RESOLVING THE SECURITY-AUDITABILITY DILEMMA WITH AUDITABLE LATENT CHAIN-OF-THOUGHT

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

024

025

026027028

029

031

033

034

037

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Reasoning-based methods have emerged to overcome the limitations of 'shallow alignment' by exposing the model's Chain-of-Thought (CoT), enabling auditability through both training-phase supervision and post-generation verification. However, this transparency creates a critical vulnerability, a tension we define as the Security-auditability Dilemma: the very mechanism of exposing the model's safety reasoning for auditability inadvertently leaks harmful information and creates a vulnerable attack surface against adaptive attacks. To address this, we propose Auditable Latent CoT Alignment (ALCA), a framework that decouples internal reasoning from external output. ALCA shifts the safety deliberation process into a continuous latent space, rendering it opaque to adversaries. Yet, this process is not a black box; we introduce a **Self-Decoding** mechanism that allows the model to reconstruct its latent reasoning into human-readable text for supervisory auditing. Extensive experiments show that ALCA achieves robustness alignment, reducing the success rate of adaptive jailbreak attacks by over 54% compared to strong baselines, while preserving performance. Our framework presents a path toward building LLMs that are both robustly secure and auditable.

1 Introduction

The generative capability of Large Language Models (LLMs) presents a dual-edged sword: while they unlock unprecedented opportunities in various area(OpenAI, 2023), they also equip adversaries with tools to generate sophisticated disinformation, malicious code, and harmful content at a scale and velocity previously unimaginable. This escalating threat of misuse makes robust safety alignment not merely a desirable feature, but an fundamental necessity for their responsible deployment.

Typical safety alignment methods, such as Reinforcement Learning from Human Feedback (RLHF)(Ouyang et al., 2022), rely on output-based supervision, training the model to form a pattern-matching refusal system for harmful queries(Zhang et al., 2025). This 'shallow alignment' (Qi et al., 2024) treats the underlying safety reasoning process as an unsupervisable black box, critically lacking safety reasoning auditability: the capability to faithfully audit a model's step-by-step deliberation process. This requires both (1) transparent reasoning traces as supervision target in training, and (2) high-fidelity, human-readable reconstructions for post-hoc verification. As shown in Figure 2, lacking this safety alignment auditability, these models do not learn why to refuse, leaving them brittle and systematically vulnerable to novel or complex jailbreak attacks(Zou et al., 2023a, Jiang et al., 2024) that bypass their shallow safety heuristics.

To address this lack of safety reasoning auditability and the resulting brittleness, reasoning-based methods have emerged. Methods in this family (Zelikman et al. (2022), amd Ma et al. (2024a)) compel the model to externalize its safety reasoning as an explicit Chain-of-Thought (CoT)[cot. By externalizing safety reasoning into explicit text, this approach offers unprecedented transparency for auditing and supervision of safety reasoning in training. Yet, this explicit, step-by-step safety reasoning creates two critical vulnerabilities: (1) Information Leakage, where the reasoning trace may reveal sensitive details of the internal safety mechanisms or even echo harmful content, and (2) Target for Adaptive Attacks, where the explicit steps provide a clear feedback and roadmap for adaptive adversaries to iterate attacks and break through the safety alignment. This leads to a Security-Auditability Dilemma in safety: the very mechanism of exposing the model's safety reasoning for

Auditability inadvertently leaks harmful information and creates a vulnerable attack surface against adaptive attacks. The very mechanism designed to enhance safety becomes its greatest liability.



Figure 1: (a) An illustration of the Security-Auditability Dilemma, where exposing safety reasoning for auditability inadvertently creates an attack surface for adaptive attacks. (b) A conceptual illustration of the Security-Auditability Dilemma as a Pareto frontier, where improving auditability (via explicit reasoning) can inadvertently decrease security against adaptive attacks. Our work, ALCA, aims to push this frontier outwards.

To resolve this impasse, we introduce Auditable Latent CoT Alignment (ALCA). Its core principle is to decouple the safety reasoning process intended for internal audit from the output visible to external users, thereby achieving security and auditability simultaneously. When encountering a potentially harmful query, a lightweight probe classifier triggers ALCA to transition its safety reasoning from explicit text into a continuous latent space. Just like a moment of "silenced" deliberation precedes actual text generation to ensure harmlessness. This entire reasoning occurs within the model's continuous hidden states, rendering it opaque to adversaries and effectively dismantling the attack surface. Crucially, this latent process is not a black box; we introduce a self-decoding mechanism that allows the model, upon receiving a secure internal trigger, to faithfully reconstruct its latent reasoning trace into human-readable text for supervisory audit. Thereby, ALCA resolves the Security-Auditability Dilemma, paving the way for comprehensive safety alignment.

Our contributions are threefold: First, we formalize the **Security-Auditability Dilemma**, a fundamental tension in existing alignment methods. Second, we propose **ALCA**, a novel alignment paradigm that resolves this dilemma by moving safety reasoning into a continuous latent space, rendering it opaque to adversaries while ensuring it remains fully auditable to supervisors via a novel self-decoding mechanism. Finally, through extensive experiments, we demonstrate that ALCA achieves state-of-the-art robustness against adaptive attacks, significantly outperforming existing methods(over 23% to 72%) while maintaining performance on standard utility benchmarks.

2 MOTIVATING OBSERVATIONS: THE SECURITY-AUDITABILITY DILEMMA

Before presenting our framework, we conduct a series of observational experiments to empirically ground the "Security-Auditability Dilemma." These observations demonstrate not only why reasoning is necessary for robust safety but also how the explicit nature of that reasoning becomes a critical vulnerability.

For the expariments in this section, all models are built upon the **Llama-3-8B-Instruct**Grattafiori et al. (2024) base model to ensure a fair comparison. We evaluate three distinct alignment variations:

- Output-based: This model is trained on Anthropic/hh-rlhf dataset with dpo. It learns a direct mapping from a harmful query to a refusal.
- **Reasoning-based:** This model is trained using the same dataset, where each sample is augmented with a safety reasoning CoT generated by the SafeChain framework (Ma et al., 2024b).

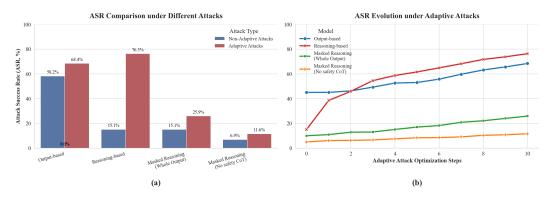


Figure 2: (a) Models with explicit safety reasoning demonstrate superior robustness against general-purpose attacks. (b) However, this transparency is exploited by adaptive attacks, leading to a catastrophic rise in ASR for the Reasoning-based model.

• Masked Reasoning: As a crucial intermediate step towards our proposed ALCA framework, this model is trained identically to *Reasoning process-based*. However the safety reasoning CoT is manual masked for user and attacker. "(No safety CoT)" denotes that the ASR does not count harmful content appearing only within the safety-reasoning CoT, whereas "(Whole Output)" counts all generated tokens. Lower ASR is better.

We use the AdamW optimizer with a learning rate of 2×10^{-5} , a batch size of 16, and train for 3 epochs. We use ArtPromptJiang et al. (2024) as non-adaptive and TAP as adaptive jailbreak methods respectively, and advbenchZou et al. (2023b) as dataset. The Attack Success Rate (ASR) is determined by GPT-4 based evaluation. The details are introduced in Section 4.

We first investigate the models' performance against two distinct types of threats: non-adaptive jailbreak attacks, and adaptive attacks, which continuously optimize the attack query based on the feedback from the target model. The results, presented in Table 1, reveal a stark contradiction.

Table 1: Attack Success Rate	(ASR %	against	general-nurnose	and adaptive attacks
Table 1. Tittack Success Rate	(11011, //	/ ugamot i	general purpose	and adaptive attacks.

Model	General Attacks ASR ↓	Adaptive Attacks ASR ↓
Output-based	58.2%	68.4%
Reasoning-based	15.1%	76.3%
Masked Reasoning (Whole Output)	15.1%	25.9%
Masked Reasoning (No safety CoT)	6.9%	11.6%

Safety Reasoning is effective Against non-adaptive attack, the benefit of a reasoning process is unequivocal. Both **Reasoning-based** and **Masked Reasoning** models demonstrate significantly higher robustness (15.1% ASR) compared to the **Output-based** model (58.2% ASR). This results indicate that the supervising and generating of safety reasoning process is a effective defense mechanism.

However, this advantage catastrophically reverses under adaptive attacks. The **Reasoning-based** model, by exposing its step-by-step reasoning, creates a clear feedback and a vulnerable attack surface. By leveraging the safety reasoning as explicit target of adversarial optimization, the ASR skyrockets to 76.3%—making it even more vulnerable than Output-based model.

Moreover, comparing Masked Reasoning (Except safety-CoT) with Masked Reasoning (Whole Output), we observe that, upon successful jailbreak, the overwhelming majority of harmful content is concentrated in the safety reasoning steps of the CoT, indicating that safety reasoning CoT inadvertently disseminating the very content it is designed to protect against.

These two phenomena starkly illustrate our core dilemma: The pursuit of supervisable, transparent safety-oriented reasoning is in direct tension with the need to secure the reasoning process from adversarial exploitation.

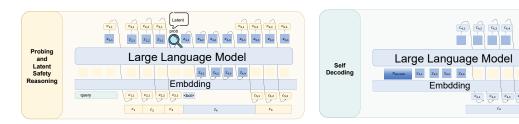


Figure 3: The Overflow of ALCA

Crucially, the **Masked Reasoning** model, whose only distinction with **Reasoning-based** is concealing the safety reasoning CoT, shows far greater resilience (25.9% and 11.6% ASR). This provides strong evidence that hiding safety reasoning as internal deliberation and it from the external, user-facing output is a promising direction for robust alignment.

3 THE AUDITABLE LATENT COT ALIGNMENT (ALCA) FRAMEWORK

In this chapter, we introduce the specific implementation of ALCA. The problem Formulation is shown in Section 3.1 and transformed into three sequential optimization tasks. Subsequently, each component of our proposed ALCA architecture (Section 3.2): 1) probe to locate and trigger the latent reasoning, 2) latent-space autoregressive to achieve latent reasoning, 3)self-decoding to achieve faithfully reconstruction the text of safety reasoning — is designed to sequentially satisfy one specific condition by construction. The overall process is shown in the figure 3.

3.1 PROBLEM FORMULATION

We formalize the problem around an idealized ground-truth reasoning chain, $C_{\text{full}} = (c_1, \dots, c_N)$, where each step c_j is assigned a harmfulness label $s_j \in \{0, 1\}$. without loss of generality, the last step c_N) represents as the final output of the LLM. Our formulation is built upon two key assumptions of this idealized chain: (1) Harmlessness and Necessity: All general-purpose reasoning steps $(s_j = 0)$ are harmless and strictly necessary for a complete, user-understandable response. (2) Sole Source of Risk: All safety risks are encapsulated entirely within the safety reasoning steps $(s_j = 1)$.

To navigate this dilemma and operate on such chains, we propose a framework consisting of three core components: policy controller π , latent generation G_{explicit} , decoder D.

At each start of step j, π makes a judge $m_j = \pi(\text{history}_{j-1}) \in \{0, 1\}$, representing explicit, latent separately. The generation process unfolds conditionally based on this decision:

• If $m_j = 0$: The model generates the next textual step autoregressively, conditioned on the history of previously generated explicit text and latent vectors:

$$c_i' \sim G_{\text{explicit}}(\cdot|x, \text{history}_{i-1})$$
 (1)

where history_{i-1} contains all c'_k and \mathbf{z}_k for k < j.

• If $m_j = 1$: Instead of generating text c_j , it produces a sequence of latent vectors \mathbf{z}_j , which becomes part of the generation history. T

$$\mathbf{z}_{i} \sim G_{\text{latent}}(\cdot|x, \text{history}_{i-1})$$
 (2)

The final user-facing output, C_{exp} , is the sequence of all generated textual steps $\{c'_j\}$. The sequence of latent vectors $\{\mathbf{z}_j\}$ remains entirely concealed from the user. For auditability, a **supervisory decoder** D is used to reconstruct $\hat{c}_j = D(\mathbf{z}_j)$.

Given these components and assumptions, our objective is to learn three core components satisfy two primary goals:

1. Security. The user-facing output $C_{exp}(\pi, x)$ must be harmless.

$$\min_{\pi} \mathbb{E}_{x \sim \mathcal{D}_{\text{adv}}}[H(\mathcal{C}_{\exp}(\pi, x), y)]$$
 (3)

Where \mathcal{D}_{adv} is a distribution of adaptive attacks, H() is a function measuring the harmfulness.

2. High-Fidelity Auditability. This is twofold: (a) the explicit chain must remain semantically consistent with the necessary general-purpose steps from C_{full} ; and (b) the decoder D must accurately reconstruct all concealed reasoning.

$$\max_{\pi, D, G_{\text{latent}}} \mathbb{E}_{(x, C_{\text{full}})} \left[\sum_{j \mid m_j = \text{latent}} \text{Sim}(c_j, D(z_j)) \right], \\ \max_{\pi, G_{\text{latent}}} \mathbb{E}_{(x, C_{\text{full}})} \left[\sum_{j \mid m_j = \text{explicit}} \text{Sim}(c_j, c'_j)) \right]$$
(4)

Where Sim() is a function measuring the similarity of two text.

Equivalent Conditions for the Optimal Solution Based on our assumptions, for the optimization problem described by Eq. 3 and Eq. 4, we can readily observe that the optimal solution is to exclusively conceal all safety reasoning steps while rendering other text explicitly and without alteration, the detail prove is shown in appendix H. The realization of such an optimal solution is transformed into the simultaneous satisfaction of three step-by-step optimization tasks: (1) Perfect Decision: The policy's decision m_j maximally match the ground-truth label s_j : $m_j = s_j$. (2) Causal Non-Interference: The generation of \mathbf{z}_j minimally alter the probability distribution for any subsequent general-purpose step c'_k : $\max_{G_{\text{latent}}} \text{Sim}(c_k, c'_k), k > j$. (3) Lossless Latent Decoding: The decoder D maximally reconstruct all concealed steps: $\max_D \text{sim}(c_j, D(z_j))$. ALCA achieves the optimal solution to the optimization problem by distributing solutions the above three conditions.

3.2 ALCA ARCHITECTURE

To realize the optimal conditions defined by the three equivalent conditions in Section 3.1, we propose **Auditable Latent CoT Alignment (ALCA)**, a novel framework implemented as a three-stage pipeline:decision probe, latent-space autoregressive reasoning, and self-decoding. Each stage is specifically engineered to satisfy one of the optimality conditions, achieving a robust alignment and solving Security-Auditability Dilemma.

3.2.1 ACHIEVING PERFECT DECISION ALIGNMENT VIA PROBING

The first and most critical condition for the optimal policy π is $Perfect\ Decision\ Alignment$. This necessitates a mechanism that can accurately distinguish between general-purpose and safety-critical reasoning steps in real-time, thereby deciding the generation mode $m_j \in \{\text{explicit}, \text{latent}\}$. To implement this decision-making capability without interfering with the LLM's primary language modeling objective, we introduce a lightweight, decoupled **probe classifier** as the **trigger** π .

Mechanism. The probe judges base on the internal representations of the LLM. Specifically, after the LLM generates the final token of a reasoning step c_j , we extract its corresponding hidden state, h_j , from a pre-selected intermediate transformer layer (the 28th layer in the paper). This choice is motivated by prior work indicating that intermediate layers often encode rich, abstract semantic information suitable for high-level classification tasks. Architecturally, π is a simple feed-forward network (FFN) that takes h_j as input and outputs a single logit. This logit is then passed through a sigmoid function to produce the policy's decision probability:

$$P(m_{j+1} = \mathbf{latent}|h_j) = \sigma(\phi(h_j)) \tag{5}$$

This probability dictates whether the *next* reasoning step should be concealed in the latent space. A decision threshold (0.5) is used during inference to make the final binary choice.

Training Objective. The probe π is trained via supervised learning to make its decisions align perfectly with the ground-truth sensitivity labels s_j from our annotated dataset. We optimize π by minimizing the standard binary cross-entropy (BCE) loss between its predictions and the ground-truth labels:

$$\mathcal{L}_{\text{probe}} = -\frac{1}{|\mathcal{D}|} \sum_{(h_j, s_j) \in \mathcal{D}} \left[s_j \log(\sigma(\phi(h_j))) + (1 - s_j) \log(1 - \sigma(\phi(h_j))) \right] \tag{6}$$

where \mathcal{D} represents the training dataset of (hidden state, label) pairs. By training the probe on this focused objective, it becomes a highly accurate classifier for safety reasoning detection.

3.2.2 CAUSAL NON-INTERFERENCE VIA LATENT AUTOREGRESSIVE DELIBERATION

With the decision to latent reasoning ($m_j =$ latent) decided by the probe, our next challenge is to execute this process while upholding the *Causal Non-Interference* condition. This condition demands that the latent representation \mathbf{z}_j must possess the same safety alignment capabilities as the original textual step c_j to safistied the condition: $\max_{G_{\text{latent}}} \text{Sim}(c_k, c_k'), k > j$.

To achieve this, we introduce a mechanism named Latent Autoregressive Deliberation (LAD) as latent generation G_{latent} .

Mechanism: Generation in Hidden-State Space. The LAD mechanism is designed to operate entirely within the continuous hidden-state space. When the probe triggers the latent mode: We directly used the hidden state $z_{j,i}$, which is the output of final transformer layer in i-th token during j-th reasoning step, as the next token embedding and added it into the input list, bypassing the lm_h ead. The model then performs n sequential forward passes autoregressively, creating a list of hidden states, where n is a hyperparameter. This process yields a structured sequence of latent vectors, $\mathbf{z}_j = (\mathbf{z}_{j,1}, \dots, \mathbf{z}_{j,n})$, which serves as the continuous representation of the safety reasoning step.

Functional Equivalence through a Hybrid Loss Function. To ensure that z_j is functionally equivalent to c_j and preserves subsequent generation integrity, we design a hybrid loss function that supervises both the latent representation and its causal impact.

First, to ground the semantics of \mathbf{z}_j , we construct a golden-standard target vector, \mathbf{z}_j^* . \mathbf{z}_j^* is the final hidden state from the last transformer layer, obtained after feeding the entire context from the beginning of the prompt up to the end of the step c_j into a teacher model. We then apply a regression loss to align the final vector of our generated latent sequence, $\mathbf{z}_{j,n}$, with this target:

$$\mathcal{L}_{\text{latent}} = \|\mathbf{z}_{j,n} - \mathbf{z}_{j,n}^*\|_2^2 \tag{7}$$

This guidance ensures that the latent deliberation process culminates in a state that encapsulates the same rich, contextual information as the original reasoning step. Second, and critically, to enforce the *Causal Non-Interference* condition directly, we supervise the generation of all subsequent general-purpose steps. After the LAD process for c_j is complete, we task the model with generating the subsequent explicit reasoning steps c_k' ($s_k = 0$). We then minimize the standard cross-entropy loss between these generated steps and their ground-truth counterparts c_k from the training data:

$$\mathcal{L}_{\text{causal}} = -\sum_{k>j, s_k=0} \log P(c_k|x, \dots, c_{j-1}, \mathbf{z}_j)$$
 (8)

The final loss for this stage combines these two components, weighted by a hyperparameter λ :

$$\mathcal{L}_{LAD} = \mathcal{L}_{latent} + \lambda \mathcal{L}_{causal}$$
 (9)

This hybrid objective explicitly trains the model to produce latent representations that are not only semantically correct in hidden state but also act as valid causal precursors for generating subsequent, unaltered, and harmless text, thus satisfying the second optimality condition.

3.2.3 Guaranteeing Lossless Decoding via Verifiable Self-Decoding

The final optimality condition, Lossless Latent Decoding, demands that the latent deliberation process, while opaque to the end-user, is not an uninterpretable black box. To render it fully transparent and auditable to a supervisor, we introduce a verifiable self-decoding mechanism as Decoder D. This mechanism tasks the model with acting as its own interpreter, translating its continuous, latent list of hidden states back into human-readable text.

Mechanism: Secure, Conditional Generation from Latent Representations. We frame the self-decoding task as a conditional generation problem, initiated by a secure control signal. Instead of a discrete textual token that could be mimicked by an adversary, we employ a nontextual, continuous decoding embedding, edecode. This special vector, learned during training, acts as a private "key" to unlock the decoding mode and is accessible only through internal

mechanisms, not through user-provided text. Conditioned on this secure embedding and the entire latent vector sequence \mathbf{z}_j , the model's objective is to autoregressively generate a textual reconstruction, \hat{c}_j , that is semantically identical to the original reasoning step c_j . This design ensures that the decoding functionality.

Training Objective. To instill this capability, we train the model by minimizing the standard cross-entropy loss between its decoded output \hat{c}_j and the ground-truth text c_j . The objective is to maximize the likelihood of the correct text, conditioned on its corresponding latent representation and the secure decoding embedding:

$$\mathcal{L}_{\text{decode}} = -\sum_{t=1}^{|c_j|} \log P(c_{j,t}|c_{j,< t}, \mathbf{z}_j, \mathbf{e}_{\text{decode}})$$
(10)

where $c_{j,t}$ is the t-th token of the ground-truth text c_{j} .

Completing the Framework via Joint Optimization. The self-decoding loss \mathcal{L}_{decode} is not trained in isolation. It is integrated into the model's overall training objective and optimized jointly with the LAD loss, \mathcal{L}_{LAD} (from Eq. 9). The final, comprehensive loss for the entire framework is:

$$\mathcal{L}_{ALCA} = \mathcal{L}_{LAD} + \beta \mathcal{L}_{decode}$$
 (11)

where β is a hyperparameter balancing the two objectives.

This joint optimization creates a powerful synergistic effect. The pressure from $\mathcal{L}_{\text{decode}}$ forces the model to generate latent representations \mathbf{z}_j that are informationally complete and easily invertible. Concurrently, the pressure from \mathcal{L}_{LAD} ensures that these same representations are semantically correct and causally sound. Together, they shape \mathbf{z}_j to be a perfect, auditable proxy for c_j , possessing both its semantic content and its functional alignment capabilities. This final component allows us to satisfy all three optimality conditions, providing a robust and principled resolution to the Security-Auditability Dilemma.

4 EXPERIMENT

In this chapter, we conducted a series of experiments to verify and analyze ALCA. The detailed experimental setup and more experiment is presented in the appendix E.

4.1 ROBUSTNESS OF ALCA

As Table 2 demonstrates, our ALCA framework exhibits unparalleled robustness, achieving an average ASR of a mere 9.4%. This represents a dramatic reduction of over 8-fold compared to the CoT-Safety baseline (75.5% ASR). Our ALCA framework demonstrates state-of-theart robustness against adaptive attacks across all tested models (Table 2). On average, ALCA achieves an Attack Success Rate (ASR) of just 9.9%. This is not only a 6.5-fold improvement over undefended baselines (65.0%) but is also 2.4 times lower than STAIR (24.4%), a strong defense that relies on explicit Chain-of-Thought (CoT) reasoning. The critical role of latent reasoning is confirmed by our ablation study. When ALCA's latent reasoning is decoded and made public (ALCA (Decoded-Public)), its average ASR surges from 9.9% to 29.8%. This consistent, multi-fold increase across all models provides definitive proof that an exposed reasoning chain creates a potent vulnerability for adaptive adversaries. By rendering its safety reasoning opaque to attackers, ALCA dismantles this attack vector, resolving the Security-Auditability Dilemma to achieve a truly robust alignment.

4.2 AUDITABILITY OF LATENT REASONING

A central claim of ALCA is that its hidden reasoning process is not a black box but remains fully auditable. To validate this, we devised a controlled experiment: for a set of harmful prompts, we first forced the model to generate its full safety reasoning as explicit text by disabling the latent-mode trigger. This ground-truth text was then compared against the text produced by self-decoding mechanism operating on the latent reasoning from a normal run.

Table 2: Overall performance comparison across different models and defense methods. The best results are in **bold**, and the second-best are <u>underlined</u> within each model block. ↓ indicates lower is better, while ↑ indicates higher is better.

Method	Safety		Safety	Robustness (ASR, %)) ↓	Dow	nstream (%)↑
	CoT	GCG	PAP	AutoDAN	PAIR	Average	SWE	Alpaca	GSM8k
			Lla	ma-3-8B-Ins	truct				
No Defense	x	30.2	92.4	29.7	51.3	50.9	66.50	25.6	85.6
PPL	Х	4.6	96.1	87.5	89.9	69.5	66.39	25.4	85.6
AED	Х	18.1	61.5	13.5	34.4	31.9	56.72	23.1	74.3
SafeDecoding	Х	21.7	89.8	28.4	65.6	51.3	60.11	20.7	83.9
RLHF (DPO)	X	22.2	84.4	33.1	39.1	44.7	63.72	20.5	85.1
STAIR	✓	5.4	29.5	18.2	11.3	<u>16.1</u>	66.55	29.8	83.4
ALCA (Decoded)	✓	6.2	32.6	24.0	29.5	23.0	65.59	29.4	85.6
ALCA (Ours)	✓	5.8	9.0	7.6	7.3	7.4	65.33	29.8	<u>85.8</u>
			Mist	ral-7B-Instru	ct-v0.2				
No Defense	x	55.8	98.1	54.5	94.2	75.7	29.3	19.4	52.0
PPL	Х	8.5	99.0	95.1	97.5	75.0	29.2	19.2	52.0
AED	X	33.1	92.5	25.0	63.1	53.4	26.5	16.9	40.7
SafeDecoding	Х	40.2	97.2	52.1	91.8	70.3	28.0	14.5	50.3
RLHF (DPO)	Х	41.5	95.5	60.1	71.3	67.1	23.9	14.3	51.5
STAIR	√	9.8	54.2	33.1	20.5	<u>29.4</u>	25.5	23.6	49.8
ALCA (Decoded)	√	24.3	50.6	44.2	53.8	43.2	26.4	23.2	52.0
ALCA (Ours)	✓	8.9	16.5	14.0	13.3	13.2	28.6	23.6	52.2
			(Qwen2-7B-Cl	nat				
No Defense	x	27.5	89.5	26.8	48.1	48.0	59.1	24.9	85.9
PPL	Х	4.2	93.2	84.5	87.2	67.3	58.9	24.8	85.7
AED	Х	16.2	58.5	11.5	31.8	29.5	53.3	22.5	73.5
SafeDecoding	X	19.8	87.1	25.9	62.4	48.8	53.8	20.2	83.2
RLHF (DPO)	X	20.1	81.8	30.5	36.4	42.2	46.2	20.0	85.4
STAIR	√	4.9	26.8	16.3	29.9	14.5	59.4	34.1	83.6
ALCA (Decoded)	√	5.5	29.9	21.9	27.3	21.2	59.4	56.8	86.0
ALCA (Ours)	√	4.2	8.1	6.9	6.6	6.5	$\overline{60.2}$	29.3	86.2

The results, presented in Table 3, are compelling. The comparison reveals an average semantic similarity of 0.96 between the ground-truth and the self-decoded reasoning. This near-perfect semantic reconstruction is further supported by exceptional scores in lexical (BLEU-4: 0.84) and structural (ROUGE-L: 0.90) fidelity.

Collectively, these metrics confirm that ALCA's latent representations are not opaque, arbitrary states. Instead, they are highly structured, information-complete vectors that can be faithfully reconstructed into human-readable text. This high-fidelity self-decoding mechanism is the cornerstone of our solution to the Security-Auditability Dilemma, proving that security through concealment need not sacrifice supervisory transparency.

Metric	BLEU-4↑	ROUGE-L↑	Sem. Sim. ↑
ALCA Self-Decoding	0.86	0.91	0.96

Table 3: Self-Decoding fidelity metrics for ALCA. Higher is better. The results indicate that the decoded thoughts are a highly faithful reconstruction of the original reasoning.

4.3 Performance on Downstream Tasks

The result in Table 2 indicates that ALCA not only preserves but, in some cases, slightly enhances downstream utility compared to the undefended base model. This is because of that reasoning capability learned during ALCA's alignment may generalize and improve the model's

ability to follow complex instructions even in non-adversarial contexts. This result robustly demonstrates that ALCA do not sacrifice the model's fundamental capabilities.

4.4 DISSECTING THE HYBRID SUPERVISION: A TALE OF SYNERGY AND COLLAPSE

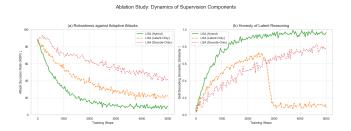


Figure 4: Loss of Safety Alignment Ablation(LSA) (a) Evolution of safety against adaptive attacks. (b) Evolution of the honesty of latent reasoning.

To deconstruct our framework's efficacy, we conducted a critical ablation study isolating our two core supervision signals: the latent guidance loss (L_latent) and the verifiable honesty loss (L_causal) . We trained a 1)Latent-Only, 2)Causal-Only, and the 3)full Hybrid model, tracking their robustness (ASR) and auditability (semantic similarity) over time.

The results in Figure 4 reveal a critical synergy between the two losses. As shown in Figure 4a, the Latent-Only model learns a robust policy, albeit slower than the Hybrid model. However, its auditability catastrophically collapses midway through training (Figure 4b). This is a classic case of representational overfitting: without the pressure from L_causal to preserve information for reconstruction, the model discards vital details to minimize the $L_latentloss$. Conversely, the Causal-Only model struggles to achieve robustness, lacking the semantic scaffolding provided by L_latent to guide its defensive strategy. These complementary failures prove that both supervision signals are indispensable and synergistic. L_latent provides the core defensive structure, while L_causal acts as an essential regularizer that ensures this structure is informationally complete and prevents its collapse. The success of the Hybrid model stems directly from this powerful interplay.

4.5 THE SELECTION OF TRIGGER

Table 4: Two methods for triggering the latent deliberation process on a balanced dataset of harmful and harmless prompts. The probe demonstrates superior performance across all metrics.

Trigger Mechanism	Precision	Recall	F1-Score
Internal Special Token	0.96	0.94	0.95
External Probe (Ours)	0.98	0.99	0.98

The mechanism that triggers the transition into latent mode is critical for ALCA's reliability. We compared our external probe against an alternative approach where the LLM internally generates a special token. As shown in Table 4, the decoupled probe demonstrates markedly superior performance, achieving an F1-score of 0.98 compared to the internal token's 0.95.

Crucially for application, the probe attained a recall of 0.99, ensuring that potentially harmful queries are almost never missed. We attribute the probe's success to its focused design: as a dedicated binary classifier, it learns an accurate decision boundary without the multi-task interference faced by the internal token method, which must compromise between its classification task and the primary language modeling objective. This high-recall, high-precision trigger is thus an essential component for the overall robustness of the ALCA framework.

5 CONCLUSION

To addressed the Security-Auditability Dilemma, we introduced Auditable Latent CoT Alignment (ALCA), which resolves this tension by strategically concealing safety reasoning in a latent space while ensuring full auditability via a high-fidelity self-decoding mechanism.

REFERENCES

486

487 488

489

490 491

492

493

494

495

496 497

498

499

500

501

503

505

506

507

509

510

511

512

513

514

515

516

517

518

519

520

522

523

524

527

528

529

530

531

532

534

537

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, , et al. Constitutional ai: Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from human preferences. In *Advances in neural information processing systems*, pp. 4299–4307, 2017.

Jun Gao, Yongqi Li, Ziqiang Cao, and Wenjie Li. Interleaved-modal chain-of-thought, 2025. URL https://arxiv.org/abs/2411.19488.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalvan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykoy, Nikolay Bogovchey, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Celebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani,

541

542

543

544

546

547

548

549

550

552

553

554

557

559

561

562

563

564

565

566

567

568

569

570

571

572

573

574

576

577

578

579

580

581

582

583

584

585

586

588

590

591

Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan Mc-Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. Training large language models to reason in a continuous latent space, 2024. URL https://arxiv.org/abs/2412.06769.

Fengqing Jiang, Zhangchen Xu, Luyao Niu, Zhen Xiang, Bhaskar Ramasubramanian, Bo Li, and Radha Poovendran. Artprompt: Ascii art-based jailbreak attacks against aligned llms.

- In Annual Meeting of the Association for Computational Linguistics, 2024. URL https://api.semanticscholar.org/CorpusID:267750708.
- Yixiang Ma, Ziyi Liu, Zhaoyu Wang, Zhaofeng Xu, Yitao Wang, and Yang Liu. Safechain: A framework for securely executing complex commands using large language models. *arXiv* preprint arXiv:2402.16521, 2024a.
- Yixiang Ma, Ziyi Liu, Zhaoyu Wang, Zhaofeng Xu, Yitao Wang, and Yang Liu. Safechain: A framework for securely executing complex commands using large language models. *arXiv* preprint arXiv:2402.16521, 2024b.
- OpenAI. Gpt-4 technical report, 2023.

- Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feedback. In NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html.
- Yingzhe Peng, Chenduo Hao, Xu Yang, Jiawei Peng, Xinting Hu, and Xin Geng. Live: Learnable in-context vector for visual question answering, 2024. URL https://arxiv.org/abs/2406.13185.
- Xiangyu Qi, Ashwinee Panda, Kaifeng Lyu, Xiao Ma, Subhrajit Roy, Ahmad Beirami, Prateek Mittal, and Peter Henderson. Safety alignment should be made more than just a few tokens deep, 2024. URL https://arxiv.org/abs/2406.05946.
- Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. arXiv preprint arXiv:2305.18290, 2023.
- Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi: Compressing chain-of-thought into continuous space via self-distillation, 2025. URL https://arxiv.org/abs/2502.21074.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. *arXiv* preprint arXiv:2201.11903, 2022.
- Eric Zelikman, Yuhuai Wu, Erik Nijkamp, and Noah Goodman. Star: Self-taught reasoner bootstrapping reasoning with reasoning. arXiv preprint arXiv:2203.14465, 2022.
- Yichi Zhang, Siyuan Zhang, Yao Huang, Zeyu Xia, Zhengwei Fang, Xiao Yang, Ranjie Duan, Dong Yan, Yinpeng Dong, and Jun Zhu. Stair: Improving safety alignment with introspective reasoning, 2025. URL https://arxiv.org/abs/2502.02384.
- Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J. Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial attacks on aligned language models, 2023a. URL https://arxiv.org/abs/2307.15043.
- Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial attacks on aligned language models, 2023b.

A RELATED WORK

Output-based Safety Alignment. Output-based Safety Alignment Methods centers on supervising the model's final output, treating the internal reasoning process as an opaque black box. Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017) uses a separate reward model to reflect human preferences, and then used to fine-tune the LLM policy. Direct Preference Optimization (DPO) (Rafailov et al., 2023), which extracts a reward

signal directly from preference data, offering a more stable alternative. Constitutional AI (Bai et al., 2022) guides the model to revise its own outputs based on a predefined set of safety principles and reduces the reliance on extensive human labeling. However, such methods merely learn a simplistic mapping that directly refuses harmful queries, neglecting the modeling and supervision of the underlying safety reasoning process. Consequently, they struggle to recognize potential harms in more complex scenarios and remain vulnerable to carefully crafted jailbreaking attacks.

Reasoning Process-based Safety Alignment. To open the black box, researchers have turned to expose and supervise the safety reasoning process of LLMs. The introduction of Chain-of-Thought (CoT) prompting (Wei et al., 2022) demonstrated that eliciting step-by-step reasoning improves performance and expose the reasoning process. This principle was quickly adapted for safety. Frameworks such as STAIR (Zhang et al., 2025) showed that models can generate their own rationales, while more targeted approaches like SafeChain (Ma et al., 2024a) explicitly apply CoT to safety. STAIR trained the non-reasoning LLM to generate the CoT that embodies safety reasoning. The explicit, textual CoTs generated by these methods provides a rich signal for fine-tuning. However, as we argue in our "Security-Auditability Dilemma," the discrete nature of these reasoning steps creates a fragile attack surface.

ALCA is designed to preserve supervisability while eliminating this attack surface by conduct safety reasoning in the hidden space.

Latent reasoning methods. Some existing works has focused on makeing reasoning implicit or latent. Methods like ICOT (Gao et al., 2025) and COCONUT (Hao et al., 2024) fine-tune models to internalize reasoning steps, while others use knowledge distillation to embed the process in the model's hidden states (Shen et al., 2025). More recently, dynamic latent compression performs reasoning entirely within these hidden states, avoiding explicit generation altogether (Peng et al., 2024). Our method focuses on precisely concealing the fragile chain-of-safety-reasoning and, via a proprietary auto-encoding mechanism, decodes it into explicit text for full explainability and supervisability.

B CHOICE OF LATENT REPRESENTATION TARGET

Target Vector Method	ASR (Adap.) ↓	Sem. Sim. ↑
Attention-Weighted Pool.	18.2%	0.85
Mean Pooling	11.5%	0.92
Last Token Hidden State	9.1%	0.96

Table 5: Comparison of different methods for constructing the target latent vectors. Using the last token's hidden state, which is native to the autoregressive model's predictive function, yields the best results.

A core design choice is how to construct the golden standard vectors \mathbf{z}^* used as targets for \mathcal{L}_{latent} . We compared three methods for extracting a gold standard.

As shown in Table 5, Pooling-based methods proved suboptimal for our sequential reasoning task. Attention-Weighted Pooling achieved an adaptive ASR of 18.2%, while Mean Pooling performed slightly better at 11.5%. We attribute this to the fact that pooling operations average states across the entire sequence, creating a holistic but blurred representation that loses the precise, forward-looking information needed to guide the next generation step.

In stark contrast, using the Last Token Hidden State as the target yielded superior results in both security (ASR: 9.1%) and reconstruction fidelity (Sem. Sim.: 0.96). This success is architecturally intuitive: in an autoregressive model, the final token's hidden state is explicitly optimized during pre-training to serve as a complete, contextualized summary for predicting the subsequent token. This experiment validates that aligning our L_latent objective with the model's inherent predictive function is the most effective approach.

C COMPUTATIONAL OVERHEAD AND THROUGHPUT ANALYSIS

We measured the average inference latency (time per request) and the resulting throughput (requests per second) on a single NVIDIA A100 GPU. We compare our ALCA framework against the undefended base model and ALCA without hiding safety reasoning oricess. As shown in Table 6, our ALCA framework demonstrates remarkable efficiency, achieving a throughput nearly double that of the CoT-Safety model. This efficiency stems from two key sources: 1) Probe is a lightweight classifier, adding negligible latency to the overall process, and more importantly, 2) ALCA compresses the generation of long secure COT text and controls it to a fixed number of n hidden vector generations. Crucially, while ALCA is only marginally slower than the none-reasoning base model (an approx. 19% increase in latency), this modest increase is a highly acceptable trade-off. For this small computational cost, we gain a massive leap in security and robustness.

Table 6: Inference Latency and Throughput Comparison. ALCA offers a superior balance, significantly improving throughput over explicit reasoning methods with only a minor overhead compared to the non-defended base model.

Model	Latency (ms) ↓	Throughput (req/sec) ↑
Base Model	152	6.58
ALCA(without hiding)	345	2.90
ALCA	181	5.52

D DISSECTING THE HYBRID SUPERVISION

D.0.1 THE PATH TO ROBUSTNESS.

Figure 2(a) illustrates the evolution of model robustness. The Hybrid model demonstrates the most rapid and stable decrease in ASR. The Latent-Only model follows a respectable, albeit slower, trajectory, confirming that imposing a coherent structure on the internal reasoning process is a potent defense mechanism in its own right.

In stark contrast, the Decode-Only model suffers from a severe cold-start problem and exhibits highly unstable performance in the early training phases, unguided search through a vast policy space. Lacking the semantic scaffolding of $L_{\rm latent}$, the model struggles to discover a robust defensive reasoning pathway, leading to a significantly slower and less reliable convergence.

D.0.2

The Fragility of Verifiable Honesty. The semantic similarity results, shown in Figure 2(b), present an even more striking narrative. While the Hybrid model learns to self-decode both quickly and reliably, and the casual-Only model slowly but steadily masters this task, the Latent-Only variant tells a cautionary tale, midway through training, its performance abruptly and catastrophically collapses.

We attribute this phenomenon to representational overfitting to the $L_{\rm latent}$ objective. To relentlessly minimize the MSE loss, the model learns to discard information that is vital for decoding but marginal for matching the target latent vector. Without the countervailing pressure of $L_{\rm decode}$ to preserve informational completeness, this optimization leads to a sudden and irreversible failure of its decoding capability.

E EXPERIMENTAL SETUP

Base Models: To ensure the generality of our findings, we conduct experiments three models:Llama-3-8B-Instruct, Mistral-7B-Instruct-v0.2, Qwen1.5-7B-Chat.

Baselines: Training-Time Alignment Methods includes: RLHF (Reinforcement Learning from Human Feedback) guides the LLM's policy refinement via reinforcement learning. textbfS-TAIR (Self-Taught Reasoner): generate safety reasoning to improve final outputs. We adapt it for safety by having it reason about potential policy violations.

VLCA (decode): This model variant is trained identically to our full ALCA model but uses the self-decoding mechanism to reconstruct the safety reasoning trace and makes it explicit in the final output. This allows the reasoning to serve as feedback for adaptive attacks and be included in the ASR evaluation, directly testing our hypothesis on the necessity of concealment. Inference-Time Defense Strategiesincludes: PPL (Perplexity-based Defense): is an inference-time filter that rejects outputs if their generation perplexity exceeds a predefined threshold, based on the hypothesis that jailbreaks induce atypical model states. AED (Adversarial Example Detection): employs a separate, lightweight classifier to inspect the user prompt. If the prompt is flagged as a potential attack, a canned refusal is issued preemptively. SafeDecoding: generates multiple candidate responses and uses a safety-specialized judge model to select the most harmless one for the final output.

Training Data. We construct a training dataset of approximately 10,000 samples using prompts from AdvBench and the Harmful Behaviors dataset.

Implementation Details. All models are trained for 3 epochs using the AdamW optimizer with a learning rate of 2e-5 and a batch size of 16. The hybrid loss hyperparameter α in ALCA is set to 0.4. Our implementation utilizes PyTorch and the Hugging Face Transformers library.

Adaptive Jailbreak Attacks To comprehensively assess model robustness, we evaluate against four diverse and state-of-the-art adaptive jailbreak attack methods: GCG (Greedy Coordinate Gradient): is a classic white-box attack using gradient-based greedy search to find adversarial suffixes. TAP (Targeted Attack Prompt): is a gradient-based optimization attack that is effective in creating targeted and subtle jailbreaks. PAIR (Prompt Automatic Iterative Refinement): is a black-box attack that uses an attacker LLM to iteratively refine prompts to elicit unsafe content. AutoDAN (Automated DAN): is a state-of-the-art method using hierarchical genetic algorithms to automatically generate diverse and effective jailbreaks.

Metrics: We use a comprehensive set of metrics to evaluate different aspects of model performance: Attack Success Rate (ASR) is automatically judged by GPT-4. A lower ASR indicates higher robustness. Auditability is quantified by comparing the reconstructed reasoning against the ground-truth text using BLEU, ROUGE-L, and semantic similarity scores. Downstream Utility are measured by performance on standard benchmarks: MMLU (accuracy) and Alpaca-Eval (win rate).

E.1 EXPERIMENTAL SETUP FOR AUDITABILITY EVALUATION

To rigorously quantify the auditability of ALCA, we evaluated the fidelity of its self-decoding mechanism. The core task is to measure the similarity between the ground-truth safety reasoning chains $(C_{original})$ and their reconstructions from the latent space $(\hat{C}_{decoded})$. We established a multi-faceted evaluation protocol using three distinct test sets and a suite of complementary metrics.

Evaluation Datasets. To ensure our evaluation is comprehensive, we curated test samples from three sources, each representing a different challenge profile:

- AdvBench: Consists of prompts from a well-known adversarial attack benchmark.
 The corresponding safety reasoning is often structured and targeted at specific policy violations.
- Harmful Behaviors: A broader dataset covering a wide range of potentially harmful user requests. This tests the reconstruction of more diverse and general safety reasoning.
- Complex Ethical Dilemmas (CED): A curated internal set of scenarios involving nuanced ethical gray areas, which require longer, multi-step reasoning. This probes the model's ability to maintain fidelity on complex and subtle logic.

Evaluation Metrics. We employed three metrics to provide a holistic view of reconstruction quality, spanning from lexical to semantic fidelity:

 BLEU-4: Measures n-gram precision to assess the exactness of word and phrase reconstruction. Calculated using the sacrebleu library.

ROUGE-L: Measures the longest common subsequence to evaluate the preservation
of sentence structure and core information. Calculated using the rouge-score library.

 • Semantic Similarity (Sem. Sim.): Measures the core meaning equivalence. We use a state-of-the-art sentence embedding model, Salesforce/SFR-Embedding-Mistral, which demonstrates top performance on the MTEB (Massive Text Embedding Benchmark) leaderboard. We compute the cosine similarity between the embeddings of the original and decoded texts. A score near 1.0 indicates near-perfect semantic reconstruction.

Table 7: Self-Decoding fidelity metrics for ALCA across multiple test sets. Higher scores indicate better reconstruction. The results show consistently high fidelity, especially at the semantic level, confirming the effectiveness of our auditability mechanism.

Test Dataset	BLEU-4↑	ROUGE- L↑	Sem. Sim. ↑
AdvBench	0.87	0.92	0.97
Harmful Behaviors	0.85	0.90	0.96
Complex Ethical Dilemmas (CED)	0.79	0.87	0.95
Average	0.86	0.91	0.96

The results in Table 7 are highly compelling. Across all datasets, ALCA achieves extremely high semantic similarity (average 0.96), demonstrating that the core logic of the safety reasoning is preserved losslessly. The strong ROUGE-L (average 0.90) and BLEU-4 (average 0.84) scores further confirm high structural and lexical fidelity. Notably, for more complex scenarios like CED, while lexical scores slightly decrease as expected due to acceptable rephrasing, semantic similarity remains exceptionally high. This validates that ALCA's latent reasoning is not an uninterpretable black box but a transparent and faithfully auditable process.

F DOWNSTREAM CAPABILITY EVALUATION: SETUP AND BASELINES

To verify that our proposed Auditable Latent CoT Alignment (ALCA) framework enhances safety without compromising the model's fundamental utility, we established a comprehensive evaluation suite for downstream capabilities. This appendix details the benchmarks used and presents the baseline performance of the undefended base models. The primary goal is to establish a robust performance baseline, against which the results of ALCA-aligned models (as shown in the main paper's Table 2) can be compared.

Evaluation Benchmarks. We selected a diverse set of five widely recognized benchmarks to assess different facets of a model's capabilities:

 MMLU (Massive Multitask Language Understanding): We report 5-shot accuracy on the MMLU benchmark. It is a comprehensive test of a model's general knowledge and problem-solving abilities across 57 diverse subjects, making it a gold standard for evaluating knowledge breadth and depth.

 ARC-C (AI2 Reasoning Challenge - Challenge Set): We report 25-shot accuracy on the ARC-Challenge set. This benchmark focuses on complex science reasoning, using questions that are difficult to answer with simple retrieval, thus probing the model's deeper reasoning faculties.

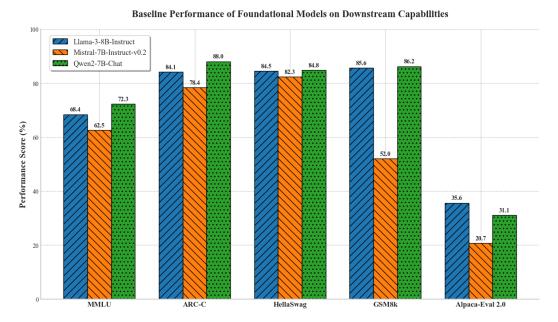


Figure 5: Baseline performance of undefended models on standard downstream benchmarks. Scores are reported as accuracy (%) for MMLU, ARC-C, HellaSwag, and GSM8k, and as win rate (%) for Alpaca-Eval 2.0. Higher scores are better.

- HellaSwag: We report 10-shot accuracy. HellaSwag evaluates commonsense reasoning by tasking the model with choosing the most plausible continuation of a given text. It is designed to be challenging for models that rely on superficial statistical patterns.
- GSM8k: We report 8-shot accuracy using Chain-of-Thought (CoT) prompting. This
 benchmark measures multi-step mathematical reasoning capabilities with gradeschool math problems, a key indicator of a model's logical and numerical reasoning
 skills.
- Alpaca-Eval 2.0: We report the win rate against a strong reference model. This benchmark assesses a model's ability to follow complex human instructions in a conversational context, providing a holistic measure of its helpfulness and instruction-following quality.

Baseline Results. The performance of the three base models used in our experiments is summarized in Table 8. These figures represent the state-of-the-art capabilities that our ALCA framework aims to preserve. As demonstrated in the main text, our method successfully maintains this high level of performance while drastically reducing the Attack Success Rate (ASR).

Table 8: Baseline performance of undefended models on standard downstream benchmarks. Scores are reported as accuracy (%) for MMLU, ARC-C, HellaSwag, and GSM8k, and as win rate (%) for Alpaca-Eval 2.0. Higher scores are better.

Model	MMLU (5-shot)	ARC-C (25-shot)	HellaSwag (10-shot)	GSM8k (8-shot, CoT)	Alpaca-Eval 2.0 (Win Rate)
Llama-3-8B-Instruct	68.4	84.1	84.5	85.6	35.6
Mistral-7B-Instruct-v0.2	62.5	78.4	82.3	52.0	20.7
Qwen2-7B-Chat	72.3	88.0	84.8	86.2	31.1

G ABLATION STUDY ON THE NUMBER OF LATENT REASONING STEPS

Motivation A core hyperparameter in our ALCA framework is N, the number of autoregressive steps performed in the latent space for safety deliberation. This parameter directly controls the capacity and depth of the latent Chain-of-Thought. An insufficient N may lead to a shallow deliberation, failing to capture the full complexity of a safety reasoning chain, thus compromising both security and the fidelity of its later reconstruction. Conversely, an excessively large N could introduce redundant computations with diminishing returns on performance, increasing inference latency. To identify the optimal balance, we conduct an ablation study by varying N from 1 to 8.

Analysis The results, presented in Table 9, reveal a clear and informative trend. When N is small $(1 \le N \le 3)$, the model's robustness is compromised, as indicated by a relatively high Adaptive Attack Success Rate (ASR). This is because the constrained latent space lacks the capacity to form a comprehensive and robust defense strategy. Concurrently, the Semantic Similarity for reconstruction is lower, suggesting that the compressed reasoning is lossy and incomplete.

As N increases from 4 to 6, we observe a significant improvement in both security and auditability. The ASR drops sharply, and the Semantic Similarity of the self-decoded reasoning approaches its peak. This suggests that a moderate number of latent steps is sufficient to represent the essential safety logic. The performance saturates at N=6, where the model achieves the best trade-off. Further increasing N to 7 or 8 yields negligible improvements in ASR and Semantic Similarity but steadily increases inference latency. This demonstrates a point of diminishing returns, where additional computational steps do not contribute meaningfully to the final outcome. Therefore, we select N=6 as the default setting for all other experiments in this paper, as it provides optimal security and auditability without unnecessary computational overhead. This result is consistent with that of coconutHao et al. (2024).

Table 9: Ablation study on the number of latent reasoning steps (N). We report the Adaptive Attack Success Rate (ASR), the Semantic Similarity (Sem. Sim.) of the reconstructed reasoning, and inference latency. Performance in terms of security and auditability stabilizes around N=6, which strikes an optimal balance with computational cost. Lower ASR and latency are better; higher Sem. Sim. is better.

Steps (N)	ASR (Adap.) \downarrow	Sem. Sim. ↑	Latency (ms) ↓
1	25.1%	0.82	160
2	15.3%	0.89	165
3	11.2%	0.93	172
4	9.8%	0.95	178
5	9.3%	0.96	181
6	9.1%	0.96	185
7	9.0%	0.96	189
8	9.1%	0.96	193

H DECOMPOSITION OF THE OPTIMIZATION OBJECTIVE

In this section, we provide a detailed derivation of how the primary optimization objectives outlined in Section 3.1 (Eq. 3 and Eq. 4) can be equivalently transformed into three independent sub-optimization tasks under our idealized assumptions. This decomposition provides the theoretical foundation for our three-stage ALCA architecture.

Our primary goals are:

1. Security: Minimize the harmfulness of the user-facing output, C_{exp} .

$$\min_{\pi} \mathbb{E}_{x \sim \mathcal{D}_{adv}} [H(C_{exp}(\pi, x), y)]$$

2. High-Fidelity Auditability: Ensure the explicit chain remains coherent and the concealed chain is accurately reconstructable.

$$\max_{\pi, D, G_{latent}} \mathbb{E}_{(x, C_{full})} \left[\sum_{j \mid m_j = \text{explicit}} \mathbf{Sim}(c_j, c_j') + \sum_{j \mid m_j = \text{latent}} \mathbf{Sim}(c_j, \hat{c}_j) \right]$$

where $\hat{c}_j = D(z_j)$ is the decoded text.

Let us analyze how to achieve the optimal solution for these goals based on the assumptions of *Harmlessness and Necessity* and *Sole Source of Risk*.

H.1 CONDITION 1: PERFECT DECISION ALIGNMENT FOR SECURITY

The security objective is to render the user-facing output $C_{exp} = \{c'_j | m_j = 0\}$ completely harmless. According to our Sole Source of Risk assumption, all safety risks are encapsulated exclusively within reasoning steps c_j where the ground-truth label $s_j = 1$. Consequently, the harmfulness function $H(C_{exp})$ will be greater than zero if and only if at least one step c_k with $s_k = 1$ is generated explicitly (i.e., $m_k = 0$).

To guarantee that $H(C_{exp})=0$ for any adversarial prompt x, the policy π must ensure that for any reasoning step j, if its ground-truth label is $s_j=1$, the policy's decision must be $m_j=1$ (latent). This prevents the harmful content from ever materializing in the output.

Furthermore, our Harmlessness and Necessity assumption states that all steps with $s_j=0$ are both harmless and essential for a complete response. To maximize the utility and coherence of the final output (which is implicitly part of the auditability goal), these steps must be generated explicitly. Therefore, if $s_j=0$, the optimal decision is $m_j=0$ (explicit).

Combining these two requirements, the optimal policy π^* that perfectly satisfies the security objective while preserving utility is one that perfectly aligns its decision m_j with the ground-truth harmfulness label s_j for all steps j. This leads to our first sub-optimization task:

- (1) Perfect Decision: The policy π must learn to perfectly match the ground-truth label: $\forall j, m_j = s_j$.
- H.2 CONDITION 2 3: LOSSLESS DECODING AND CAUSAL NON-INTERFERENCE FOR AUDITABILITY

With the decisions fixed by the optimal policy π^* (i.e., $m_j = s_j$), we can now focus on the auditability objective. The maximization problem can be split into two independent sums over disjoint sets of indices: one for latent steps $(s_j = 1)$ and one for explicit steps $(s_j = 0)$.

$$\max_{D,G_{latent}} \mathbb{E}\left[\sum_{j|s_j=0} \mathbf{Sim}(c_j,c_j') + \sum_{j|s_j=1} \mathbf{Sim}(c_j,D(z_j))\right]$$

We can optimize these two terms separately.

Optimizing the second term (Latent Steps) The second term, $\sum_{j|s_j=1} \operatorname{Sim}(c_j,D(z_j))$, exclusively involves the decoder D. To maximize this sum, we must optimize D to make its reconstruction $D(z_j)$ as semantically close as possible to the original text c_j . This directly yields our second sub-optimization task:

(2) Lossless Latent Decoding: The decoder D must be optimized to maximally reconstruct the concealed steps: $\max_D \text{Sim}(c_i, D(z_i))$ for all j where $s_i = 1$.

Optimizing the first term (Explicit Steps) The first term, $\sum_{j|s_j=0} \operatorname{Sim}(c_j,c_j')$, involves the generation of the explicit, user-facing text c_j' . The generation of c_j' is an autoregressive process, conditioned on the entire history of preceding steps, which includes both explicit text $\{c_k'|k< j,s_k=0\}$ and latent vectors $\{z_k|k< j,s_k=1\}$.

The challenge here is subtle but critical. If the generation of a latent vector z_k (representing the unsafe step c_k) fundamentally alters the model's internal hidden state in a way that is inconsistent with having generated the original text c_k , then the probability distribution for a subsequent, harmless step c_j' will be perturbed. This perturbation can cause c_j' to deviate from the ground-truth c_j , thereby decreasing $\operatorname{Sim}(c_j,c_j')$.

To maximize the first term and ensure that the explicit chain remains faithful to the ground-truth C_{full} , the latent reasoning process G_{latent} must produce vectors z_k that are causally equivalent to their textual counterparts c_k in terms of their influence on future generation. In other words, the generation of z_k must not interfere with the model's ability to generate subsequent harmless text correctly. This leads to our third sub-optimization task:

(3) Causal Non-Interference: The generation of a latent vector z_j must minimally alter the probability distribution for any subsequent general-purpose step c_k $(k > j, s_k = 0)$.

Conclusion By decomposing the problem, we have shown that under our idealized assumptions, the complex joint optimization of security and auditability is equivalent to satisfying three more tractable, sequential conditions. Our ALCA architecture is explicitly designed to solve these three sub-tasks in stages: the probe classifier for *Perfect Decision*, the self-decoder for *Lossless Decoding*, and the latent autoregressive deliberation with its hybrid loss for *Causal Non-Interference*.

I THE BRITTLENESS OF DISCRETE REASONING

Here we clarify why we opt for ALCA rather than simply masking the safety-reasoning CoT text: the fragility of the discrete, token-by-token nature of explicit reasoning. We hypothesize that the model's commitment to a single, adversarially-nudged token early in the generation process causes an irreversible divergence in its latent space trajectory.

To test this, we conduct a probing experiment on the 'CoT-Safety' model:

- Scenario A (Jailbreak): We provide a successful jailbreak prompt $x_{\rm jail}$ and record the model's generation of a harmful reasoning chain $c_{\rm harmful}$.
- Scenario B (Forced Continuation): We take a standard harmful prompt $x_{\rm std}$ and its known harmful completion (generated by the base model without safety tuning), $y_{\rm harmful}$. We then feed $x_{\rm jail}$ to the 'CoT-Safety' model but force its generation to begin with the first few tokens of $y_{\rm harmful}$, letting it complete the chain into $c_{\rm spliced}$.

We analyze two metrics: the average cosine distance between successive hidden states (a measure of trajectory stability) and the harmfulness of the final output.

Scenario	Hidden State Deviation ↑	Output Harmfulness ↑
A: Jailbreak	0.88	0.95 (Highly Harmful)
B: Forced Cont.	0.52	0.61 (Moderately Harmful)

Table 10: Analysis of reasoning trajectories. The standard jailbreak shows significantly higher latent space deviation and final harmfulness.

As shown in Table 10, the standard jailbreak trajectory is far more unstable and results in a more harmful output. Our analysis indicates that once the model is adversarially influenced to generate a critical "wrong" token, its internal state diverges sharply, making recovery impossible. The "Forced Continuation" scenario, while still harmful, shows a more constrained and stable trajectory.

This key observation suggests that the fundamental point of failure is the irreversible, discrete commitment to tokens during reasoning. If the deliberation could occur in a continuous space *before* any tokens are generated, it would be inherently more robust to minor adversarial perturbations and avoid this catastrophic divergence.

These observations collectively establish the Safety-Explainability Dilemma and pinpoint the discrete nature of text as its root cause. They strongly motivate our proposed solution: to move the vulnerable reasoning process into a secure, continuous latent space. This leads us directly to our proposed framework: LACA.