
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DELIBERATE REASONING FOR LLMS AS STRUCTURE-
AWARE PLANNING WITH ACCURATE WORLD MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Enhancing the reasoning capabilities of large language models (LLMs) remains
a key challenge, especially for tasks that require complex, multi-step decision-
making. Humans excel at these tasks by leveraging deliberate planning with an
internal world model to simulate the potential outcomes of various actions. In-
spired by this, we propose a novel multi-step reasoning framework for LLMs,
referred to as Structure-aware Planning with Accurate World Model (SWAP). Un-
like previous approaches that rely solely on Chain-of-Thought (CoT) reasoning in
natural language, SWAP incorporates structural information to guide the reason-
ing process via a world model and provides a soft verification mechanism over the
steps. Moreover, SWAP overcomes the challenge of accurate world state predic-
tions in complex reasoning tasks by introducing a Generator-Discriminator archi-
tecture, which enables more reliable world modeling. Specifically, the generator
predicts the next state, and the discriminator ensures alignment with the logical
consistency required by the problem context. SWAP also encourages the policy
model to explore a broad range of potential actions to prevent premature conver-
gence. By resolving the bottlenecks of generation diversity for both actions and
states using diversity-based modeling (DBM) and improving discrimination accu-
racy through contrastive ranking (CR), SWAP significantly enhances the reason-
ing performance of LLMs. We evaluate SWAP across diverse reasoning-intensive
benchmarks including math reasoning, logical reasoning, and coding tasks. Ex-
tensive experiments demonstrate that SWAP achieves substantial improvements
over the baselines and consistently outperforms existing methods.

1 INTRODUCTION

Large language models (LLMs) (OpenAI & et al., 2024; Dubey et al., 2024) have made remark-
able progress in many fields. However, their ability to perform complex reasoning remains limited
(Huang & Chang, 2023). Achieving human-level problem solving is viewed as the next milestone in
Artificial General Intelligence (AGI) (OpenAI, 2024). Unlike human cognition, the inference time
of LLMs for reasoning tasks primarily depends on the number of input and output tokens rather than
the complexity of the problem. For instance, while humans require multiple attempts, calculations,
and verification to solve difficult math problems, LLMs immediately begin generating responses
after reading the question. This indicates that they are not actually “thinking” but merely using intu-
ition, i.e., predicting the next token based on previous ones. In fact, there are two systems of thinking
in human mind (Kahneman, 2011): System 1 operates automatically and quickly, with little effort
and no sense of voluntary control; and System 2 allocates attention to the effortful mental activities
that demand it. In this paper, we aim to enhance the complex reasoning capabilities of LLMs, i.e.,
turning thinking time into better outcome, with a planning-based approach that emulates System 2.

Recently, planning and decision-making frameworks (Yao et al., 2022) have been introduced into
reasoning tasks for LLMs, where the model is required not only to propose actions but also to make
adjustments based on feedback from the environment. However, in many real-world scenarios, envi-
ronment feedback is either unavailable or difficult to scale. Inspired by human perception (Johnson-
Laird, 1983; 2010), an internal world model is introduced to enable the model to simulate actions
and their effects on the world state for deliberate planning (LeCun, 2022). Some recent approaches
have demonstrated success in planning and reasoning tasks with a world model (Guan et al., 2023;
Hao et al., 2023), which is implemented by prompting the same LLM with in-context demonstra-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

tions. However, their system performance still falls short of expectations in complex tasks, since
constructing an accurate world model is inherently challenging. The predicted future state from an
inaccurate world model may lead to sub-optimal or even incorrect decisions. To address this limita-
tion, we fine-tune the model using a Generator-Discriminator architecture. Furthermore, we achieve
substantial improvements on a diverse set of reasoning benchmarks by resolving the bottlenecks of
generation diversity and discrimination accuracy.

On the other hand, the Chain-of-Thought (CoT) approach (Wei et al., 2022), due to its high flexibility
and scalability, is widely adopted to enhance the reasoning capability of LLMs. However, it relies
purely on natural language, lacking an effective verification mechanism. To address this issue,
formal methods have been proposed, such as using first-order logic (Pan et al., 2023) or programs
(Chen et al., 2022). Nevertheless, these formal methods are often limited in their expressiveness for a
variety of tasks (Yang et al., 2024). In this paper, we propose a semi-formal approach that introduces
structural information into the reasoning process, which provides a soft verification mechanism
for CoTs. These structures (Dalvi et al., 2021) describe how given premises are used to generate
intermediate conclusions that help validate the correctness of a particular answer. In our framework,
the multi-step reasoning process involves constructing a structure, i.e., the policy model proposes
actions, and the world model predicts the next state and updates the structure. Specifically, new
statements in the next state are introduced and linked to existing ones through entailment relations.
When the reasoning is complete, the system has built an entailment graph from the given premises
to the final answer, which itself serves as a justification of the reasoning process.

Specifically, our contributions mainly include:

• We introduce structure-aware planning, which incorporates entailment graphs into multi-
step reasoning tasks. These graphs demonstrate how premises lead to intermediate conclu-
sions and validate the correctness of the final answer, adding coherence and logical verifi-
cation to the reasoning process.

• Our framework, SWAP, augments the LLM with an accurate world model, which is im-
plemented using a Generator-Discriminator architecture. In addition, we resolve the bottle-
necks of generation diversity and discrimination accuracy with diversity-based modelling
and contrastive process supervision, respectively.

• Experiments on a diverse set of benchmarks, including math reasoning, logical reasoning
and coding, show that SWAP is a general framework that achieves substantial improve-
ments over recent popular reasoning and planning methods for LLMs.

2 RELATED WORK

Existing works that use advanced planning methods to enhance the multi-step problem-solving ca-
pabilities of LLMs can be categorized into three types: re-ranking (Ni et al., 2023; Wang et al.,
2023b; Li et al., 2023; Lei et al., 2024), iterative correction (Madaan et al., 2023; Shinn et al., 2023;
Yao et al., 2022; Chen et al., 2024a) and tree search (Chaffin et al., 2022; Gu et al., 2023; Hao et al.,
2023; Yao et al., 2023; Zhou et al., 2023). Despite differences in their design, all these methods fun-
damentally rely on a discriminator to evaluate the planning steps. Recent research (Huang et al.,
2023; Chen et al., 2024b) has demonstrated that the discriminator plays a more crucial role than the
planning methods themselves. Consequently, using in-context learning to prompt the same LM as
both generator and discriminator may not sufficiently improve the model performance on complex
reasoning tasks.

To address this issue, prior research has explored various methodologies for designing the discrim-
inator (or reward model). There are two primary types of reward models: Outcome Reward Model
(ORM) and Process Reward Model (PRM). The ORM evaluates the fully generated solution by
assigning a single scalar confidence score. Its training relies on outcome supervision by compar-
ing generated answers with the ground truth. In contrast, the PRM (Lightman et al., 2023; Yuan
et al., 2024; Tian et al., 2024) provides stepwise rewards throughout the reasoning process, assign-
ing a scalar confidence score to each intermediate steps. Empirical evidence shows that, compared
with outcome supervision, process supervision ensures the correctness of each step, providing more
benefits to multi-step reasoning (Lightman et al., 2023). However, the training of PRM requires
process supervision, which is hard to obtain, e.g., collecting process annotation from humans is

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

inherently not scalable. Although recent research (Wang et al., 2023a; Luo et al., 2024) has increas-
ingly explored automatic process annotations using tree search, training an effective PRM remains
challenging, as from a mathematical perspective, it assigns a numerical value within [0, 1] to each
state independently. To overcome this problem, we propose a novel strategy for automatic ranking
annotation, i.e., given the current context and a set of candidate options, selecting the best option
based on relative quality. Our ranking strategy offers significant advantages over traditional PRMs:
1) it emphasizes relative quality, making it more robust to noise; 2) it simplifies optimization and en-
hances generalization. Notably, our high-quality automatic ranking annotation method is non-trivial
as it systemically incorporates three key factors: 1) structural information; 2) correctness; and 3)
semantical equivalence.

Furthermore, we notice that although some reasoning processes are inherently non-linear, existing
methods mainly follow a linear problem-solving manner. Language models are expected to im-
plicitly infer the non-linear structure from the linear representation of the reasoning process, which
proves challenging for complex reasoning tasks (Ribeiro et al., 2023). To help the model, we inte-
grate structural information into the reasoning process which explicitly represents the reasoning
structure within the context. These structures provide the language model with additional guidance
and control, enabling extra capabilities such as symbolic learning and verification.

3 PRELIMINARIES

3.1 TASK FORMULATION

When solving complex reasoning tasks that require multiple steps, LLMs must plan intelligently,
anticipating future state and guiding their reasoning towards the desired outcome. We formulate this
task as a Markov Decision Process (MDP) represented by (S,A,P, score) in which:

• State st ∈ S: Represents the current state, i.e., all known or inferred information in the
reasoning process. The initial state s0 is extracted from the given context.

• Action at ∈ A: Denotes a single action (produced by policy generator PπG), i.e., deriving
new information or making inference based on current state, resulting in a state transition.

• Transition probability P(st+1|st, at): Describes the probability of transitioning to the
next state st+1 after taking action at in state st. We construct an enhanced world model
(with generator PwmG and discriminator PwmD) to simulate the state change.

• Scoring function score(at|st): Quantifies the quality of an action at given current state
st. This function guides the reasoning process by prioritizing actions that are more likely to
yield correct final answers. We adopt a ranking-based approach (with policy discriminator
PπD) instead of assigning explicit numerical scores (with PRM).

This MDP framework provides a foundation for applying planning methods to enhance the multi-
step reasoning capabilities of LLMs. Each reasoning step is viewed as a decision-making process,
where the model generates the next action based on current state. By updating their parameters,
the models gradually learn the optimal policy for each state, improving the overall performance of
reasoning. Additionally, the policy must balance exploiting known optimal actions and exploring
new action spaces, guided by the scoring function to help the model make the best choices.

3.2 STRUCTURED REASONING AS ENTAILMENT GRAPH CONSTRUCTION

The key innovation that distinguishes our approach from related work is conceptualizing the multi-
step reasoning process (s0, a0, s1, · · · , aT−1, sT) as entailment graph (Dalvi et al., 2021) con-
struction (Figure 1), which outlines how the premises in s0 lead to intermediate conclusions, ulti-
mately validating the final answer in sT . Formally, let G = (V, E) represent the structure, where V
is the set of nodes, with each node v ∈ V representing a statement, e.g., evidence, an assumption,
or a lemma/rule; E is the set of directed (hyper) edges, where each (hyper) edge e = (Vsrc,Vtgt) ∈ E
represents an entailment relation from a source node set Vsrc ⊆ V (the premises) to a target node set
Vtgt ⊆ V (the conclusions).

Given s0, the world model generator PwmG first builds the initial graph G0 by extracting key state-
ments and their relations. During the reasoning, PwmG incrementally grows the graph by adding new

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: SWAP performs multi-step reasoning through structure-aware planning in FOLIO (left)
and MATH (right). At each step, given the current state, represented as a graph, and an action, the
world model predicts the next state as an updated graph.

nodes and edges, ultimately forming GT , which includes the final answer. The generation process is
sampling-based, with the world model discriminatorPwmD making decision at each step. Structural
verification is also introduced to ensure the quality of the graph. For simplicity, let us denote the
state with structural information as (s,G). Incorporating this structure provides two main benefits:
1) the policy model can make more informed decisions using the structural information; and 2) the
world model can predict more accurate next state.

4 STRUCTURE-AWARE PLANNING WITH ACCURATE WORLD MODEL

4.1 FRAMEWORK

In this section, we present the Structure-aware Planning with Accurate World Model framework
(SWAP) that enables LLMs to systematically construct and utilize an entailment graph for solving
a wide range of reasoning tasks. We use PπG and PπD to denote the policy generator & discrimi-
nator, PwmG and PwmD to denote the world model generator & discriminator, and Pc to denote the
controller based on pre-trained LMs. We consider Q,A,G,H, s,G, a as language sequences, i.e.,
Q = (Q[1], · · · , Q[L]) where each Q[l] is a token, so that P(Q) =

∏L
l=1 P(Q[l]|Q[1..l − 1]). We

use (s,G) to denote the state with structural information, and c = (G,H, s,G) to denote the context
of goal G, plan H and state (s,G).
For notational convenience, we define the generation process as gen(model,input, N) where N
is the number of generations, and the discrimination process as dis (model,input, b) where b is
the number of preserved candidates. To search potential plans and actions, we simulate the future
situations of the current state using the world model. Specifically, we use sim(c, t) to denote the
simulation starting from (s,G) up to step t given the goal G and plan H from the context c.

Algorithm 1 outlines the workflow. Given a reasoning question Q, the world model generator
PwmG(G, s0,G0|Q) first generates the goal G and the initial state (s0,G0). The policy generator
then proposes a set of plans H by sampling N times from PπG(H|G, s0,G0). The top b candidate
plans are selected by the policy discriminator PπD based on the simulation results (sT ,GT) under
each plan. Given the goal G, selected plan H and current state (st−1,Gt−1), multi-step reasoning
at step t begins with the policy generator sampling N times from PπG(at−1|G,H, st−1,Gt−1) as

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 SWAP (Q,PπG ,PπD ,PwmG,PwmD,
Pc, N, T, b)

Require: Reasoning question Q, policy generator
& discriminator PπG and PπD , world model gen-
erator & discriminator PwmG and PwmD, con-
troller Pc, generation number limit N , step limit
T , breadth limit b.
D ← {}
G, s0,G0 ← gen(PwmG, Q, 1)
C ← {(G,H, s0,G0) | H ∈ gen(PπG ,

(G, s0,G0), N)}
C ← dis(PπD , {sim(c, T) | c ∈ C}, b)
for t = 1, · · · , T do

if b = 0 then break
end if
C ← {(G,H, s,G, a) | (G,H, s,G) ∈ C,

a ∈ gen(PπG , (G,H, s,G), N)}
C ← dis(PπD , {sim(c, t) | c ∈ C}, b)
StatePredict(C,D,PwmG,PwmD,Pc, N)

end for
A∗ ← dis(PπD ,D, 1)
return A∗

Algorithm 2 StatePredict (C,D,PwmG,PwmD,
Pc, N)

Require: Context pool C, completed pool D,
world model generator & discriminator PwmG
and PwmD, controller Pc, generation number
limit N .
parallel for i = 1, · · · , b do

(G,H, s,G, a) = Ci
{(s′j ,G′j)}Nj=1 ← gen(PwmG, (s,G, a),

N)
(s′,G′)← dis(PwmD,

{(s,G, a, s′j ,G′j)}Nj=1, 1)
A← gen(Pc, (G, s′,G′), 1)
if A ̸= None then
D.add((G, s′,G′, A)) ▷ collect the state
C.pop(i) ▷ remove context Ci
b← b− 1

else
Ci ← (G,H, s′,G′) ▷ update context Ci

end if
end for

the next action pool. The policy discriminator PπD then evaluates and selects the top b candidate
contexts (G, H , st−1, Gt−1, at−1) based on simulated states (st,Gt).
Then the accurate state prediction (Algorithm 2) is performed in parallel for each selected context
(G, H , st−1, Gt−1, at−1). Specifically, the world model generator predicts the next state (st,Gt)
by sampling N times from PwmG(st,Gt|st−1,Gt−1, at−1). Then the world model discriminator
PwmD selects the top 1 candidate state. Based on the selected (st,Gt), the controller determines
whether to continue reasoning. If reasoning is complete, the controller Pc(A|G, st,Gt) generates
the final answer A, stores (G, st,Gt, A) in the completed pool D, and reduces b by 1. Otherwise,
(G,H, st,Gt) will be added to the context pool C for the next step. The process continues until
the step limit T is reached or b becomes 0. Finally, the top answer A∗ is selected by the policy
discriminator PπD based on the completed states (with graphs) in D.

4.2 SEEKING DIVERSITY IN ACTION GENERATION AND STATE PREDICTION

We identify two critical bottlenecks (generation diversity and discrimination accuracy) for the
Generator-Discriminator (G-D) architecture in SWAP. Improving generation diversity is essential
to allow the model to explore a broader solution space, increasing the chances of discovering the
global optimal solution. Thus, we propose a Diversity-based Modelling (DBM) approach (Figure
2). The key idea is to encourage the generator to produce steps that differ from existing ones, thereby
mitigating its inherent self-bias and promoting exploration. Compared to related work (Vijayaku-
mar et al., 2016; Hu et al., 2023), DBM offers several advantages: 1) It builds on SFT, enabling
an end-to-end learning and scalable to large datasets; 2) It leverages the extensive world knowledge
embedded in pre-trained LMs.

Diversity-based Modeling (DBM):

Given the current state (st,Gt), we use Pori
πG

(at|G,H, st,Gt) to denote the original distribution
learned by supervised fine-tuning on the positive trajectories (that lead to correct final answers)
during training. For n-th generation, we aim to introduce diversity by considering an additional dis-
tribution P sem

πG
(ant |a1..n−1

t), which represents steps that are semantically similar to those generated
previously a1..n−1

t . Specifically, the probability of l-th token ant,l in the n-th generation ant is

P sem
πG

(ant,l|a1..n−1
t , ant,1..l−1) =

1

n− 1

n−1∑
j=1

P sem
πG

(ant,l|a
j
t , a

n
t,1..l−1), (1)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where ajt denotes the j-th generation, and for notational simplicity, we move the token index
to a subscript, so that ant,1..l−1 denotes the preceding tokens of the l-th token ant,l. We obtain
P sem
πG

(a′l|a, a′1..l−1) by using supervised fine-tuning on the training data generated by GPT-4o, where
a and a′ are pairs of actions that are semantically equivalent.

To encourage diversity, the generator adjusts the original distributionPori
πG

by reducing the probability
mass assigned to steps that are semantically similar to previous generations, i.e.,

PπG(a
n
t,l|G,H, st,Gt, a1..n−1

t , ant,1..l−1) = Norm
(
Pori
πG
(ant,l|G,H, st,Gt, ant,1..l−1)

− γlP sem
πG

(ant,l|a1..n−1
t , ant,1..l−1)

)
(2)

where the decay factor, γl = γ0 · αl with α ≤ 1, is introduced to emphasize diversity in early
stages of generation while gradually reducing this effect. This ensures that the deduplication effect
is stronger initially to explore different paths but weakens over time to avoid drifting too far from
plausible solutions, thereby maintaining accuracy. Note that this discussion primarily focuses on
action generation, while the process of plan generation using the policy generator, represented as
PπG(H

n|G, s0,G0, H1..n−1), follows a similar approach.

The normalization function

Norm(P) = max(P, 0)
1⊤ max(P, 0)

(3)

is applied to discard negative-valued tokens (that resemble previous generations or deviate from the
intended progression of reasoning) and maintain a diverse and relevant generation. Other alterna-
tives, such as Softmax, can distort the probability of irrelevant tokens by redistributing values across
all tokens.

State Prediction Enhancement with Diversity:

By encouraging the generator to produce diverse predictions, we increase the likelihood of over-
coming self-biases and discovering a more accurate future state. We then select the top 1 prediction
from the diverse options generated. To achieve this, we apply a similar strategy to enhance diversity
for state prediction PwmG(s

n
t |st−1,Gt−1, at−1, s

1..n−1
t), that is,

PwmG(s
n
t,l|st−1,Gt−1, at−1, s

1..n−1
t , snt,1..l−1) = Norm

(
Pori

wmG(s
n
t,l|st−1,Gt−1, at−1, s

n
t,1..l−1)

− γlP sem
wmG(s

n
t,l|s1..n−1

t , snt,1..l−1)
)

(4)

where sjt denotes the j-th generation, and snt,1..l−1 is the preceding tokens of the l-th token snt,l. Once
the state snt is generated, the corresponding graph Gnt is extracted from this state, allowing the model
to maintain a consistent representation of entailment relationships as the reasoning progresses.

In addition to diversity-based modeling, we leverage a dynamic context strategy to further diversify
the generation. This strategy involves randomly reframing the current state to create an alternative

Figure 2: Overview of the proposed Diversity-Based Modeling (DBM) method. The current context
is processed by the language model, which is fine-tuned using Ori-LoRA and SemEquiv-LoRA.
Previous generations are used to compute the semantic equivalence distribution, which is employed
to adjust the original distribution to avoid repetition.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

context for each step. For example, given the original state (s,G), we generate an alternative state
(s′,G′), where s′ is sampled from the semantic equivalence distributions P sem

wmG (s′|s). The corre-
sponding graph G′ is then regenerated from s′. Our experiments show that this strategy significantly
contributes to generating diverse outputs, enhancing the model’s robustness and performance on
reasoning tasks.

4.3 IMPROVING DISCRIMINATION ACCURACY IN REASONING

As highlighted in recent works (Huang et al., 2023; Chen et al., 2024b), discrimination accuracy is
a critical aspect of various planning methods. However, training an effective PRM remains chal-
lenging, as mathematically, it assigns a numerical value to each state independently. To address this
issue, our discriminator employs Contrastive Ranking (CR) to evaluate multiple candidate options
simultaneously. By focusing on relative comparisons, the model can effectively identify discrepan-
cies between options, particularly erroneous parts, thereby simplifying the task.

Contrastive Ranking (CR) for Enhanced Evaluation:

To illustrate (Figure 3), given a positive trajectory [(s0,G0), a0, · · · , (sT ,GT)] that leads to the cor-
rect final answer, we randomly select an intermediate step t, and finalize K subsequent reasoning
processes: {[ajt , · · · , (s

j
Tj
,GjTj

)]}Kj=1, where Tj represents the length of the j-th trajectory. Among
these K trajectories, we identify the first erroneous steps in negative trajectories (which lead to incor-
rect final answers) by determining which steps are semantically different from the positive trajectory
and then performing structural verification and Nveri completions for outcome verification, i.e., if
none of the completions result in the correct final answer, we confirm these steps as erroneous.

Given the contrastive process annotations, we define the inputs and outputs of the discriminator
while incorporating meta knowledge Kmeta to enhance model performance. Specifically,

E, abest
t ∼ PπD

(
E, abest

t | Kmeta, G,H, (st,Gt), {ajt , (s
j
t+1,G

j
t+1)}Kj=1

)
(5)

E, sbest
t+1,Gbest

t+1 ∼ PwmD

(
E, sbest

t+1,Gbest
t+1 | Kmeta, (st,Gt), at, {(sjt+1,G

j
t+1)}Kj=1

)
(6)

where (sjt+1,G
j
t+1) is used for the selection of action at. We avoid using longer future trajecto-

ries to prevent introducing new errors, which could interfere with action selection. For plan selec-
tion PπD(E,Hbest | Kmeta, G, (s0,G0), {Hj , (sjTj

,GjTj
)}Kj=1), we use the simulated completed states

(sjTj
,GjTj

) for the selection of H . The discriminator generates an explanation E, highlighting differ-
ences between the K future states before making a decision. We fine-tune the discriminator using
these explanations through bootstrapping from GPT-4o. We use the superscript ’best’ to denote
the final selected option, i.e., Hbest, abest

t and (sbest
t+1,Gbest

t+1), and the construction of meta knowledge
Kmeta based on training data is provided in Appendix A.

Figure 3: Overview of our automatic ranking annotation. Starting from a selected step in the positive
trajectory, multiple future actions and states are generated to create candidate trajectories. Negative
trajectories, which lead to incorrect final answers, are analyzed to identify the first steps that are
semantically different from those in the positive trajectory. Structural verification and tree search
for outcome are then employed to identify these potential erroneous steps.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Overall performance comparison across different benchmark datasets. The best perfor-
mance for each task using the same base model is in bold. Note: We use the filtered PRM800K
dataset (Sun et al., 2024) to evaluate performance on the full MATH test set.

Math Reasoning Logical Reasoning Coding
Model GSM8K MATH FOLIO ReClor HumanEval MBPP

LLaMA3-8B-Instruct
Zero-shot CoT 70.0 ± 2.0 27.6 ± 0.6 62.1 ± 1.8 57.8 ± 1.4 53.3 ± 0.6 51.8 ± 0.2
Few-shot CoT (4-shot) 72.4 ± 1.8 23.6 ± 0.6 57.2 ± 1.4 52.1 ± 1.1 56.8 ± 0.2 53.6 ± 0.2
SFT-CoT 71.3 ± 1.8 25.4 ± 0.4 66.0 ± 0.8 62.2 ± 0.8 51.6 ± 0.4 51.0 ± 0.3
Self-consistency 74.1 ± 1.2 26.0 ± 0.4 66.2 ± 0.5 60.1 ± 0.6 - -
ToT 75.2 ± 1.1 28.8 ± 0.4 67.1 ± 0.8 60.6 ± 0.8 - -
RAP 76.0 ± 1.0 28.4 ± 0.3 67.5 ± 0.6 61.3 ± 0.6 - -
PRM (PRM800K∗) 74.6 ± 0.8 28.8 ± 0.2 - - - -
PRM (Math-Shepherd) 76.2 ± 0.8 28.6 ± 0.3 - - - -
SWAP (w/o discriminator) 78.1 ± 1.0 37.3 ± 0.4 69.2 ± 0.8 69.1 ± 0.8 53.1 ± 0.8 53.4 ± 0.6
SWAP 82.7 ± 0.6 42.3 ± 0.3 73.2 ± 0.5 74.1 ± 0.4 57.8 ± 0.6 58.6 ± 0.4

Mistral-7B-Instruct
Zero-shot CoT 23.4 ± 1.8 12.0 ± 0.4 46.8 ± 1.5 38.8 ± 1.0 42.5 ± 0.5 38.8 ± 0.4
Few-shot CoT (4-shot) 47.3 ± 1.6 12.7 ± 0.5 48.6 ± 1.6 36.2 ± 0.8 43.6 ± 0.4 44.8 ± 0.6
SFT-CoT 48.0 ± 1.0 12.6 ± 0.3 52.0 ± 1.0 40.2 ± 0.6 43.8 ± 0.4 46.0 ± 0.4
Self-consistency 52.1 ± 0.8 11.2 ± 0.2 51.2 ± 0.6 42.4 ± 0.4 - -
ToT 49.6 ± 1.2 12.3 ± 0.3 50.2 ± 1.2 40.8 ± 0.8 - -
RAP 56.1 ± 1.0 13.0 ± 0.2 52.1 ± 0.8 41.6 ± 0.6 - -
PRM (PRM800K∗) 54.2 ± 0.8 14.2 ± 0.2 - - - -
PRM (Math-Shepherd) 55.4 ± 0.6 13.6 ± 0.2 - - - -
SWAP (w/o discriminator) 54.0 ± 0.8 15.4 ± 0.3 54.0 ± 0.6 45.2 ± 0.6 45.0 ± 0.8 47.0 ± 0.4
SWAP 60.4 ± 0.6 18.7 ± 0.2 58.0 ± 0.3 49.1 ± 0.4 48.4 ± 0.6 51.1 ± 0.3

During inference, given the discriminator, we apply a voting strategy to decide the top b candidates
as mentioned in Algorithm 1, 2. To further enhance robustness, we reframe the candidate options
and reorder them to have multiple comparisons within the same group. In addition, we further
enhance the discrimination accuracy with structural verification on the graphs {Gj}Kj=1. Details
of these strategies are given in Appendix A.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We conduct experiments on various types of reasoning tasks. Dataset statistics and examples are
provided in Appendix B. For each dataset, we use different types of models (GPT-4o (OpenAI &
et al., 2024), DeepSeek-V2 (DeepSeek-AI & et al., 2024), LLaMA3 (Dubey et al., 2024)) to generate
multiple trajectories for the training and validation sets. We label the trajectories as positive or
negative based on their final answers. To improve the model stability, we augment training questions
using GPT-4o. Given the positive and negative trajectories of the same question, we automatically
generate contrastive process annotations (Figure 3) using DeepSeek-V2. Additionally, to address the
class imbalance in contrastive ranking data, we apply pre-processing and post-processing techniques
(see Appendix D for details). With the complete training data, SWAP is fine-tuned from LLaMA3-
8B-Instruct using LoRA (Hu et al., 2021). The parameter settings are as follows: For DBM, γ0 = 0.7
and α = 0.95. For CR, Nveri = 3; we choose K = {2, 3} for discriminator training, and during
inference, multiple options are divided into groups of size 2 or 3; for meta knowledge, we use
M = 5. To ensure the effectiveness of training, we also employ specialized strategies such as
curriculum learning and self-improving training (details in Appendix D). During evaluation, we
compare our SWAP against popular strategies, CoT, Self-consistency (SC) (Wang et al., 2023b), ToT
(Yao et al., 2023), and RAP (Hao et al., 2023)) as well as SFT on CoTs and verification with PRMs
(Lightman et al., 2023; Wang et al., 2023a), using different base models (LLaMA3-8B-Instruct and
Mistral-7B-Instruct (Jiang et al., 2023)). The number of candidate solutions for self-consistency and
PRMs is set to 8. For SWAP, ToT, and RAP (utilizing MCTS), the generation number and step limits
are set to 5 and 10, respectively. The number of rollouts (breadth limit) is set as 8. More details
about data generation, model training and evaluation are provided in Appendix C, D.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.2 MAIN RESULTS

Overall performance is shown in Table 1, with fine-grained results and examples provided in Ap-
pendix E and Appendix G, respectively. We summarize the key findings as follows:

SWAP consistently achieves the best or comparable performance among different methods.
One-pass CoT and verification methods, such as self-consistency and PRMs, do not involve search-
ing through intermediate steps during the reasoning process. In contrast, our framework empowers
the model to reason more like humans’ conscious planning, which significantly improves perfor-
mance on multi-step reasoning tasks. This planning ability becomes especially crucial in more chal-
lenging tasks, where deliberate reasoning is necessary to avoid intermediate errors. For instance,
our framework with LLaMA3-8B-Instruct achieves a 14.7% better accuracy compared to CoT (53%
relative improvement) on the more difficult MATH dataset, and a 10.3% improvement on GSM8k.

Structure-aware planning and an accurate world model further enhance the effectiveness of
planning in LLMs. Methods such as ToT and RAP, which also incorporate planning or search-based
strategies, do not match our approach in performance. They lack the deeper structural understanding
and precise state modeling that our framework provides. SWAP explicitly introduces the structure
that describes the relationship between key statements, which facilitates both action generation and
state prediction. In addition, Diversity-based Modeling (DBM) enables the generator to explore
a broader solution space, increasing the likelihood of finding optimal steps. Contrastive Ranking
(CR), on the other hand, significantly improves the accuracy of the discriminator by focusing on
relative comparisons between candidate solutions. This combination of enhanced exploration and
more precise discrimination is key to the substantial performance improvements observed in our
experiments, especially on challenging datasets like MATH.

5.3 ANALYSIS

We investigate the effect of search tree width and depth on overall accuracy, providing insights for
both parameter selection and dynamic evaluation across various tasks.

The benefit of increasing search tree width, i.e., the number of search attempts per step, be-
comes marginal after a certain point. For planning-based approaches, the width of the search
tree directly influences the thoroughness of exploring the solution space at each step. We analyze
the effect of search width on accuracy in SWAP (Figure 4). As shown, there is a consistent upward
trend across all datasets. However, the benefits diminish beyond a certain point, e.g., after 5-7 search
attempts in FOLIO and GSM8K, since most of the promising options have already been explored.
We found that using a search width of 5 offers the best trade-off between computational cost and per-
formance. We also observed some variability between datasets. GSM8K and MATH show a sharper
initial increase in accuracy with fewer search attempts, while FOLIO and HumanEval exhibit a
more gradual improvement. This discrepancy likely arises from the variations in task complexity
and dataset size.

Model performance improves gradually with increasing search tree depth, i.e., the number of
searched steps in the trajectory. Another important factor is the search tree depth, which refers to
the number of searched steps. We analyze how accuracy changes with search depth in SWAP (Figure
5). For each value of Nsearch, we search and optimize the first Nsearch steps and allow the model to

Figure 4: Effect of increasing search tree width on overall accuracy for different benchmark datasets
in SWAP. The accuracy generally improves as search tree width increases, but the benefits become
marginal beyond a certain number of search attempts.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 5: Effect of increasing search tree depth on overall accuracy for different benchmark datasets
in SWAP. More searched steps lead to improved accuracy and reduced variance.

Table 2: Ablation studies. The complete framework achieves the highest performance across all
tasks, demonstrating that each component contributes positively to overall accuracy.

Math Reasoning Logical Reasoning Coding
Method GSM8K MATH FOLIO ReClor HumanEval MBPP
SWAP (Ours) 82.7 42.3 73.2 74.1 57.8 58.6
w/o structure info 81.2 40.4 72.5 71.8 56.1 57.5
w/o DBM 79.0 38.5 70.0 71.2 55.0 55.9
w/o meta knowledge 81.3 40.8 72.4 73.0 56.2 57.1
w/ PRM instead of CR 81.0 39.1 71.6 72.0 55.9 56.8
w/o discriminator 78.1 37.3 69.2 69.1 53.1 53.4

complete the remaining trajectory directly. As seen, accuracy steadily increases with the number of
searched steps across all datasets, indicating that our planning brings benefits. Notably, the benefits
of planning depend on the difficulty of each stage, as more challenging steps yield greater accuracy
improvements after searching. Toward the end of the trajectory, the accuracy curve begins to flatten,
and its variance is reduced as the trajectory converges to the optimal one.

5.4 ABLATION STUDY

We analyze the impact of the key components proposed in this paper (Table 2). The complete
framework achieves the highest performance across all tasks, demonstrating that each component
contributes positively to overall accuracy. Notably, the discriminator has the most significant im-
pact by effectively selecting optimal actions and state predictions. The incorporation of structural
information is also crucial, particularly for complex reasoning tasks like math and logical reason-
ing. DBM enhances generation diversity by promoting the exploration of diverse solution paths,
while CR outperforms PRM in multi-step reasoning, as selecting the optimal solution by compar-
ing different options is more reliable than scoring each option independently. Finally, incorporating
meta knowledge further improves discrimination accuracy. These improvements are consistently
observed across different task types.

6 CONCLUSION

In this paper, we introduce SWAP, a novel framework for enhancing the multi-step reasoning ca-
pabilities of LLMs through structure-aware planning with an accurate world model. Our approach
consistently outperforms existing methods in extensive experiments, demonstrating significant im-
provements on reasoning-heavy benchmarks, including math, logical reasoning, and coding tasks.
In this work, we primarily adopt a re-ranking strategy, as it provides a good balance between com-
putational cost and model performance. For future research, exploring reinforcement learning (RL)
methods to enable dynamic interaction with the world model could further optimize LLMs for long-
term rewards. Additionally, teaching the model to recognize and correct its own mistakes represents
another promising direction, potentially leading to even more robust reasoning capabilities.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Antoine Chaffin, Vincent Claveau, and Ewa Kijak. PPL-MCTS: Constrained textual generation
through discriminator-guided MCTS decoding. In Marine Carpuat, Marie-Catherine de Marn-
effe, and Ivan Vladimir Meza Ruiz (eds.), Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, pp. 2953–2967, Seattle, United States, July 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.naacl-main.215. URL https://aclanthology.org/2022.
naacl-main.215.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. In The Twelfth International Conference on Learning Representations, 2024a. URL
https://openreview.net/forum?id=KuPixIqPiq.

Ziru Chen, Michael White, Raymond Mooney, Ali Payani, Yu Su, and Huan Sun. When is tree
search useful for llm planning? it depends on the discriminator. arXiv preprint arXiv:2402.10890,
2024b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zhengnan Xie, Hannah Smith, Leighanna Pi-
patanangkura, and Peter Clark. Explaining answers with entailment trees. arXiv preprint
arXiv:2104.08661, 2021.

DeepSeek-AI and et al. Deepseek-v2: A strong, economical, and efficient mixture-of-experts lan-
guage model, 2024. URL https://arxiv.org/abs/2405.04434.

Abhimanyu Dubey, Abhinav Jauhri, and et al. The llama 3 herd of models, 2024. URL https:
//arxiv.org/abs/2407.21783.

Yu Gu, Xiang Deng, and Yu Su. Don’t generate, discriminate: A proposal for grounding language
models to real-world environments. In Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 4928–4949, 2023.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-
trained large language models to construct and utilize world models for model-based task plan-
ning. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances
in Neural Information Processing Systems, volume 36, pp. 79081–79094. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/f9f54762cbb4fe4dbffdd4f792c31221-Paper-Conference.pdf.

11

https://aclanthology.org/2022.naacl-main.215
https://aclanthology.org/2022.naacl-main.215
https://openreview.net/forum?id=KuPixIqPiq
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://proceedings.neurips.cc/paper_files/paper/2023/file/f9f54762cbb4fe4dbffdd4f792c31221-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/f9f54762cbb4fe4dbffdd4f792c31221-Paper-Conference.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Luke Benson, Lucy
Sun, Ekaterina Zubova, Yujie Qiao, Matthew Burtell, David Peng, Jonathan Fan, Yixin Liu, Brian
Wong, Malcolm Sailor, Ansong Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Shafiq Joty,
Alexander R. Fabbri, Wojciech Kryscinski, Xi Victoria Lin, Caiming Xiong, and Dragomir Radev.
Folio: Natural language reasoning with first-order logic. arXiv preprint arXiv:2209.00840, 2022.
URL https://arxiv.org/abs/2209.00840.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio,
and Nikolay Malkin. Amortizing intractable inference in large language models. arXiv preprint
arXiv:2310.04363, 2023.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
In 61st Annual Meeting of the Association for Computational Linguistics, ACL 2023, pp. 1049–
1065. Association for Computational Linguistics (ACL), 2023.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Philip N Johnson-Laird. Mental models and human reasoning. Proceedings of the National Academy
of Sciences, 107(43):18243–18250, 2010.

Philip Nicholas Johnson-Laird. Mental models: Towards a cognitive science of language, inference,
and consciousness. Number 6. Harvard University Press, 1983.

Daniel Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, 2011.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 6769–6781, Online, Novem-
ber 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.550.
URL https://aclanthology.org/2020.emnlp-main.550.

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open
Review, 62(1):1–62, 2022.

Bin Lei, Yi Zhang, Shan Zuo, Ali Payani, and Caiwen Ding. Macm: Utilizing a multi-agent
system for condition mining in solving complex mathematical problems, 2024. URL https:
//arxiv.org/abs/2404.04735.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Mak-
ing language models better reasoners with step-aware verifier. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 5315–5333, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.291. URL
https://aclanthology.org/2023.acl-long.291.

12

https://arxiv.org/abs/2209.00840
https://aclanthology.org/2020.emnlp-main.550
https://arxiv.org/abs/2404.04735
https://arxiv.org/abs/2404.04735
https://aclanthology.org/2023.acl-long.291

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, et al. Improve mathematical reasoning in language models by automated
process supervision. arXiv preprint arXiv:2406.06592, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback. In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023. URL https://openreview.net/forum?id=S37hOerQLB.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoyanov, Wen-Tau Yih, Sida Wang, and Xi Vic-
toria Lin. LEVER: Learning to verify language-to-code generation with execution. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scar-
lett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pp. 26106–26128. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/ni23b.html.

OpenAI. Openai o1 system card, 2024. URL https://cdn.openai.com/
o1-system-card.pdf.

OpenAI and et al. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.
08774.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-lm: Empower-
ing large language models with symbolic solvers for faithful logical reasoning. arXiv preprint
arXiv:2305.12295, 2023.

Danilo Ribeiro, Shen Wang, Xiaofei Ma, Henry Zhu, Rui Dong, Deguang Kong, Juliette Burger,
Anjelica Ramos, William Wang, Zhiheng Huang, et al. Street: A multi-task structured reasoning
and explanation benchmark. arXiv preprint arXiv:2302.06729, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Re-
flexion: language agents with verbal reinforcement learning. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=vAElhFcKW6.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. arXiv preprint
arXiv:2403.09472, 2024.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Haitao Mi, and Dong Yu. To-
ward self-improvement of llms via imagination, searching, and criticizing. arXiv preprint
arXiv:2404.12253, 2024.

Ashwin K Vijayakumar, Michael Cogswell, Ramprasath R Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. Diverse beam search: Decoding diverse solutions from neural se-
quence models. arXiv preprint arXiv:1610.02424, 2016.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang
Sui. Math-shepherd: A label-free step-by-step verifier for llms in mathematical reasoning. arXiv
preprint arXiv:2312.08935, 2023a.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023b. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

13

https://openreview.net/forum?id=S37hOerQLB
https://proceedings.mlr.press/v202/ni23b.html
https://cdn.openai.com/o1-system-card.pdf
https://cdn.openai.com/o1-system-card.pdf
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=1PL1NIMMrw

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi, and Faramarz Fekri. Can llms reason in the
wild with programs? arXiv preprint arXiv:2406.13764, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: deliberate problem solving with large language models. In Pro-
ceedings of the 37th International Conference on Neural Information Processing Systems, pp.
11809–11822, 2023.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng. Reclor: A reading comprehension dataset
requiring logical reasoning. In International Conference on Learning Representations (ICLR),
April 2020.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin
Chen, Ruobing Xie, Yankai Lin, et al. Advancing llm reasoning generalists with preference trees.
arXiv preprint arXiv:2404.02078, 2024.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ADDITIONAL METHODOLOGICAL DETAILS

The meta knowledgeKmeta, which helps verify answers and identify errors, is derived from training
questions. Formally, Kmeta = concatm(Km), where Km represents stored knowledge from the m-
th training sample, and we select the top M samples based on the cosine similarity between the
training query embedding qm and the test query embedding q.

We fine-tune our discriminator using the contrastive process annotations, which helps it accurately
identify subtle differences between trajectories and improve its ability to distinguish between valid
and invalid reasoning steps. To further enhance robustness during inference, we randomly group
the candidate options and reorder them, then apply a voting strategy to determine the final ranking
to decide the top b candidates as mentioned in Algorithm 1, 2. This approach ensures that the model
is not biased by specific sequences and provides a more reliable assessment of the best candidate.

In addition, we introduce structural verification for generated entailment graphs G to further en-
hance discrimination. Key steps involves: 1) Syntax Verification: Validates the format of nodes and
edges. 2) Node Dependency Analysis: Examines the dependencies between nodes (assumptions,
lemmas, facts, or inferences derived from prior nodes). 3) Cycle Detection: Ensures acyclic struc-
tures to maintain logical consistency. 4) Redundancy Check: Detects redundant or disconnected
nodes. All of them are implemented according to standard graph algorithms.

B DATASET OVERVIEW

In this section, we present statistics and examples for all benchmark datasets used in our study. We
consider GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021) for math reasoning, FOLIO
(Han et al., 2022), ReClor (Yu et al., 2020) for logical reasoning, and HumanEval (Chen et al.,
2021), MBPP (Austin et al., 2021) for coding. For GSM8K, there are 7,473 training samples and
1,319 test samples. For MATH, there are 7,500 training samples and 5,000 test samples. For FOLIO,
the training and validation sets consist of 1,001 and 203 samples, respectively. For ReClor, we use
4,638 training samples, 500 validation samples (used as test set, as the original test set answers are
not publicly available), and 1,000 test samples. HumanEval contains 164 test samples, and since
it lacks a training set, we use the entire MBPP dataset (after format transformation) for training.
MBPP consists of 374 training samples, 90 validation samples, and 500 test samples.

Example - GSM8K
Problem: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How
much did she earn?

Solution:
Weng earns 12/60 = $<<12/60=0.2>>0.2 per minute.
Working 50 minutes, she earned 0.2 x 50 = $<<0.2*50=10>>10.
10

Problem: Janet hires six employees. Four of them are warehouse workers who make $15/hour, and the other
two are managers who make $20/hour. Janet has to pay 10% of her workers' salaries in FICA taxes. If
everyone works 25 days a month and 8 hours a day, how much does Janet owe total for their wages and taxes
for one month?

Solution:
First figure out how many hours each worker works per month by multiplying the number of days they work
by the number of hours a day they work: 25 days * 8 hours/day = <<25*8=200>>200 hours
Then calculate how much one warehouse worker makes per month by multiplying their hourly rate by the
number of hours they work: 200 hours * $15/hour = $<<200*15=3000>>3000
Then multiply that number by 4 to find out how much all the warehouse workers make: $3000/worker * 4
workers = $<<3000*4=12000>>12,000
Now multiply the hours each manager works (also 200) by their hourly wage to find out how much one
manager makes per month: 200 hours * $20/hour = $<<200*20=4000>>4,000
Now multiply one manager's wages by the number of managers (2) to find their total wage amount: $4,000/
manager * 2 managers = $<<4000*2=8000>>8,000
Now add the wages for the managers and the workers to find the total cost of the wages: $8,000 + $12,000 = $
<<8000+12000=20000>>20,000

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Now multiply the total wage bill by 10% to find how much the FICA taxes are: $20,000 * .1 = $
<<20000*.1=2000>>2,000
Now add the total wage bill to the total tax amount to find the grand total: $2,000 + $20,000 = $
<<2000+20000=22000>>22,000
22000

Example - MATH

Problem: Let f(x) =

 ax+ 3, if x > 2,
x− 5 if − 2 ≤ x ≤ 2,
2x− b if x < −2.

Find a+ b if the piecewise function is continuous (which means that its graph can be drawn without lifting
your pencil from the paper).

Solution:
For the piecewise function to be continuous, the cases must ”meet” at 2 and −2. For example, ax+ 3 and
x− 5 must be equal when x = 2. This implies a(2) + 3 = 2− 5, which we solve to get
2a = −6 ⇒ a = −3. Similarly, x− 5 and 2x− b must be equal when x = −2. Substituting, we get
−2− 5 = 2(−2)− b, which implies b = 3. So a+ b = −3 + 3 = 0 .

Problem: Square ABCD has its center at (8,−8) and has an area of 4 square units. The top side of the square
is horizontal. The square is then dilated with the dilation center at (0,0) and a scale factor of 2. What are the
coordinates of the vertex of the image of square ABCD that is farthest from the origin? Give your answer as
an ordered pair.

Solution:
With the center of dilation at the origin and a scale factor of 2, all the coordinates of square ABCD are twice
the coordinates of its preimage. The preimage has an area of 4 square units, so its side length is 2 units. Since
the center of the preimage is at (8,−8), the four vertices of the preimage are at (7,−9), (7,−7), (9,−7) and
(9,−9). The point (9,−9) is the farthest from the origin on the preimage, so the point farthest from the origin

on the image of square ABCD is (18,−18) .

Example - FOLIO
Problem:
Premises:
All customers in James' family who subscribe to AMC A−List are eligible to watch three movies every week
without any additional fees.
Some of the customers in James' family go to the cinema every week.
Customers in James' family subscribe to AMC A−List or HBO service.
Customers in James' family who prefer TV series will not watch TV series in cinemas.
All customers in James' family who subscribe to HBO services prefer TV series to movies.
Lily is in James' family; she watches TV series in cinemas.

Conclusion:
Lily goes to cinemas every week or watches 3 movies every week without any additional fees.

Solution: True

Problem:
Premises:
If a legislator is found guilty of stealing government funds, they will be suspended from office.
Tiffany T. Alston was a legislator in Maryland's House of Delegates from 2011 to 2013.
Tiffany T. Alston was found guilty of stealing government funds in 2012.

Conclusion:
Tiffany T. Alston went to prison for stealing government funds.

Solution: Uncertain

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Example - ReClor
Problem:
Paula will visit the dentist tomorrow morning only if Bill goes golfing in the morning. Bill will not go golfing
unless Damien agrees to go golfing too. However, Damien has decided not to go golfing. Ttherefore, Paula
will not be visiting the dentist tomorrow morning.

0. If Marge goes to the bank today, Lauren will not cash her check tomorrow. Marge will not wash her car
unless it is sunny. However, it is sunny, so Marge will wash her car and go shopping with Lauren.
1. Kevin will wash his car tomorrow only if Brittany has to go visit her grandmother. Unless Aunt Susan has
to run errands, Brittany will not have to go visit her grandmother. Since Aunt Susan does not have to run
errands, Kevin will not wash his car tomorrow.
2. Renee will do her homework tonight if there is nothing good on television and if her neighbors do not have
a party. Although, there is something good on television; her neighbors are also having a party. Ttherefore,
Renee will attend the party.
3. Maddie will plan a picnic only if one of her friends, Lisa or Kenny, will come. Kenny will not come to the
picnic, but Lisa will. Ttherefore, Maddie will plan a picnic.

The pattern of reasoning displayed above most closely parallels which of the following?

Solution: 1

Problem:
Environmentalist: An increased number of oil spills and the consequent damage to the environment indicate
the need for stricter safety standards for the oil industry. Since the industry refuses to take action, it is the
national government that must regulate industry safety standards. In particular, the government has to at least
require oil companies to put double hulls on their tankers and to assume financial responsibility for accidents.
Industry representative: The industry alone should be responsible for devising safety standards because of its
expertise in handling oil and its understanding of the cost entailed. Implementing the double−hull proposal is
not currently feasible because it creates new safety issues. Furthermore, the cost would be burdensome to the
industry and consumers.

0. Government safety regulations are developed in a process of negotiation with industry leaders and
independent experts.
1. Environmental concerns outweigh all financial considerations when developing safety standards.
2. The requirement of two hulls on oil tankers, although initially costly, will save money over time by
reducing cleanup costs.
3. The only effective sources of increased stringency in safety standards for oil tankers are action by the
industry itself or national government regulation.

Which one of the following is an assumption on which the argument of the environmentalist depends?

Solution: 3

Example - HumanEval
Problem:
from typing import List

def separate paren groups(paren string: str) −> List[str]:
''' Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the list of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
>>> separate paren groups('() (()) (()())')
['()', '(())', '(()())']
'''

Solution:
result = []
current string = []
current depth = 0

for c in paren string:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

if c == '(':
current depth += 1
current string.append(c)

elif c == ')':
current depth −= 1
current string.append(c)

if current depth == 0:
result.append(''.join(current string))
current string.clear()

return result

Problem:
def count up to(n):

''' Implement a function that takes an non−negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
count up to(5) => [2,3]
count up to(11) => [2,3,5,7]
count up to(0) => []
count up to(20) => [2,3,5,7,11,13,17,19]
count up to(1) => []
count up to(18) => [2,3,5,7,11,13,17]
'''

Solution:
primes = []
for i in range(2, n):

is prime = True
for j in range(2, i):

if i % j == 0:
is prime = False
break

if is prime:
primes.append(i)

return primes

Example - MBPP
Problem:
Write a function to find the minimum cost path to reach (m, n) from (0, 0) for the given cost matrix cost[][]
and a position (m, n) in cost[][].

assert min cost([[1, 2, 3], [4, 8, 2], [1, 5, 3]], 2, 2) == 8
assert min cost([[2, 3, 4], [5, 9, 3], [2, 6, 4]], 2, 2) == 12
assert min cost([[3, 4, 5], [6, 10, 4], [3, 7, 5]], 2, 2) == 16

Solution:
R = 3
C = 3
def min cost(cost, m, n):

tc = [[0 for x in range(C)] for x in range(R)]
tc[0][0] = cost[0][0]
for i in range(1, m+1):

tc[i][0] = tc[i−1][0] + cost[i][0]
for j in range(1, n+1):

tc[0][j] = tc[0][j−1] + cost[0][j]
for i in range(1, m+1):

for j in range(1, n+1):
tc[i][j] = min(tc[i−1][j−1], tc[i−1][j], tc[i][j−1]) + cost[i][j]

return tc[m][n]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Problem:
Write a function to count the longest repeating subsequences such that the two subsequences don't have same
string characters at same positions.

assert find longest repeating subseq(''AABEBCDD'') == 3
assert find longest repeating subseq(''aabb'') == 2
assert find longest repeating subseq(''aab'') == 1

Solution:
def find longest repeating subseq(str):

n = len(str)
dp = [[0 for k in range(n+1)] for l in range(n+1)]
for i in range(1, n+1):
for j in range(1, n+1):

if (str[i−1] == str[j−1] and i != j):
dp[i][j] = 1 + dp[i−1][j−1]

else:
dp[i][j] = max(dp[i][j−1], dp[i−1][j])

return dp[n][n]

C PROMPTS FOR DATA GENERATION

In this section, we present all the prompts used in our data generation process. These prompts
include those for plan generation, action generation, state generation, final answer generation, se-
mantic equivalence data generation, semantic equivalence evaluation, meta-knowledge generation,
and contrastive process supervision for plan, action, and state generation.

Prompt - Plan Generation
Based on the goal, and the initial state (including the graph), propose a plan. Do not solve the problem; just
outline the steps for proceeding.

Example:
Input:
''Problem'': ''Solve for a:

√
4 +

√
16 + 16a+

√
1 +

√
1 + a = 6.''

''Goal'': ''Solve a.''
''Initial state'': ''We know that

√
4 +

√
16 + 16a+

√
1 +

√
1 + a = 6.''

''Initial graph'': {''Statement'': {''s1'': ''
√

4 +
√
16 + 16a+

√
1 +

√
1 + a = 6''}, ''Entailment'': {''s1'': ''Given

condition''}}

Output:
''Plan'': ''To solve a, we begin by simplifying

√
4 +

√
16 + 16a. This simplification may also help us simplify

the left side of the equation further.''

Prompt - Action Generation
Based on the goal, the plan, and the history of actions and states (including graphs), propose the next action.
Only specify the action itself; do not provide the outcome.

Example 1:
Input:
''Problem'': ''Solve for a:

√
4 +

√
16 + 16a+

√
1 +

√
1 + a = 6.''

''Goal'': ''Solve a.''
''Initial state'': ''We know that

√
4 +

√
16 + 16a+

√
1 +

√
1 + a = 6.''

''Initial graph'': {''Statement'': {''s1'': ''
√

4 +
√
16 + 16a+

√
1 +

√
1 + a = 6''}, ''Entailment'': {''s1'': ''Given

condition''}}
''Plan'': ''To solve a, we begin by simplifying

√
4 +

√
16 + 16a. This simplification may also help us simplify

the left side of the equation further.''

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Output:
''Action 1'': ''Simplify

√
4 +

√
16 + 16a.''

Example 2:
Input:
''Problem'': ''Solve for a:

√
4 +

√
16 + 16a+

√
1 +

√
1 + a = 6.''

''Goal'': ''Solve a.''
''Initial state'': ''We know that

√
4 +

√
16 + 16a+

√
1 +

√
1 + a = 6.''

''Initial graph'': {''Statement'': {''s1'': ''
√

4 +
√
16 + 16a+

√
1 +

√
1 + a = 6''}, ''Entailment'': {''s1'': ''Given

condition''}}
''Plan'': ''To solve a, we begin by simplifying

√
4 +

√
16 + 16a. This simplification may also help us simplify

the left side of the equation further.''
''Action 1'': ''Simplify

√
4 +

√
16 + 16a.''

''State 1'': ''We start by simplifying the expression under the square root.\n\nFirst, observe that:\n

16 + 16a = 16(1 + a)\nSubstitute this back:\n
√

4 +
√

16(1 + a)\n\nNow, simplify
√

16(1 + a):\n√
16(1 + a) = 4

√
1 + a\n\nSo the expression becomes:\n

√
4 + 4

√
1 + a\n\nNext, factor out the 4 from

inside the square root:\n
√

4(1 +
√
1 + a)\n\nTaking the square root of 4, we get 2:\n2

√
1 +

√
1 + a\nSo,

the simplified form of the expression is:\n2
√

1 +
√
1 + a.''

''Graph 1'': {''Statement'': {''s2'': ''
√

4 +
√
16 + 16a = 2

√
1 +

√
1 + a''}, ''Entailment'': {''s2'': ''Identity

equation''}}

Output:
''Action 2'': ''Combine like terms

√
1 +

√
1 + a.''

Prompt - State Generation
Based on the goal, the plan, and the history of actions and states (including graphs), predict the next state.
Additionally, extract the graph that illustrates key statements and their entailment relations.

Example 1:
Input:
''Problem'': ''Solve for a:

√
4 +

√
16 + 16a+

√
1 +

√
1 + a = 6.''

''Goal'': ''Solve a.''
''Initial state'': ''We know that

√
4 +

√
16 + 16a+

√
1 +

√
1 + a = 6.''

''Initial graph'': {''Statement'': {''s1'': ''
√

4 +
√
16 + 16a+

√
1 +

√
1 + a = 6''}, ''Entailment'': {''s1'': ''Given

condition''}}
''Plan'': ''To solve a, we begin by simplifying

√
4 +

√
16 + 16a. This simplification may also help us simplify

the left side of the equation further.''
''Action 1'': ''Simplify

√
4 +

√
16 + 16a.''

Output:
''State 1'': ''We start by simplifying the expression under the square root.\n\nFirst, observe that:\n

16 + 16a = 16(1 + a)\nSubstitute this back:\n
√

4 +
√

16(1 + a)\n\nNow, simplify
√

16(1 + a):\n√
16(1 + a) = 4

√
1 + a\n\nSo the expression becomes:\n

√
4 + 4

√
1 + a\n\nNext, factor out the 4 from

inside the square root:\n
√

4(1 +
√
1 + a)\n\nTaking the square root of 4, we get 2:\n2

√
1 +

√
1 + a\nSo,

the simplified form of the expression is:\n2
√

1 +
√
1 + a.''

''Graph 1'': {''Statement'': {''s2'': ''
√

4 +
√
16 + 16a = 2

√
1 +

√
1 + a''}, ''Entailment'': {''s2'': ''Identity

equation''}}

Example 2:
Input:
''Problem'': ''Solve for a:

√
4 +

√
16 + 16a+

√
1 +

√
1 + a = 6.''

''Goal'': ''Solve a.''

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

''Initial state'': ''We know that
√

4 +
√
16 + 16a+

√
1 +

√
1 + a = 6.''

''Initial graph'': {''Statement'': {''s1'': ''
√

4 +
√
16 + 16a+

√
1 +

√
1 + a = 6''}, ''Entailment'': {''s1'': ''Given

condition''}}
''Plan'': ''To solve a, we begin by simplifying

√
4 +

√
16 + 16a. This simplification may also help us simplify

the left side of the equation further.''
''Action 1'': ''Simplify

√
4 +

√
16 + 16a.''

''State 1'': ''We start by simplifying the expression under the square root.\n\nFirst, observe that:\n

16 + 16a = 16(1 + a)\nSubstitute this back:\n
√

4 +
√

16(1 + a)\n\nNow, simplify
√

16(1 + a):\n√
16(1 + a) = 4

√
1 + a\n\nSo the expression becomes:\n

√
4 + 4

√
1 + a\n\nNext, factor out the 4 from

inside the square root:\n
√

4(1 +
√
1 + a)\n\nTaking the square root of 4, we get 2:\n2

√
1 +

√
1 + a\nSo,

the simplified form of the expression is:\n2
√

1 +
√
1 + a.''

''Graph 1'': {''Statement'': {''s2'': ''
√

4 +
√
16 + 16a = 2

√
1 +

√
1 + a''}, ''Entailment'': {''s2'': ''Identity

equation''}}
''Action 2'': ''Combine like terms

√
1 +

√
1 + a.''

Output:
''State 2'': ''We can obtain

√
4 +

√
16 + 16a+

√
1 +

√
1 + a = 2

√
1 +

√
1 + a+

√
1 +

√
1 + a

= 3
√

1 +
√
1 + a.''

''Graph 2'': {''Statement'': {''s3'': ''
√

4 +
√
16 + 16a+

√
1 +

√
1 + a = 3

√
1 +

√
1 + a''}, ''Entailment'': {''

s3'': [''s1'', ''s2'']}}

Prompt - Final Answer Generation
Based on the goal and the current state (including the graph), determine if the goal has been achieved. If it has
, generate the final answer; otherwise, return ''Not yet''.

Example 1:
Input:
''Problem'': ''Solve for a:

√
4 +

√
16 + 16a+

√
1 +

√
1 + a = 6.''

''Goal'': ''Solve a.''
''Initial state'': ''We know that

√
4 +

√
16 + 16a+

√
1 +

√
1 + a = 6.''

''Initial graph'': {''Statement'': {''s1'': ''
√

4 +
√
16 + 16a+

√
1 +

√
1 + a = 6''}, ''Entailment'': {''s1'': ''Given

condition''}}
''Plan'': ''To solve a, we begin by simplifying

√
4 +

√
16 + 16a. This simplification may also help us simplify

the left side of the equation further.''
''Action 1'': ''Simplify

√
4 +

√
16 + 16a.''

''State 1'': ''We start by simplifying the expression under the square root.\n\nFirst, observe that:\n

16 + 16a = 16(1 + a)\nSubstitute this back:\n
√

4 +
√

16(1 + a)\n\nNow, simplify
√

16(1 + a):\n√
16(1 + a) = 4

√
1 + a\n\nSo the expression becomes:\n

√
4 + 4

√
1 + a\n\nNext, factor out the 4 from

inside the square root:\n
√

4(1 +
√
1 + a)\n\nTaking the square root of 4, we get 2:\n2

√
1 +

√
1 + a\nSo,

the simplified form of the expression is:\n2
√

1 +
√
1 + a.''

''Graph 1'': {''Statement'': {''s2'': ''
√

4 +
√
16 + 16a = 2

√
1 +

√
1 + a''}, ''Entailment'': {''s2'': ''Identity

equation''}}
''Action 2'': ''Combine like terms

√
1 +

√
1 + a.''

''State 2'': ''We can obtain
√

4 +
√
16 + 16a+

√
1 +

√
1 + a = 2

√
1 +

√
1 + a+

√
1 +

√
1 + a

= 3
√

1 +
√
1 + a.''

''Graph 2'': {''Statement'': {''s3'': ''
√

4 +
√
16 + 16a+

√
1 +

√
1 + a = 3

√
1 +

√
1 + a''}, ''Entailment'': {''

s3'': [''s1'', ''s2'']}}

Output:
''Not yet''

Example 2:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Input:
''Problem'': ''Solve for a:

√
4 +

√
16 + 16a+

√
1 +

√
1 + a = 6.''

''Goal'': ''Solve a.''
''Initial state'': ''We know that

√
4 +

√
16 + 16a+

√
1 +

√
1 + a = 6.''

''Initial graph'': {''Statement'': {''s1'': ''
√

4 +
√
16 + 16a+

√
1 +

√
1 + a = 6''}, ''Entailment'': {''s1'': ''Given

condition''}}
''Plan'': ''To solve a, we begin by simplifying

√
4 +

√
16 + 16a. This simplification may also help us simplify

the left side of the equation further.''
''Action 1'': ''Simplify

√
4 +

√
16 + 16a.''

''State 1'': ''We start by simplifying the expression under the square root.\n\nFirst, observe that:\n

16 + 16a = 16(1 + a)\nSubstitute this back:\n
√

4 +
√

16(1 + a)\n\nNow, simplify
√

16(1 + a):\n√
16(1 + a) = 4

√
1 + a\n\nSo the expression becomes:\n

√
4 + 4

√
1 + a\n\nNext, factor out the 4 from

inside the square root:\n
√

4(1 +
√
1 + a)\n\nTaking the square root of 4, we get 2:\n2

√
1 +

√
1 + a\nSo,

the simplified form of the expression is:\n2
√

1 +
√
1 + a.''

''Graph 1'': {''Statement'': {''s2'': ''
√

4 +
√
16 + 16a = 2

√
1 +

√
1 + a''}, ''Entailment'': {''s2'': ''Identity

equation''}}
''Action 2'': ''Combine like terms

√
1 +

√
1 + a.''

''State 2'': ''We can obtain
√

4 +
√
16 + 16a+

√
1 +

√
1 + a = 2

√
1 +

√
1 + a+

√
1 +

√
1 + a

= 3
√

1 +
√
1 + a.''

''Graph 2'': {''Statement'': {''s3'': ''
√

4 +
√
16 + 16a+

√
1 +

√
1 + a = 3

√
1 +

√
1 + a''}, ''Entailment'': {''

s3'': [''s1'', ''s2'']}}
''Action 3'': ''Solve a.''
''State 3'': ''Isolate the square root term by dividing both sides by 3:\n

√
1 +

√
1 + a = 2\n\nSquare both

sides:
(√

1 +
√
1 + a

)2

= 22\n1 +
√
1 + a = 4\n\nIsolate the inner square root:\n

√
1 + a = 4− 1\n

√
1 + a = 3\n\nSquare both sides again:\n

(√
1 + a

)2
= 32\n1 + a = 9\n\nSolve for a:\na = 9− 1\n

a = 8\n\nThe solution is a = 8.''
''Graph 3'': {''Statement'': {''s4'': ''

√
1 +

√
1 + a = 2'', ''s5'': ''a = 8''}, ''Entailment'': {''s4'': [''s1'', ''s3''], ''s5'':

[''s4'']}}

Output:
''Final answer'': ''8''

Prompt - Semantic Equivalence Data Generation
Rewrite the given sentence into two or three different versions. Ensure that each version is distinct in wording
and structure. Provide both a thought process and a final answer. In the thought process, include as many
details as possible, ensuring that no steps are omitted.

Example 1:
Input:
''Sentence'': '' XZ

XY
= ZY

XY
= 1

2
.''

Output:
''Thought'': ''There are various ways to rewrite the given sentence: 1. XZ

XY
= 1

2
and ZY

XY
= 1

2
. 2. XZ = ZY

= 1
2
XY . These paraphrased versions capture the same relationship as the original equation.'',

''Answer'': ['' XZ
XY

= 1
2

and ZY
XY

= 1
2

.'', ''XZ = ZY = 1
2
XY .'']

Example 2:
Input:
''Sentence'': ''125a is a three−digit number.''

Output:
''Thought'': ''To rewrite the sentence '125a is a three−digit number', we need to express it in different forms
that convey the same meaning. The given sentence implies that 125a is within the range of three−digit
numbers, i.e., between 100 and 999. Let's break down and reframe the statement as follows: 1.
100 ≤ 125a ≤ 999. 2. 'The value of 125a lies within the interval [100, 999]'. 3. '125a is an integer that

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

satisfies the condition 100 ≤ 125a ≤ 999'. Each of these reframed versions captures the same relationship as
the original sentence.''
''Answer'': [''100 ≤ 125a ≤ 999.'', ''The value of 125a lies within the interval [100, 999]'', ''125a is an integer
that satisfies the condition 100 ≤ 125a ≤ 999.'']

Prompt - Semantic Equivalence Evaluation
Compare the provided candidate options, considering both their current attributes and potential future
outcomes (if applicable). Determine whether they are semantically equivalent, and respond with either ''same''
or ''different''.

Example:
Input:
''Problem'': ''Given the polynomials p(x) = 2x+ 3 and q(x) = x2 − x+ 4, find the polynomial resulting
from multiplying p(x) and q(x) and express it in standard polynomial form. What is the coefficient of x2 in
the resulting polynomial?''
''Goal'': ''Find the coefficient of x2 in the resulting polynomial from multiplying p(x) and q(x).'',
''Initial state'': ''We have the polynomials p(x) = 2x+ 3 and q(x) = x2 − x+ 4.'',
''Initial graph'': {''Statement'': {''s1'': ''p(x) = 2x+ 3'', ''s2'': ''q(x) = x2 − x+ 4''}, ''Entailment'': {''s1'': ''
Given condition'', ''s2'': ''Given condition''}},
''Plan'': ''First, multiply the polynomials p(x) and q(x). Then, identify the coefficient of x2 in the resulting
polynomial.'',
''Action 1'': ''Multiply the polynomials p(x) and q(x).'',
''State 1'': ''To multiply p(x) = 2x+ 3 and q(x) = x2 − x+ 4, distribute each term of p(x) to each term of
q(x): (2x+ 3)(x2 − x+ 4) = 2x(x2) + 2x(−x) + 2x(4) + 3(x2) + 3(−x) + 3(4) = 2x3 − 2x2 + 8x+

3x2 − 3x+ 12.'',
''Graph 1'': {''Statement'': {''s3'': ''p(x)q(x) = 2x3 − 2x2 + 8x+ 3x2 − 3x+ 12''}, ''Entailment'': {''s3'': [''s1
'', ''s2'']}},
''Action 2'': ''Combine like terms in the resulting polynomial.'',
''State 2'': {

''Option 1'': ''2x3 + (2x2 − 2x2) + 8x+ 3x2 + (−3x) + 12 = 2x3 + 3x2 + 5x+ 12'',
''Option 2'': ''2x3 + (−2x2 + 3x2) + (8x− 3x) + 12 = 2x3 + x2 + 5x+ 12'',

}
''Future'': {

''Future 1'': {''Graph 2'': {''Statement'': {''s4'': ''p(x)q(x) = 2x3 + 3x2 + 5x+ 12''}, ''Entailment'': {''s4'':
[''s3'']}}},

''Future 2'': {''Graph 2'': {''Statement'': {''s4'': ''p(x)q(x) = 2x3 + x2 + 5x+ 12''}, ''Entailment'': {''s4'':
[''s3'']}}}
}

Output:
''Different''

Prompt - Meta Knowledge Generation
Provide the general knowledge needed to solve the problem. Do not provide a specific solution plan. Instead,
offer knowledge that can help verify answers and identify errors.

Example 1:
Input:
''Problem'': ''Consider the quadratic equation ax2 + bx+ c = 0 where a, b, and c are integers. For this
equation to have integer solutions, the discriminant b2 − 4ac must be a perfect square. Suppose the quadratic
equation 2x2 + kx+ 3 = 0 has integer solutions. What is the value of k?''

Output:
''General knowledge'': ''To avoid errors when determining the value of variables in algebraic equations, follow
these general guidelines: 1. Understand conditions for solutions: Know the conditions required for specific
solution types and how they relate to equation parameters. 2. Discriminant analysis: Use the discriminant to
determine solution types and ensure it meets conditions for the desired type. 3. Factorization techniques: Use
factorization to simplify equations and find relationships between parameters. 4. Systematic approach to

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

finding solutions: Solve related equations systematically and consider all potential factor pairs. 5. Verification:
Verify solutions by substituting back to confirm correctness and catch errors.''

Example 2:
Input:
''Problem'': ''Given the polynomials p(x) = 2x+ 3 and q(x) = x2 − x+ 4, find the polynomial resulting
from multiplying p(x) and q(x) and express it in standard polynomial form. What is the coefficient of x2 in
the resulting polynomial?''

Output:
''General knowledge'': ''To avoid mistakes when solving polynomial multiplication problems, follow these
general guidelines: 1. Understand Polynomial Terms and Their Degrees: Recognize the individual terms of a
polynomial and their respective degrees. 2. Distributive Property in Polynomial Multiplication: Apply the
distributive property correctly by multiplying each term of the first polynomial by each term of the second
polynomial. 3. Combine Like Terms: After distributing, combine the like terms, which are terms with the
same degree. Be systematic in organizing terms to ensure all like terms are combined correctly. 4. Pay
Attention to Signs: Be careful with positive and negative signs during multiplication and when combining like
terms. Ensure that the signs of the terms are handled correctly during the distribution process.''

Prompt - Contrastive Process Supervision for Plan Generation
Compare the provided candidate options, considering both their current attributes and potential future
outcomes (if applicable). Pay attention to the meta knowledge. First, present a detailed comparison, showing
every step without skipping any. Then, provide a conclusion, selecting only one answer.

Example:
Input:
''Meta knowledge'': ''To avoid errors when determining the value of variables in algebraic equations, follow
these general guidelines: 1. Understand conditions for solutions: Know the conditions required for specific
solution types and how they relate to equation parameters. 2. Discriminant analysis: Use the discriminant to
determine solution types and ensure it meets conditions for the desired type. 3. Factorization techniques: Use
factorization to simplify equations and find relationships between parameters. 4. Systematic approach to
finding solutions: Solve related equations systematically and consider all potential factor pairs. 5. Verification:
Verify solutions by substituting back to confirm correctness and catch errors.'',
''Problem'': ''Consider the quadratic equation ax2 + bx+ c = 0 where a, b, and c are integers. For this
equation to have integer solutions, the discriminant b2 − 4ac must be a perfect square. Suppose the quadratic
equation 2x2 + kx+ 3 = 0 has integer solutions. What is the value of k?'',
''Goal'': ''Find the value of k.'',
''Initial state'': ''We know that 2x2 + kx+ 3 = 0 has integer solutions.'',
''Initial graph'': {''Statement'': {''s1'': ''2x2 + kx+ 3 = 0 has integer solutions.''}, ''Entailment'': {''s1'': ''Given
condition''}},
''Plan'': {

''Option 1'': ''We can use the fact that the discriminant of a quadratic equation must be a perfect square to
write an equation in terms of k and then solve for k.'',

''Option 2'': ''The discriminant b2 − 4ac must be a perfect square. We will set up the discriminant and
solve for k under the condition.'',

''Option 3'': ''We know that the discriminant b2 − 4ac must be a perfect square. Let's try to find the value
of k for which the discriminant is a perfect square.''
},
''Future'': {

''Future 1'': {''Action 1'': ''Find the discriminant.'', ''State 1'': ''The discriminant is b2 − 4ac, so in this case,
it is k2 − 24.'', ''Graph 1'': {''Statement'': {''s2'': ''The discriminant is k2 − 24.''}, ''Entailment'': {''s2'': [''s1
'']}}, ''Action 2'': ''Since the discriminant must be a perfect square, we can set k2 − 24 = x2 for some integer
x.'', ''State 2'': ''Now, we need to find k by solving the equation k2 − 24 = x2. We can do this by completing
the square: k2 − 24 = x2. Add 24 to both sides: k2 = x2 + 24. Take the square root of both sides:
k = ±

√
x2 + 24.'', ''Graph 2'': {''Statement'': {''s3'': ''k = ±

√
x2 + 24''}, ''Entailment'': {''s3'': [''s1'', ''s2'']}}, ''

Action 3'': ''Since k is an integer, x2 + 24 must also be a perfect square. Let x2 + 24 = y2 for some integer y.
Then, k = ±y.'', ''State 3'': ''The only values of y that work are y = ±4, so k = ±4. The final answer is
k = 4 or k = −4.'', ''Graph 3'': {''Statement'': {''s4'': ''k = ±4''}, ''Entailment'': {''s4'': [''s3'']}}},

''Future 2'': {''Action 1'': ''Calculate the discriminant b2 − 4ac for the quadratic equation.'', ''State 1'': ''The
discriminant ∆ for the equation is given by: ∆ = k2 − 4 · 2 · 3 = k2 − 24.'', ''Graph 1'': {''Statement'': {''s2'':

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

''∆ = k2 − 24.'', ''Entailment'': {''s2'': [''s1'']}}, ''Action 2'': ''Set the discriminant k2 − 24 to be a perfect
square.'', ''State 2'': ''For k2 − 24 to be a perfect square, let k2 − 24 = n2 for some integer n. This gives us
the equation: k2 − n2 = 24 (k − n)(k + n) = 24.'', ''Graph 2'': {''Statement'': {''s3'': ''(k − n)(k + n) = 24
''}, ''Entailment'': {''s3'': [''s1'', ''s2'']}}, ''Action 3'': ''Solve for k by finding pairs (k − n) and (k + n) that
multiply to 24.'', ''State 3'': ''We need to find integer pairs (k − n) and (k + n) such that their product is 24.
Possible pairs are: (1, 24), (2, 12), (3, 8), (4, 6), (−1,−24), (−2,−12), (−3,−8), (−4,−6). Solving for k
in each case, we find: k − n = 2, k + n = 12, 2k = 14, k = 7.'', ''Graph 3'': {''Statement'': {''s4'': ''k = 7''}, ''
Entailment'': {''s4'': [''s3'']}}},

''Future 3'': {''Action 1'': ''Find the discriminant of the equation.'', ''State 1'': ''The discriminant is b2 − 4ac

= k2 − 4(2)(3) = k2 − 24.'', ''Graph 1'': {''Statement'': {''s2'': ''The discriminant is k2 − 24.''}, ''Entailment'':
{''s2'': [''s1'']}}, ''Action 2'': ''Make the discriminant a perfect square.'', ''State 2'': ''For the discriminant
k2 − 24 to be a perfect square, k2 must be a perfect square plus 24. Let's call k2 = m2 for some integer m.
Then, m2 − 24 must be a perfect square. This means that m2 must be 25, 49, 64, 81, or 100, since these are
the perfect squares closest to 24.'', ''Graph 2'': {''Statement'': {''s3'': ''k2 must be 25, 49, 64, 81, or 100.''}, ''
Entailment'': {''s3'': [''s1'', ''s2'']}}, ''Action 3'': ''Find the corresponding values of k.'', ''State 3'': ''If m2 = 25,
then m = 5, and k = 5. If m2 = 49, then m = 7, and k = 7. If m2 = 64, then m = 8, and k = 8. If m2 = 81, then
m = 9, and k = 9. If m2 = 100, then m = 10, and k = 10.'', ''Graph 3'': {''Statement'': {''s4'': ''k = 5, 7, 8, 9, 10
''}, ''Entailment'': {''s4'': [''s3'']}}}
}

Output:
''Comparison'': ''All options mention that the discriminant must be a perfect square. Based on this observation,
they will solve for k. All candidates are valid. However, the futures are different. In Future 1, k2 = x2 + 24

leads to k = 4 or k = −4, which is incorrect. Future 2 is correct. In Future 3, it mentions m2 − 24 must be a
perfect square, then m2 must be 25, 49, 64, 81, or 100, which is incorrect.'',
''Conclusion'': ''Option 2''

Prompt - Contrastive Process Supervision for Action Generation
Compare the provided candidate options, considering both their current attributes and potential future
outcomes (if applicable). Pay attention to the meta knowledge. First, present a detailed comparison, showing
every step without skipping any. Then, provide a conclusion, selecting only one answer.

Example:
Input:
''Meta knowledge'': ''To avoid errors when determining the value of variables in algebraic equations, follow
these general guidelines: 1. Understand conditions for solutions: Know the conditions required for specific
solution types and how they relate to equation parameters. 2. Discriminant analysis: Use the discriminant to
determine solution types and ensure it meets conditions for the desired type. 3. Factorization techniques: Use
factorization to simplify equations and find relationships between parameters. 4. Systematic approach to
finding solutions: Solve related equations systematically and consider all potential factor pairs. 5. Verification:
Verify solutions by substituting back to confirm correctness and catch errors.'',
''Problem'': ''Consider the quadratic equation ax2 + bx+ c = 0 where a, b, and c are integers. For this
equation to have integer solutions, the discriminant b2 − 4ac must be a perfect square. Suppose the quadratic
equation 2x2 + kx+ 3 = 0 has integer solutions. What is the value of k?'',
''Goal'': ''Find the value of k.'',
''Initial state'': ''We know that 2x2 + kx+ 3 = 0 has integer solutions.'',
''Initial graph'': {''Statement'': {''s1'': ''2x2 + kx+ 3 = 0 has integer solutions.''}, ''Entailment'': {''s1'': ''Given
condition''}},
''Plan'': ''The discriminant b2 − 4ac must be a perfect square. We will set up the discriminant and solve for k
under the condition.'',
''Action 1'': ''Calculate the discriminant b2 − 4ac for the quadratic equation.'', ''State 1'': ''The discriminant ∆
for the equation is given by: ∆ = k2 − 4 · 2 · 3 = k2 − 24.'',
''Graph 1'': {''Statement'': {''s2'': ''∆ = k2 − 24.'', ''Entailment'': {''s2'': [''s1'']}},
''Action 2'': ''Set the discriminant k2 − 24 to be a perfect square.'',
''State 2'': ''For k2 − 24 to be a perfect square, let k2 − 24 = n2 for some integer n. This gives us the
equation: k2 − n2 = 24 (k − n)(k + n) = 24.'',
''Graph 2'': {''Statement'': {''s3'': ''(k − n)(k + n) = 24''}, ''Entailment'': {''s3'': [''s1'', ''s2'']}},
''Action 3'': {

''Option 1'': ''Solve for k by finding pairs (k − n) and (k + n) that multiply to 24.'',

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

''Option 2'': ''Factor the right side of the equation: (k − n)(k + n) = 24.'',
''Option 3'': ''Solve for k by factoring (k − n)(k + n) = 24.''

},
''Future'': {

''Future 1'': {''State 3'': ''We need to find integer pairs (k − n) and (k + n) such that their product is 24.
Possible pairs are: (1, 24), (2, 12), (3, 8), (4, 6), (−1,−24), (−2,−12), (−3,−8), (−4,−6). Solving for k
in each case, we find: k − n = 2, k + n = 12, 2k = 14, k = 7.'', ''Graph 3'': {''Statement'': {''s4'': ''k = 7''}, ''
Entailment'': {''s4'': [''s3'']}}},

''Future 2'': {''State 3'': ''The factors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24. We can check each of these to see
if they can be expressed as the product of two integers with a sum of k and a difference of n. 1 · 24 = 24,
2 · 12 = 24, and 3 · 8 = 24 are the only possibilities. Now, let's check these: k − n = 1, k + n = 24,
k = 12, n = 23, k − n = 2, k + n = 12, k = 7, n = 5, and k − n = 3, k + n = 8, k = 5, n = 5. So, the
possible values of k are 5, 7, and 12. However, we need to check if k is an integer.'', ''Graph 3'': {''Statement'':
{''s4'': ''k = 5, 7, 12''}, ''Entailment'': {''s4'': [''s3'']}}},

''Future 3'': {''State 3'': ''We need to find pairs of integers (k − n) and (k + n) that multiply to 24. The
possible pairs are (1, 24), (2, 12), (3, 8), (4, 6), (−1,−24), (−2,−12), (−3,−8), (−4,−6). For each pair,
solve for k and n.'', ''Graph 3'': {''Statement'': {''s4'': ''Possible pairs for (k − n) and (k + n) are (1, 24),
(2, 12), (3, 8), (4, 6), (−1,−24), (−2,−12), (−3,−8), (−4,−6).''}, ''Entailment'': {''s4'': [''s3'']}}}
}

Output:
''Comparison'': ''All options involve solving for k based on the equation. Option 1 mentions finding pairs.
Option 2 and 3 mention factorization. All candidates are valid. Given the actions, the future states are
different. Future 1 shows k = 7. Future 2 shows k = 5, 7, 12. Future 3 does not mention k. Future 1 is correct
. In Future 2, by solving k − n = 1, k + n = 24, we obtain k = 12.5, n = 11.5 rather than k = 12, n = 23.
Thus, Future 2 is incorrect. Future 3 does not mention k.'',
''Conclusion'': ''Option 1''

Prompt - Contrastive Process Supervision for State Generation
Compare the provided candidate options, considering both their current attributes and potential future
outcomes (if applicable). Pay attention to the meta knowledge. First, present a detailed comparison, showing
every step without skipping any. Then, provide a conclusion, selecting only one answer.

Example:
Input:
''Meta knowledge'': ''To avoid mistakes when solving polynomial multiplication problems, follow these
general guidelines: 1. Understand Polynomial Terms and Their Degrees: Recognize the individual terms of a
polynomial and their respective degrees. 2. Distributive Property in Polynomial Multiplication: Apply the
distributive property correctly by multiplying each term of the first polynomial by each term of the second
polynomial. 3. Combine Like Terms: After distributing, combine the like terms, which are terms with the
same degree. Be systematic in organizing terms to ensure all like terms are combined correctly. 4. Pay
Attention to Signs: Be careful with positive and negative signs during multiplication and when combining like
terms. Ensure that the signs of the terms are handled correctly during the distribution process.'',
''Problem'': ''Given the polynomials p(x) = 2x+ 3 and q(x) = x2 − x+ 4, find the polynomial resulting
from multiplying p(x) and q(x) and express it in standard polynomial form. What is the coefficient of x2 in
the resulting polynomial?'',
''Goal'': ''Find the coefficient of x2 in the resulting polynomial from multiplying p(x) and q(x).'',
''Initial state'': ''We have the polynomials p(x) = 2x+ 3 and q(x) = x2 − x+ 4.'',
''Initial graph'': {''Statement'': {''s1'': ''p(x) = 2x+ 3'', ''s2'': ''q(x) = x2 − x+ 4''}, ''Entailment'': {''s1'': ''
Given condition'', ''s2'': ''Given condition''}},
''Plan'': ''First, multiply the polynomials p(x) and q(x). Then, identify the coefficient of x2 in the resulting
polynomial.'',
''Action 1'': ''Multiply the polynomials p(x) and q(x).'',
''State 1'': ''To multiply p(x) = 2x+ 3 and q(x) = x2 − x+ 4, distribute each term of p(x) to each term of
q(x): (2x+ 3)(x2 − x+ 4) = 2x(x2) + 2x(−x) + 2x(4) + 3(x2) + 3(−x) + 3(4) = 2x3 − 2x2 + 8x+

3x2 − 3x+ 12.'',
''Graph 1'': {''Statement'': {''s3'': ''p(x)q(x) = 2x3 − 2x2 + 8x+ 3x2 − 3x+ 12''}, ''Entailment'': {''s3'': [''s1
'', ''s2'']}},
''Action 2'': ''Combine like terms in the resulting polynomial.'',
''State 2'': {

''Option 1'': ''2x3 + (2x2 − 2x2) + 8x+ 3x2 + (−3x) + 12 = 2x3 + 3x2 + 5x+ 12'',

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

''Option 2'': ''2x3 + (−2x2 + 3x2) + (8x− 3x) + 12 = 2x3 + x2 + 5x+ 12'',
''Option 3'': ''2x3 − 2x2 + 8x+ 3x2 + 12 = 2x3 + x2 + 8x+ 12''

},
''Future'': {

''Future 1'': {''Graph 2'': {''Statement'': {''s4'': ''p(x)q(x) = 2x3 + 3x2 + 5x+ 12''}, ''Entailment'': {''s4'':
[''s3'']}}},

''Future 2'': {''Graph 2'': {''Statement'': {''s4'': ''p(x)q(x) = 2x3 + x2 + 5x+ 12''}, ''Entailment'': {''s4'':
[''s3'']}}}

''Future 3'': {''Graph 2'': {''Statement'': {''s4'': ''p(x)q(x) = 2x3 + x2 + 8x+ 12''}, ''Entailment'': {''s4'':
[''s3'']}}}
}

Output:
''Comparison'':
''All options involve combining like terms to find the coefficient of x2. Option 1 combines terms resulting in
2x3 + 3x2 + 5x+ 12, Option 2 simplifies to 2x3 + x2 + 5x+ 12, and Option 3 simplifies to 2x3 + x2+

8x+ 12. Thus, they yield different coefficients for x2 and x. Option 1 mentions 2x3 + (2x2 − 2x2) + 8x+

3x2 + (−3x) + 12. However, State 1 gives 2x3 − 2x2 + 8x+ 3x2 − 3x+ 12. Option 1 mistakes −2x2 as
2x2 − 2x2. On the other hand, Option 2 uses the correct equation 2x3 + (−2x2 + 3x2) + (8x− 3x) + 12,
which leads to the correct results. The problem of Option 3 is that it omits the term of −3x, leading to a
wrong coefficient for x.'',
''Conclusion'': ''Option 2''

D IMPLEMENTATION DETAILS

SWAP is fine-tuned from a base language model using LoRA. To enable scalability and general-
ization in our framework, we fine-tune a single generator and a single discriminator, and repurpose
them to serve as the policy model, world model, and controller. For each dataset, the generator
is fine-tuned on all positive trajectories in the training set that lead to the correct final answer. As
illustrated in Figure 2, the generator contains two LoRAs. The original LoRA is fine-tuned on the
positive trajectories as usual, while the SemEquiv-LoRA is fine-tuned on semantic equivalence data,
which are bootstrapped using GPT-4o, for plan, actions and states. Specially, the number of tra-
jectories for the generator are as follows: GSM8k (28.3k), MATH (49.3k), ReClor (14.5k), FOLIO
(7.3k), HumanEval (3.1k), and MBPP (1.3k). For each positive trajectory, we random sampled some
steps and generated two alternatives for each step. The number of semantically equivalent pairs we
obtained are as follows: GSM8k (8.1k), MATH (24.2k), ReClor (7.1k), FOLIO (3.8k), HumanEval
(1.6k) and MBPP (0.7k).

The discriminator is fine-tuned on contrastive process annotations for every dataset (Figure 3).
Specifically, given a positive trajectory, we randomly search two alternatives for each step and ob-
tain their ranking. The number of trajectories for the discriminator are as follows: GSM8k (48.0k),
MATH (98.2k), ReClor (28.7k), FOLIO (14.1k), HumanEval (6.0k), and MBPP (2.5k). We boot-
strap the meta-knowledge text for each training question using GPT-4o. For inference, we use a
DPR model (Karpukhin et al., 2020) to obtain embeddings for both training questions and the test
query, then calculate the Cosine similarity to select the top 5 matches. Once the relevant knowledge
is extracted from these top 5 training questions, we consider two approaches: 1) using the original
text directly or 2) compressing it into a shorter version. In our experiments, we found that Approach
1 resulted in higher accuracy, whereas Approach 2 offered slightly lower accuracy but faster infer-
ence speed. The length of the future trajectory τ j is also determined experimentally. We found that
the optimal strategy for plan discrimination is to include all future steps. For action discrimination,
including only the next state led to an increase in discrimination accuracy, whereas including ad-
ditional future steps caused the accuracy to decrease. We attribute this decline to the new errors
introduced by the subsequent steps after analyzing the error cases. Additionally, we observed a class
imbalance issue in the contrastive process annotations. Specifically, when generating discrimination
data (for both actions and states), GPT-4o tends to select the first candidate if all options are similar.
To address this, we propose two strategies: 1) Pre-processing: During data generation, we randomly
alter the index of the ground truth. For samples where GPT-4o cannot provide the correct answer,
we supply the ground truth to assist the model. 2) Post-processing: After generating the training

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 3: Fine-grained performance on MATH across different subsets: Algebra (ALG), Counting
and Probability (CP), Geometry (GEO), Intermediate Algebra (IA), Number Theory (NT), Precal-
culus (PRE), and Prealgebra (PALG). The number of test questions for each subset is shown in
parentheses. Bold values indicate the best performance per subset and overall.

Math
ALG CP GEO IA NT PRE PALG TotalModel
(1187) (474) (479) (903) (540) (546) (871) (5000)

LLaMA3-8B (0-shot CoT) 38.6 21.5 20.0 12.2 21.3 15.2 47.5 27.6
LLaMA3-8B (4-shot CoT) 35.0 19.4 17.7 8.1 17.2 11.9 41.2 23.6
LLaMA3-8B (0-shot CoT + SC) 38.4 19.9 17.3 10.4 18.3 12.6 46.4 26.0
LLaMA3-8B (SFT-CoT) 37.5 19.7 18.0 10.1 18.5 11.7 45.0 25.4
SWAP (w/o discriminator) 51.0 40.2 27.4 18.0 30.9 18.2 60.7 37.3
SWAP 55.4 43.4 31.8 22.3 37.8 23.1 68.3 42.3

Table 4: Fine-grained performance on MATH across different difficulty levels (Level 1-5). The
number of test questions for each level is shown. Bold values indicate the best performance.

Math
L1 L2 L3 L4 L5 TotalModel

(437) (894) (1131) (1214) (1324) (5000)

LLaMA3-8B (0-shot CoT) 65.2 45.4 30.7 18.9 8.4 27.6
LLaMA3-8B (4-shot CoT) 54.7 38.3 27.1 16.5 7.2 23.6
LLaMA3-8B (0-shot CoT + SC) 65.2 45.0 29.3 16.4 6.2 26.0
LLaMA3-8B (SFT-CoT) 64.4 44.5 28.7 15.9 5.7 25.4
SWAP (w/o discriminator) 76.5 59.9 43.3 29.4 11.7 37.3
SWAP 78.8 65.4 50.6 34.2 14.9 42.3

data, we manually change the index of the options and adjust the output accordingly. To further
enhance model robustness, we also apply data augmentation by increasing the training data through
varying the index and description of the options.

To ensure effective training, we also employ specialized strategies such as curriculum learning and
self-improving training. For curriculum learning, we first divide the training questions into groups
based on their difficulty levels. For some datasets, such as MATH, the difficulty level of the problems
is already provided; for other datasets, we determine the difficulty level based on the length of the
solution. In the first round, we use Level 1 problems; in the second round, use both Level 1 and
Level 2 problems, and so on. In each round, we train the model until convergence, using early
stopping to prevent overfitting. We also employ self-improving training to iteratively refine the
model’s accuracy. After training, the system is run on the training samples, and the errors it produces
are collected. These errors are then used to further fine-tune the discriminator, while the generator
remains fixed. This process is repeated until convergence.

E FINE-GRAINED RESULTS

To gain a comprehensive understanding of the model’s strengths and weaknesses, we provide fine-
grained results on MATH (Table 3 and 4). We choose MATH for this analysis since it categorizes the
test set by both problem types and difficulty levels, facilitating a more detailed evaluation of model
performance across different dimensions. From Table 3, we observe that SWAP consistently outper-
forms other models across all subsets and overall, surpassing various reasoning methods applied to
LLaMA3-8B-Instruct. This demonstrates that SWAP significantly enhances the overall mathemat-
ical reasoning capability compared to the baseline. The inclusion of the discriminator mechanism
enables more accurate reasoning and selection, improving performance across different subsets.

Interestingly, SWAP achieves better results on basic algebra compared to more complex topics like
Intermediate Algebra or Precalculus, indicating variability in difficulty across different problem
types. Meanwhile, the differences in performance between different LLaMA3-8B-Instruct reason-
ing methods are minor, and direct reasoning appears more effective than few-shot learning for these
mathematical problems. Overall, SWAP demonstrates superior mathematical reasoning, particularly

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

achieving significant improvements in challenging subsets like Intermediate Algebra and Precalcu-
lus, highlighting the effectiveness of our approach.

Similarly, in Table 4, SWAP achieved the best performance across all difficulty levels, particularly
excelling in the most challenging Level 5, where it reached an accuracy of 14.9%, compared to the
best baseline performance of 8.4%. The discriminator mechanism contributes to improved accuracy
on high-difficulty problems, demonstrating its effectiveness in enhancing reasoning capabilities. As
difficulty increases, all models show a significant decline in performance, particularly at Levels
4 and 5, indicating the increased complexity of reasoning required for these problems. Overall,
SWAP consistently outperforms the baseline, especially on higher-difficulty problems, highlighting
its advantage in handling complex reasoning tasks.

F EFFICIENCY STUDY

Table 5: Efficiency-performance trade-off across
different reasoning & planning methods.

GSM8K
Avg token usage Acc

Llama3-8b-Instruct
Zero-shot CoT 175.6 70.0
Few-shot CoT 148.0 72.4
ToT 2214.7 75.2
RAP 5241.4 76.0
SWAP (w/o discriminator) 306.9 78.1
SWAP 3612.0 82.7

In this section, we analyze the efficiency of dif-
ferent planning methods. The time complexity
of SWAP is O(bNT), where b is the breadth
limit, N is the generation number limit, and
T is the step limit. In contrast, the time com-
plexity of RAP (using Monte Carlo Tree Search
(MCTS)) (Hao et al., 2023) is O(NsimNT),
where Nsim is the total simulation number
limit. Typically, a large number of simula-
tions Nsim ≫ b are required to reliably esti-
mate Q(s, a) in MCTS. For ToT (Yao et al.,
2023), the time complexity depends on the im-
plementation strategy: 1) Breadth-First Search
(BFS): without pruning: O(NT); with prun-
ing: O(bNT). 2) Depth-First Search (DFS):
The complexity depends on the state evaluator. The traversal continues until the state evaluator
deems the final state satisfactory, making the complexity tied to the evaluation criteria. In conclu-
sion, SWAP is more efficient than RAP and ToT (BFS without pruning version). It is similar to ToT
(BFS with pruning version).

We further evaluated the average number of tokens generated using different methods on the GSM8K
dataset with the Llama-3-8B-Instruct model. The results are summarized in Table 5. We observed
that while the theoretical time complexity of SWAP is comparable to ToT (BFS with pruning), it
generates more tokens in practice due to the incorporation of a world model and the construction of
an entailment graph. On the other hand, SWAP is significantly more efficient than RAP (MCTS),
which involves extensive simulations to reliably estimate the Q value.

G EXAMPLES OF SWAP

In this section, we provide example solutions generated by SWAP for all benchmarks used in our
paper, including GSM8K, MATH, FOLIO, ReClor, HumanEval, and MBPP. Our framework, SWAP,
consists of three main components: the policy model Mπ , the world model Mwm, and the controller
Mc (Figure 1). Starting with the goal G and the initial state s0(G0), the policy model Mπ generates
an optimized plan PL. Using G, PL, and the current state st(Gt), Mπ proposes the next action at
through deliberate planning. After the action is chosen, the world model Mwm predicts the next state
st+1 and updates the entailment graph Gt+1. Finally, based on G and the updated state st+1(Gt+1),
the controller Mc decides whether to continue the reasoning process or output the final answer.

GSM8K Example
Problem: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in
repairs. This increased the value of the house by 150%. How much profit did he make?

Solution:
''Goal'': ''Determine how much profit Josh made after flipping the house.''

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

''Initial state'': ''We know that Josh bought a house for $80,000 and put in $50,000 in repairs, increasing the
value by 150%.''
''Initial graph'': {''Statement'': {''s1'': ''Josh bought a house for $80,000 and put in $50,000 in repairs,
increasing the value by 150%.''}, ''Entailment'': {''s1'': ''Given condition''}}
''Plan'': ''First, calculate the total investment made by adding the purchase price and repair costs. Then
calculate the increased value of the house by multiplying the original value by 1.5. Finally, subtract the total
investment from the new value to determine the profit.''
''Action 1'': ''Calculate the total investment by adding $80,000 (purchase price) and $50,000 (repair costs).''
''State 1'': ''Total investment is $80,000 + $50,000 = $130,000.''
''Graph 1'': {''Statement'': {''s2'': ''Total investment is $130,000.''}, ''Entailment'': {''s2'': [''s1'']}}
''Action 2'': ''Calculate the increased value of the house by multiplying $80,000 by 1.5.''
''State 2'': ''The increase in value is $80,000 * 1.5 = $120,000.''
''Graph 2'': {''Statement'': {''s3'': ''The increase in value is $120,000.''}, ''Entailment'': {''s3'': [''s1'']}}
''Action 3'': ''Calculate the new value of the house by adding $80,000 and $120,000.''
''State 3'': ''The new value of the house is $80,000 + $120,000 = $200,000.''
''Graph 3'': {''Statement'': {''s4'': ''The new value of the house is $200,000.''}, ''Entailment'': {''s4'': [''s3'']}}
''Action 4'': ''Subtract the total investment ($130,000) from the new value of the house ($200,000) to
determine the profit.''
''State 4'': ''The profit is $200,000 − $130,000 = $70,000.''
''Graph 4'': {''Statement'': {''s5'': ''The profit is $70,000.''}, ''Entailment'': {''s5'': [''s2'', ''s4'']}}
''Final answer'': ''70000''

MATH Example
Problem: Find the distance between the vertex of the graph of the equation f(x) = x2 − 8x+ 15 and the
point (0, 2).

Solution:
''Goal'': ''Find the distance between the vertex of the parabola and the point (0, 2).''
''Initial state'': ''We need to find the vertex of the parabola defined by the function f(x) = x2 − 8x+ 15.''
''Initial graph'': {''Statement'': {''s1'': ''The function is f(x) = x2 − 8x+ 15''}, ''Entailment'': {''s1'': ''Given
function''}}
''Plan'': ''To find the vertex of the parabola, we can use the formula for the vertex of a quadratic function in the
form f(x) = ax2 + bx+ c. Then, we calculate the distance between this vertex and the point (0, 2).''
''Action 1'': ''Find the vertex of the quadratic function f(x) = x2 − 8x+ 15.''
''State 1'': ''The vertex of a quadratic function f(x) = ax2 + bx+ c is given by the formula x = − b

2a
. For

f(x) = x2 − 8x+ 15:\na = 1, b = −8, and c = 15.\nSubstituting these values:\nx = −−8
2·1 = 8

2
= 4\n\

nTo find the y−coordinate of the vertex, substitute x = 4 back into f(x):\n
f(4) = 42 − 8× 4 + 15 = 16− 32 + 15 = −1\nThus, the vertex of the parabola is at (4,−1).''
''Graph 1'': {''Statement'': {''s2'': ''The vertex is (4,−1)''}, ''Entailment'': {''s2'': [''s1'']}}
''Action 2'': ''Calculate the distance between the vertex (4,−1) and the point (0, 2). Use the distance formula.''
''State 2'': ''The distance d between two points (x1, y1) and (x2, y2) is given by:\n
d =

√
(x2 − x1)2 + (y2 − y1)2\nSubstituting (x1, y1) = (4,−1) and (x2, y2) = (0, 2):\n

d =
√

(0− 4)2 + (2− (−1))2\nd =
√

(−4)2 + (2 + 1)2\nd =
√
16 + 9\nd =

√
25 = 5\nThe distance

is 5.''
''Graph 2'': {''Statement'': {''s3'': ''The distance between the vertex and the point (0, 2) is 5''}, ''Entailment'': {''
s3'': [''s2'']}}
''Final answer'': ''5''

FOLIO Example
Problem: Determine whether the conclusion is true, false, or uncertain based on the premises provided.

Premises:
When the Monkeypox virus occurs in a being, it may get Monkeypox.
Monkeypox virus can occur in certain animals.
Humans are mammals.
Mammals are animals.
Symptoms of Monkeypox include fever, headache, muscle pains, and tiredness.
People feel tired when they get the flu.

Conclusion: There is an animal.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Solution:
''Goal'': ''Determine whether the conclusion (”There is an animal”) logically follows from the given premises.''
''Initial state'': ''Premises: 1. When the Monkeypox virus occurs in a being, it may get Monkeypox. 2.
Monkeypox virus can occur in certain animals. 3. Humans are mammals. 4. Mammals are animals. 5.
Symptoms of Monkeypox include fever, headache, muscle pains, and tiredness. 6. People feel tired when they
get the flu.''
''Initial graph'': {''Statement'': {''Premise 1'', ''Premise 2'', ''Premise 3'', ''Premise 4'', ''Premise 5'', ''Premise 6''},
''Entailment'': {''Premise 1'': ''Given condition'', ''Premise 2'': ''Given condition'', ''Premise 3'': ''Given condition
'', ''Premise 4'': ''Given condition'', ''Premise 5'': ''Given condition'', ''Premise 6'': ''Given condition''}}
''Action 1'': ''Identify any direct connection between the premises and the conclusion.''
''State 1'': ''The conclusion is stating ”There is an animal.” From Premises 3 and 4, we have that humans are
mammals and mammals are animals. Therefore, humans are animals.''
''Graph 1'': {''Statement'': {''s1'': ''Humans are animals.''}, ''Entailment'': {''s1'': [''Premise 3'', ''Premise 4'']}}
''Action 2'': ''Verify if any other information from the premises adds to the validity of the conclusion.''
''State 2'': ''Premise 2 states that the Monkeypox virus can occur in certain animals, implying that there are
animals susceptible to Monkeypox. This further supports the idea that animals exist.''
''Graph 2'': {''Statement'': {''s2'': ''Certain animals can get Monkeypox.''}, ''Entailment'': {''s2'': [''Premise 2'']}}
''Action 3'': ''Draw a conclusion based on the gathered information.''
''State 3'': ''From Premises 3, 4, and 2, we can infer that there are animals (humans being a specific type of
animal and other animals susceptible to Monkeypox). Therefore, the conclusion ”There is an animal” is true.''
''Graph 3'': {''Statement'': {''s3'': ''There is an animal.''}, ''Entailment'': {''s3'': [''s1'', ''s2'']}}
''Final answer'': ''True''

ReClor Example
Problem: In a business whose owners and employees all belong to one family, the employees can be paid
exceptionally low wages. Hence, general operating expenses are much lower than they would be for other
business ventures, making profits higher. So a family business is a family' s surest road to financial prosperity.

0. ignores the fact that in a family business, paying family members low wages may itself reduce the family's
prosperity
1. presumes, without providing justification, that family members are willing to work for low wages in a
family business because they believe that doing so promotes the family's prosperity
2. ignores the fact that businesses that achieve high levels of customer satisfaction are often profitable even if
they pay high wages
3. presumes, without providing justification, that only businesses with low general operating expenses can
succeed

The reasoning in the argument is flawed because the argument

Solution:
''Goal'': ''Identify the flaw in the reasoning presented in the argument.''
''Initial state'': ''We know that the problem presents an argument suggesting that low wages in a family
business lead to financial prosperity.''
''Initial graph'': {''Statement'': {''s1'': ''Family businesses can pay low wages to employees.'', ''s2'': ''Lower
wages result in lower operating expenses.'', ''s3'': ''Lower operating expenses lead to higher profits, implying
financial prosperity.''}, ''Entailment'': {''s1'': ''Given condition'', ''s2'': ''Given condition'', ''s3'': ''Given condition
''}}
''Plan'': ''We need to evaluate the reasoning used in the argument and determine which option best describes
the flaw.''
''Action 1'': ''Analyze the statement about ignoring the impact of low wages on family prosperity (option 0).''
''State 1'': ''The argument assumes that paying low wages to family members will lead to prosperity without
considering the potential negative effect on the family's overall financial well−being. This flaw makes option 0
a plausible conclusion.''
''Graph 1'': {''Statement'': {''s4'': ''Paying low wages may negatively affect family prosperity.''}, ''Entailment'':
{''s4'': [''s1'']}}
''Action 2'': ''Analyze the statement about family members' willingness to work for low wages (option 1).''
''State 2'': ''The argument assumes that family members are willing to accept low wages to promote prosperity
without providing any justification. This makes option 1 another valid flaw.''
''Graph 2'': {''Statement'': {''s5'': ''Family members are assumed to accept low wages without justification.''}, ''
Entailment'': {''s5'': [''s1'']}}
''Action 3'': ''Analyze the statement about high customer satisfaction leading to profitability (option 2).''

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

''State 3'': ''The argument does not address whether high levels of customer satisfaction could also lead to
profitability, even if wages are high. This makes option 2 a valid flaw as well.''
''Graph 3'': {''Statement'': {''s6'': ''High customer satisfaction could lead to profitability even with high wages
.''}, ''Entailment'': {''s6'': [''s2'']}}
''Action 4'': ''Analyze the statement about low operating expenses being necessary for success (option 3).''
''State 4'': ''The argument presumes, without justification, that only businesses with low general operating
expenses can be successful. This makes option 3 another potential flaw.''
''Graph 4'': {''Statement'': {''s7'': ''Only low operating expenses are assumed to lead to success without
justification.''}, ''Entailment'': {''s7'': [''s3'']}}
''Final answer'': ''0''

HumanEval Example
Problem:
from typing import List

def has close elements(numbers: List[float], threshold: float) −> bool:
''' Check if in given list of numbers, are any two numbers closer to each other than
given threshold.
>>> has close elements([1.0, 2.0, 3.0], 0.5)
False
>>> has close elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
'''

Solution:
''Goal'': ''Write a function `has close elements`.''
''Initial state'': ''We have an input list `numbers` of floats and a float `threshold`. We need to check if any two
numbers in the list have a difference smaller than `threshold`.''
''Initial graph'': {''Statement'': {''s1'': ''The input list `numbers` of floats and the float `threshold` are given.''},
''Entailment'': {''s1'': ''Given condition''}}
''Plan'': ''We will sort the list first so that we only need to check adjacent elements. Then, we iterate through
the sorted list and check if the absolute difference between any two consecutive numbers is smaller than the `
threshold`. If we find such a pair, we return True. If the iteration completes without finding a pair, we return
False.''
''Action 1'': ''Sort the input list of numbers.''
''State 1'': ''The list is now sorted, which allows us to only check consecutive elements for small differences.''
''Graph 1'': {''Statement'': {''s2'': ''The list `numbers` is sorted.''}, ''Entailment'': {''s2'': [''s1'']}}
''Action 2'': ''Iterate through the sorted list and calculate the difference between consecutive elements.''
''State 2'': ''We will stop and return True if we find two consecutive numbers whose difference is smaller than
the `threshold`. If no such pair is found, we return False after the iteration completes.''
''Graph 2'': {''Statement'': {''s3'': ''We check consecutive elements in the sorted list for differences smaller than
the threshold.''}, ''Entailment'': {''s3'': [''s1'', ''s2'']}}
''Final answer'':
```python
from typing import List

def has close elements(numbers: List[float], threshold: float) −> bool:
# Step 1: Sort the numbers
numbers.sort()

# Step 2: Iterate through the sorted list and check differences between consecutive elements
for i in range(len(numbers) − 1):

if abs(numbers[i] − numbers[i + 1]) < threshold:
return True

# Step 3: Return False if no close elements are found
return False

```

MBPP Example
Problem: Write a python function to remove first and last occurrence of a given character from the string.
Your code should pass these tests:

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

assert remove Occ(''hello'', ''l'') == ''heo''
assert remove Occ(''abcda'', ''a'') == ''bcd''
assert remove Occ(''PHP'', ''P'') == ''H''

Solution:
''Goal'': ''Write a function `remove Occ`.''
''Initial state'': ''We have a string `s` and a character `ch`. We need to find the first and last occurrences of `ch
` in `s` and remove them.''
''Initial graph'': {''Statement'': {''s1'': ''Input string `s` and character `ch` are provided.''}, ''Entailment'': {''s1'':
''Given condition''}}
''Plan'': ''We'll first find the index of the first occurrence of `ch` in the string and then the index of the last
occurrence. After that, we will remove these two characters and return the modified string.''
''Action 1'': ''Find the indices of the first and last occurrences of `ch` in `s`.''
''State 1'': ''We now have the indices of the first and last occurrences of `ch` in `s`.''
''Graph 1'': {''Statement'': {''s2'': ''The indices of the first and last occurrences are found.''}, ''Entailment'': {''s2
'': [''s1'']}}
''Action 2'': ''Remove the characters at these two indices from the string.''
''State 2'': ''The first and last occurrences of `ch` have been removed from the string.''
''Graph 2'': {''Statement'': {''s3'': ''First and last occurrences of `ch` are removed.''}, ''Entailment'': {''s3'': [''s2
'']}}
''Final answer'':
```python
def remove Occ(s: str, ch: str) −> str:

# Step 1: Find the first occurrence of `ch`
first index = s.find(ch)

# Step 2: Find the last occurrence of `ch`
last index = s.rfind(ch)

# Step 3: Remove the first occurrence of `ch`
if first index != −1:

s = s[:first index] + s[first index + 1:]
# If the first occurrence was before the last, adjust last index
if last index > first index:

last index −= 1

# Step 4: Remove the last occurrence of `ch`
if last index != −1 and last index != first index:

s = s[:last index] + s[last index + 1:]

return s
```

33

	Introduction
	Related Work
	Preliminaries
	Task formulation
	Structured reasoning as entailment graph construction

	Structure-aware Planning with Accurate World Model
	Framework
	Seeking diversity in action generation and state prediction
	Improving discrimination accuracy in reasoning

	Experiments
	Experimental setup
	Main results
	Analysis
	Ablation study

	Conclusion
	Additional Methodological Details
	Dataset Overview
	Prompts for Data Generation
	Implementation Details
	Fine-grained Results
	Efficiency Study
	Examples of SWAP

