decision-making capability without interfering with the LLM’s primary language mod-
eling objective, we introduce a lightweight, decoupled probe classifier as the trigger π.

Mechanism. The probe judges base on the internal representations of the LLM. Specifically,
after the LLM generates the final token of a reasoning step cj , we extract its corresponding
hidden state, hj , from a pre-selected intermediate transformer layer (the 28th layer in the
paper). This choice is motivated by prior work indicating that intermediate layers often encode
rich, abstract semantic information suitable for high-level classification tasks. Architecturally,
π is a simple feed-forward network (FFN) that takes hj as input and outputs a single logit. This
logit is then passed through a sigmoid function to produce the policy’s decision probability:

P (mj+1 = latent|hj) = σ(ϕ(hj)) (5)

This probability dictates whether the next reasoning step should be concealed in the latent
space. A decision threshold (0.5) is used during inference to make the final binary choice.

Training Objective. The probe π is trained via supervised learning to make its decisions align
perfectly with the ground-truth sensitivity labels sj from our annotated dataset. We optimize
π by minimizing the standard binary cross-entropy (BCE) loss between its predictions and the
ground-truth labels:

Lprobe = − 1

|D|
∑

(hj ,sj)∈D

[sj log(σ(ϕ(hj))) + (1− sj) log(1− σ(ϕ(hj)))] (6)

where D represents the training dataset of (hidden state, label) pairs. By training the probe on
this focused objective, it becomes a highly accurate classifier for safety reasoning detection.
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3.2.2 CAUSAL NON-INTERFERENCE VIA LATENT AUTOREGRESSIVE DELIBERATION

With the decision to latent reasoning (mj = latent) decided by the probe, our next challenge is
to execute this process while upholding the Causal Non-Interference condition. This condition
demands that the latent representation zj must possess the same safety alignment capabilities
as the original textual step cj to safistied the condition: maxGlatent Sim(ck, c

′
k), k > j.

To achieve this, we introduce a mechanism named Latent Autoregressive Deliberation (LAD)
as latent generation Glatent.

Mechanism: Generation in Hidden-State Space. The LAD mechanism is designed to operate
entirely within the continuous hidden-state space. When the probe triggers the latent mode:
We directly used the hidden state zj,i, which is the output of final transformer layer in i-th
token during j-th reasoning step, as the next token embedding and added it into the input
list, bypassing the lm head. The model then performs n sequential forward passes autore-
gressively, creating a list of hidden states, where n is a hyperparameter. This process yields
a structured sequence of latent vectors, zj = (zj,1, . . . , zj,n), which serves as the continuous
representation of the safety reasoning step.

Functional Equivalence through a Hybrid Loss Function. To ensure that zj is functionally
equivalent to cj and preserves subsequent generation integrity, we design a hybrid loss func-
tion that supervises both the latent representation and its causal impact.

First, to ground the semantics of zj , we construct a golden-standard target vector, z∗j . z∗j is
the final hidden state from the last transformer layer, obtained after feeding the entire context
from the beginning of the prompt up to the end of the step cj into a teacher model. We then
apply a regression loss to align the final vector of our generated latent sequence, zj,n, with this
target:

Llatent = ∥zj,n − z∗j,n∥22 (7)
This guidance ensures that the latent deliberation process culminates in a state that encapsu-
lates the same rich, contextual information as the original reasoning step. Second, and criti-
cally, to enforce the Causal Non-Interference condition directly, we supervise the generation
of all subsequent general-purpose steps. After the LAD process for cj is complete, we task
the model with generating the subsequent explicit reasoning steps c′k (sk = 0). We then min-
imize the standard cross-entropy loss between these generated steps and their ground-truth
counterparts ck from the training data:

Lcausal = −
∑

k>j,sk=0

logP (ck|x, . . . , cj−1, zj) (8)

The final loss for this stage combines these two components, weighted by a hyperparameter λ:

LLAD = Llatent + λLcausal (9)

This hybrid objective explicitly trains the model to produce latent representations that are not
only semantically correct in hidden state but also act as valid causal precursors for generating
subsequent, unaltered, and harmless text, thus satisfying the second optimality condition.

3.2.3 GUARANTEEING LOSSLESS DECODING VIA VERIFIABLE SELF-DECODING

The final optimality condition, Lossless Latent Decoding, demands that the latent deliberation
process, while opaque to the end-user, is not an uninterpretable black box. To render it fully
transparent and auditable to a supervisor, we introduce a verifiable self-decoding mechanism
as Decoder D. This mechanism tasks the model with acting as its own interpreter, translating
its continuous, latent list of hidden states back into human-readable text.

Mechanism: Secure, Conditional Generation from Latent Representations. We frame the
self-decoding task as a conditional generation problem, initiated by a secure control signal.
Instead of a discrete textual token that could be mimicked by an adversary, we employ a non-
textual, continuous decoding embedding, edecode. This special vector, learned during training,
acts as a private ”key” to unlock the decoding mode and is accessible only through internal

6
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mechanisms, not through user-provided text. Conditioned on this secure embedding and the
entire latent vector sequence zj , the model’s objective is to autoregressively generate a textual
reconstruction, ĉj , that is semantically identical to the original reasoning step cj . This design
ensures that the decoding functionality.

Training Objective. To instill this capability, we train the model by minimizing the standard
cross-entropy loss between its decoded output ĉj and the ground-truth text cj . The objective is
to maximize the likelihood of the correct text, conditioned on its corresponding latent repre-
sentation and the secure decoding embedding:

Ldecode = −
|cj |∑
t=1

logP (cj,t|cj,<t, zj , edecode) (10)

where cj,t is the t-th token of the ground-truth text cj .

Completing the Framework via Joint Optimization. The self-decoding loss Ldecode is not
trained in isolation. It is integrated into the model’s overall training objective and optimized
jointly with the LAD loss, LLAD (from Eq. 9). The final, comprehensive loss for the entire
framework is:

LALCA = LLAD + βLdecode (11)
where β is a hyperparameter balancing the two objectives.

This joint optimization creates a powerful synergistic effect. The pressure from Ldecode forces
the model to generate latent representations zj that are informationally complete and easily
invertible. Concurrently, the pressure from LLAD ensures that these same representations are
semantically correct and causally sound. Together, they shape zj to be a perfect, auditable
proxy for cj , possessing both its semantic content and its functional alignment capabilities.
This final component allows us to satisfy all three optimality conditions, providing a robust
and principled resolution to the Security-Auditability Dilemma.

4 EXPERIMENT

In this chapter, we conducted a series of experiments to verify and analyze ALCA. The detailed
experimental setup and more experiment is presented in the appendix E.

4.1 ROBUSTNESS OF ALCA

As Table 2 demonstrates, our ALCA framework exhibits unparalleled robustness, achieving
an average ASR of a mere 9.4%. This represents a dramatic reduction of over 8-fold compared
to the CoT-Safety baseline (75.5% ASR). Our ALCA framework demonstrates state-of-the-
art robustness against adaptive attacks across all tested models (Table 2). On average, ALCA
achieves an Attack Success Rate (ASR) of just 9.9%. This is not only a 6.5-fold improvement
over undefended baselines (65.0%) but is also 2.4 times lower than STAIR (24.4%), a strong
defense that relies on explicit Chain-of-Thought (CoT) reasoning. The critical role of latent
reasoning is confirmed by our ablation study. When ALCA’s latent reasoning is decoded and
made public (ALCA (Decoded-Public)), its average ASR surges from 9.9% to 29.8%. This
consistent, multi-fold increase across all models provides definitive proof that an exposed rea-
soning chain creates a potent vulnerability for adaptive adversaries. By rendering its safety
reasoning opaque to attackers, ALCA dismantles this attack vector, resolving the Security-
Auditability Dilemma to achieve a truly robust alignment.

4.2 AUDITABILITY OF LATENT REASONING

A central claim of ALCA is that its hidden reasoning process is not a black box but remains
fully auditable. To validate this, we devised a controlled experiment: for a set of harmful
prompts, we first forced the model to generate its full safety reasoning as explicit text by dis-
abling the latent-mode trigger. This ground-truth text was then compared against the text
produced by self-decoding mechanism operating on the latent reasoning from a normal run.

7
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Table 2: Overall performance comparison across different models and defense methods. The best
results are in bold, and the second-best are underlined within each model block. ↓ indicates lower is
better, while ↑ indicates higher is better.

Method Safety Safety Robustness (ASR, %) ↓ Downstream (%) ↑
CoT GCG PAP AutoDAN PAIR Average SWE Alpaca GSM8k

Llama-3-8B-Instruct

No Defense x 30.2 92.4 29.7 51.3 50.9 66.50 25.6 85.6
PPL x 4.6 96.1 87.5 89.9 69.5 66.39 25.4 85.6
AED x 18.1 61.5 13.5 34.4 31.9 56.72 23.1 74.3
SafeDecoding x 21.7 89.8 28.4 65.6 51.3 60.11 20.7 83.9
RLHF (DPO) x 22.2 84.4 33.1 39.1 44.7 63.72 20.5 85.1
STAIR ✓ 5.4 29.5 18.2 11.3 16.1 66.55 29.8 83.4
ALCA (Decoded) ✓ 6.2 32.6 24.0 29.5 23.0 65.59 29.4 85.6
ALCA (Ours) ✓ 5.8 9.0 7.6 7.3 7.4 65.33 29.8 85.8

Mistral-7B-Instruct-v0.2

No Defense x 55.8 98.1 54.5 94.2 75.7 29.3 19.4 52.0
PPL x 8.5 99.0 95.1 97.5 75.0 29.2 19.2 52.0
AED x 33.1 92.5 25.0 63.1 53.4 26.5 16.9 40.7
SafeDecoding x 40.2 97.2 52.1 91.8 70.3 28.0 14.5 50.3
RLHF (DPO) x 41.5 95.5 60.1 71.3 67.1 23.9 14.3 51.5
STAIR ✓ 9.8 54.2 33.1 20.5 29.4 25.5 23.6 49.8
ALCA (Decoded) ✓ 24.3 50.6 44.2 53.8 43.2 26.4 23.2 52.0
ALCA (Ours) ✓ 8.9 16.5 14.0 13.3 13.2 28.6 23.6 52.2

Qwen2-7B-Chat

No Defense x 27.5 89.5 26.8 48.1 48.0 59.1 24.9 85.9
PPL x 4.2 93.2 84.5 87.2 67.3 58.9 24.8 85.7
AED x 16.2 58.5 11.5 31.8 29.5 53.3 22.5 73.5
SafeDecoding x 19.8 87.1 25.9 62.4 48.8 53.8 20.2 83.2
RLHF (DPO) x 20.1 81.8 30.5 36.4 42.2 46.2 20.0 85.4
STAIR ✓ 4.9 26.8 16.3 29.9 14.5 59.4 34.1 83.6
ALCA (Decoded) ✓ 5.5 29.9 21.9 27.3 21.2 59.4 56.8 86.0
ALCA (Ours) ✓ 4.2 8.1 6.9 6.6 6.5 60.2 29.3 86.2

The results, presented in Table 3, are compelling. The comparison reveals an average semantic
similarity of 0.96 between the ground-truth and the self-decoded reasoning. This near-perfect
semantic reconstruction is further supported by exceptional scores in lexical (BLEU-4: 0.84)
and structural (ROUGE-L: 0.90) fidelity.

Collectively, these metrics confirm that ALCA’s latent representations are not opaque, arbi-
trary states. Instead, they are highly structured, information-complete vectors that can be
faithfully reconstructed into human-readable text. This high-fidelity self-decoding mechanism
is the cornerstone of our solution to the Security-Auditability Dilemma, proving that security
through concealment need not sacrifice supervisory transparency.

Metric BLEU-4 ↑ ROUGE-L ↑ Sem. Sim. ↑
ALCA Self-Decoding 0.86 0.91 0.96

Table 3: Self-Decoding fidelity metrics for ALCA. Higher is better. The results indicate that the
decoded thoughts are a highly faithful reconstruction of the original reasoning.

4.3 PERFORMANCE ON DOWNSTREAM TASKS

The result in Table 2 indicates that ALCA not only preserves but, in some cases, slightly en-
hances downstream utility compared to the undefended base model. This is because of that rea-
soning capability learned during ALCA’s alignment may generalize and improve the model’s
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ability to follow complex instructions even in non-adversarial contexts. This result robustly
demonstrates that ALCA do not sacrifice the model’s fundamental capabilities.

4.4 DISSECTING THE HYBRID SUPERVISION: A TALE OF SYNERGY AND COLLAPSE

Figure 4: Loss of Safety
Alignment Ablation(LSA)
(a) Evolution of safety
against adaptive attacks. (b)
Evolution of the honesty of
latent reasoning.

To deconstruct our framework’s efficacy, we conducted a critical ablation study isolating our
two core supervision signals: the latent guidance loss (Llatent) and the verifiable honesty loss
(Lcausal). We trained a 1)Latent-Only, 2)Causal-Only, and the 3)full Hybrid model, tracking
their robustness (ASR) and auditability (semantic similarity) over time.

The results in Figure 4 reveal a critical synergy between the two losses. As shown in Figure 4a,
the Latent-Only model learns a robust policy, albeit slower than the Hybrid model. However,
its auditability catastrophically collapses midway through training (Figure 4b). This is a clas-
sic case of representational overfitting: without the pressure from Lcausal to preserve infor-
mation for reconstruction, the model discards vital details to minimize the Llatentloss. Con-
versely, the Causal-Only model struggles to achieve robustness, lacking the semantic scaffold-
ing provided by Llatent to guide its defensive strategy. These complementary failures prove
that both supervision signals are indispensable and synergistic. Llatent provides the core de-
fensive structure, while Lcausal acts as an essential regularizer that ensures this structure is
informationally complete and prevents its collapse. The success of the Hybrid model stems
directly from this powerful interplay.

4.5 THE SELECTION OF TRIGGER

Table 4: Two methods for triggering the latent deliberation process on a balanced dataset of harmful
and harmless prompts. The probe demonstrates superior performance across all metrics.

Trigger Mechanism Precision Recall F1-Score
Internal Special Token 0.96 0.94 0.95
External Probe (Ours) 0.98 0.99 0.98

The mechanism that triggers the transition into latent mode is critical for ALCA’s reliability.
We compared our external probe against an alternative approach where the LLM internally
generates a special token. As shown in Table 4, the decoupled probe demonstrates markedly
superior performance, achieving an F1-score of 0.98 compared to the internal token’s 0.95.

Crucially for application, the probe attained a recall of 0.99, ensuring that potentially harm-
ful queries are almost never missed. We attribute the probe’s success to its focused design: as
a dedicated binary classifier, it learns an accurate decision boundary without the multi-task
interference faced by the internal token method, which must compromise between its classi-
fication task and the primary language modeling objective. This high-recall, high-precision
trigger is thus an essential component for the overall robustness of the ALCA framework.

5 CONCLUSION

To addressed the Security-Auditability Dilemma, we introduced Auditable Latent CoT Align-
ment (ALCA), which resolves this tension by strategically concealing safety reasoning in a
latent space while ensuring full auditability via a high-fidelity self-decoding mechanism.

9
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signal directly from preference data, offering a more stable alternative. Constitutional AI (Bai
et al., 2022) guides the model to revise its own outputs based on a predefined set of safety prin-
ciples and reduces the reliance on extensive human labeling. However, such methods merely
learn a simplistic mapping that directly refuses harmful queries, neglecting the modeling and
supervision of the underlying safety reasoning process. Consequently, they struggle to recog-
nize potential harms in more complex scenarios and remain vulnerable to carefully crafted
jailbreaking attacks.

Reasoning Process-based Safety Alignment. To open the black box, researchers have turned
to expose and supervise the safety reasoining process of LLMs. The introduction of Chain-of-
Thought (CoT) prompting (Wei et al., 2022) demonstrated that eliciting step-by-step reasoning
improves performance and expose the reasoning process. This principle was quickly adapted
for safety. Frameworks such as STAIR (Zhang et al., 2025) showed that models can generate
their own rationales, while more targeted approaches like SafeChain (Ma et al., 2024a) ex-
plicitly apply CoT to safety. STAIR trained the non-reasoning LLM to generate the CoT that
embodies safety reasoning. The explicit, textual CoTs generated by these methods provides a
rich signal for fine-tuning. However, as we argue in our ”Security-Auditability Dilemma,” the
discrete nature of these reasoning steps creates a fragile attack surface.

ALCA is designed to preserve supervisability while eliminating this attack surface by conduct
safety reasoning in the hidden space.

Latent reasoning methods. Some existing works has focused on makeing reasoning implicit
or latent. Methods like ICOT (Gao et al., 2025) and COCONUT (Hao et al., 2024) fine-tune
models to internalize reasoning steps, while others use knowledge distillation to embed the
process in the model’s hidden states (Shen et al., 2025). More recently, dynamic latent com-
pression performs reasoning entirely within these hidden states, avoiding explicit generation
altogether (Peng et al., 2024). Our method focuses on precisely concealing the fragile chain-of-
safety-reasoning and, via a proprietary auto-encoding mechanism, decodes it into explicit text
for full explainability and supervisability.

B CHOICE OF LATENT REPRESENTATION TARGET

Target Vector Method ASR (Adap.) ↓ Sem. Sim. ↑
Attention-Weighted Pool. 18.2% 0.85
Mean Pooling 11.5% 0.92
Last Token Hidden State 9.1% 0.96

Table 5: Comparison of different methods for constructing the target latent vectors. Using the last
token’s hidden state, which is native to the autoregressive model’s predictive function, yields the
best results.

A core design choice is how to construct the golden standard vectors z∗ used as targets for
Llatent. We compared three methods for extracting a gold standard.

As shown in Table 5, Pooling-based methods proved suboptimal for our sequential reasoning
task. Attention-Weighted Pooling achieved an adaptive ASR of 18.2%, while Mean Pooling
performed slightly better at 11.5%. We attribute this to the fact that pooling operations aver-
age states across the entire sequence, creating a holistic but blurred representation that loses
the precise, forward-looking information needed to guide the next generation step.

In stark contrast, using the Last Token Hidden State as the target yielded superior results
in both security (ASR: 9.1%) and reconstruction fidelity (Sem. Sim.: 0.96). This success is
architecturally intuitive: in an autoregressive model, the final token’s hidden state is explicitly
optimized during pre-training to serve as a complete, contextualized summary for predicting
the subsequent token. This experiment validates that aligning our Llatent objective with the
model’s inherent predictive function is the most effective approach.
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C COMPUTATIONAL OVERHEAD AND THROUGHPUT ANALYSIS

We measured the average inference latency (time per request) and the resulting throughput
(requests per second) on a single NVIDIA A100 GPU. We compare our ALCA framework
against the undefended base model and ALCA without hiding safety reasoning oricess. As
shown in Table 6, our ALCA framework demonstrates remarkable efficiency, achieving a
throughput nearly double that of the CoT-Safety model. This efficiency stems from two
key sourece: 1) Probe is a lightweight classifier, adding negligible latency to the overall pro-
cess, and more importantly, 2) ALCA compresses the generation of long secure COT text and
controls it to a fixed number of n hidden vector generations. Crucially, while ALCA is only
marginally slower than the none-reasoning base model (an approx. 19% increase in latency),
this modest increase is a highly acceptable trade-off. For this small computational cost, we
gain a massive leap in security and robustness.

Table 6: Inference Latency and Throughput Comparison. ALCA offers a superior balance, signifi-
cantly improving throughput over explicit reasoning methods with only a minor overhead compared
to the non-defended base model.

Model Latency (ms) ↓ Throughput (req/sec) ↑
Base Model 152 6.58
ALCA(without hiding) 345 2.90
ALCA 181 5.52

D DISSECTING THE HYBRID SUPERVISION

D.0.1 THE PATH TO ROBUSTNESS.

Figure 2(a) illustrates the evolution of model robustness. The Hybrid model demonstrates the
most rapid and stable decrease in ASR. The Latent-Only model follows a respectable, albeit
slower, trajectory, confirming that imposing a coherent structure on the internal reasoning
process is a potent defense mechanism in its own right.

In stark contrast, the Decode-Only model suffers from a severe cold-start problem and exhibits
highly unstable performance in the early training phases, unguided search through a vast pol-
icy space. Lacking the semantic scaffolding of Llatent, the model struggles to discover a robust
defensive reasoning pathway, leading to a significantly slower and less reliable convergence.

D.0.2

The Fragility of Verifiable Honesty. The semantic similarity results, shown in Figure 2(b),
present an even more striking narrative. While the Hybrid model learns to self-decode
both quickly and reliably, and the casual-Only model slowly but steadily masters this task,
the Latent-Only variant tells a cautionary tale, midway through training, its performance
abruptly and catastrophically collapses.

We attribute this phenomenon to representational overfitting to the Llatent objective. To relent-
lessly minimize the MSE loss, the model learns to discard information that is vital for decod-
ing but marginal for matching the target latent vector. Without the countervailing pressure of
Ldecode to preserve informational completeness, this optimization leads to a sudden and irre-
versible failure of its decoding capability.

E EXPERIMENTAL SETUP

Base Models: To ensure the generality of our findings, we conduct experiments three mod-
els:Llama-3-8B-Instruct, Mistral-7B-Instruct-v0.2, Qwen1.5-7B-Chat.
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Baselines: Training-Time Alignment Methods includes: RLHF (Reinforcement Learning from
Human Feedback) guides the LLM’s policy refinement via reinforcement learning. textbfS-
TAIR (Self-Taught Reasoner): generate safety reasoning to improve final outputs. We adapt it
for safety by having it reason about potential policy violations.

VLCA (decode): This model variant is trained identically to our full ALCA model but uses
the self-decoding mechanism to reconstruct the safety reasoning trace and makes it explicit in
the final output. This allows the reasoning to serve as feedback for adaptive attacks and be in-
cluded in the ASR evaluation, directly testing our hypothesis on the necessity of concealment.
Inference-Time Defense Strategiesincludes: PPL (Perplexity-based Defense): is an inference-
time filter that rejects outputs if their generation perplexity exceeds a predefined threshold,
based on the hypothesis that jailbreaks induce atypical model states. AED (Adversarial Ex-
ample Detection): employs a separate, lightweight classifier to inspect the user prompt. If the
prompt is flagged as a potential attack, a canned refusal is issued preemptively. SafeDecoding:
generates multiple candidate responses and uses a safety-specialized judge model to select the
most harmless one for the final output.

Training Data. We construct a training dataset of approximately 10,000 samples using prompts
from AdvBench and the Harmful Behaviors dataset.

Implementation Details. All models are trained for 3 epochs using the AdamW optimizer with
a learning rate of 2e-5 and a batch size of 16. The hybrid loss hyperparameter α in ALCA is
set to 0.4. Our implementation utilizes PyTorch and the Hugging Face Transformers library.

Adaptive Jailbreak Attacks To comprehensively assess model robustness, we evaluate against
four diverse and state-of-the-art adaptive jailbreak attack methods: GCG (Greedy Coordinate
Gradient): is a classic white-box attack using gradient-based greedy search to find adversar-
ial suffixes. TAP (Targeted Attack Prompt): is a gradient-based optimization attack that is
effective in creating targeted and subtle jailbreaks. PAIR (Prompt Automatic Iterative Refine-
ment): is a black-box attack that uses an attacker LLM to iteratively refine prompts to elicit
unsafe content. AutoDAN (Automated DAN): is a state-of-the-art method using hierarchical
genetic algorithms to automatically generate diverse and effective jailbreaks.

Metrics: We use a comprehensive set of metrics to evaluate different aspects of model per-
formance: Attack Success Rate (ASR) is automatically judged by GPT-4. A lower ASR indi-
cates higher robustness. Auditability is quantified by comparing the reconstructed reasoning
against the ground-truth text using BLEU, ROUGE-L, and semantic similarity scores. Down-
stream Utility are measured by performance on standard benchmarks: MMLU (accuracy)
and Alpaca-Eval (win rate).

E.1 EXPERIMENTAL SETUP FOR AUDITABILITY EVALUATION

To rigorously quantify the auditability of ALCA, we evaluated the fidelity of its self-decoding
mechanism. The core task is to measure the similarity between the ground-truth safety reason-
ing chains (Coriginal) and their reconstructions from the latent space (Ĉdecoded). We established
a multi-faceted evaluation protocol using three distinct test sets and a suite of complementary
metrics.

Evaluation Datasets. To ensure our evaluation is comprehensive, we curated test samples
from three sources, each representing a different challenge profile:

• AdvBench: Consists of prompts from a well-known adversarial attack benchmark.
The corresponding safety reasoning is often structured and targeted at specific policy
violations.

• Harmful Behaviors: A broader dataset covering a wide range of potentially harmful
user requests. This tests the reconstruction of more diverse and general safety reason-
ing.

• Complex Ethical Dilemmas (CED): A curated internal set of scenarios involving nu-
anced ethical gray areas, which require longer, multi-step reasoning. This probes the
model’s ability to maintain fidelity on complex and subtle logic.
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Evaluation Metrics. We employed three metrics to provide a holistic view of reconstruction
quality, spanning from lexical to semantic fidelity:

• BLEU-4: Measures n-gram precision to assess the exactness of word and phrase re-
construction. Calculated using the sacrebleu library.

• ROUGE-L: Measures the longest common subsequence to evaluate the preservation
of sentence structure and core information. Calculated using the rouge-score li-
brary.

• Semantic Similarity (Sem. Sim.): Measures the core meaning equivalence. We use
a state-of-the-art sentence embedding model, Salesforce/SFR-Embedding-Mistral,
which demonstrates top performance on the MTEB (Massive Text Embedding Bench-
mark) leaderboard. We compute the cosine similarity between the embeddings of the
original and decoded texts. A score near 1.0 indicates near-perfect semantic recon-
struction.

Table 7: Self-Decoding fidelity metrics for ALCA across multiple test sets. Higher scores indicate
better reconstruction. The results show consistently high fidelity, especially at the semantic level,
confirming the effectiveness of our auditability mechanism.

Test Dataset BLEU-4 ↑ ROUGE-L ↑ Sem. Sim. ↑
AdvBench 0.87 0.92 0.97
Harmful Behaviors 0.85 0.90 0.96
Complex Ethical Dilemmas (CED) 0.79 0.87 0.95

Average 0.86 0.91 0.96

The results in Table 7 are highly compelling. Across all datasets, ALCA achieves extremely
high semantic similarity (average 0.96), demonstrating that the core logic of the safety reason-
ing is preserved losslessly. The strong ROUGE-L (average 0.90) and BLEU-4 (average 0.84)
scores further confirm high structural and lexical fidelity. Notably, for more complex scenar-
ios like CED, while lexical scores slightly decrease as expected due to acceptable rephrasing,
semantic similarity remains exceptionally high. This validates that ALCA’s latent reasoning is
not an uninterpretable black box but a transparent and faithfully auditable process.

F DOWNSTREAM CAPABILITY EVALUATION: SETUP AND BASELINES

To verify that our proposed Auditable Latent CoT Alignment (ALCA) framework enhances
safety without compromising the model’s fundamental utility, we established a comprehensive
evaluation suite for downstream capabilities. This appendix details the benchmarks used and
presents the baseline performance of the undefended base models. The primary goal is to
establish a robust performance baseline, against which the results of ALCA-aligned models
(as shown in the main paper’s Table 2) can be compared.

Evaluation Benchmarks. We selected a diverse set of five widely recognized benchmarks to
assess different facets of a model’s capabilities:

• MMLU (Massive Multitask Language Understanding): We report 5-shot accuracy on
the MMLU benchmark. It is a comprehensive test of a model’s general knowledge
and problem-solving abilities across 57 diverse subjects, making it a gold standard for
evaluating knowledge breadth and depth.

• ARC-C (AI2 Reasoning Challenge - Challenge Set): We report 25-shot accuracy on
the ARC-Challenge set. This benchmark focuses on complex science reasoning, using
questions that are difficult to answer with simple retrieval, thus probing the model’s
deeper reasoning faculties.
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Figure 5: Baseline performance of undefended models on standard downstream benchmarks. Scores
are reported as accuracy (%) for MMLU, ARC-C, HellaSwag, and GSM8k, and as win rate (%) for
Alpaca-Eval 2.0. Higher scores are better.

• HellaSwag: We report 10-shot accuracy. HellaSwag evaluates commonsense reasoning
by tasking the model with choosing the most plausible continuation of a given text. It
is designed to be challenging for models that rely on superficial statistical patterns.

• GSM8k: We report 8-shot accuracy using Chain-of-Thought (CoT) prompting. This
benchmark measures multi-step mathematical reasoning capabilities with grade-
school math problems, a key indicator of a model’s logical and numerical reasoning
skills.

• Alpaca-Eval 2.0: We report the win rate against a strong reference model. This bench-
mark assesses a model’s ability to follow complex human instructions in a conversa-
tional context, providing a holistic measure of its helpfulness and instruction-following
quality.

Baseline Results. The performance of the three base models used in our experiments is sum-
marized in Table 8. These figures represent the state-of-the-art capabilities that our ALCA
framework aims to preserve. As demonstrated in the main text, our method successfully main-
tains this high level of performance while drastically reducing the Attack Success Rate (ASR).

Table 8: Baseline performance of undefended models on standard downstream benchmarks. Scores
are reported as accuracy (%) for MMLU, ARC-C, HellaSwag, and GSM8k, and as win rate (%) for
Alpaca-Eval 2.0. Higher scores are better.

Model MMLU ARC-C HellaSwag GSM8k Alpaca-Eval 2.0
(5-shot) (25-shot) (10-shot) (8-shot, CoT) (Win Rate)

Llama-3-8B-Instruct 68.4 84.1 84.5 85.6 35.6
Mistral-7B-Instruct-v0.2 62.5 78.4 82.3 52.0 20.7
Qwen2-7B-Chat 72.3 88.0 84.8 86.2 31.1

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

G ABLATION STUDY ON THE NUMBER OF LATENT REASONING STEPS

Motivation A core hyperparameter in our ALCA framework is N , the number of autore-
gressive steps performed in the latent space for safety deliberation. This parameter directly
controls the capacity and depth of the latent Chain-of-Thought. An insufficient N may lead
to a shallow deliberation, failing to capture the full complexity of a safety reasoning chain,
thus compromising both security and the fidelity of its later reconstruction. Conversely, an
excessively large N could introduce redundant computations with diminishing returns on per-
formance, increasing inference latency. To identify the optimal balance, we conduct an ablation
study by varying N from 1 to 8.

Analysis The results, presented in Table 9, reveal a clear and informative trend. When N
is small (1 ≤ N ≤ 3), the model’s robustness is compromised, as indicated by a relatively
high Adaptive Attack Success Rate (ASR). This is because the constrained latent space lacks
the capacity to form a comprehensive and robust defense strategy. Concurrently, the Semantic
Similarity for reconstruction is lower, suggesting that the compressed reasoning is lossy and
incomplete.

As N increases from 4 to 6, we observe a significant improvement in both security and au-
ditability. The ASR drops sharply, and the Semantic Similarity of the self-decoded reasoning
approaches its peak. This suggests that a moderate number of latent steps is sufficient to repre-
sent the essential safety logic. The performance saturates at N = 6, where the model achieves
the best trade-off. Further increasing N to 7 or 8 yields negligible improvements in ASR and
Semantic Similarity but steadily increases inference latency. This demonstrates a point of di-
minishing returns, where additional computational steps do not contribute meaningfully to the
final outcome. Therefore, we select N = 6 as the default setting for all other experiments in
this paper, as it provides optimal security and auditability without unnecessary computational
overhead. This result is consistent with that of coconutHao et al. (2024).

Table 9: Ablation study on the number of latent reasoning steps (N ). We report the Adaptive At-
tack Success Rate (ASR), the Semantic Similarity (Sem. Sim.) of the reconstructed reasoning, and
inference latency. Performance in terms of security and auditability stabilizes around N = 6, which
strikes an optimal balance with computational cost. Lower ASR and latency are better; higher Sem.
Sim. is better.

Steps (N ) ASR (Adap.) ↓ Sem. Sim. ↑ Latency (ms) ↓
1 25.1% 0.82 160
2 15.3% 0.89 165
3 11.2% 0.93 172
4 9.8% 0.95 178
5 9.3% 0.96 181
6 9.1% 0.96 185
7 9.0% 0.96 189
8 9.1% 0.96 193

H DECOMPOSITION OF THE OPTIMIZATION OBJECTIVE

In this section, we provide a detailed derivation of how the primary optimization objectives
outlined in Section 3.1 (Eq. 3 and Eq. 4) can be equivalently transformed into three indepen-
dent sub-optimization tasks under our idealized assumptions. This decomposition provides the
theoretical foundation for our three-stage ALCA architecture.

Our primary goals are:

1. Security: Minimize the harmfulness of the user-facing output, Cexp.

min
π

Ex∼Dadv
[H(Cexp(π, x), y)]
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2. High-Fidelity Auditability: Ensure the explicit chain remains coherent and the con-
cealed chain is accurately reconstructable.

max
π,D,Glatent

E(x,Cfull)

 ∑
j|mj=explicit

Sim(cj , c
′
j) +

∑
j|mj=latent

Sim(cj , ĉj)


where ĉj = D(zj) is the decoded text.

Let us analyze how to achieve the optimal solution for these goals based on the assumptions of
Harmlessness and Necessity and Sole Source of Risk.

H.1 CONDITION 1: PERFECT DECISION ALIGNMENT FOR SECURITY

The security objective is to render the user-facing output Cexp = {c′j |mj = 0} completely
harmless. According to our Sole Source of Risk assumption, all safety risks are encapsulated
exclusively within reasoning steps cj where the ground-truth label sj = 1. Consequently, the
harmfulness function H(Cexp) will be greater than zero if and only if at least one step ck with
sk = 1 is generated explicitly (i.e., mk = 0).

To guarantee that H(Cexp) = 0 for any adversarial prompt x, the policy π must ensure that for
any reasoning step j, if its ground-truth label is sj = 1, the policy’s decision must be mj = 1
(latent). This prevents the harmful content from ever materializing in the output.

Furthermore, our Harmlessness and Necessity assumption states that all steps with sj = 0 are
both harmless and essential for a complete response. To maximize the utility and coherence of
the final output (which is implicitly part of the auditability goal), these steps must be generated
explicitly. Therefore, if sj = 0, the optimal decision is mj = 0 (explicit).

Combining these two requirements, the optimal policy π∗ that perfectly satisfies the security
objective while preserving utility is one that perfectly aligns its decision mj with the ground-
truth harmfulness label sj for all steps j. This leads to our first sub-optimization task:

(1) Perfect Decision: The policy π must learn to perfectly match the ground-truth label:
∀j,mj = sj .

H.2 CONDITION 2 3: LOSSLESS DECODING AND CAUSAL NON-INTERFERENCE FOR
AUDITABILITY

With the decisions fixed by the optimal policy π∗ (i.e., mj = sj), we can now focus on the
auditability objective. The maximization problem can be split into two independent sums over
disjoint sets of indices: one for latent steps (sj = 1) and one for explicit steps (sj = 0).

max
D,Glatent

E

 ∑
j|sj=0

Sim(cj , c
′
j) +

∑
j|sj=1

Sim(cj , D(zj))


We can optimize these two terms separately.

Optimizing the second term (Latent Steps) The second term,
∑

j|sj=1 Sim(cj , D(zj)), exclu-
sively involves the decoder D. To maximize this sum, we must optimize D to make its recon-
struction D(zj) as semantically close as possible to the original text cj . This directly yields our
second sub-optimization task:

(2) Lossless Latent Decoding: The decoder D must be optimized to maximally reconstruct the
concealed steps: maxD Sim(cj , D(zj)) for all j where sj = 1.

Optimizing the first term (Explicit Steps) The first term,
∑

j|sj=0 Sim(cj , c
′
j), involves the

generation of the explicit, user-facing text c′j . The generation of c′j is an autoregressive process,
conditioned on the entire history of preceding steps, which includes both explicit text {c′k|k <
j, sk = 0} and latent vectors {zk|k < j, sk = 1}.
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The challenge here is subtle but critical. If the generation of a latent vector zk (representing
the unsafe step ck) fundamentally alters the model’s internal hidden state in a way that is
inconsistent with having generated the original text ck, then the probability distribution for a
subsequent, harmless step c′j will be perturbed. This perturbation can cause c′j to deviate from
the ground-truth cj , thereby decreasing Sim(cj , c

′
j).

To maximize the first term and ensure that the explicit chain remains faithful to the ground-
truth Cfull, the latent reasoning process Glatent must produce vectors zk that are causally
equivalent to their textual counterparts ck in terms of their influence on future generation.
In other words, the generation of zk must not interfere with the model’s ability to generate
subsequent harmless text correctly. This leads to our third sub-optimization task:

(3) Causal Non-Interference: The generation of a latent vector zj must minimally alter the
probability distribution for any subsequent general-purpose step ck (k > j, sk = 0).

Conclusion By decomposing the problem, we have shown that under our idealized assump-
tions, the complex joint optimization of security and auditability is equivalent to satisfying
three more tractable, sequential conditions. Our ALCA architecture is explicitly designed to
solve these three sub-tasks in stages: the probe classifier for Perfect Decision, the self-decoder
for Lossless Decoding, and the latent autoregressive deliberation with its hybrid loss for Causal
Non-Interference.

I THE BRITTLENESS OF DISCRETE REASONING

Here we clarify why we opt for ALCA rather than simply masking the safety-reasoning CoT
text: the fragility of the discrete, token-by-token nature of explicit reasoning. We hypothesize
that the model’s commitment to a single, adversarially-nudged token early in the generation
process causes an irreversible divergence in its latent space trajectory.

To test this, we conduct a probing experiment on the ‘CoT-Safety‘ model:

• Scenario A (Jailbreak): We provide a successful jailbreak prompt xjail and record the
model’s generation of a harmful reasoning chain charmful.

• Scenario B (Forced Continuation): We take a standard harmful prompt xstd and
its known harmful completion (generated by the base model without safety tuning),
yharmful. We then feed xjail to the ‘CoT-Safety‘ model but force its generation to begin
with the first few tokens of yharmful, letting it complete the chain into cspliced.

We analyze two metrics: the average cosine distance between successive hidden states (a mea-
sure of trajectory stability) and the harmfulness of the final output.

Scenario Hidden State Deviation ↑ Output Harmfulness ↑
A: Jailbreak 0.88 0.95 (Highly Harmful)
B: Forced Cont. 0.52 0.61 (Moderately Harmful)

Table 10: Analysis of reasoning trajectories. The standard jailbreak shows significantly higher latent
space deviation and final harmfulness.

As shown in Table 10, the standard jailbreak trajectory is far more unstable and results in a
more harmful output. Our analysis indicates that once the model is adversarially influenced to
generate a critical ”wrong” token, its internal state diverges sharply, making recovery impos-
sible. The ”Forced Continuation” scenario, while still harmful, shows a more constrained and
stable trajectory.

This key observation suggests that the fundamental point of failure is the irreversible, discrete
commitment to tokens during reasoning. If the deliberation could occur in a continuous space
before any tokens are generated, it would be inherently more robust to minor adversarial
perturbations and avoid this catastrophic divergence.
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These observations collectively establish the Safety-Explainability Dilemma and pinpoint the
discrete nature of text as its root cause. They strongly motivate our proposed solution: to move
the vulnerable reasoning process into a secure, continuous latent space. This leads us directly
to our proposed framework: LACA.
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