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Abstract

Time-series reasoning remains a significant challenge for multimodal LLMs due
to dynamic temporal patterns and semantic ambiguities, with existing models
often lacking structured, human-aligned temporal understanding. In this work,
we introduce TimeMaster, a novel reinforcement learning (RL)-based method
that enables time-series MLLMSs to perform structured, human-aligned reasoning
over visualized temporal data. TimeMaster adopts a three-part output format
(reasoning, classification, extension) and is optimized through a composite reward
function within a two-stage pipeline (SFT followed by RL). Evaluated on TimerBed,
TimeMaster achieves state-of-the-art performance, outperforming classical models
by 8.3% and GPT-4o0 baselines by 7.3%, while also delivering human-aligned
reasoning and actionable insights. This work offers a promising step towards
equipping LLMs with robust temporal reasoning capabilities, paving the way
for more interpretable and intelligent time-series analysis. Code is available at
https://anonymous.4open.science/r/TimeMaster-6EC1.

1 Introduction

Time series analysis is fundamental to data mining, enabling the modeling of temporal patterns
and supporting decision-making across critical domains like healthcare [1} 2], industrial monitoring
[3, 4], and environmental surveillance [Sl]. While deep learning has significantly advanced classical
time-series tasks like forecasting [6} [7, 18, |9, [10]] and classification [[7, 9], these models primarily
focus on numerical predictions. The recent surge in large language models (LLMs) [[11} 12} 13} [14]
presents a transformative opportunity for human-centric time-series analysis, promising capabilities
beyond mere prediction to encompass genuine reasoning, explanation, and advice.

However, bridging the gap between LLMs and temporal data remains challenging. Standard text-
based representations of time series often lead to inefficiencies and hallucination [15} [16]. While
converting time series to visuals and leveraging multimodal LLMs (MLLMs) shows promise for
pattern recognition, current methods primarily rely on prompt engineering, which often fails to elicit
robust and coherent reasoning [[17, [15/ 18} [19} 20, [21]]. A key limitation is the lack of pre-training on
time-series visualizations in base MLLMs, and post-training approaches face hurdles like limited
data diversity and high annotation costs. This hinders the development of MLLMs with deep, reliable,
language-based time-series reasoning (TsR) capabilities [22]], a crucial step for advanced applications.

In this work, we introduce TimeMaster, a novel reinforcement learning (RL) [23]]-based framework
that trains MLLM s for sophisticated multimodal time-series reasoning. TimeMaster directly addresses
these limitations by learning through iterative RL, enabling the model to progressively acquire,
refine, and generalize its reasoning capabilities. Our approach features a structured output format
(reasoning, classification, extension) optimized by a composite reward function, balancing format
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adherence, accuracy, and the quality of generated insights. We employ a two-stage pipeline: initial
SFT for foundational alignment and subsequent RL for targeted, self-improving reasoning. Our
preliminary findings on the TimerBed benchmark [[15] demonstrate TimeMaster’s state-of-the-art
performance, significantly outperforming classical models (by 8.3%) and GPT-40 baselines (by 7.3%),
and exhibiting high-quality, context-aware reasoning and actionable extensions. This work pioneers a
path towards equipping general-purpose LLMs with powerful temporal reasoning skills, opening new
avenues for more intelligent and interpretable time-series analysis.

2 Related work

Language-free time-series models excel at learning temporal representations for forecasting and
classification [24, 25} 26} 27, 128}, 291 130} 131} 132} 33} [34) 135]], but they lack the linguistic capabilities
essential for human-aligned reasoning. To address this, recent efforts integrate LLMs by transforming
temporal data into modalities compatible with language models. One approach utilizes text sequences
[36,137,138. 139, 120, |40, |4 11 1421 143]], while another focuses on visualizations [[15} 1819, 21]]. However,
text-based approaches often struggle with prompt engineering for robust temporal reasoning [17] and
face token inefficiencies [15}[16]]. Visualization-based methods, while effective for pattern recognition,
are fundamentally limited by the absence of explicit pre-training on time-series visualizations and
high post-training data annotation costs. Concurrently, reinforcement learning (RL) [23]] has emerged
as a powerful paradigm, demonstrating efficacy in enhancing LLM reasoning and alignment [44}
451146, 147, 148 149, 150]. This success suggests RL’s significant potential to bridge the gap towards
deep, reliable, and language-based temporal reasoning in LL.Ms, an aspiration our novel RL-based
framework directly pursues to unlock advanced time-series reasoning capabilities.

3 Method

We introduce TimeMaster, an RL-enhanced framework that empowers general-purpose MLLMs
with sophisticated, human-aligned time-series reasoning, enabling actionable insights beyond mere
prediction through visualized inputs and a structured, reward-guided process.

3.1 Multimodal Time-Series Input and Structured Output

TimeMaster processes time series data X = {x;}7_; (where x; € R?) alongside textual context q.
Unlike traditional methods that focus on forecasting or classification, our approach transforms raw
time series into visual representations (e.g., line plots) [15]], enabling the MLLM’s visual encoder to
capture temporal patterns more effectively and efficiently [15} 36, [18]].

The core of TimeMaster lies in its structured output format for Time-Series Reasoning (TsR),
generating a three-part response:

(think) --- (/think) (class) --- (/class) (extension) --- (/extension).

Reasoning Classification Extension (Optional)

1) The think block articulates an open-ended reasoning process, detailing pattern recognition,
trend analysis, and causal inference. 2) The class block provides a discrete label for classification,
enabling rigorous evaluation. 3) The extension block offers optional follow-up insights, suggestions,
diagnostics, or actionable advice, greatly enhancing practical usability. Figure [I|provides a visual
overview of this process, illustrating how TimeMaster processes inputs and generates these structured
outputs, guided by reward signals.

3.2 Reward Modeling for Temporal Reasoning

To effectively train TimeMaster, we designed a composite reward system that jointly optimizes
structural correctness, classification accuracy, and extension quality. This system comprises: 1)
Format Reward (r™"): Enforces strict adherence to the XML-style output structure, penalizing
missing tags. 2) Hard Reward (r"**9): Evaluates classification accuracy: rd (¢, ¢*) = I[e = ¢*],
ensuring factual alignment. 3) Soft Reward (r°°f): Assesses extension quality via an LLM-as-a-
Judge [51]] rating specificity, appropriateness, relevance, and depth, allowing for nuanced evaluation
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<image>
EMG Signal Question: <image> You are examining a short-duration EMG waveform image, recorded using a concentric needle electrode in the tibialis anterior muscle.

The recording captures the amplitude (mV) of the electrical activity generated by muscle fibers. Based on the EMG image’s waveform morphology and
temporal patterns, your task is to classify the neuromuscular condition as one of the following: Healthy, Myopathy, or Neuropathy.
You must first reason step-by-step about the current situation. This reasoning process MUST be enclosed within <think> and </think> tags. Once you've

finished your reasoning, you must choose ONE of the classifications and present it within <class> and </class> tags. Finally, provide clinical suggestions based
on your reasoning and prediction, enclosed within <extension> and </extension> tags.

00, Jooo 1500

Answer: Healmy ) a
Format Reward i ( 1
Answer: Myopath) 1
/ yopsty —_— T2 4
— Hard Reward Grovp
L _— —_— 5 - -
Answer: Health —_— o i
| AEEARRET T3 Estimation A3
TimeMaster . P . .
- Soft Reward 3
Anwwer europathy b g —
Answers:
The waveform is polyphasic, meaning it has multiple The EMG ... myopathic units.
The waveform shows a relatively low amplitude, with the peaks . .. a hallmark of myopathic units. The amplitude of the <class>Myopathy</class>
maximum amplitude reaching FEormat error waveform is increased... suggesta neurogenic process. Advice includes strength.</
The waveform shows frequent and large amplit i <class>Neuropathy</class> . The EMG ... myopathic units. Soft reward: 0.2
which are consistent with the firing patterns ob: <extension>Given...of lfe.</extension> € Prediction error <[Ia“>Mynpalhy</day“'>

neuropathic conditions. The presence of these spikes suggests The waveform is characterized by small, low-amplitude <extension> Given the EMG signal, the most appropriate diagnostic
disruption in the normal motor unit action potential firing spikes that are typical of myopathy. Myopathy is often associated label is Myopathy. Recommendations: Perform additional EMG
<class>Neuropathy</class> with reduced motor unit action potentials (MUAPs) due to muscle studies to assess recruitment patterns and motor unit action

the clinical ion of the EMG signal, it is fiber weakness or loss. There is also a consistent temporal pattern potentials. Use MRI to evaluate muscle structure and identify atrophy
strongly recommended to conduct a detailed electromyography of low amplitude spikes, indicating that the motor units are firing or inflammation. Order blood tests to measure muscle enzymes and
(EMG) study, including needle EMG and nerve conduction studies, to at a lower rate, which is consistent with the reduced recruitment troponin levels as markers of muscle damage ... Start a tailored
identify the specific type of neuropathy (e.g, peripheral, cranial) and firing frequency seen in myopathy. o physical therapy regimen to maintain muscle strength and function,
patient's quality of life.</extension> & Form . <class>Myopathy</class> (& Emediction focusing on endurance.</extension>

[Eormat correct specific cause.<, i correct Soft reward: 0.8

Figure 1: Overview of TimeMaster. The model is trained via RL with three reward signals. (Left)
Format reward penalizes otherwise valid reasoning if required tags are missing. (Middle) Hard reward
assigns zero if the Prediction is incorrect despite reasonable reasoning about myopathy features.
(Right) Soft reward distinguishes between vague (e.g., “monitor strength”) and high-quality (e.g.,

“recommend blood tests to measure muscle enzymes and troponin levels”) clinical suggestions.

of actionable advice. These are combined into a unified composite reward:

r—= /\fmt Tfmt + Ahard rhard + )\soft rsoft, (1)

where A values balance these objectives, guiding the model towards robust time-series analysis.

3.3 Optimization for TsR via RL

We employ a two-stage training pipeline to achieve expert-level temporal reasoning. 1) Stage 1:
Supervised Fine-Tuning (SFT). We initialize the model with foundational alignment via SFT
using approximately 1,000 GPT-40 generated examples, injecting domain knowledge and
establishing the output format. 2) Stage 2: Reinforcement Learning (RL) with GRPO. We then
utilize token-level Group Relative Policy Optimization (GRPO) [49] for RL training. This process
enhances reasoning by maximizing a clipped surrogate objective with KL-divergence regularization.
Normalized advantages are computed using group-wise statistics:

T — Hr _ G _ G
Ai:U—TH7 /’Lr_ézjzlrj7 0'7‘—\/%23‘:1(7"3‘_,“7’)2‘{'5 @

The objective function for parameter updates (6) is:

i

G Z Z min| Pz kAza Chp(pz K, LE 6) z) 5 KL[WG || Wref] 3)
=1

This two-stage process enables TimeMaster to progressively refine its temporal reasoning capabilities,
leading to more accurate and interpretable insights.

4 Experiment

Training Pipeline. We employ a two-stage training pipeline for TimeMaster. We first fine-tune
our base MLLM (Qwen2.5-VL-3B-Instruct [61]]) on approximately 1,000 task-specific samples per
dataset, generated by GPT-4o [17], for initial instruction tuning and foundational alignment. We then
proceed with RL fine-tuning. The training configuration is provided in Appendix D} where reward
weights (Afm®, \hard \soft)"— (0.1,0.9,1.0). We evaluate the base Qwen2.5-VL, its SFT-tuned
variant, TimeMaster (RL), and the complete TimeMaster (SFT+RL) model.
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Table 1: Accuracy (%) of different methods on TimerBed. “Simple Determ.” denotes simple
deterministic reasoning and “Complex Determ.” denotes complex deterministic reasoning.

Simple Determ. Complex Determ. Probabilistic

Modality Type Method R Avg.
RCW TEE ECG EMG CTU HAR
MLP [53 X 6595004 61.64.0.5 5797050 58544078 568047 62.0040. 6048, .,
FCN [53 X 65801001 50681001 61.52.000 1000005 63.07.00; 67734002 68.13.0,
ResNet [53 X 70445, 52.05.00 64.36.,, 100.00.,, 66.00 ., 64375, 69.54.0 0,
Transformer [34 X 6582108 59524125 2500.515 86.67i17 5870412 87.26. 07 63.834 4
Autoformer {55 X 6259155 26.19. 57 23.95.57 46.67i14 67200170 75.0441 0 5027406
Numeric Classical Informer [56 X 75514575 59524147 223954  66.66., ., 67.20406 8583, 62.85.,4
FEDformer [57 X 7659107 428610 2640.,., 733307 51.60.s,. 89.88.. 60114, .
PatchTST 58 X 82.111002 57141050 24.82:54  60.0045  64.005075 796050 61284,
iTransformer [59 X 7692050 21431100 2572.05r 46.67.146 45574100 89.49., 7 50.97., 04
TimesNet [9 X 80.23. 055 61901140 2620:54 73334005  64.00.0s; 88.65.0.1s 657245
DLinear [60. X 5696104 47.631100 246715 46.67.05  5240.0.. 4779, . 4602, 0
Base: GPT-40
Numeric+Text  Prompting  GPT-40 (Zero-shot) [13 v 50.004000 2143.5:0 2500150, 33334505 4545.000 2917455 34.06.6 00
Image+Text Prompting  VL-Time (Zero-shot) [15 v 70.02,,,5 24.88.,.; 2633.,. 3333, 50714505 3750455 40.4645 4,
Numeric+Text Prompting  GPT-4o (Few-shot) [13 v 50.004000 3571iy20 31.25.,50 3333452  50.004,.5 12504005 3547004
Image+Text Prompting  VL-Time (Few-shot) [15 v 91.03.,,, 64.29..,, 43755, 91.67.,4 63.64.,. 606675 70.18.,,;
Base: Qwen2.5-7B-Instruct
Numeric+Text  Training Time-MQA [43 v 36.841,00 1048.5,; 25.00.,4 1894, 5 38.40.,., 1683.,, 2442,
Base: Qwen2.5-VL-3B-Instruct
Image+Text Prompting Qwen2.5-VL v 47.6645.4 137000, 20.00.4 40 17.034, ., 4640.,.; 1649;, ., 26.88.,
Image+Text Training Qwen2.5-VL (SFT) v 4929 10, 1908000 21924020 3415005 50.001000 21951000 32.75.05s
Image+Text Training TimeMaster (RL) v 725341075 13701000 2500000 48.78.120 54.004,5, 34550, . 4143, 4
Image+Text Training TimeMaster (SFT+RL) v 75.564,5, 68.49.,., 60.00.,,, 100.00.,, 84.40.,.,, 6329.,, 7529, .

Evaluation Benchmark and Baselines. We evaluate TimeMaster on TimerBed [15] (Appendix E[),
a benchmark specifically designed for time-series reasoning that moves beyond simple accuracy by
requiring models to reason and explain predictions. TimerBed features six real-world classification
datasets categorized by reasoning complexity: simple deterministic (RCW for whale calls, TEE for
electromagnetic events), complex deterministic (ECG for arrhythmias, EMG for muscle disorders),
and probabilistic (HAR for physical activities, CTU for device usage).

Our comparisons include a comprehensive set of baselines (Appendix [C)), categorized as follows: 1)
Classical Time-Series Models: We evaluate 11 established models with diverse architectures (e.g.,
MLP [53]], ResNet [53]], Autoformer [55]], TimesNet [9]). These models excel at capturing temporal
patterns but lack explicit language reasoning capabilities. 2) LLM-based TsR Methods: We assess
GPT-40 with both numeric inputs and visualized time-series plots (VL-Time [15]]), evaluated in
zero-/few-shot settings. We also include Time-MQA [43]], an LLM fine-tuned on 200k time-series
question answering examples, to gauge its reasoning abilities.

5 Results & Discussion

Our evaluation on the TimerBed benchmark [[15]] show-
cases TimeMaster’s superior performance in time-SEIIES | s and biutumtons. roidting o o ot o ptontn - poysmesic meiomm

with multiple peaks and troughs — suggests reinnervation —» stable morphology over

reasoning. As detailed in Table[T} TimeMaster achieves | i o ey s paooy — wvetrn machs esropaty

characteristics

state-of-the-art accuracy (75.29% average), significantly | <varopyeaus &

<extension> Given the high amplitude spikes and regular temporal patterns observed in the

EMG waveform, we strongly suspect disorder. Here are r next steps in

outperforming classical time-series models (DY 8.3%) | iuent cre 1 sidtionds Dignosic Tess - EMG_ (Eleciromyosraphy) with needle

. . . examination to confirm the pattern and suggest the type of neuropathy. - An MRI of the spine
and promptlng_based GPT-40 baselines (by 7.3%). This and peripheral nerves to investigate any underlying structural abnormalities. 2. Specialist
Referral: - Referral to a g for a evaluation. -

: s _ Consultation with an orthopedic specialist if there’s evidence of muscle weakness or joint

robust performance, achieved with a B3B-parameter | e e e e s e o

flexibility. - Medications as prescribed by the neurologist to manage neuropathic pain and

model, highlights TimeMaster’s remarkable parameter T e O I e e (e O T
efficiency and the effectiveness of RL training in surpass- | o s i e S o e
ing limitations of prompt engineering and supervised [ty doden Jeversion Soft renerd: 0.675
fine-tuning alone. Beyond classification, TimeMaster

excels at generating human-aligned reasoning and ac-
tionable insights through its structured, integrated multi-
scale signal patterns (e.g., waveform morphology, am-
plitude, and rhythm consistency) and context-aware extensions (Fig. [2), offering practical utility
for decision-making. This demonstrates a viable path for empowering general-purpose MLLMs
with enhanced temporal understanding. While our approach successfully transfers general LLM
capabilities to the temporal domain, a potential limitation is the non-triviality of encoding complex
multivariate data like HAR into visual representations. Future work will explore hybrid architectures
and the incorporation of external knowledge to further improve performance and reasoning depth.
Overall, TimeMaster marks a significant step toward structured, interpretable time-series reasoning in
LLMs, opening new avenues for more intelligent and context-aware applications in critical domains.

Figure 2: Output example: structured rea-
soning, classification, and clinical sugges-
tion for the neuropathic EMG signal.
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A Pseudo Code

The training pipeline of TimeMaster is provided in Alg.

Algorithm 1 Training pipeline of TimeMaster

Require: Initial time-series MLLM 7y, judge .J, dataset D, group size GG, PPO clip ¢, KL weight 3

1: Supervised fine-tune 7y on cold-start data with structured outputs
2: for each RL iteration do
3 Update the reference model: mf <— 7y
4 for Step =1,2,... do
5: Sample a mini-batch 5 from D
6: Update the old model: w4 +— g
7 Sample G outputs {y;}&; ~ 7, (- | X, q) for each time-series instance (X, q) € B
8: for each sampled y; do
9: Parse tags: <think>;, <class>; = ¢;, <extension>; = ¢;
10: Compute format reward: ri™* = T[tags well-formed and non-empty]
11: Compute hard reward: r}*rd = T[¢; = ¢*|
12: Compute soft reward: r$°% = rhard . mean{¢(e;, c*)}
13: Compute composite reward: r; = \mtpfmt 4 \hardphard 4 jsofty.soft
14: end for
15: Compute {A;}%, for each group via Eq.
16: Update 7y by maximizing £(6) via Eq. (3)
17:  end for
18: end for

19: return 7y

B Dataset Statistics

In this section, we provide additional details on the real-world time-series classification datasets used
in our experiments, drawn from TimerBed [[15]. These datasets span a wide range of domains, signal
characteristics, and reasoning complexities. Their key statistics are summarized in Table 2} while
detailed descriptions are provided below.

* Right Whale Call Detection (RCWﬂ involves identifying North Atlantic right whale vocaliza-
tions from underwater acoustic recordings. A distinctive short, rising ‘“whoop” sound serves as
a necessary and sufficient indicator of whale presence, enabling direct mapping between signal
features and class labels.

* Transient Electromagnetic Events (TEEﬂ contains satellite-collected power density signals
from the FORTE satellite, used to classify various types of lightning-related electromagnetic
discharges. Each class corresponds to a well-defined physical signature in the waveform, making
the task pattern-centric and signal-driven.

* Electrocardiogram (ECGf] includes single-lead ECG recordings used to diagnose cardiac
arrhythmias. Accurate classification requires a holistic interpretation of multiple waveform
components—such as P-wave absence, irregular R-R intervals, and atrial fibrillation indicators.

* Electromyogram (EMGf] comprises EMG signals used to distinguish healthy subjects from
patients with neuropathic or myopathic disorders. The task involves reasoning over diverse
waveform features including long-duration, high-amplitude motor unit potentials and polyphasic
activity.

"https://www.kaggle.com/competitions/whale-detection-challenge/data

2h'c‘cps ://www.timeseriesclassification.com/description.php?Dataset=Lightning?
*https://physionet.org/content/challenge-2017/1.0.0/
*https://physionet.org/content/emgdb/1.0.0/


https://www.kaggle.com/competitions/whale-detection-challenge/data
https://www.timeseriesclassification.com/description.php?Dataset=Lightning7
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https://physionet.org/content/emgdb/1.0.0/
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¢ Human Activity Recognition (HARﬂ uses tri-axial accelerometer data from smartphones to
classify six daily physical activities such as walking, standing, and lying. Labels are automatically
generated and reflect latent user-dependent patterns, adding complexity to the modeling process.

¢ Computer Type Usage (CTUf] aims to differentiate between desktop and laptop usage based on
24-hour electricity consumption traces. Although labels are programmatically derived, classifica-
tion relies on subtle temporal usage signatures influenced by individual behavior.

Table 2: Summary of datasets in TimerBed, including domain, number of variables, series length,
number of classes, sample size, and reasoning type.

Dataset Domain # Variables Length # Classes # Samples Reasoning Type
RCW Bioacoustics 1 4000 2 30,000 Simple Deterministic
TEE Geophysics 1 319 7 143 Simple Deterministic
ECG Healthcare 1 1500 4 43,673 Complex Deterministic
EMG Healthcare 1 1500 3 205 Complex Deterministic
HAR Sports Monitoring 3 128 6 10,299 Probabilistic

CTU Energy/Usage 1 720 2 500 Probabilistic

As shown in Table [2] each dataset in TimerBed is associated with one of three reasoning types,
reflecting varying levels of complexity and semantic abstraction:

* Simple deterministic reasoning: Tasks where a single salient feature is sufficient to determine
the label. The decision boundary is often explicit and rule-based, allowing for direct mapping
from input to output. For example, the presence of a distinct acoustic pattern in whale calls or a
spike in satellite signal indicates class membership.

* Complex deterministic reasoning: Tasks that require the integration of multiple temporal
patterns or signal components to make a decision. These problems demand holistic reasoning
over structured signal relationships, such as diagnosing arrhythmias by jointly considering P-wave
morphology, heart rate regularity, and waveform intervals.

* Probabilistic reasoning: Tasks characterized by user-specific or hidden variables, where labels
are automatically derived and may not be directly observable in the input. As a result, the model
must learn to infer outcomes under ambiguity and latent context, such as predicting user activity
or device type based on behavior-driven time series.

C Baselines

We follow the recent time-series reasoning benchmark [[15] and the survey [62] for the selection of
the following baselines. Except for Time-MQA, other results in Table[T]are adopted from [15]).

¢ Fully-connected and CNN-based Models (MLP, FCN, ResNet [53]]): We adopt MLP with ReLU
and dropout, FCN with Conv-BN-ReLU and pooling, and ResNet with residual connections, three
classical architectures widely used in time series classification.

¢ Transformer-based Models (Transformer [54], Autoformer [55], Informer [56], FEDformer [57]],
PatchTST [58], iTransformer [59]): Capture long-range dependencies in time-domain sequences
using self-attention mechanisms. Serve as strong baselines for time-series modeling.

* CNN-based Models (TimesNet [9]): Leverage convolutional operations to extract temporal
features across different time scales.

* MLP-based Models (DLinear [60]): Employ lightweight feedforward layers for efficient modeling
of local patterns in time-series data.

* GPT-40 (Numeric, Zero-shot) [[15]: Receives tokenized numerical time-series data as input
without any demonstrations. Serves as a unimodal, language-only baseline for evaluating zero-shot
generalization.

https://archive.ics.uci.edu/dataset/240/human+activity+recognition+using+
smartphones
®https://www.timeseriesclassification.com/description.php?Dataset=Computers
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* GPT-40 (Numeric, Few-shot) [[15]: Extends the numeric input with a few in-context examplesﬂ
per class. Evaluates the model’s few-shot reasoning capability using raw numerical sequences in
standard prompt format.

* VL-Time (Zero-shot) [15]: Provides multimodal LLMs with visualized time-series plots and
natural language prompts. Assesses general reasoning ability without demonstrations.

* VL-Time (Few-shot) [15]: Adds a few in-context exampleﬁ to the visual-language input, enabling
pattern generalization with minimal supervision.

¢ Qwen2.5-7B-Instruct (Time-MQA) [43]: A fine-tuned Qwen2.5-7B modeﬂ on the TSQA dataset
(~200k pairs) for time-series question answering. It enables multi-task reasoning and open-ended
question answering via natural language prompts.

D Implementation Details of TimeMaster

D.1 Plotting Time Series as Images

Visualizing time series as images offers an intuitive and cost-efficient approach to understanding
temporal patterns, and has been widely adopted in recent studies [[16}62]]. Following the methodology
of VL-Following Time [[15]], we transform time-series data into RGB line plots in the time domain to
serve as inputs for the vision-language model, ensuring a fair comparison. Each channel is rendered
in a distinct color and aligned along a shared timestamp axis. The x-axis represents the Timestamp,
while the y-axis denotes the corresponding signal Value. Legends are incorporated to distinguish
between channels (e.g., body_acc_x, body_acc_y, body_acc_z in HAR datasets).

For each dataset, the signals are rendered into images with resolutions adapted to their sequence
lengths and signal characteristics: ECG samples are plotted at 980 x 230 pixels, CTU at 562 x 230,
TEE, RCW, and EMG at 789 x 239, and HAR at 389 x 233. All plots are saved in PNG format with
minimal padding and a tight layout to ensure visual clarity. The time-domain signals are plotted using
raw (non-normalized) values to faithfully preserve their original temporal dynamics.

D.2 Training Setup

We initialize our backbone with the publicly available Qwen2.5-VL-3B-Instruct checkpoint [61@
Our overall training pipeline comprises two stages: warm-up through supervised fine-tuning (SFT)
and reinforcement learning with GRPO.

Warm-up via Supervised Fine-tuning. We first sample ~ 1,000 time series—text paired instances
per dataset using GPT-4o (temperature = 1.0) via the OpenAl API, where the model is prompted
to reason over each time series and generate a corresponding answer. These examples are used to
warm-start the SFT model, which is adapted from a publicly available LLM training repositor
The corresponding training hyperparameters are summarized in Table 3]

Reinforcement Learning with GRPO. After warm-up, we train the model using the GRPO
algorithm, adapted from a public RL training library[]zl The complete GRPO configuration is provided
in Table[4} Rewards are computed using Eq. [1] with coefficients (AT Abard \soft) = (0.1,0.9,0). In
case studies assessing extrapolation, we set A**" = 1.0.

D.3 System Configuration

All experiments were conducted on a computing setup equipped with 4 NVIDIA A100-SXM4 GPUs
(80GB each) for the RCW, HAR, and ECG datasets, and 4 NVIDIA RTX A6000 GPUs (48GB each)
for the TEE, EMG, and CTU datasets.

"Few-shot refers to fewer than six examples per class, following [15]
8Few-shot refers to fewer than six examples per class, following [13]
https://huggingface.co/Time-MQA
Uhttps://huggingface.co/Qwen/Qwen2.5-3B- Instruct
"https://github.com/2U1/Qwen2-VL-Finetune
"https://github.com/volcengine/verl
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Table 3: Training configuration for supervised fine-tuning (SFT) using Qwen2.5-VL-3B-Instruct.

Parameter Value

Model Qwen/Qwen2.5-VL-3B-Instruct
Training mode Full fine-tuning (LLM + Vision + Merger)
Use Liger True

Batch size per device 4

Number of devices 4

Global batch size 128

Gradient accumulation steps 8

Epochs 2

Learning rate (LLM) le-5

Learning rate (Merger) le-5

Learning rate (Vision) 2e-6

Weight decay 0.1

Warmup ratio 0.03

LR scheduler Cosine

Precision bf16

Freeze vision tower False

Freeze LLM False

Tune merger True

Table 4: GRPO-related hyperparameters used in TimeMaster across different time-series tasks.

Parameter Value

rinit Qwen2.5-VL-3B

Lax (max sequence length) 2048

G (group size) 5

B (KL divergence coefficient) 0.001

€ (PPO clip threshold) 0.2

(Afmt - \hard *\soft) (0.1,0.9,0) or (0.1,0.9, 1)

Batch size 16 (TEE, EMG, CTU); 32 (RCW, ECG, HAR)

1x10°6
40 (RCW, ECG, HAR); 100 (EMG, CTU); 300 (TEE)

Learning rate (RL)
RL training epochs

E Detailed Experimental Results

Figure [3|shows TimeMaster (RL+SFT)’s complete reasoning compared to baselines. This highlights
Qwen2.5-VL (SFT)’s shallow reasoning, often misclassifying complex cases (e.g., "other cardiac
rhythms" as "atrial fibrillation," neuropathic EMG as "healthy") due to reliance on superficial cues. In
contrast, TimeMaster (RL) demonstrates contextual awareness by integrating uncertainty and noise
(e.g., "f waves... doesn’t match atrial fibrillation"). The full TimeMaster (SFT+RL) achieves human-
like interpretations (e.g., "polyphasic morphology... consistent with neuropathy") by leveraging
multiple features. This illustrates RL’s power, amplified by SFT, in refining reasoning and overcoming
supervised limitations for robust temporal understanding.
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Qwen2.5-VL(SFT)

EMG Signal

0 500 1000 1500
P

Timestamy

1. Amplitude Analysis: The waveform shows a
range of amplitudes from approximately -2.5 mV to 0.5
mV. This indicates a wide amplitude range.

2. Morphology and Temporal Patterns: The waveform
appears to have sharp onset and brief duration, which are
typical of motor unit potentials. The waveform
morphology is consistent with normal recruitment and
morphology of motor unit potentials.

3. Conclusion: The waveform shows sharp onset and brief
duration, consistent with normal recruitment and
morphology of motor unit potentials. The amplitude
range is consistent with normal motor unit potentials.

<class>Healthy</class> °

TimeMaster (RL)

EMG Signal

0 500 1000
Timestamp

1500

1. Amplitude Analysis: The waveform shows a
range of amplitudes, with the minimum amplitude being
around -2.5 mV and the maximum amplitude being
approximately 0.5 mV. This indicates a significant variation
in amplitude, which is a key characteristic of neuropathy.
2. Waveform Morphology: The waveform is polyphasic,
meaning it has multiple peaks. This is typical in
neuropathy due to reinnervation and the presence of
motor units with abnormal recruitment patterns.

3. Temporal Patterns: The waveform shows a consistent
pattern of sharp onset and brief duration, which is
characteristic of neuropathy. The polyphasic nature of the
waveform is indicative of reinnervation, where motor units
are recruited in a different manner than in a healthy state.
4.Comparison with Conditions: - Healthy: Typically shows
smaller amplitude, regular, and continuous motor unit
potentials. - Myopathy: Usually shows smaller amplitude,

TimeMaster (Ours, SFT+RL)

EMG Signal

Amplitude (mV)

500 1000 1500
Timestamp

1. Amplitude Analysis: The waveform shows a
range of amplitudes, with peaks reaching approximately
0.5 mV and troughs reaching approximately -2.5 mV.

2. Morphology Analysis: The waveform has sharp onset
and brief duration, indicating a rapid rise and fall of the
electrical activity. The waveform is polyphasic, meaning it
has multiple peaks and troughs within the waveform.

3. Temporal Patterns: The waveform shows consistent
amplitude and morphology, with no indication of
variability or changes in waveform morphology over
time.

4. Comparison with Conditions: - Healthy: Typically
shows normal recruitment and morphology of motor unit
potentials, sharp onset, brief duration, and consistent
amplitude. - Myopathy: Typically shows small amplitude
and short duration, indicating a loss or dysfunction of
muscle fibers. - Neuropathy: Tends to show increased

more regular, and motor unit ials. -
Neuropathy: Shows larger amplitude, irregular, and
fragmented motor unit potentials.

5. Conclusion: The waveform's characteristics—polyphasic
morphology, increased amplitude, and long duration—are
consistent with neuropathy.

<class>Neuropathy</class>

long duration, and polyphasic waveforms due
to reinnervation after denervation.
5. Conclusion: The waveform shows sharp onset and brief

duration, i i and  polypl
morphology, which aligns with the characteristics of
neuropathy.

<class>Neuropathy</class>

Figure 3: Comparison of reasoning outputs on a neuropathy-labeled EMG test instance across three
configurations: Qwen2.5-VL(SFT, left), TimeMaster (RL, middle), TimeMaster (SFT+RL, right).
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