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Abstract

Continued pretraining offers a promising solution for adapting foundation models to a new
target domain. However, in specialized domains, available datasets are often very small,
limiting the applicability of SSL methods developed for large-scale pretraining, and making
hyperparameter search infeasible. In addition, pretrained models are usually released as
backbone-weights only, lacking important information to continue pretraining. We propose
to bridge this gap with DIET-CP, a simple continued pretraining strategy, where any strong
foundation model can be steered towards the new data distribution of interest. DIET-CP
relies on a very simple objective, requires no labels, introduces no more hyperparameters
than supervised finetuning. It is stable across data modalities and backbone choices, while
providing a significant performance boost for state-of-the-art models such as DINOv3 using
only 1000 images.
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1. The DIET for Self Supervised Continued Pretraining

Foundation models promise robust features for a variety of tasks and domains, powered
by increasingly larger and diverse pretraining datasets. However, despite the all-time-high
transfer-learning performance of pretrained models, there still remains a margin to expert
models trained within one domain and modality Koch et al. (2024); Ambsdorf et al. (2025).
Continued pretraining on the target domain is a potential solution to this problem Gupta
et al. (2023); Parmar et al. (2024); Guo et al. (2025). However, while state-of-the-art foun-
dation models such as DINOv3 Siméoni et al. (2025) can–in theory–be further pretrained,
researchers and practitioners are often facing three problems that make this approach in-
feasible: (1.) Models are released as backbone weights only, missing crucial information
to continue pretraining, such as teacher weights or optimizer state. Oquab et al. (2023);
Siméoni et al. (2025) (2.) State-of-the-art self-supervised learning methods introduce a
multitude of hyperparameters, which are costly and difficult to tune for the target domain,
or even intractable if only few samples are available. Ibrahim et al. (2024) (3.) The pre-
training methods themselves are optimized for large-scale datasets, while target datasets
are significantly smaller El-Nouby et al. (2021).

Motivated to overcome these practical hurdles, we propose DIET-CP: A label-free and
efficient method for steering foundation models towards a new distribution of interest. Our
method relies on a very simple objective that requires only the pretrained backbone, that is
free of additional hyperparameters, stable over data modality and backbone employed, all
while providing significant performance boost. On medical image classification, we improve
the F1 classification performance of DINOv3 by 12.44 on k-NN, 4.43 absolute percentage
points on linear probing, from only a small amount of target data and no labels.
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Figure 1: DIET-CP is a label-free and efficient method for steering foundation models to-
wards a data distribution of interest, improving class separability in the embed-
ding space and leading to improved unsupervised and linear probing performance.
t-SNE plots are generated from a PathMNIST subset.

Method. We propose refining the representations of a foundation model in a self-supervised
setting using cross entropy on the Datum IndEx as Target for Continual Pretraining (DIET-
CP) Ibrahim et al. (2024). The formulation of the continued pretraining loss for a backbone
fθ is as follows:

LDIET(xn) = XEnt
(
W fθ(xn), n

)
, xn ∈ RD. (1)

where n is the one-hot encoded index of each datum. W represents a linear classifica-
tion head for the DIET loss. This simple objective is an effective pretraining strategy for
small datasets. Recent theoretical insights show that DIET’s the instance discrimination
objective recovers ground truth factors of the underlying data generation process under
certain assumptions, provably yielding linearly decodable representations Reizinger et al.
(2025). For continual pretraining, DIET-CP offers the following benefits: (1.) no teacher
checkpoints or other auxiliary parameters are need to continue pretraining, as the DIET
loss requires no projector network or self-distillation. (2.) DIET-CP is effective with only
a small number of training samples, and as little as 500-1000 samples can be sufficient for
a considerable performance increase, as demonstrated in the experiments below. (3.) Com-
pared to supervised finetuning, no additional hyperparameters are introduced. DIET-CP
can be performed with the same parameters as any supervised finetuning strategy. This is
especially crucial for the low-data regime we are investigating here, where few samples and
even fewer labels are available and cross-validation of SSL hyperparameters may become
intractable.

1.1. Experiments

The effect of using DIET continued pretraining is evaluated on a series of classification
datasets that are both in-domain (natural images), and out-of-domain (medical images,
optical astronomical images) for three pretrained vision foundation models. We run Equa-
tion (1) as continued pretraining on the fine-tuning dataset to align the foundation model
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to the target distribution. For each task, DIET continued pretraining is used on a random
subset of the training data (N = 1000) and we record k-NN and linear probing metrics
on the validation set before and after training on the subset. Due to class imbalance on
most datasets, we report the F1 score and refer to the Appendix for additional results and
training specifications.

Pretrained Backbones. We evaluate the method on three popular pretrained vision
encoders. DINOv2 Oquab et al. (2023) is a family of models trained via teacher–student
self-distillation using a refined iBOT method Zhou et al. (2022). DINOv3 Siméoni et al.
(2025) represents the latest version of this method, using a larger dataset and a further
refined pretraining strategy to yield more robust and high-resolution features. Lastly, we
use the popular masked-autoencoder (MAE) by He et al. He et al. (2022) trained on Ima-
geNet22k Deng et al. (2009). All models are ViT-B architectures Dosovitskiy et al. (2020)
and initialized from publicly released checkpoints.

Datasets. As a highly relevant out-of-domain application, we cover a diverse set of med-
ical imaging datasets, using a subset of MedMNISTv2 Yang et al. (2021, 2023). The
datasets vary in size and class imbalance and span various medical modalities: BreastM-
NIST (ultrasound, benign vs. malignant) Al-Dhabyani et al. (2020), DermaMNIST (7-
class dermoscopy) Tschandl et al. (2018); Codella et al. (2019), OCTMNIST and RetinaM-
NIST (retinal OCT and diabetic retinopathy grading) Kermany et al. (2018), OrganAM-
NIST/CMNIST/SMNIST (11-class organ recognition from CT in axial/coronal/sagittal
views) Bilic et al. (2019); Xu et al. (2019), PathMNIST (9-class colorectal histology) Kather
et al. (2019), and PneumoniaMNIST (binary pediatric chest X-ray) Wang et al. (2017).
Further, we evaluate DIET-CP on Galaxy10 DECaLS, a 10-class optical telescope imaging
dataset of galaxy morphologies astroNN (2019); Walmsley et al. (2022). Lastly, we include
two natural image datsets that are in-domain for the pretrained backbones, but require fine-
grained visual categorization into around 100 classes (FGVC-Aircraft Maji et al. (2013) and
Food-101 Bossard et al. (2014)).

DIET-CP Improves out-of-domain performance on medical images and galaxy
morphology classification. Table 1 presents pre- and post DIET-CP performance on
MedicalMNIST datasets. On average across all tasks, DINOv2 and DINOv3 improve linear
probing (LP) performance by 4.81 and 4.43 absolute percentage on F1 respectively, and
dramatically on k-NN by 17.77 and 12.44, demonstrating the effectiveness of DIET-CP for
unsupervised clustering in particular. MAE is a weaker baseline, in particular on linear
and k-NN evaluation, but benefits considerably from CP. RetinaMNIST is the only dataset
where LP performance degrades for both DINO models and represents an interesting outlier
case as the only ordinal regression task, while k-NN performance reliably improves for all
models. Results on non-medical datasets are shown in Table 2. Here, we consider FGVC-
Aircraft and Food-101 as fine-grained in-domain tasks for the vision models, which are
trained exclusively, or with a significant bias, on natural images, while the astronomical
images of Galaxy10-DECaLS are considered out-of-domain. DIET-CP does not improve
fine-grained in-domain performance for the strong DINO models (DINOv2 improves only on
k-NN). MAE performance is increased by DIET-CP but remains low. Representing a non-
medical out-of-domain task, DIET-CP improves Galaxy10-DECaLS performance strongly
across all models for both LP and k-NN evaluation.

3



Extended Abstract Track
Table 1: F1 classification performance on medical datasets before and after DIET continual

pretraining using k-NN and linear probing, averaged over three runs.

Pre DIET-CP (F1) Post DIET-CP (F1)

Backbone Dataset k-NN LP k-NN LP

DINOv2
BreastMNIST 64.89 82.21 88.54 (+23.66) 88.90 (+6.69)
DermaMNIST 21.13 40.45 41.85 (+20.72) 53.21 (+12.76)
OCTMNIST 41.57 71.05 74.89 (+33.32) 85.41 (+14.37)
OrganAMNIST 57.17 78.51 72.37 (+15.20) 80.30 (+1.79)
OrganCMNIST 58.30 76.49 72.40 (+14.10) 79.02 (+2.53)
OrganSMNIST 46.74 62.47 57.46 (+10.72) 62.21 (-0.26)
PathMNIST 84.15 93.17 94.53 (+10.38) 95.94 (+2.77)
PneumoniaMNIST 63.67 89.29 93.43 (+29.75) 95.93 (+6.64)
RetinaMNIST 39.91 50.05 41.95 (+2.04) 46.06 (-3.99)
Average 53.06 71.52 70.82 (+17.77) 76.33 (+4.81)

DINOv3
BreastMNIST 72.40 81.92 87.80 (+15.40) 91.78 (+9.86)
DermaMNIST 22.50 47.26 33.92 (+11.42) 50.52 (+3.26)
OCTMNIST 47.77 75.44 73.58 (+25.82) 85.02 (+9.58)
OrganAMNIST 71.53 87.00 80.74 (+9.20) 88.33 (+1.33)
OrganCMNIST 70.48 78.06 77.61 (+7.14) 84.57 (+6.50)
OrganSMNIST 60.21 64.15 67.44 (+7.23) 71.95 (+7.81)
PathMNIST 86.34 93.88 93.35 (+7.01) 95.30 (+1.41)
PneumoniaMNIST 73.38 91.72 92.68 (+19.31) 96.08 (+4.36)
RetinaMNIST 38.85 53.52 48.27 (+9.41) 49.25 (-4.27)
Average 60.38 74.77 72.82 (+12.44) 79.20 (+4.43)

MAE
BreastMNIST 59.33 77.11 75.76 (+16.43) 78.46 (+1.35)
DermaMNIST 22.90 33.23 30.43 (+7.52) 39.87 (+6.64)
OCTMNIST 31.79 46.49 48.81 (+17.02) 66.92 (+20.44)
OrganAMNIST 52.98 69.37 72.31 (+19.33) 78.69 (+9.32)
OrganCMNIST 45.58 64.88 64.05 (+18.47) 71.17 (+6.28)
OrganSMNIST 38.37 48.94 51.95 (+13.58) 60.98 (+12.04)
PathMNIST 73.01 85.24 87.51 (+14.50) 91.76 (+6.52)
PneumoniaMNIST 83.93 88.92 92.85 (+8.92) 93.34 (+4.42)
RetinaMNIST 25.06 31.22 34.66 (+9.61) 39.63 (+8.41)
Average 48.10 60.60 62.04 (+13.93) 68.98 (+8.38)

Table 2: Linear probing and k-NN classification performance (F1) before and after DIET-
CP for non-medical datasets. FGVC-Aircraft and Food-101 are in-domain fine-
grained visual categorization tasks, while Galaxy10-DECaLS is an out-of-domain
optical telescope imaging dataset.

FGVC-Aircraft Food-101 Galaxy10-DECaLS

Backbone Eval (F1) Pre Post Pre Post Pre Post

DINOv2 k-NN 19.59 30.91 (+11.31) 58.64 60.33 (+1.69) 30.53 58.30 (+27.77)
LP 43.47 38.47 (-5.00) 73.54 65.29 (-8.25) 49.30 64.31 (+15.01)

DINOv3 k-NN 38.91 31.83 (-7.08) 63.37 58.03 (-5.34) 42.45 52.09 (+9.64)
LP 61.00 48.56 (-12.44) 77.58 68.98 (-8.60) 57.43 62.98 (+5.54)

MAE k-NN 3.74 6.83 (+3.09) 3.73 11.92 (+8.19) 20.44 33.93 (+13.49)
LP 6.77 11.54 (+4.77) 10.41 21.10 (+10.69) 26.98 38.94 (+11.96)

2. Conclusions and Future Work

DIET-CP is a simple and sample efficient method for steering foundation models towards a
distribution of interest via continual pretraining on a small dataset, leading to measurable
improvements on downstream tasks that are out-of-domain for the original backbone. A
number of limitations remain as avenues for future work, such as the need for label-free pre-
diction metrics on when DIET-CP helps performance, or deteriorates, as observed in some
cases for in-domain fine-grained categorization tasks, which could potentially be coupled to
determining how many layers of the backbone should be trained.
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Appendix A. Details on DIET-CP Setup

All experiments are performed using the same recipe. We use AdamW over a total of 150
epochs with a 10% warmup to a learning rate of 1e−4 and cosine annealing. To initialize W
without adversely affecting the backbone, DIET-CP can be started with a frozen backbone
for the first few steps, which we do for the first 5% of the epochs. Afterwards, we unfreeze
the last two transformer blocks and train them jointly with W . Further, DIET benefits from
label smoothing on the cross-entropy loss Ibrahim et al. (2024), but contrary to training
from scratch, we found that DIET-CP performs best with lower label smoothing values in
our setup(∼ 0.3). We use a batch size of 32 and a 0.05 weight decay. For each task, DIET
continued pretraining is used on a random subset of the training data (N = 1000) and we
record k-NN and linear probing metrics on the validation set before and after training on
the subset. Due to this simple setup, DIET-CP is very fast on a single GPU (less than 10
minutes for ViT-B on an H100).

All input images are size 224x224 and are converted to RGB. We use positional embed-
ding interpolation to adapt the ViTs to the input resolution. The following augmentation
pipeline is employed across all datasets:

v2.RGB

RandomResizedCrop(224, antialias=True),

RandomHorizontalFlip(),

RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.2)], p=0.3)

RandomGrayscale(p=0.2),

RandomApply([transforms.GaussianBlur((3, 3), (1.0, 2.0))], p=0.2)
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Figure 2: Ablation study over the number of samples used for DIET-CP of a DINOv2 ViT-
S. For training the k-NN and LP classifiers, a constant set of 1000 labels is used.

Appendix B. Additional results

B.1. Number of DIET samples

An ablation over the number of training samples for DIET-CP is presented in Figure 2.
By training a DINOv2 ViT-S, we observe that 1000 samples are sufficient for a clear per-
formance gain on linear probing, while k-NN metrics improve earlier. Some datasets do
not improve beyond 1000 training samples, while other (such as BreastMNIST) appear to
benefit slightly from more samples.

B.2. DIET loss during continued pretraining

Figure 3 shows plotted loss curves of DINOv2 ViT-S models during continued pretraining
over three different MedMNIST tasks. The loss is monotonically decreasing, even as linear
probing and k-NN performance plateaus. Similarly, Figure 4 different backbones exhibit
distinctive behaviour in DIET convergence, with no direct correlation to downstream per-
formance levels when observed on the same task, highlighting the need for metrics predicting
pretraining success.
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(a) DIET Loss (b) k-NN Accuracy

(c) LP Accuracy

Figure 3: DIET loss curves for DINOv2 ViT-S and corresponding k-NN and linear probing
accuracy on three MedMNIST datasets during training over 150 epochs.

(a) DIET Loss (b) k-NN Accuracy (c) LP Accuracy

Figure 4: DIET loss curves, k-NN and linear probing accuracy for ViT-B DINOv2, DINOv3,
and MAE on PathMNIST. Backbones reach different loss levels, but they are not
strongly correlated to downstream performance.
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Table 3: Full results table for medical datasets with F1 and accuracy and standard deviation
on k-NN and linear probe evaluation pre and post DIET-CP continued pretraining.

Backbone Dataset Pre DIET-CP Post DIET-CP
KNN Acc. KNN F1 Linear Acc. Linear F1 KNN Acc. KNN F1 Linear Acc. Linear F1

DINOv2

breastmnist 79.91±0.74 64.89±1.68 86.75±6.06 82.21±8.50 91.45±0.74 88.54±0.88 91.03±2.56 88.90±2.87
dermamnist 68.99±0.42 21.13±2.79 71.98±0.28 40.45±1.73 77.87±0.42 41.85±1.63 76.02±0.35 53.21±0.80
octmnist 73.73±0.79 41.57±0.56 84.67±0.10 71.05±1.44 87.99±0.22 74.89±0.12 92.08±0.13 85.41±0.67
organamnist 63.74±3.30 57.17±2.07 80.91±2.00 78.51±2.19 77.93±1.95 72.37±3.55 81.03±1.62 80.30±1.52
organcmnist 63.04±3.96 58.30±0.31 80.31±2.60 76.49±1.67 78.70±0.33 72.40±1.54 82.88±0.09 79.02±0.43
organsmnist 54.16±3.29 46.74±4.18 67.90±1.79 62.47±1.38 63.03±0.84 57.46±2.24 66.25±1.59 62.21±1.22
pathmnist 84.10±0.70 84.15±0.71 93.19±0.40 93.17±0.44 94.41±0.48 94.53±0.46 95.88±0.45 95.94±0.44
pneumoniamnist 64.31±3.24 63.67±2.93 91.13±1.48 89.29±1.58 94.75±0.40 93.43±0.46 96.85±0.67 95.93±0.90
retinamnist 58.75±6.48 39.91±1.44 61.67±3.54 50.05±3.90 57.08±1.77 41.95±6.35 57.92±2.95 46.06±3.46
Average 67.86±2.55 53.06±1.85 79.83±2.03 71.52±2.54 80.36±0.79 70.82±1.91 82.22±1.16 76.33±1.37

DINOv3

breastmnist 82.48±1.48 72.40±5.42 87.18±1.28 81.92±1.93 90.60±2.67 87.80±3.44 93.59±1.28 91.78±1.75
dermamnist 70.56±0.42 22.50±1.24 73.65±1.36 47.26±2.33 74.78±1.04 33.92±1.69 77.40±0.72 50.52±1.90
octmnist 76.36±0.11 47.77±0.54 85.78±2.38 75.44±3.25 87.47±0.67 73.58±2.85 91.66±0.42 85.02±0.05
organamnist 75.49±3.21 71.53±4.35 87.13±1.04 87.00±1.46 84.83±1.76 80.74±2.56 89.30±1.41 88.33±1.11
organcmnist 77.01±1.96 70.48±1.59 81.37±2.06 78.06±2.27 83.25±0.32 77.61±1.35 87.47±1.68 84.57±3.06
organsmnist 65.31±0.32 60.21±0.46 68.27±1.44 64.15±0.30 72.72±0.35 67.44±0.39 76.24±0.09 71.95±0.63
pathmnist 90.52±7.24 86.34±1.11 93.93±0.35 93.88±0.28 93.29±0.39 93.35±0.37 95.31±0.36 95.30±0.34
pneumoniamnist 74.87±5.56 73.38±5.09 93.32±0.50 91.72±0.60 94.15±0.58 92.68±0.65 96.95±0.19 96.08±0.22
retinamnist 57.78±2.93 38.85±4.35 63.61±2.10 53.52±1.78 60.28±1.73 48.27±1.30 58.61±1.27 49.25±2.56
Average 74.49±2.58 60.38±2.68 81.58±1.39 74.77±1.58 82.37±1.06 72.82±1.62 85.17±0.82 79.20±1.29

MAE

breastmnist 76.07±0.74 59.33±0.75 84.62±1.28 77.11±1.53 82.48±1.96 75.76±2.99 83.76±0.74 78.46±1.18
dermamnist 69.92±0.55 22.90±1.32 72.08±1.41 33.23±4.00 73.45±0.21 30.43±2.06 74.01±1.12 39.87±3.31
octmnist 60.42±1.98 31.79±1.79 73.22±0.59 46.49±2.66 77.89±0.79 48.81±1.40 82.19±0.99 66.92±1.01
organamnist 62.97±4.22 52.98±2.18 73.32±0.45 69.37±1.38 76.56±0.82 72.31±1.19 80.56±2.79 78.69±2.34
organcmnist 54.29±2.61 45.58±3.11 69.72±3.09 64.88±4.19 70.74±2.29 64.05±1.82 77.01±1.17 71.17±0.98
organsmnist 47.94±3.32 38.37±5.18 56.00±4.90 48.94±7.13 58.14±2.05 51.95±1.94 67.17±0.23 60.98±0.08
pathmnist 73.96±1.72 73.01±1.20 85.41±0.49 85.24±0.75 87.53±0.64 87.51±0.62 91.78±0.23 91.76±0.31
pneumoniamnist 86.07±1.08 83.93±1.24 90.94±0.40 88.92±0.60 94.37±0.13 92.85±0.14 94.75±0.13 93.34±0.18
retinamnist 47.92±0.59 25.06±2.87 50.42±0.59 31.22±1.22 53.33±0.00 34.66±0.60 55.00±0.00 39.63±1.96
Average 64.39±1.87 48.10±2.18 72.86±1.47 60.60±2.61 74.94±0.99 62.04±1.42 78.47±0.82 68.98±1.26

Table 4: Accuracy comparison before and after DIET-CP for non-medical datasets. Im-
provements (in parentheses) are green for positive, red for negative, and gray if
|∆| < 1.0.

Backbone Dataset Pre DIET-CP (Acc.) Post DIET-CP (Acc.)

k-NN LP k-NN LP

dinov2

fgvc aircraft 21.81 44.74 32.52 (+10.71) 39.48 (-5.26)

food101 61.59 74.02 61.79 (+0.20) 65.82 (-8.21)

galaxy10 decals 37.16 54.07 64.57 (+27.40) 67.64 (+13.57)

dinov3

fgvc aircraft 42.85 62.18 34.42 (-8.43) 49.47 (-12.70)

food101 65.91 77.89 60.25 (-5.65) 69.38 (-8.51)

galaxy10 decals 49.65 62.05 59.60 (+9.95) 66.67 (+4.62)

mae

fgvc aircraft 4.60 7.41 7.87 (+3.27) 11.92 (+4.51)

food101 4.20 11.00 13.20 (+9.00) 21.46 (+10.45)

galaxy10 decals 24.52 33.12 40.46 (+15.95) 43.27 (+10.15)

11



Extended Abstract Track
Appendix C. Dataset info

Table 5: Information on the number of samples and classes in the datasets used for ex-
periments. All datasets, except for Food-101 and FGVC-Aircraft are unbalanced.
If no official validation split is defined, we sample a random 50% split from the
training set.

Dataset Classes Train Val Test Class balance

FGVC-Aircraft 102 3400 3400 3400 balanced
Food-101 101 75750 - 25250 balanced
Galaxy10-DECaLS 10 1600 - 1736 skewed
BreastMNIST 2 546 78 156 skewed
DermaMNIST 7 7007 1003 2005 skewed
OCTMNIST 4 97477 10832 1000 skewed
RetinaMNIST 5 1080 120 400 skewed
OrganAMNIST (axial) 11 34561 6491 17778 skewed
OrganCMNIST (coronal) 11 12975 2392 8216 skewed
OrganSMNIST (sagittal) 11 13932 2452 8827 skewed
PathMNIST 9 89996 10004 7180 skewed
PneumoniaMNIST 2 4708 524 624 skewed
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