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Abstract

Time-series reasoning remains a significant challenge for multimodal LLMs due1

to dynamic temporal patterns and semantic ambiguities, with existing models2

often lacking structured, human-aligned temporal understanding. In this work,3

we introduce TimeMaster, a novel reinforcement learning (RL)-based method4

that enables time-series MLLMs to perform structured, human-aligned reasoning5

over visualized temporal data. TimeMaster adopts a three-part output format6

(reasoning, classification, extension) and is optimized through a composite reward7

function within a two-stage pipeline (SFT followed by RL). Evaluated on TimerBed,8

TimeMaster achieves state-of-the-art performance, outperforming classical models9

by 8.3% and GPT-4o baselines by 7.3%, while also delivering human-aligned10

reasoning and actionable insights. This work offers a promising step towards11

equipping LLMs with robust temporal reasoning capabilities, paving the way12

for more interpretable and intelligent time-series analysis. Code is available at13

https://anonymous.4open.science/r/TimeMaster-6EC1.14

1 Introduction15

Time series analysis is fundamental to data mining, enabling the modeling of temporal patterns16

and supporting decision-making across critical domains like healthcare [1, 2], industrial monitoring17

[3, 4], and environmental surveillance [5]. While deep learning has significantly advanced classical18

time-series tasks like forecasting [6, 7, 8, 9, 10] and classification [7, 9], these models primarily19

focus on numerical predictions. The recent surge in large language models (LLMs) [11, 12, 13, 14]20

presents a transformative opportunity for human-centric time-series analysis, promising capabilities21

beyond mere prediction to encompass genuine reasoning, explanation, and advice.22

However, bridging the gap between LLMs and temporal data remains challenging. Standard text-23

based representations of time series often lead to inefficiencies and hallucination [15, 16]. While24

converting time series to visuals and leveraging multimodal LLMs (MLLMs) shows promise for25

pattern recognition, current methods primarily rely on prompt engineering, which often fails to elicit26

robust and coherent reasoning [17, 15, 18, 19, 20, 21]. A key limitation is the lack of pre-training on27

time-series visualizations in base MLLMs, and post-training approaches face hurdles like limited28

data diversity and high annotation costs. This hinders the development of MLLMs with deep, reliable,29

language-based time-series reasoning (TsR) capabilities [22], a crucial step for advanced applications.30

In this work, we introduce TimeMaster, a novel reinforcement learning (RL) [23]-based framework31

that trains MLLMs for sophisticated multimodal time-series reasoning. TimeMaster directly addresses32

these limitations by learning through iterative RL, enabling the model to progressively acquire,33

refine, and generalize its reasoning capabilities. Our approach features a structured output format34

(reasoning, classification, extension) optimized by a composite reward function, balancing format35
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adherence, accuracy, and the quality of generated insights. We employ a two-stage pipeline: initial36

SFT for foundational alignment and subsequent RL for targeted, self-improving reasoning. Our37

preliminary findings on the TimerBed benchmark [15] demonstrate TimeMaster’s state-of-the-art38

performance, significantly outperforming classical models (by 8.3%) and GPT-4o baselines (by 7.3%),39

and exhibiting high-quality, context-aware reasoning and actionable extensions. This work pioneers a40

path towards equipping general-purpose LLMs with powerful temporal reasoning skills, opening new41

avenues for more intelligent and interpretable time-series analysis.42

2 Related work43

Language-free time-series models excel at learning temporal representations for forecasting and44

classification [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], but they lack the linguistic capabilities45

essential for human-aligned reasoning. To address this, recent efforts integrate LLMs by transforming46

temporal data into modalities compatible with language models. One approach utilizes text sequences47

[36, 37, 38, 39, 20, 40, 41, 42, 43], while another focuses on visualizations [15, 18, 19, 21]. However,48

text-based approaches often struggle with prompt engineering for robust temporal reasoning [17] and49

face token inefficiencies [15, 16]. Visualization-based methods, while effective for pattern recognition,50

are fundamentally limited by the absence of explicit pre-training on time-series visualizations and51

high post-training data annotation costs. Concurrently, reinforcement learning (RL) [23] has emerged52

as a powerful paradigm, demonstrating efficacy in enhancing LLM reasoning and alignment [44,53

45, 46, 47, 48, 49, 50]. This success suggests RL’s significant potential to bridge the gap towards54

deep, reliable, and language-based temporal reasoning in LLMs, an aspiration our novel RL-based55

framework directly pursues to unlock advanced time-series reasoning capabilities.56

3 Method57

We introduce TimeMaster, an RL-enhanced framework that empowers general-purpose MLLMs58

with sophisticated, human-aligned time-series reasoning, enabling actionable insights beyond mere59

prediction through visualized inputs and a structured, reward-guided process.60

3.1 Multimodal Time-Series Input and Structured Output61

TimeMaster processes time series data X = {xt}Tt=1 (where xt ∈ RD) alongside textual context q.62

Unlike traditional methods that focus on forecasting or classification, our approach transforms raw63

time series into visual representations (e.g., line plots) [15], enabling the MLLM’s visual encoder to64

capture temporal patterns more effectively and efficiently [15, 36, 18].65

The core of TimeMaster lies in its structured output format for Time-Series Reasoning (TsR),66

generating a three-part response:67

⟨think⟩ · · · ⟨/think⟩︸ ︷︷ ︸
Reasoning

⟨class⟩ · · · ⟨/class⟩︸ ︷︷ ︸
Classification

⟨extension⟩ · · · ⟨/extension⟩︸ ︷︷ ︸
Extension (Optional)

.

1) The think block articulates an open-ended reasoning process, detailing pattern recognition,68

trend analysis, and causal inference. 2) The class block provides a discrete label for classification,69

enabling rigorous evaluation. 3) The extension block offers optional follow-up insights, suggestions,70

diagnostics, or actionable advice, greatly enhancing practical usability. Figure 1 provides a visual71

overview of this process, illustrating how TimeMaster processes inputs and generates these structured72

outputs, guided by reward signals.73

3.2 Reward Modeling for Temporal Reasoning74

To effectively train TimeMaster, we designed a composite reward system that jointly optimizes75

structural correctness, classification accuracy, and extension quality. This system comprises: 1)76

Format Reward (rfmt): Enforces strict adherence to the XML-style output structure, penalizing77

missing tags. 2) Hard Reward (rhard): Evaluates classification accuracy: rhard
(
ĉ, c⋆

)
= I[ĉ = c⋆],78

ensuring factual alignment. 3) Soft Reward (rsoft): Assesses extension quality via an LLM-as-a-79

Judge [51] rating specificity, appropriateness, relevance, and depth, allowing for nuanced evaluation80
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Question:                   You are examining a short-duration EMG waveform image, recorded using a concentric needle electrode in the tibialis anterior muscle. 
The recording captures the amplitude (mV) of the electrical activity generated by muscle fibers. Based on the EMG image’s waveform morphology and 
temporal patterns, your task is to classify the neuromuscular condition as one of the following: Healthy, Myopathy, or Neuropathy. 
You must first reason step-by-step about the current situation. This reasoning process MUST be enclosed within <think>  and </think> tags. Once you've 
finished your reasoning, you must choose ONE of the classifications and present it within <class> and </class> tags. Finally, provide clinical suggestions based 
on your reasoning and prediction, enclosed within <extension> and </extension> tags.

<think> The waveform shows a relatively low amplitude, with the 
maximum amplitude reaching  .…

<think>The waveform shows frequent and large amplitude spikes, 
which are consistent with the firing patterns observed in 
neuropathic conditions. The presence of these spikes suggests a 
disruption in the normal motor unit action potential firing.</think>
<class>Neuropathy</class>
<extension>Given the clinical presentation of the EMG signal, it is 
strongly recommended to conduct a detailed electromyography 
(EMG) study, including needle EMG and nerve conduction studies, to 
identify the specific type of neuropathy (e.g., peripheral, cranial)  … 
patient's quality of life.</extension>

Format Reward

Hard Reward

Soft Reward

Format error

Format correct
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Soft reward: 0.2

Soft reward: 0.8

<think>The EMG  … myopathic units.</think>
<class>Myopathy</class>
<extension> Given the EMG signal, the most appropriate diagnostic 
label is Myopathy. Recommendations: Perform additional EMG 
studies to assess recruitment patterns and motor unit action 
potentials. Use MRI to evaluate muscle structure and identify atrophy 
or inflammation. Order blood tests to measure muscle enzymes and 
troponin levels as markers of muscle damage . . . Start a tailored 
physical therapy regimen to maintain muscle strength and function, 
focusing on endurance.</extension>

<think>The EMG  … myopathic units.</think>
<class>Myopathy</class>
<extension> Advice includes monitoring strength.</extension>

      

      

Prediction error

Prediction 
correct

<think>The waveform is polyphasic, meaning it has multiple 
peaks . . . a hallmark of myopathic units. The amplitude of the 
waveform is increased…   suggest a neurogenic process.   </think>
<class>Neuropathy</class>
<extension>Given… of life.</extension>

<think> The waveform is characterized by small, low-amplitude 
spikes that are typical of myopathy. Myopathy is often associated 
with reduced motor unit action potentials (MUAPs) due to muscle 
fiber weakness or loss. There is also a consistent temporal pattern 
of low amplitude spikes, indicating that the motor units are firing 
at a lower rate, which is consistent with the reduced recruitment 
and firing frequency seen in myopathy.</think>
<class>Myopathy</class>
<extension>Give...specific cause.</extension>

Figure 1: Overview of TimeMaster. The model is trained via RL with three reward signals. (Left)
Format reward penalizes otherwise valid reasoning if required tags are missing. (Middle) Hard reward
assigns zero if the Prediction is incorrect despite reasonable reasoning about myopathy features.
(Right) Soft reward distinguishes between vague (e.g., “monitor strength”) and high-quality (e.g.,
“recommend blood tests to measure muscle enzymes and troponin levels”) clinical suggestions.

of actionable advice. These are combined into a unified composite reward:81

r = λfmt rfmt + λhard rhard + λsoft rsoft, (1)

where λ values balance these objectives, guiding the model towards robust time-series analysis.82

3.3 Optimization for TsR via RL83

We employ a two-stage training pipeline to achieve expert-level temporal reasoning. 1) Stage 1:84

Supervised Fine-Tuning (SFT). We initialize the model with foundational alignment via SFT85

using approximately 1,000 GPT-4o [17] generated examples, injecting domain knowledge and86

establishing the output format. 2) Stage 2: Reinforcement Learning (RL) with GRPO. We then87

utilize token-level Group Relative Policy Optimization (GRPO) [49, 52] for RL training. This process88

enhances reasoning by maximizing a clipped surrogate objective with KL-divergence regularization.89

Normalized advantages are computed using group-wise statistics:90

Âi =
ri−µr

σr
, µr = 1

G

∑G
j=1 rj , σr =

√
1
G

∑G
j=1(rj − µr)2 + ε (2)

The objective function for parameter updates (θ) is:91

L(θ) = 1

G

G∑
i=1

1

|yi|

|yi|∑
k=1

min
(
ρi,kÂi, clip(ρi,k, 1± ϵ) Âi

)
− βKL

[
πθ

∥∥πref

]
(3)

This two-stage process enables TimeMaster to progressively refine its temporal reasoning capabilities,92

leading to more accurate and interpretable insights.93

4 Experiment94

Training Pipeline. We employ a two-stage training pipeline for TimeMaster. We first fine-tune95

our base MLLM (Qwen2.5-VL-3B-Instruct [61]) on approximately 1,000 task-specific samples per96

dataset, generated by GPT-4o [17], for initial instruction tuning and foundational alignment. We then97

proceed with RL fine-tuning. The training configuration is provided in Appendix D, where reward98

weights (λfmt, λhard, λsoft) = (0.1, 0.9, 1.0). We evaluate the base Qwen2.5-VL, its SFT-tuned99

variant, TimeMaster (RL), and the complete TimeMaster (SFT+RL) model.100
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Table 1: Accuracy (%) of different methods on TimerBed. “Simple Determ.” denotes simple
deterministic reasoning and “Complex Determ.” denotes complex deterministic reasoning.

Modality Type Method Reasoning Simple Determ. Complex Determ. Probabilistic Avg.
RCW TEE ECG EMG CTU HAR

Numeric Classical

MLP [53] ✗ 65.95±2.14 61.64±0.15 57.97±0.54 58.54±0.78 56.80±1.77 62.00±0.25 60.48±1.11

FCN [53] ✗ 65.80±0.01 50.68±0.01 61.52±0.04 100.00±0.05 63.07±0.01 67.73±0.02 68.13±0.02

ResNet [53] ✗ 70.44±0.04 52.05±0.01 64.36±0.03 100.00±0.01 66.00±0.04 64.37±0.05 69.54±0.02

Transformer [54] ✗ 65.82±0.85 59.52±1.27 25.00±2.15 86.67±1.78 58.70±1.24 87.26±0.78 63.83±1.43

Autoformer [55] ✗ 62.59±3.52 26.19±3.77 23.95±2.78 46.67±1.44 67.20±1.70 75.04±1.20 50.27±2.61

Informer [56] ✗ 75.51±2.75 59.52±1.47 22.39±3.41 66.66±1.20 67.20±0.65 85.83±1.17 62.85±2.02

FEDformer [57] ✗ 76.59±0.75 42.86±1.21 26.40±3.44 73.33±0.74 51.60±2.18 89.88±0.44 60.11±1.80

PatchTST [58] ✗ 82.11±0.12 57.14±2.10 24.82±2.44 60.00±1.80 64.00±0.75 79.60±1.40 61.28±1.64

iTransformer [59] ✗ 76.92±0.54 21.43±1.20 25.72±0.87 46.67±1.46 45.57±1.22 89.49±1.71 50.97±1.23

TimesNet [9] ✗ 80.23±0.88 61.90±1.40 26.20±3.41 73.33±0.25 64.00±0.87 88.65±0.14 65.72±1.59

DLinear [60] ✗ 56.96±0.45 47.63±1.20 24.67±1.50 46.67±0.71 52.40±0.12 47.79±1.47 46.02±1.05

Base: GPT-4o
Numeric+Text Prompting GPT-4o (Zero-shot) [15] ✓ 50.00±0.00 21.43±6.50 25.00±8.25 33.33±5.25 45.45±9.09 29.17±8.25 34.06±6.22

Image+Text Prompting VL-Time (Zero-shot) [15] ✓ 70.02±2.15 24.88±1.47 26.33±2.64 33.33±6.25 50.71±5.25 37.50±2.15 40.46±3.32

Numeric+Text Prompting GPT-4o (Few-shot) [15] ✓ 50.00±0.00 35.71±1.21 31.25±2.50 33.33±6.25 50.00±2.25 12.50±0.05 35.47±2.04

Image+Text Prompting VL-Time (Few-shot) [15] ✓ 91.03±0.25 64.29±8.25 43.75±5.25 91.67±0.85 63.64±1.20 66.67±2.50 70.18±3.05

Base: Qwen2.5-7B-Instruct
Numeric+Text Training Time-MQA [43] ✓ 36.84±4.09 10.48±6.25 25.00±2.65 18.94±1.85 38.40±2.74 16.83±2.70 24.42±3.38

Base: Qwen2.5-VL-3B-Instruct
Image+Text Prompting Qwen2.5-VL ✓ 47.66±2.41 13.70±0.00 20.00±0.00 17.03±1.25 46.40±2.75 16.49±1.68 26.88±1.35

Image+Text Training Qwen2.5-VL (SFT) ✓ 49.29±1.27 19.18±0.14 21.92±0.24 34.15±0.15 50.00±0.00 21.95±0.04 32.75±0.53

Image+Text Training TimeMaster (RL) ✓ 72.53±0.75 13.70±0.00 25.00±0.00 48.78±1.20 54.00±2.50 34.55±1.80 41.43±1.38

Image+Text Training TimeMaster (SFT+RL) ✓ 75.56±1.30 68.49±2.09 60.00±0.77 100.00±1.41 84.40±0.40 63.29±0.74 75.29±1.25

Evaluation Benchmark and Baselines. We evaluate TimeMaster on TimerBed [15] (Appendix B),101

a benchmark specifically designed for time-series reasoning that moves beyond simple accuracy by102

requiring models to reason and explain predictions. TimerBed features six real-world classification103

datasets categorized by reasoning complexity: simple deterministic (RCW for whale calls, TEE for104

electromagnetic events), complex deterministic (ECG for arrhythmias, EMG for muscle disorders),105

and probabilistic (HAR for physical activities, CTU for device usage).106

Our comparisons include a comprehensive set of baselines (Appendix C), categorized as follows: 1)107

Classical Time-Series Models: We evaluate 11 established models with diverse architectures (e.g.,108

MLP [53], ResNet [53], Autoformer [55], TimesNet [9]). These models excel at capturing temporal109

patterns but lack explicit language reasoning capabilities. 2) LLM-based TsR Methods: We assess110

GPT-4o with both numeric inputs and visualized time-series plots (VL-Time [15]), evaluated in111

zero-/few-shot settings. We also include Time-MQA [43], an LLM fine-tuned on 200k time-series112

question answering examples, to gauge its reasoning abilities.113

5 Results & Discussion114

<think>Amplitude peaks ~0.5 mV, troughs ~-2.5 mV → Amplitude variation observed→sharp 
onset and brief duration → rapid firing, typical of motor unit potentials → polyphasic waveform 
with multiple peaks and troughs  → suggests reinnervation  → stable morphology over 
time→ temporal consistency supports pathology  → waveform  matches neuropathy 
characteristics</think> 
<class>Neuropathy</class>
<extension> Given the high amplitude spikes and regular temporal patterns observed in the 
EMG waveform, we strongly suspect neuropathic disorder. Here are recommended next steps in 
patient care: 1. Additional Diagnostic Tests: - EMG (Electromyography) with needle 
examination to confirm the pattern and suggest the type of neuropathy. - An MRI of the spine 
and peripheral nerves to investigate any underlying structural abnormalities. 2. Specialist 
Referral: - Referral to a neurologist for a comprehensive neurological evaluation. - 
Consultation with an orthopedic specialist if there’s evidence of muscle weakness or joint 
involvement. 3. Initial Treatment Strategies: - Physical therapy to maintain muscle strength and 
flexibility. - Medications as prescribed by the neurologist to manage neuropathic pain and 
symptomatic treatment.  4. Monitoring: - Regular follow-up appointments to monitor the 
progression of symptoms and effectiveness of treatment. - Documentation of any changes in 
symptoms or response to treatment. The patient should be closely monitored and receive a 
tailored treatment plan by a multidisciplinary team comprising a neurologist, physiotherapist, 
and possibly a specialist in neuromuscular disorders. </extension> Soft reward: 0.875

Figure 2: Output example: structured rea-
soning, classification, and clinical sugges-
tion for the neuropathic EMG signal.

Our evaluation on the TimerBed benchmark [15] show-115

cases TimeMaster’s superior performance in time-series116

reasoning. As detailed in Table 1, TimeMaster achieves117

state-of-the-art accuracy (75.29% average), significantly118

outperforming classical time-series models (by 8.3%)119

and prompting-based GPT-4o baselines (by 7.3%). This120

robust performance, achieved with a 3B-parameter121

model, highlights TimeMaster’s remarkable parameter122

efficiency and the effectiveness of RL training in surpass-123

ing limitations of prompt engineering and supervised124

fine-tuning alone. Beyond classification, TimeMaster125

excels at generating human-aligned reasoning and ac-126

tionable insights through its structured, integrated multi-127

scale signal patterns (e.g., waveform morphology, am-128

plitude, and rhythm consistency) and context-aware extensions (Fig. 2), offering practical utility129

for decision-making. This demonstrates a viable path for empowering general-purpose MLLMs130

with enhanced temporal understanding. While our approach successfully transfers general LLM131

capabilities to the temporal domain, a potential limitation is the non-triviality of encoding complex132

multivariate data like HAR into visual representations. Future work will explore hybrid architectures133

and the incorporation of external knowledge to further improve performance and reasoning depth.134

Overall, TimeMaster marks a significant step toward structured, interpretable time-series reasoning in135

LLMs, opening new avenues for more intelligent and context-aware applications in critical domains.136
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A Pseudo Code317

The training pipeline of TimeMaster is provided in Alg. 1.

Algorithm 1 Training pipeline of TimeMaster
Require: Initial time-series MLLM πθ, judge J , dataset D, group size G, PPO clip ϵ, KL weight β

1: Supervised fine-tune πθ on cold-start data with structured outputs
2: for each RL iteration do
3: Update the reference model: πref ← πθ

4: for Step = 1, 2, . . . do
5: Sample a mini-batch B from D
6: Update the old model: πold ← πθ

7: Sample G outputs {yi}Gi=1 ∼ πθold(· | X,q) for each time-series instance (X,q) ∈ B
8: for each sampled yi do
9: Parse tags: <think>i, <class>i = ĉi, <extension>i = ei

10: Compute format reward: rfmt
i = I[tags well-formed and non-empty]

11: Compute hard reward: rhardi = I[ĉi = c⋆]
12: Compute soft reward: rsofti = rhardi ·mean{ϕ(ei, c⋆)}
13: Compute composite reward: ri = λfmtrfmt

i + λhardrhardi + λsoftrsofti
14: end for
15: Compute {Âi}Gi=1 for each group via Eq. (2)
16: Update πθ by maximizing L(θ) via Eq. (3)
17: end for
18: end for
19: return πθ

318

B Dataset Statistics319

In this section, we provide additional details on the real-world time-series classification datasets used320

in our experiments, drawn from TimerBed [15]. These datasets span a wide range of domains, signal321

characteristics, and reasoning complexities. Their key statistics are summarized in Table 2, while322

detailed descriptions are provided below.323

• Right Whale Call Detection (RCW)1 involves identifying North Atlantic right whale vocaliza-324

tions from underwater acoustic recordings. A distinctive short, rising “whoop” sound serves as325

a necessary and sufficient indicator of whale presence, enabling direct mapping between signal326

features and class labels.327

• Transient Electromagnetic Events (TEE)2 contains satellite-collected power density signals328

from the FORTE satellite, used to classify various types of lightning-related electromagnetic329

discharges. Each class corresponds to a well-defined physical signature in the waveform, making330

the task pattern-centric and signal-driven.331

• Electrocardiogram (ECG)3 includes single-lead ECG recordings used to diagnose cardiac332

arrhythmias. Accurate classification requires a holistic interpretation of multiple waveform333

components—such as P-wave absence, irregular R-R intervals, and atrial fibrillation indicators.334

• Electromyogram (EMG)4 comprises EMG signals used to distinguish healthy subjects from335

patients with neuropathic or myopathic disorders. The task involves reasoning over diverse336

waveform features including long-duration, high-amplitude motor unit potentials and polyphasic337

activity.338

1https://www.kaggle.com/competitions/whale-detection-challenge/data
2https://www.timeseriesclassification.com/description.php?Dataset=Lightning7
3https://physionet.org/content/challenge-2017/1.0.0/
4https://physionet.org/content/emgdb/1.0.0/
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• Human Activity Recognition (HAR)5 uses tri-axial accelerometer data from smartphones to339

classify six daily physical activities such as walking, standing, and lying. Labels are automatically340

generated and reflect latent user-dependent patterns, adding complexity to the modeling process.341

• Computer Type Usage (CTU)6 aims to differentiate between desktop and laptop usage based on342

24-hour electricity consumption traces. Although labels are programmatically derived, classifica-343

tion relies on subtle temporal usage signatures influenced by individual behavior.344

Table 2: Summary of datasets in TimerBed, including domain, number of variables, series length,
number of classes, sample size, and reasoning type.

Dataset Domain # Variables Length # Classes # Samples Reasoning Type
RCW Bioacoustics 1 4000 2 30,000 Simple Deterministic
TEE Geophysics 1 319 7 143 Simple Deterministic
ECG Healthcare 1 1500 4 43,673 Complex Deterministic
EMG Healthcare 1 1500 3 205 Complex Deterministic
HAR Sports Monitoring 3 128 6 10,299 Probabilistic
CTU Energy/Usage 1 720 2 500 Probabilistic

As shown in Table 2, each dataset in TimerBed is associated with one of three reasoning types,345

reflecting varying levels of complexity and semantic abstraction:346

• Simple deterministic reasoning: Tasks where a single salient feature is sufficient to determine347

the label. The decision boundary is often explicit and rule-based, allowing for direct mapping348

from input to output. For example, the presence of a distinct acoustic pattern in whale calls or a349

spike in satellite signal indicates class membership.350

• Complex deterministic reasoning: Tasks that require the integration of multiple temporal351

patterns or signal components to make a decision. These problems demand holistic reasoning352

over structured signal relationships, such as diagnosing arrhythmias by jointly considering P-wave353

morphology, heart rate regularity, and waveform intervals.354

• Probabilistic reasoning: Tasks characterized by user-specific or hidden variables, where labels355

are automatically derived and may not be directly observable in the input. As a result, the model356

must learn to infer outcomes under ambiguity and latent context, such as predicting user activity357

or device type based on behavior-driven time series.358

C Baselines359

We follow the recent time-series reasoning benchmark [15] and the survey [62] for the selection of360

the following baselines. Except for Time-MQA, other results in Table 1 are adopted from [15].361

• Fully-connected and CNN-based Models (MLP, FCN, ResNet [53]): We adopt MLP with ReLU362

and dropout, FCN with Conv-BN-ReLU and pooling, and ResNet with residual connections, three363

classical architectures widely used in time series classification.364

• Transformer-based Models (Transformer [54], Autoformer [55], Informer [56], FEDformer [57],365

PatchTST [58], iTransformer [59]): Capture long-range dependencies in time-domain sequences366

using self-attention mechanisms. Serve as strong baselines for time-series modeling.367

• CNN-based Models (TimesNet [9]): Leverage convolutional operations to extract temporal368

features across different time scales.369

• MLP-based Models (DLinear [60]): Employ lightweight feedforward layers for efficient modeling370

of local patterns in time-series data.371

• GPT-4o (Numeric, Zero-shot) [15]: Receives tokenized numerical time-series data as input372

without any demonstrations. Serves as a unimodal, language-only baseline for evaluating zero-shot373

generalization.374

5https://archive.ics.uci.edu/dataset/240/human+activity+recognition+using+
smartphones

6https://www.timeseriesclassification.com/description.php?Dataset=Computers
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• GPT-4o (Numeric, Few-shot) [15]: Extends the numeric input with a few in-context examples7375

per class. Evaluates the model’s few-shot reasoning capability using raw numerical sequences in376

standard prompt format.377

• VL-Time (Zero-shot) [15]: Provides multimodal LLMs with visualized time-series plots and378

natural language prompts. Assesses general reasoning ability without demonstrations.379

• VL-Time (Few-shot) [15]: Adds a few in-context examples8 to the visual-language input, enabling380

pattern generalization with minimal supervision.381

• Qwen2.5-7B-Instruct (Time-MQA) [43]: A fine-tuned Qwen2.5-7B model9 on the TSQA dataset382

(∼200k pairs) for time-series question answering. It enables multi-task reasoning and open-ended383

question answering via natural language prompts.384

D Implementation Details of TimeMaster385

D.1 Plotting Time Series as Images386

Visualizing time series as images offers an intuitive and cost-efficient approach to understanding387

temporal patterns, and has been widely adopted in recent studies [16, 62]. Following the methodology388

of VL-Following Time [15], we transform time-series data into RGB line plots in the time domain to389

serve as inputs for the vision-language model, ensuring a fair comparison. Each channel is rendered390

in a distinct color and aligned along a shared timestamp axis. The x-axis represents the Timestamp,391

while the y-axis denotes the corresponding signal Value. Legends are incorporated to distinguish392

between channels (e.g., body_acc_x, body_acc_y, body_acc_z in HAR datasets).393

For each dataset, the signals are rendered into images with resolutions adapted to their sequence394

lengths and signal characteristics: ECG samples are plotted at 980× 230 pixels, CTU at 562× 230,395

TEE, RCW, and EMG at 789× 239, and HAR at 389× 233. All plots are saved in PNG format with396

minimal padding and a tight layout to ensure visual clarity. The time-domain signals are plotted using397

raw (non-normalized) values to faithfully preserve their original temporal dynamics.398

D.2 Training Setup399

We initialize our backbone with the publicly available Qwen2.5-VL-3B-Instruct checkpoint [61]10.400

Our overall training pipeline comprises two stages: warm-up through supervised fine-tuning (SFT)401

and reinforcement learning with GRPO.402

Warm-up via Supervised Fine-tuning. We first sample ∼ 1,000 time series–text paired instances403

per dataset using GPT-4o (temperature = 1.0) via the OpenAI API, where the model is prompted404

to reason over each time series and generate a corresponding answer. These examples are used to405

warm-start the SFT model, which is adapted from a publicly available LLM training repository11.406

The corresponding training hyperparameters are summarized in Table 3.407

Reinforcement Learning with GRPO. After warm-up, we train the model using the GRPO408

algorithm, adapted from a public RL training library12. The complete GRPO configuration is provided409

in Table 4. Rewards are computed using Eq. 1, with coefficients (λfmt, λhard, λsoft) = (0.1, 0.9, 0). In410

case studies assessing extrapolation, we set λsoft = 1.0.411

D.3 System Configuration412

All experiments were conducted on a computing setup equipped with 4 NVIDIA A100-SXM4 GPUs413

(80GB each) for the RCW, HAR, and ECG datasets, and 4 NVIDIA RTX A6000 GPUs (48GB each)414

for the TEE, EMG, and CTU datasets.415

7Few-shot refers to fewer than six examples per class, following [15]
8Few-shot refers to fewer than six examples per class, following [15]
9https://huggingface.co/Time-MQA

10https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
11https://github.com/2U1/Qwen2-VL-Finetune
12https://github.com/volcengine/verl
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Table 3: Training configuration for supervised fine-tuning (SFT) using Qwen2.5-VL-3B-Instruct.

Parameter Value
Model Qwen/Qwen2.5-VL-3B-Instruct
Training mode Full fine-tuning (LLM + Vision + Merger)
Use Liger True
Batch size per device 4
Number of devices 4
Global batch size 128
Gradient accumulation steps 8
Epochs 2
Learning rate (LLM) 1e-5
Learning rate (Merger) 1e-5
Learning rate (Vision) 2e-6
Weight decay 0.1
Warmup ratio 0.03
LR scheduler Cosine
Precision bf16
Freeze vision tower False
Freeze LLM False
Tune merger True

Table 4: GRPO-related hyperparameters used in TimeMaster across different time-series tasks.

Parameter Value

πinit
θ Qwen2.5-VL-3B

Lmax (max sequence length) 2048
G (group size) 5
β (KL divergence coefficient) 0.001
ϵ (PPO clip threshold) 0.2
(λfmt, λhard, λsoft) (0.1, 0.9, 0) or (0.1, 0.9, 1)
Batch size 16 (TEE, EMG, CTU); 32 (RCW, ECG, HAR)
Learning rate (RL) 1× 10−6

RL training epochs 40 (RCW, ECG, HAR); 100 (EMG, CTU); 300 (TEE)

E Detailed Experimental Results416

Figure 3 shows TimeMaster (RL+SFT)’s complete reasoning compared to baselines. This highlights417

Qwen2.5-VL (SFT)’s shallow reasoning, often misclassifying complex cases (e.g., "other cardiac418

rhythms" as "atrial fibrillation," neuropathic EMG as "healthy") due to reliance on superficial cues. In419

contrast, TimeMaster (RL) demonstrates contextual awareness by integrating uncertainty and noise420

(e.g., "f waves... doesn’t match atrial fibrillation"). The full TimeMaster (SFT+RL) achieves human-421

like interpretations (e.g., "polyphasic morphology... consistent with neuropathy") by leveraging422

multiple features. This illustrates RL’s power, amplified by SFT, in refining reasoning and overcoming423

supervised limitations for robust temporal understanding.424
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Qwen2.5-VL(SFT) TimeMaster (RL) TimeMaster (Ours, SFT+RL)

< thi nk >  1. Amplitude Analysis: The waveform shows a 
range of amplitudes, with the minimum amplitude being 
around -2.5 mV and the maximum amplitude being 
approximately 0.5 mV. This indicates a significant variation 
in amplitude, which is a key characteristic of neuropathy. 
2. Waveform Morphology: The waveform is polyphasic, 
meaning it has multiple peaks. This is typical in 
neuropathy due to reinnervation and the presence of 
motor units with abnormal recruitment patterns. 
3. Temporal Patterns: The waveform shows a consistent 
pattern of sharp onset and brief duration, which is 
characteristic of neuropathy. The polyphasic nature of the 
waveform is indicative of reinnervation, where motor units 
are recruited in a different manner than in a healthy state.
4.Comparison with Conditions: - Healthy: Typically shows 
smaller amplitude, regular, and continuous motor unit 
potentials. - Myopathy: Usually shows smaller amplitude, 
more regular, and continuous motor unit potentials. - 
Neuropathy: Shows larger amplitude, irregular, and 
fragmented motor unit potentials. 
5. Conclusion: The waveform's characteristics—polyphasic 
morphology, increased amplitude, and long duration—are 
consistent with neuropathy.  </think> 
<class>Neuropathy</class>

< th in k >1. Amplitude Analysis: The waveform shows a 
range of amplitudes, with peaks reaching approximately 
0.5 mV and troughs reaching approximately -2.5 mV. 
2. Morphology Analysis: The waveform has sharp onset 
and brief duration, indicating a rapid rise and fall of the 
electrical activity. The waveform is polyphasic, meaning it 
has multiple peaks and troughs within the waveform. 
3. Temporal Patterns: The waveform shows consistent 
amplitude and morphology, with no indication of 
variability or changes in waveform morphology over 
time. 
4. Comparison with Conditions:  - Healthy: Typically 
shows normal recruitment and morphology of motor unit 
potentials, sharp onset, brief duration, and consistent 
amplitude. - Myopathy: Typically shows small amplitude 
and short duration, indicating a loss or dysfunction of 
muscle fibers. - Neuropathy: Tends to show increased 
amplitude, long duration, and polyphasic waveforms due 
to reinnervation after denervation. 
5. Conclusion: The waveform shows sharp onset and brief 
duration, consistent amplitude, and polyphasic 
morphology, which aligns with the characteristics of 
neuropathy. </think>
 <class>Neuropathy</class>

<think> 1. Amplitude Analysis: The waveform shows a 
range of amplitudes from approximately -2.5 mV to 0.5 
mV. This indicates a wide amplitude range. 
2. Morphology and Temporal Patterns: The waveform 
appears to have sharp onset and brief duration, which are 
typical of motor unit potentials. The waveform 
morphology is consistent with normal recruitment and 
morphology of motor unit potentials. 
3. Conclusion: The waveform shows sharp onset and brief 
duration, consistent with normal recruitment and 
morphology of motor unit potentials. The amplitude 
range is consistent with normal motor unit potentials. 
</think> 
<class>Healthy</class>

Figure 3: Comparison of reasoning outputs on a neuropathy-labeled EMG test instance across three
configurations: Qwen2.5-VL(SFT, left), TimeMaster (RL, middle), TimeMaster (SFT+RL, right).
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