
Proceedings Track 1–S74, 2025 Symmetry and Geometry in Neural Representations

How does training shape the Riemannian geometry of neural
network representations?

Jacob A. Zavatone-Veth jzavatoneveth@fas.harvard.edu
Society of Fellows and Center for Brain Science
Harvard University
Cambridge, MA 02138, USA

Sheng Yang
John A. Paulson School of Engineering and Applied Sciences
Harvard University
Cambridge, MA 02138, USA

Julian A. Rubinfien
Department of Physics
Yale University
New Haven, CT 06511, USA

Cengiz Pehlevan cpehlevan@seas.harvard.edu

John A. Paulson School of Engineering and Applied Sciences, Center for Brain Science,

and Kempner Institute for Artificial and Natural Intelligence

Harvard University

Cambridge, MA 02138, USA

Editors: List of editors’ names

Abstract

In machine learning, there is a long history of trying to build neural networks that can learn
from fewer example data by baking in strong geometric priors. However, it is not always
clear a priori what geometric constraints are appropriate for a given task. Here, we explore
the possibility that one can uncover useful geometric inductive biases by studying how
training molds the Riemannian geometry induced by unconstrained neural network feature
maps. We first show that at infinite width, neural networks with random parameters induce
highly symmetric metrics on input space. This symmetry is broken by feature learning:
networks trained to perform classification tasks learn to magnify local areas along decision
boundaries. This holds in deep networks trained on high-dimensional image classification
tasks, and even in self-supervised representation learning. These results begin to elucidate
how training shapes the geometry induced by unconstrained neural network feature maps,
laying the groundwork for an understanding of this richly nonlinear form of feature learning.

Keywords: Geometric deep learning, representation learning, self-supervised learning,
Riemannian geometry, neural networks

1. Introduction

The physical and digital worlds possess rich geometric structure. If endowed with appropriate
inductive biases, machine learning algorithms can leverage these regularities to learn efficiently.
However, it is unclear how one should uncover the geometric inductive biases relevant for a
particular task. The conventional approach to this problem is to hand-design algorithms
to embed certain geometric priors (Bronstein et al., 2021), but little attention has been

© 2025 J.A. Zavatone-Veth, S. Yang, J.A. Rubinfien & C. Pehlevan.

Zavatone-Veth Yang Rubinfien Pehlevan

given to an alternative possibility: Can we uncover useful inductive biases by studying the
geometry learned by existing, highly performant deep neural network models (LeCun et al.,
2015; Zhang et al., 2021; Radhakrishnan et al., 2022)? Previous works have explored some
aspects of the geometry induced by neural networks with random parameters (Poole et al.,
2016; Amari et al., 2019; Cho and Saul, 2009, 2011; Zavatone-Veth and Pehlevan, 2022;
Hauser and Ray, 2017; Benfenati and Marta, 2023b), but we lack a rigorous understanding
of data-dependent changes in representational geometry over training.1

In this work, we aim to empirically study the geometric structure of learned feature
maps, with the eventual aim of gaining a deeper understanding of what geometric inductive
biases are optimal in settings where one lacks significant prior intuition. As a first step
towards a deeper understanding of the geometry of trained deep network feature maps, we
explore how neural networks learn to enhance local input disciminability over the course of
training. Concretely, we explore the hypothesis that deep neural networks trained to perform
supervised classification tasks using standard gradient-based methods learn to magnify
areas near decision boundaries. This hypothesis is inspired by a series of influential papers
published around the turn of the 21st century by Amari and Wu. They proposed that the
generalization performance of support vector machine (SVM) classifiers on small-scale tasks
could be improved by transforming the kernel to expand the Riemannian volume element
near decision boundaries, thus increasing discriminability (Amari and Wu, 1999; Wu and
Amari, 2002; Williams et al., 2007).

Our primary contributions are as follows:2 First, in §3, we study general properties of
the metric induced by shallow fully-connected neural networks. For infinitely wide shallow
networks with Gaussian weights and smooth activation functions, the volume element
and scalar curvature are spherically symmetric. These results provide a baseline for our
explorations. Then, in §4, we empirically show that training shallow networks on simple
two-dimensional classification tasks expands the volume element along decision boundaries.
In §5.1 and 5.2, we provide evidence that deep residual networks trained on more complex
image classification tasks (MNIST and CIFAR-10) behave similarly. Finally, in §5.3, we
demonstrate how our approach can be applied to the self-supervised learning method Barlow
Twins, showing how area expansion can emerge even without supervised training.

In total, our results provide a preliminary picture of how feature learning shapes the
geometry induced by neural network feature maps. These observations open new avenues
for investigating when this richly nonlinear form of feature learning is required for good
generalization in deep networks.

2. Preliminaries

We begin by introducing the basic idea of the Riemannian geometry of feature space
representations. Our setup and notation largely follow Burges (1999), which in turn follows
the conventions of Dodson and Poston (1991). We use the Einstein summation convention.

Consider d-dimensional data living in some submanifold D ⊆ Rd. Let the feature map
Φ : Rd → H be a map from Rd to some separable Hilbert space H of possibly infinite

1. We defer a detailed overview of related works to Appendix A.
2. All code required to reproduce our empirical results is available at https://github.com/Pehlevan-Group/

nn_curvature.

2

https://github.com/Pehlevan-Group/nn_curvature
https://github.com/Pehlevan-Group/nn_curvature

How does training shape the Riemannian geometry of neural network representations?

dimension n, with Φ(D) = M ⊆ H. We index input space dimensions by Greek letters
µ, ν, ρ, . . . ∈ [d] and feature space dimensions by Latin letters i, j, k, . . . ∈ [n]. Assume that Φ
is Cℓ for ℓ ≥ 3, and is everywhere of rank r = min{d, n}. If r = d, thenM is a d-dimensional
Cℓ manifold immersed in H. If ℓ =∞, thenM is a smooth manifold. In contrast, if r < d,
thenM is a d-dimensional Cℓ manifold submersed in H. The flat metric on H can then be
pulled back toM, with components gµν = ∂µΦi∂νΦi, where we write ∂µ ≡ ∂/∂xµ.

If r = d and the pullback metric gµν is full rank, then (M, g) is a d-dimensional
Riemannian manifold (Dodson and Poston, 1991; Burges, 1999). However, if the pullback
gµν is a degenerate metric, as must be the case if r < d, then (M, g) is a singular semi-
Riemannian manifold (Benfenati and Marta, 2023b; Kupeli, 2013). In this case, if we let ∼
be the equivalence relation defined by identifying points with vanishing pseudodistance, the
quotient (M/ ∼, g) is a Riemannian manifold (Benfenati and Marta, 2023b). Unless noted
otherwise, our results will focus on the non-singular case. We denote the matrix inverse of
the metric tensor by gµν , and we raise and lower input space indices using the metric.

With this setup, (M, g) is a Riemannian manifold; hence, we have at our disposal a
powerful toolkit with which we may study its geometry. We will focus on two geometric
properties of (M, g). First, the volume element is given by dV =

√
det g ddx, where the factor√

det g measures how local areas in input space are magnified by the feature map (Dodson
and Poston, 1991; Amari and Wu, 1999; Burges, 1999). Second, we consider the intrinsic
curvature of the manifold, which is characterized by the Riemann tensor Rµ

ναβ (Dodson and

Poston, 1991). If Rµ
ναβ = 0, then the manifold is intrinsically flat. As a tractable measure,

we focus on the Ricci curvature scalar R = gβνRα
ναβ, which measures the deviation of the

volume of an infinitesimal geodesic ball in the manifold from that in flat space (Dodson
and Poston, 1991). In the singular case, we can compute the volume element onM/ ∼ at
a given point by taking the square root of the product of the non-zero eigenvalues of the
degenerate metric gµν at that point (Benfenati and Marta, 2023b). However, the curvature
in this case is generally not straightforward to compute; we will therefore leave this issue
for future work. Indeed, we will mostly focus on the volume element due to computational
constraints, which we discuss further in §5.1 and in Appendix I.

3. Representational geometry of shallow neural network feature maps

We begin by studying general properties of the metrics induced by shallow neural networks.
A shallow fully-connected network has a feature map of the form Φj(x) = n−1/2ϕ(wj ·x+ bj)
for weights wj , biases bj , and an activation function ϕ, where we abbreviate w · x = wµxµ.
We scale the components of the feature map by n−1/2 such that the associated kernel
k(x,y) = Φi(x)Φi(y) and metric have the form of averages over hidden units, and therefore
should be well-behaved at large widths (Neal, 1996; Williams, 1997). If ϕ is Ck for k ≥ 3
and the Jacobian ∂µΦj is full-rank, the shallow network feature map satisfies the required
conditions for the feature embedding to be a (possibly singular) Riemannian manifold. These
conditions extend directly to deep networks formed by composing shallow feature maps
(Hauser and Ray, 2017; Benfenati and Marta, 2023b).

We first consider finite-width networks with fixed weights, assuming that n ≥ d.
Writing zj = wj · x + bj for the preactivation of the j-th hidden unit, the metric is
gµν = n−1ϕ′(zj)

2wjµwjν . This metric has the useful property that ∂αgµν is symmetric under

3

Zavatone-Veth Yang Rubinfien Pehlevan

permutation of its indices, hence the formula for the Riemann tensor simplifies substantially
(Appendix C). We show in Appendix D that the determinant of the metric and the Riemann
tensor can be expanded in terms of minors of the weight matrix; these formulas are not
particularly illuminating, but will prove useful in checking our numerical methods.

The metric simplifies substantially if we consider the infinite-width limit (n→∞) with
Gaussian weights and biases wj ∼ N (0, σ2Id), bj ∼ N (0, ζ2) (Lee et al., 2018; Matthews
et al., 2018; Yang, 2019; Yang and Hu, 2021; Poole et al., 2016). For such networks, the
hidden layer representation is described by the neural network Gaussian process (NNGP)
kernel k(x,y) = limn→∞ n−1Φ(x)·Φ(y) = Ew,b[ϕ(w ·x+b)ϕ(w ·y+b)] (Neal, 1996; Williams,
1997; Matthews et al., 2018; Lee et al., 2018). For networks in the lazy regime, this kernel
completely describes the representation after training (Yang and Hu, 2021; Bordelon and
Pehlevan, 2022). In Appendix E, we show that the metric associated with the NNGP kernel
can be written as gµν = eΩ(∥x∥2)[δµν +2Ω′(∥x∥2)xµxν], where the function Ω(∥x∥2) is defined
via eΩ(∥x∥2) = σ2E[ϕ′(z)2] for z ∼ N (0, σ2∥x∥2 + ζ2). Therefore, like the metrics induced by
other dot-product kernels, the NNGP metric has the form of a projection (Burges, 1999).
Such metrics have determinant det g = eΩd(1 + 2∥x∥2Ω′), and Ricci scalar given by a similar
formula that we defer to Appendix E.

Thus, all geometric quantities are spherically symmetric, depending only on ∥x∥2. Thanks
to the assumption of independent Gaussian weights, the geometric quantities associated
to the shallow Neural Tangent Kernel and to the deep NNGP will share this spherical
symmetry (Appendix F) (Lee et al., 2018; Matthews et al., 2018; Yang, 2019; Yang and
Hu, 2021). This generalizes the results of Cho and Saul (2011) for threshold-power law
functions to arbitrary smooth activation functions. In short, unless the task depends only
on the input norm, the geometry of infinite-width networks will not be linked to the task
structure. In Appendix E.2, we consider the geometry for certain analytically tractable
activation functions. It is interesting to note that the curvature of the induced metric is
negative in all of these examples; this geometric inductive bias of wide neural networks may
be interesting to investigate in future work.

4. Changes in shallow network geometry during gradient descent training

We now consider how the geometry of the pullback metric changes during training in
networks that learn features, that is, outside of the lazy/kernel regime. Changes in the
volume element and curvature during gradient descent training are challenging to study
analytically, because feature-learning networks with solvable dynamics—deep linear networks
(Saxe et al., 2013)—trivially yield flat, constant metrics. One could attempt to solve for
the metric’s dynamics through time in infinite-width networks parameterized such that
they learn features (Yang and Hu, 2021; Bordelon and Pehlevan, 2022), but doing so is
computationally intensive, and we will not do so here. For Bayesian neural networks at large
but finite width, we can compute corrections to the volume element when the changes in
the kernel due to feature learning are perturbatively small (Appendix G), but the results
are not particularly illuminating. Given the intractability of studying changes in geometry
analytically, we resort to numerical experiments.

4

How does training shape the Riemannian geometry of neural network representations?

(a) (b) (c)

Figure 1: Evolution of the volume element over training in a network with with architecture
[2, 250, 2] across different epochs trained to classify points separated by a sinusoidal
boundary y = 3

5 sin(7x − 1). Red lines indicate the decision boundaries of the
network. See Appendix I.1 for experimental details and additional visualizations.

4.1. Changes in representational geometry for two-dimensional toy tasks

To build intuition, we first consider networks trained a toy two-dimensional binary clas-
sification task with sinusoidal boundary, inspired by the task considered in the original
work of Amari and Wu (1999), for which we can directly visualize the input space. We
train networks with sigmoidal activation functions of varying widths to perform this task,
and visualize the resulting geometry over the course of training in Figures 1 and I.5. At
initialization, the peaks in the volume element lack a clear relation to the structure of the
task, with approximate rotational symmetry at large widths as we would expect from §3. As
the network’s decision boundary is gradually molded to conform to the true boundary, the
volume element develops peaks in the same vicinity. At all widths, the final volume elements
are largest near the peaks of the sinusoidal decision boundary. At small widths, the shape
of the sinusoidal curve is not well-resolved, but at large widths there is a clear peak in the
close neighborhood of the decision boundary. In Appendix I, Figure I.6, we plot the Ricci
scalar for these trained networks. Even for these small networks, the curvature computation
is computationally expensive and numerically challenging. Though task-adapted structure
is visible at the end of training, the patterns here are harder to interpret than those in the
volume element.

4.2. Changes in geometry for networks trained to classify MNIST digits

We now provide evidence that a similar phenomenon is present in networks trained to
classify MNIST images. In Figure 2, we plot the induced volume element at synthetic images
generated by linearly interpolating between two input images (see Appendix I.2 for details
and additional visualizations; note that all networks reach above 95% train and test accuracy
within 200 epochs). We emphasize that linear interpolation in pixel space of course does not
respect the structure of natural images. However, this approach has the advantage of being
straightforward, and also illustrates how small Euclidean perturbations are expanded by the
feature map (Novak et al., 2018). At initialization, the volume element varies without clear
structure along the interpolated path. However, as training progresses, areas near the center
of the path, which roughly aligns with the decision boundary, are expanded, while those
near the endpoints remain relatively small. Because of the computational complexity of
estimating the curvature—the Riemann tensor has d2(d2 − 1)/12 independent components

5

Zavatone-Veth Yang Rubinfien Pehlevan

(a) (b) (c)

(d)

Figure 2: Top panel : log10(
√
det g) induced at interpolated images between 7 and 6 by

a single-hidden-layer fully-connected network trained to classify MNIST digits.
Bottom panel : Digit class predictions and log10(

√
det g) for the plane spanned by

MNIST digits 7, 6, and 1 at the final training epoch (200) . Sample images are
visualized at the endpoints and midpoint for each set. Each line is colored by its
prediction at the interpolated region and end points. As training progresses, the
volume elements bulge in the middle (near the decision boundary) and taper off
when travelling towards endpoints. See Appendix I.2 for experimental details and
Figure I.8 for images interpolated between other digits.

(Misner et al., 2017; Dodson and Poston, 1991)—and its numerical sensitivity (Appendix
I.1), we do not attempt to estimate it for this high-dimensional task.

To gain an understanding of the structure of the volume element beyond one-dimensional
slices, in Figure 2 we also plot its value in the plane spanned by three randomly-selected
example images, at points interpolated linearly within their convex hull. Here, we only show
the end of training; in Appendix I.2 we show how the volume element in this plane changes
over the course of training. The edges of the resulting ternary plot are one-dimensional
slices like those shown in the top row of Figure 2, and we observe consistent expansion of
the volume element along these paths. The volume element becomes large near the centroid
of the triangle, where multiple decision boundaries intersect.

5. Beyond shallow learning

We now apply these analyses to deep networks, regarding the representation at each hidden
layer as defining a feature map (Hauser and Ray, 2017; Benfenati and Marta, 2023b).

6

How does training shape the Riemannian geometry of neural network representations?

(a) 0 10 20 30 40 50 60

1120

1100

1080

1060

1040

1020

1000

980

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 0

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

(b) 0 10 20 30 40 50 60
1200

1180

1160

1140

1120

1100

1080

1060

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 50

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

(c) 0 10 20 30 40 50 60

1240

1220

1200

1180

1160

1140

1120

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 200
class prediction

plane
car

bird
cat

deer
dog

frog
horse

ship
truck

(d)

Figure 3: Top panel : log10(
√
det g) induced at interpolated images between a horse and a

frog by ResNet-34 with GELU activation trained to classify CIFAR-10 images.
Bottom panel : Digits classification of a horse, a frog, and a car. The volume
element is the largest at the intersection of several binary decision boundaries,
and smallest within each of the decision region. The one-dimensional slices along
the edges of each ternary plot are consistent with the top panel. See Appendix I.3
for experimental details, Figure I.16 for linear interpolation and plane spanned by
other classes, and how the plane evolves during training.

5.1. Deep residual networks with smooth activation functions

As a more realistic example architecture, we consider deep residual networks (ResNets)
(He et al., 2016) trained to classify the CIFAR-10 image dataset (Krizhevsky, 2009). To
make the feature map differentiable, we replace the rectified linear unit (ReLU) activation
functions used in standard ResNets with Gaussian error linear units (GELUs) (Hendrycks
and Gimpel, 2016). We achieve comparable test accuracy (92%) with GeLUs and ReLUs in
a ResNet-34—the largest model we can consider given computational constraints (Appendix
I.3). The feature map defined by the input-to-final-hidden-layer mapping of a ResNet-34
gives a submersion of CIFAR-10, as the input images have 3072 pixels, while the final hidden
layer has 512 units. Empirically, we find that the Jacobian of this mapping is full-rank
(Figure I.17); we therefore consider the volume element on (M/ ∼, g) defined by the product
of the non-zero eigenvalues of the degenerate pullback metric (§2, Appendix I.3).

In Figure 3, we visualize the resulting geometry in the same way we did for networks
trained on MNIST, along 1-D interpolated slices and in a 2-D interpolated plane (see
Appendix I.3 for details and additional figures). In both 1-D and 2-D slices, we see a
clear trend of large volume elements near decision boundaries, as we observed for shallow
networks. In Figure I.22, we show that these networks also expand areas near incorrect

7

Zavatone-Veth Yang Rubinfien Pehlevan

(a) 0 10 20 30 40 50 60

1350

1300

1250

1200

1150

1100

1050

1000

950

lo
g1

0
vo

lu
m

e
el

em
en

t

Layer 1

0 10 20 30 40 50 60

1350

1300

1250

1200

1150

1100

1050

1000

950

lo
g1

0
vo

lu
m

e
el

em
en

t

Layer 2

0 10 20 30 40 50 60

1350

1300

1250

1200

1150

1100

1050

1000

950

lo
g1

0
vo

lu
m

e
el

em
en

t

Layer 3

0 10 20 30 40 50 60

1350

1300

1250

1200

1150

1100

1050

1000

950

lo
g1

0
vo

lu
m

e
el

em
en

t

Layer 4

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

Epoch 0

(b) 0 10 20 30 40 50 60

1250

1200

1150

1100

1050

1000

950

lo
g1

0
vo

lu
m

e
el

em
en

t

Layer 1

0 10 20 30 40 50 60

1250

1200

1150

1100

1050

1000

950

lo
g1

0
vo

lu
m

e
el

em
en

t

Layer 2

0 10 20 30 40 50 60

1250

1200

1150

1100

1050

1000

950

lo
g1

0
vo

lu
m

e
el

em
en

t

Layer 3

0 10 20 30 40 50 60

1250

1200

1150

1100

1050

1000

950

lo
g1

0
vo

lu
m

e
el

em
en

t

Layer 4

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

Epoch 500

Figure 4: Visualization of volume elements across blocks of a ResNet-34 with GELU ac-
tivations. Top panels: log10(

√
det g) with class label predictions at interpolated

samples between a car and a dog at the start of training, and from left to right
lists volume elements across depth. Bottom panels: same quantities at the end of
training (epoch 500). Our observation that volume elements are largest near the
decision boundary is consistent across blocks, with contrast between the volume
element at the test points and near the boundary increasing width depth. See
Figure I.23 for similar visualizations along two-dimensional slices through input
space, and Appendix I.3 for experimental details.

decision boundaries, but do not expand areas along slices between three correctly-classified
points of the same class. Thus, even in this more realistic setting, we observe shaping of
geometry over training that appears consistent with the hypothesis of area-magnification.

For these deep networks, we can also study how the volume element is shaped across
depth. In Figures 4 and I.23, we visualize the volume element corresponding to the metric
induced by pulling back the Euclidean metric on the feature space of the output of each
of the four blocks of the ResNet-34. These visualizations are consistent with our general
observations, with the volume element induced by each block being largest near the decision
boundary. We additionally point out that the contrast between the smallest and largest
volume element among the interpolated path at respective layer is least (most) pronounced at
the first (last) layer, suggesting that the last layer captures the most distinguishing features
across samples in different classes.

5.2. Deep ReLU networks

Because of the smoothness conditions required by the definition of the pullback metric and
the requirement that (M, g) be a differentiable manifold (Hauser and Ray, 2017; Benfenati
and Marta, 2023b), the approach pursued in the preceding sections does not apply directly to
networks with ReLU activation functions, which are not differentiable. Deep ReLU networks

8

How does training shape the Riemannian geometry of neural network representations?

are continuous piecewise-linear maps, with many distinct activation regions (Hanin and
Rolnick, 2019a,b). Within each region, the corresponding linear feature map will induce a
flat metric on the input space, but the magnification factor will vary from region to region.
Therefore, though the overall framework of the preceding sections does not apply in the ReLU
setting, we can still visualize this variation in the piecewise-constant magnification factor.
In Appendix I.3, we show that the behavior of ResNets with ReLU activation functions is
qualitatively similar to those with GELUs.

5.3. Self-supervised learning with Barlow Twins

Though thus far we have focused on supervised training, the same geometric analysis can be
performed for any feature map, irrespective of the training procedure. To demonstrate the
broader utility of visualizing the induced volume element, we consider ResNet feature maps
trained with the self-supervised learning (SSL) method Barlow Twins (Zbontar et al., 2021).
In Appendix I.4, we show that we observe expansion of areas near the decision boundaries of
a linear probe trained on top of this feature map, consistent with what we saw for supervised
ResNets. In contrast, no clear pattern of expansion is visible for ResNets trained with the
alternative SSL method SimCLR (Chen et al., 2020). We hypothesize that this difference
results from SimCLR’s normalization of the feature map, which may make treating the
embedding space as Euclidean inappropriate. These results illustrate the broader potential
of our approach to give new insights into how different SSL procedures induce different
geometry, suggesting avenues for future investigation.

6. Discussion

To conclude, we have explored how training shapes the Riemannian geometry induced by
neural network representations to magnify areas along decision boundaries (Amari and Wu,
1999; Wu and Amari, 2002; Williams et al., 2007). These results are relevant to the broad
goal of leveraging non-Euclidean geometry in deep learning, but they differ from many past
approaches in that we seek to characterize what geometric structure is learned rather than
hand-engineering the optimal geometry for a given task (Bronstein et al., 2021). We now
conclude by discussing several open questions and limitations of our work; see also Appendix
B for supplementary discussion of possible avenues for future inquiry.

Perhaps the most important limitation of our work is the fact that we focus either
on toy tasks with two-dimensional input domains, or on low-dimensional slices through
high-dimensional domains. This is a fundamental limitation of how we have attempted to
visualize the geometry. As a first step towards more realistic manifolds of intermediate
images, we show in Appendix I.2 that volume elements at ambiguous VAE-generated digit
images from the Dirty-MNIST dataset (Mukhoti et al., 2021) are larger on average than those
at clean MNIST test images. We are also restricted by computational constraints (Appendix
I.3), particularly in our ability to study anisotropic measures of the geometry, such as the
Ricci scalar. To characterize the geometry of state-of-the-art network architectures, more
efficient and numerically stable algorithms for computing these quantities must be developed.
Robustly determining the curvature of learned representations is particularly important for
our overall objective of discovering useful geometric inductive biases.

9

Zavatone-Veth Yang Rubinfien Pehlevan

We leave open for future work the broad question of when changes to the representational
geometry are required needed for good generalization. In a series of recent works, Radhakr-
ishnan et al. (2022) have proposed a method for learning data-adaptive kernels by a trainable
linear change of coordinates on input space (see Appendix H for a detailed description).
They show that for some datasets this method generalizes better than fully-trained deep
networks. As a form of linear masking, this method can reduce the influence of certain input
channels, but it cannot affect the curvature of the embedding. In future work, it will be
interesting to investigate when the flexible, nonlinear form of feature learning that reshapes
the curvature of the embedding is necessary for generalization. It will be interesting to
investigate how the notions of geometry studied here relate to measures of how embeddings
shape the linear separability of different classes (Chung et al., 2018; Cohen et al., 2020).

Finally, our results are applicable to the general problem of how to analyze and compare
neural network representations (Kornblith et al., 2019; Williams et al., 2021). As illustrated
by our SSL experiments, one could compute and plot the volume element induced by a
feature map even when one does not have access to explicit class labels. This could allow
one to study pre-trained networks for which one does not have access to the training classes,
and perhaps even differentiable approximations to biological neural networks (Wang and
Ponce, 2022; Acosta et al., 2022). Exploring the rich geometry induced by these networks is
an exciting avenue for future investigation.

Acknowledgments

We thank Blake Bordelon, Matthew Farrell, Anindita Maiti, Carlos Ponce, Sabarish
Sainathan, James B. Simon, Emmanouil Theodosis, and Binxu Wang for useful discus-
sions and comments on earlier versions of our manuscript. CP and JZV were supported by
NSF Award DMS-2134157 and NSF CAREER Award IIS-2239780. CP is further supported
by a Sloan Research Fellowship. This work has been made possible in part by a gift from the
Chan Zuckerberg Initiative Foundation to establish the Kempner Institute for the Study of
Natural and Artificial Intelligence. The computations in this paper were run on the FASRC
cluster supported by the FAS Division of Science Research Computing Group at Harvard
University.

10

How does training shape the Riemannian geometry of neural network representations?

References

Amro Abbas, Kushal Tirumala, Dániel Simig, Surya Ganguli, and Ari S. Morcos. Semd-
edup: Data-efficient learning at web-scale through semantic deduplication. arXiv, 2023.
doi:10.48550/arXiv.2303.09540.

Francisco E. Acosta, Sophia Sanborn, Khanh Dao Duc, Manu Madhav, and Nina
Miolane. Quantifying local extrinsic curvature in neural manifolds. arXiv, 2022.
doi:10.48550/ARXIV.2212.10414. URL https://arxiv.org/abs/2212.10414.

Shun-ichi Amari and Si Wu. Improving support vector machine classifiers by mod-
ifying kernel functions. Neural Networks, 12(6):783–789, 1999. ISSN 0893-6080.
doi:https://doi.org/10.1016/S0893-6080(99)00032-5. URL https://www.sciencedirect.

com/science/article/pii/S0893608099000325.

Shun-ichi Amari, Ryo Karakida, and Masafumi Oizumi. Statistical neurodynamics of deep
networks: Geometry of signal spaces. Nonlinear Theory and Its Applications, IEICE,
10(4):322–336, 2019. URL https://www.jstage.jst.go.jp/article/nolta/10/4/10_

322/_pdf/-char/en.

Alessandro Benfenati and Alessio Marta. A singular Riemannian geometry approach to
deep neural networks: II. Reconstruction of 1-D equivalence classes. Neural Networks,
158:344–358, 2023a. ISSN 0893-6080. doi:https://doi.org/10.1016/j.neunet.2022.11.026.
URL https://www.sciencedirect.com/science/article/pii/S0893608022004671.

Alessandro Benfenati and Alessio Marta. A singular Riemannian geometry approach
to deep neural networks: I. Theoretical foundations. Neural Networks, 158:331–343,
2023b. ISSN 0893-6080. doi:https://doi.org/10.1016/j.neunet.2022.11.022. URL https:

//www.sciencedirect.com/science/article/pii/S0893608022004634.

Blake Bordelon and Cengiz Pehlevan. Self-consistent dynamical field theory of kernel
evolution in wide neural networks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, volume 35,
2022. URL https://openreview.net/forum?id=sipwrPCrIS.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep
learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478,
2021. URL https://geometricdeeplearning.com/.

Christopher J. C. Burges. Geometry and invariance in kernel based methods. In Bernhard
Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Advances in Kernel
Methods: Support Vector Learning, page 89–116, Cambridge, MA, USA, 1999. MIT Press.
ISBN 0262194163.

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christopher Ré. Low-
dimensional hyperbolic knowledge graph embeddings. arXiv preprint arXiv:2005.00545,
2020.

11

https://doi.org/10.48550/arXiv.2303.09540
https://doi.org/10.48550/ARXIV.2212.10414
https://arxiv.org/abs/2212.10414
https://doi.org/https://doi.org/10.1016/S0893-6080(99)00032-5
https://www.sciencedirect.com/science/article/pii/S0893608099000325
https://www.sciencedirect.com/science/article/pii/S0893608099000325
https://www.jstage.jst.go.jp/article/nolta/10/4/10_322/_pdf/-char/en
https://www.jstage.jst.go.jp/article/nolta/10/4/10_322/_pdf/-char/en
https://doi.org/https://doi.org/10.1016/j.neunet.2022.11.026
https://www.sciencedirect.com/science/article/pii/S0893608022004671
https://doi.org/https://doi.org/10.1016/j.neunet.2022.11.022
https://www.sciencedirect.com/science/article/pii/S0893608022004634
https://www.sciencedirect.com/science/article/pii/S0893608022004634
https://openreview.net/forum?id=sipwrPCrIS
https://geometricdeeplearning.com/

Zavatone-Veth Yang Rubinfien Pehlevan

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In Hal Daumé III and Aarti Singh,
editors, Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pages 1597–1607. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/v119/chen20j.html.

Youngmin Cho and Lawrence K Saul. Kernel methods for deep learning. In
Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, edi-
tors, Advances in Neural Information Processing Systems, volume 22. Curran As-
sociates, Inc., 2009. URL https://proceedings.neurips.cc/paper/2009/file/

5751ec3e9a4feab575962e78e006250d-Paper.pdf.

Youngmin Cho and Lawrence K Saul. Analysis and extension of arc-cosine
kernels for large margin classification. arXiv preprint arXiv:1112.3712, 2011.
doi:10.48550/ARXIV.1112.3712. URL https://arxiv.org/abs/1112.3712.

SueYeon Chung, Daniel D. Lee, and Haim Sompolinsky. Classification and geometry of general
perceptual manifolds. Phys. Rev. X, 8:031003, Jul 2018. doi:10.1103/PhysRevX.8.031003.
URL https://link.aps.org/doi/10.1103/PhysRevX.8.031003.

Taco S Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical CNNs. arXiv
preprint arXiv:1801.10130, 2018.

Uri Cohen, SueYeon Chung, Daniel D. Lee, and Haim Sompolinsky. Separability and
geometry of object manifolds in deep neural networks. Nature Communications, 11(1):
746, 02 2020. ISSN 2041-1723. doi:10.1038/s41467-020-14578-5. URL https://doi.org/

10.1038/s41467-020-14578-5.

Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural net-
works: The power of initialization and a dual view on expressivity. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.

cc/paper/2016/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf.

DLMF. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release
1.1.1 of 2021-03-15, 2021. URL http://dlmf.nist.gov/. F. W. J. Olver, A. B. Olde
Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V.
Saunders, H. S. Cohl, and M. A. McClain, eds.

Christopher Terence John Dodson and Timothy Poston. Tensor Geometry: The Geometric
Viewpoint and its Uses. Springer Berlin Heidelberg, Berlin, Heidelberg, 1991. ISBN
978-3-642-10514-2. doi:10.1007/978-3-642-10514-2 11. URL https://doi.org/10.1007/

978-3-642-10514-2_11.

Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis. Learning
SO(3) equivariant representations with spherical CNNs. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 52–68, 2018.

12

https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.neurips.cc/paper/2009/file/5751ec3e9a4feab575962e78e006250d-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/5751ec3e9a4feab575962e78e006250d-Paper.pdf
https://doi.org/10.48550/ARXIV.1112.3712
https://arxiv.org/abs/1112.3712
https://doi.org/10.1103/PhysRevX.8.031003
https://link.aps.org/doi/10.1103/PhysRevX.8.031003
https://doi.org/10.1038/s41467-020-14578-5
https://doi.org/10.1038/s41467-020-14578-5
https://doi.org/10.1038/s41467-020-14578-5
https://proceedings.neurips.cc/paper/2016/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf
http://dlmf.nist.gov/
https://doi.org/10.1007/978-3-642-10514-2_11
https://doi.org/10.1007/978-3-642-10514-2_11
https://doi.org/10.1007/978-3-642-10514-2_11

How does training shape the Riemannian geometry of neural network representations?

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv, 2014. doi:10.48550/ARXIV.1412.6572. URL https://arxiv.

org/abs/1412.6572.

Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning mixed-curvature
representations in product spaces. In International conference on learning representations,
2018.

Anupam Gupta. Embedding tree metrics into low dimensional euclidean spaces. In Proceed-
ings of the thirty-first annual ACM symposium on Theory of computing, pages 694–700,
1999.

Boris Hanin and David Rolnick. Complexity of linear regions in deep networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 2596–2604. PMLR, 09–15 Jun 2019a. URL https://proceedings.mlr.press/

v97/hanin19a.html.

Boris Hanin and David Rolnick. Deep ReLU networks have surprisingly few activation
patterns. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019b. URL https://proceedings.neurips.cc/paper/2019/

file/9766527f2b5d3e95d4a733fcfb77bd7e-Paper.pdf.

Michael Hauser and Asok Ray. Principles of Riemannian geometry in neural networks. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/

file/0ebcc77dc72360d0eb8e9504c78d38bd-Paper.pdf.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016. doi:10.1109/CVPR.2016.90. URL https://ieeexplore.

ieee.org/document/7780459.

Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a
classifier against adversarial manipulation. Advances in neural information processing
systems, 30, 2017.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs). arXiv, 2016.
doi:10.48550/ARXIV.1606.08415. URL https://arxiv.org/abs/1606.08415.

Piyush Kaul and Brejesh Lall. Riemannian curvature of deep neural networks.
IEEE Transactions on Neural Networks and Learning Systems, 31(4):1410–1416, 2020.
doi:10.1109/TNNLS.2019.2919705.

Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor
Lempitsky. Hyperbolic image embeddings. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6418–6428, 2020.

13

https://doi.org/10.48550/ARXIV.1412.6572
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
https://proceedings.mlr.press/v97/hanin19a.html
https://proceedings.mlr.press/v97/hanin19a.html
https://proceedings.neurips.cc/paper/2019/file/9766527f2b5d3e95d4a733fcfb77bd7e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9766527f2b5d3e95d4a733fcfb77bd7e-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/0ebcc77dc72360d0eb8e9504c78d38bd-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/0ebcc77dc72360d0eb8e9504c78d38bd-Paper.pdf
https://doi.org/10.1109/CVPR.2016.90
https://ieeexplore.ieee.org/document/7780459
https://ieeexplore.ieee.org/document/7780459
https://doi.org/10.48550/ARXIV.1606.08415
https://arxiv.org/abs/1606.08415
https://doi.org/10.1109/TNNLS.2019.2919705

Zavatone-Veth Yang Rubinfien Pehlevan

Anna Klimovskaia, David Lopez-Paz, Léon Bottou, and Maximilian Nickel. Poincaré maps
for analyzing complex hierarchies in single-cell data. Nature communications, 11(1):2966,
2020.

Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in
PyTorch. arXiv preprint arXiv:2005.02819, 2020.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of
neural network representations revisited. In Kamalika Chaudhuri and Ruslan Salakhut-
dinov, editors, Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 3519–3529. PMLR, 09–15
Jun 2019. URL https://proceedings.mlr.press/v97/kornblith19a.html.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009. URL https://www.cs.toronto.edu/~kriz/cifar.html.

Line Kuhnel, Tom Fletcher, Sarang Joshi, and Stefan Sommer. Latent space non-linear
statistics. arXiv, 2018. doi:10.48550/ARXIV.1805.07632. URL https://arxiv.org/abs/

1805.07632.

Demir N Kupeli. Singular semi-Riemannian geometry, volume 366. Springer Science &
Business Media, 2013. URL https://doi.org/10.1007/978-94-015-8761-7.

Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. ATT
Labs [Online], 2, 2010. URL http://yann.lecun.com/exdb/mnist.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):
436–444, May 2015. ISSN 1476-4687. doi:10.1038/nature14539. URL https://doi.org/

10.1038/nature14539.

Jaehoon Lee, Jascha Sohl-Dickstein, Jeffrey Pennington, Roman Novak, Sam Schoenholz,
and Yasaman Bahri. Deep neural networks as Gaussian processes. In International
Conference on Learning Representations, 2018. URL https://openreview.net/forum?

id=B1EA-M-0Z.

Kuang Liu, Wei Yang, Peiwen Yang, and Felipe Ducau. Train CIFAR10 with PyTorch.
Github, 02 2021. URL https://github.com/kuangliu/pytorch-cifar.

Alexander G. de G. Matthews, Jiri Hron, Mark Rowland, Richard E. Turner, and Zoubin
Ghahramani. Gaussian process behaviour in wide deep neural networks. In International
Conference on Learning Representations, 2018. URL https://openreview.net/forum?

id=H1-nGgWC-.

Yu Meng, Jiaxin Huang, Guangyuan Wang, Chao Zhang, Honglei Zhuang, Lance Kaplan,
and Jiawei Han. Spherical text embedding. Advances in neural information processing
systems, 32, 2019.

Nina Miolane, Nicolas Guigui, Alice Le Brigant, Johan Mathe, Benjamin Hou, Yann Thanwer-
das, Stefan Heyder, Olivier Peltre, Niklas Koep, Hadi Zaatiti, et al. Geomstats: a Python

14

https://proceedings.mlr.press/v97/kornblith19a.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.48550/ARXIV.1805.07632
https://arxiv.org/abs/1805.07632
https://arxiv.org/abs/1805.07632
https://doi.org/10.1007/978-94-015-8761-7
http://yann.lecun.com/exdb/mnist
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://openreview.net/forum?id=B1EA-M-0Z
https://openreview.net/forum?id=B1EA-M-0Z
https://github.com/kuangliu/pytorch-cifar
https://openreview.net/forum?id=H1-nGgWC-
https://openreview.net/forum?id=H1-nGgWC-

How does training shape the Riemannian geometry of neural network representations?

package for Riemannian geometry in machine learning. Journal of Machine Learning
Research, 21(223):1–9, 2020. URL http://jmlr.org/papers/v21/19-027.html.

Gal Mishne, Zhengchao Wan, Yusu Wang, and Sheng Yang. The numerical stability of
hyperbolic representation learning. arXiv preprint arXiv:2211.00181, 2022.

Charles W Misner, Kip S Thorne, and John Archibald Wheeler. Gravitation. Princeton
University Press, 2017. ISBN 9780691177793.

Jishnu Mukhoti, Andreas Kirsch, Joost van Amersfoort, Philip HS Torr, and Yarin Gal.
Deep deterministic uncertainty: A simple baseline. arXiv preprint arXiv:2102.11582, 2021.

Waleed Mustafa, Robert A Vandermeulen, and Marius Kloft. Input Hessian regularization
of neural networks. arXiv preprint arXiv:2009.06571, 2020.

Aran Nayebi and Surya Ganguli. Biologically inspired protection of deep networks from
adversarial attacks. arXiv, 2017. doi:https://doi.org/10.48550/arXiv.1703.09202.

Radford M Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks,
pages 29–53. Springer, 1996.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical repre-
sentations. Advances in neural information processing systems, 30, 2017.

Roman Novak, Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington, and Jascha Sohl-
Dickstein. Sensitivity and generalization in neural networks: an empirical study. In
International Conference on Learning Representations, 2018. URL https://openreview.

net/forum?id=HJC2SzZCW.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems 32, pages 8024–
8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

Roger Penrose. The road to reality : a complete guide to the laws of the universe. A.A.
Knopf, New York, 1st American edition, 2005. ISBN 0679454438.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya
Ganguli. Exponential expressivity in deep neural networks through transient
chaos. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 29. Curran As-
sociates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/

148510031349642de5ca0c544f31b2ef-Paper.pdf.

15

http://jmlr.org/papers/v21/19-027.html
https://doi.org/https://doi.org/10.48550/arXiv.1703.09202
https://openreview.net/forum?id=HJC2SzZCW
https://openreview.net/forum?id=HJC2SzZCW
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://proceedings.neurips.cc/paper/2016/file/148510031349642de5ca0c544f31b2ef-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/148510031349642de5ca0c544f31b2ef-Paper.pdf

Zavatone-Veth Yang Rubinfien Pehlevan

R. Price. A useful theorem for nonlinear devices having Gaussian inputs. IRE Transactions
on Information Theory, 4(2):69–72, 1958. doi:10.1109/TIT.1958.1057444. URL https:

//doi.org/10.1109/TIT.1958.1057444.

Adityanarayanan Radhakrishnan, Daniel Beaglehole, Parthe Pandit, and Mikhail Belkin.
Feature learning in neural networks and kernel machines that recursively learn features.
arXiv, 2022. doi:10.48550/ARXIV.2212.13881. URL https://arxiv.org/abs/2212.

13881.

Daniel A Roberts, Sho Yaida, and Boris Hanin. The Principles of Deep Learning Theory:
An Effective Theory Approach to Understanding Neural Networks. Cambridge University
Press, 2022. URL https://deeplearningtheory.com/.

David Saad and Sara A. Solla. Exact solution for on-line learning in multilayer neural
networks. Phys. Rev. Lett., 74:4337–4340, May 1995. doi:10.1103/PhysRevLett.74.4337.
URL https://link.aps.org/doi/10.1103/PhysRevLett.74.4337.

Rik Sarkar. Low distortion delaunay embedding of trees in hyperbolic plane. In International
symposium on graph drawing, pages 355–366. Springer, 2011.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120,
2013.

Hang Shao, Abhishek Kumar, and P. Thomas Fletcher. The Riemannian geometry of deep
generative models. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, June 2018.

James B. Simon, Maksis Knutins, Liu Ziyin, Daniel Geisz, Abraham J. Fetterman, and
Joshua Albrecht. On the stepwise nature of self-supervised learning. In Proceedings of the
40th International Conference on Machine Learning, 2023. URL https://arxiv.org/

abs/2303.15438.

Ondrej Skopek, Octavian-Eugen Ganea, and Gary Bécigneul. Mixed-curvature variational
autoencoders. In 8th International Conference on Learning Representations (ICLR
2020)(virtual). International Conference on Learning Representations, 2020.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv, 2013.
doi:10.48550/ARXIV.1312.6199. URL https://arxiv.org/abs/1312.6199.

Eliot Tron, Nicolas Couellan, and Stéphane Puechmorel. Canonical foliations of neural
networks: application to robustness. arXiv preprint arXiv:2203.00922, 2022.

Binxu Wang and Carlos R Ponce. A geometric analysis of deep generative image models and
its applications. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=GH7QRzUDdXG.

16

https://doi.org/10.1109/TIT.1958.1057444
https://doi.org/10.1109/TIT.1958.1057444
https://doi.org/10.1109/TIT.1958.1057444
https://doi.org/10.48550/ARXIV.2212.13881
https://arxiv.org/abs/2212.13881
https://arxiv.org/abs/2212.13881
https://deeplearningtheory.com/
https://doi.org/10.1103/PhysRevLett.74.4337
https://link.aps.org/doi/10.1103/PhysRevLett.74.4337
https://arxiv.org/abs/2303.15438
https://arxiv.org/abs/2303.15438
https://doi.org/10.48550/ARXIV.1312.6199
https://arxiv.org/abs/1312.6199
https://openreview.net/forum?id=GH7QRzUDdXG

How does training shape the Riemannian geometry of neural network representations?

Binxu Wang and Carlos R. Ponce. Tuning landscapes of the ventral stream. Cell Reports,
41(6):111595, 2022. ISSN 2211-1247. doi:https://doi.org/10.1016/j.celrep.2022.111595.
URL https://www.sciencedirect.com/science/article/pii/S2211124722014607.

Alex H Williams, Erin Kunz, Simon Kornblith, and Scott Linderman. Generalized shape
metrics on neural representations. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,
volume 34, pages 4738–4750. Curran Associates, Inc., 2021. URL https://proceedings.

neurips.cc/paper/2021/file/252a3dbaeb32e7690242ad3b556e626b-Paper.pdf.

Christopher KI Williams. Computing with infinite networks. Advances in Neural Information
Processing Systems, pages 295–301, 1997.

Peter Williams, Sheng Li, Jianfeng Feng, and Si Wu. A geometrical method to improve
performance of the support vector machine. IEEE Transactions on Neural Networks, 18
(3):942–947, 2007. doi:10.1109/TNN.2007.891625.

Si Wu and Shun-Ichi Amari. Conformal transformation of kernel functions: A data-
dependent way to improve support vector machine classifiers. Neural Processing Letters,
15(1):59–67, Feb 2002. ISSN 1573-773X. doi:10.1023/A:1013848912046. URL https:

//doi.org/10.1023/A:1013848912046.

Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process
behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint
arXiv:1902.04760, 2019.

Greg Yang and Edward J. Hu. Tensor Programs IV: Feature learning in infinite-width neural
networks. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 11727–11737. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/

v139/yang21c.html.

Jacob A. Zavatone-Veth and Cengiz Pehlevan. Activation function dependence of
the storage capacity of treelike neural networks. Phys. Rev. E, 103:L020301, Feb
2021. doi:10.1103/PhysRevE.103.L020301. URL https://link.aps.org/doi/10.1103/

PhysRevE.103.L020301.

Jacob A. Zavatone-Veth and Cengiz Pehlevan. On neural network kernels and the storage
capacity problem. Neural Computation, 34(5):1136–1142, 04 2022. ISSN 0899-7667.
doi:10.1162/neco a 01494. URL https://doi.org/10.1162/neco_a_01494.

Jacob A. Zavatone-Veth, Abdulkadir Canatar, Benjamin S. Ruben, and Cengiz Pehle-
van. Asymptotics of representation learning in finite Bayesian neural networks. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, volume 34, pages 24765–24777. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/

cf9dc5e4e194fc21f397b4cac9cc3ae9-Abstract.html.

17

https://doi.org/https://doi.org/10.1016/j.celrep.2022.111595
https://www.sciencedirect.com/science/article/pii/S2211124722014607
https://proceedings.neurips.cc/paper/2021/file/252a3dbaeb32e7690242ad3b556e626b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/252a3dbaeb32e7690242ad3b556e626b-Paper.pdf
https://doi.org/10.1109/TNN.2007.891625
https://doi.org/10.1023/A:1013848912046
https://doi.org/10.1023/A:1013848912046
https://doi.org/10.1023/A:1013848912046
https://proceedings.mlr.press/v139/yang21c.html
https://proceedings.mlr.press/v139/yang21c.html
https://doi.org/10.1103/PhysRevE.103.L020301
https://link.aps.org/doi/10.1103/PhysRevE.103.L020301
https://link.aps.org/doi/10.1103/PhysRevE.103.L020301
https://doi.org/10.1162/neco_a_01494
https://doi.org/10.1162/neco_a_01494
https://proceedings.neurips.cc/paper/2021/hash/cf9dc5e4e194fc21f397b4cac9cc3ae9-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/cf9dc5e4e194fc21f397b4cac9cc3ae9-Abstract.html

Zavatone-Veth Yang Rubinfien Pehlevan

Jacob A Zavatone-Veth, Julian Alex Rubinfien, and Cengiz Pehlevan. Training shapes
the curvature of shallow neural network representations. In NeurIPS 2022 Workshop on
Symmetry and Geometry in Neural Representations, 2022a. URL https://openreview.

net/forum?id=CeZZvKVzGz8.

Jacob A. Zavatone-Veth, William L. Tong, and Cengiz Pehlevan. Contrasting random
and learned features in deep Bayesian linear regression. Phys. Rev. E, 105:064118, Jun
2022b. doi:10.1103/PhysRevE.105.064118. URL https://link.aps.org/doi/10.1103/

PhysRevE.105.064118.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stephane Deny. Barlow Twins:
Self-supervised learning via redundancy reduction. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pages 12310–12320. PMLR, 07 2021.
URL https://proceedings.mlr.press/v139/zbontar21a.html.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-
ing deep learning (still) requires rethinking generalization. Communications of the ACM,
64(3):107–115, 2021. doi:10.1145/3446776. URL https://doi.org/10.1145/3446776.

18

https://openreview.net/forum?id=CeZZvKVzGz8
https://openreview.net/forum?id=CeZZvKVzGz8
https://doi.org/10.1103/PhysRevE.105.064118
https://link.aps.org/doi/10.1103/PhysRevE.105.064118
https://link.aps.org/doi/10.1103/PhysRevE.105.064118
https://proceedings.mlr.press/v139/zbontar21a.html
https://doi.org/10.1145/3446776
https://doi.org/10.1145/3446776

How does training shape the Riemannian geometry of neural network representations?

Appendix A. Detailed overview of related works

In this Appendix, we give a more complete overview of related works. First, in the standard
program of geometric deep learning with smooth manifolds, one seeks to define a feature
map that induces a tractable metric on the input space Bronstein et al. (2021). Of particular
interest are manifolds with constant negative or positive curvature—hyperbolic and spherical
spaces, respectively—which have enjoyed ample success in multiple machine learning tasks.
To give just a few examples, hyperbolic representations have demonstrated performance
gains relative to unconstrained representations in textual entailment (Nickel and Kiela, 2017),
image classification (Khrulkov et al., 2020), knowledge graph embedding (Chami et al.,
2020), single-cell clustering (Klimovskaia et al., 2020), et cetera. Their positively-curved
spherical counterparts provide competitive performance in tasks including 3D recognition
(Cohen et al., 2018), shape detection (Esteves et al., 2018), token embeddings (Meng et al.,
2019), and many others. Importantly, these successes were enabled by prior knowledge of
which geometries are optimal for a given set of data. For instance, the use of hyperbolic
representations for graph embedding is motivated by the fact that tree graphs embed in low-
dimensional hyperbolic space with low distortion (Gupta, 1999; Sarkar, 2011). Some effort
has been devoted to moving beyond the simple constant-curvature setting by considering
products of fixed-curvature manifolds (Gu et al., 2018; Skopek et al., 2020), but when a
variable-curvature representation is optimal for generalization is as yet poorly understood.
Our goal in this work is to move towards the investigation of such settings, and to those
where one cannot leverage prior information about the geometric structure of the data at
hand.

As introduced above, our hypothesis for how the Riemannian geometry of neural network
representations changes during training is directly inspired by the work of Amari and Wu
(1999). In a series of works (Amari and Wu, 1999; Wu and Amari, 2002; Williams et al., 2007),
they proposed to modify the kernel of a support vector machine as k̃(x,y) = h(x)h(y)k(x,y)
for some positive scalar function h(x) chosen such that the magnification factor

√
det g is

large near the SVM’s decision boundary. Concretely, they proposed to fit an SVM with

some base kernel k, choose h(x) =
∑

v∈SV(k) exp
[
−∥x−v∥2

2τ2

]
for τ a bandwidth parameter

and SV(k) the set of support vectors for k, and then fit an SVM with the modified kernel
k̃. Here, ∥ · ∥ denotes the Euclidean norm. This process could then be iterated, yielding a
sequence of modified kernels. As we review in Appendix H, this update expands the volume
element near support vectors—and thus near SVM decision boundaries—for an appropriate
range of the bandwidth parameters. This hand-designed form of iterative feature learning
could improve generalization performance on a set of small-scale tasks (Amari and Wu, 1999;
Wu and Amari, 2002; Williams et al., 2007).

Burges (1999) investigated the geometry induced by common kernels. To motivate
this, note that if we define the feature kernel k(x,y) = Φi(x)Φi(y) for x,y ∈ D, then
the resulting metric can be written in terms of the kernel as gµν = [∂xµ∂yνk(x,y)]y=x =
(1/2)∂xµ∂xνk(x,x) − [∂yµ∂yνk(x,y)]y=x. This formula applies even if n = ∞, giving the
metric induced by the feature embedding associated to a suitable Mercer kernel (Burges, 1999;
Amari and Wu, 1999). With this setup, Burges (1999) showed that any translation-invariant
kernel of the form k(x,y) = k(∥x− y∥2)—not just the radial basis function—yields a flat,
constant metric, and gave a detailed characterization of polynomial kernels k(x,y) = (x ·y)q.

S1

Zavatone-Veth Yang Rubinfien Pehlevan

Cho and Saul (2011) subsequently analyzed the geometry induced by arc-cosine kernels,
i.e., the feature kernels of infinitely-wide shallow neural networks with threshold-power law
activation functions ϕ(x) = max{0, x}q and random parameters (Cho and Saul, 2009). Our
results on infinitely-wide networks for general smooth activation functions build on these
works. More recent works have studied the representational geometry of deep networks with
random Gaussian parameters in the limit of large width and depth (Poole et al., 2016; Amari
et al., 2019), tying into a broader line of research on infinite-width limits in which inference
and prediction is captured by a kernel machine (Neal, 1996; Williams, 1997; Daniely et al.,
2016; Lee et al., 2018; Matthews et al., 2018; Yang, 2019; Yang and Hu, 2021; Zavatone-Veth
et al., 2021; Zavatone-Veth and Pehlevan, 2022; Bordelon and Pehlevan, 2022). Our results
on the representational geometry of wide shallow networks with smooth activation functions
build on these ideas, particularly those relating activation function derivatives to input
discriminability (Poole et al., 2016; Daniely et al., 2016; Zavatone-Veth and Pehlevan, 2021,
2022).

Particularly closely related to our work are several recent papers that aim to study the
curvature of neural network representations. Hauser and Ray (2017); Benfenati and Marta
(2023b) discuss formal principles of Riemannian geometry in deep neural networks, but do
not characterize how training shapes the geometry. Kaul and Lall (2020) aimed to study the
curvature of metrics induced by the outputs of pretrained classifiers. However, their work is
limited by the fact that they estimate input-space derivatives using inexact finite differences
under the strong assumption that the input data is confined to a known smooth submanifold
of Rd. In very recent work, Benfenati and Marta (2023a) have used the geometry induced
by the full input-output mapping to reconstruct iso-response curves of deep networks. The
metric induced on input space by the Fisher information metric on classifier outputs was
also considered by Nayebi and Ganguli (2017), who showed that this metric magnifies
areas near decision boundaries. For points to be classified correctly, this is in some sense
necessarily true. Tron et al. (2022) built upon the idea of pulling from Fisher information
metric to derive geodesically-aware adversarial attacks. In contrast to these works, our work
focuses on hidden representations, and seeks to characterize the representational manifolds
themselves. Finally, several recent works have studied the Riemannian geometry of the
latent representations of deep generative models (Shao et al., 2018; Kuhnel et al., 2018;
Wang and Ponce, 2021).

Appendix B. Supplementary discussion

Our work does not address the question of whether expanding areas near decision boundaries
generically improves classifier generalization, consistent with Amari and Wu (1999)’s original
motivations. Indeed, it is easy to imagine a scenario in which the geometry is overfit, and
the trained network becomes too sensitive to small changes in the input. This possibility
is consistent with prior work on the sensitivity of deep networks (Novak et al., 2018), and
with the related phenomenon of adversarial vulnerability (Szegedy et al., 2013; Goodfellow
et al., 2014). Previous adversarial robustness guarantees focus on the space of network
outputs (Hein and Andriushchenko, 2017; Mustafa et al., 2020; Tron et al., 2022); we believe
investigating geometrically-inspired feature-space adversarial defenses is an interesting avenue
for future work. In particular, we propose that this perspective could form the basis of an

S2

How does training shape the Riemannian geometry of neural network representations?

approach to adversarially-robust self-supervised learning, where for a given feature map one
could guarantee robustness for any reasonable readout.

Another possible application of our ideas is to the problem of semantic data deduplication.
In contemporaneous work, Abbas et al. (2023) have proposed a data pruning method that
identifies related examples based on their embeddings under a pretrained feature map. Their
method proceeds in two steps: first, they cluster examples using k-means based on the
Euclidean distances between their embeddings, and then they eliminate examples within
each cluster by identifying pairs whose embeddings have Euclidean cosine similarity above
some threshold. They show that this procedure can substantially reduce the size of large
image and text datasets, and that models trained on the pruned datasets display superior
performance. By considering local distances between points in embedding space, their
method is closely related to a finite-difference approximation of the distance as measured by
the induced metric of the pretrained feature map. We therefore propose that the Riemannian
viewpoint taken here could allow both for deeper understanding of existing deduplication
methods and for the design of novel algorithms that are both principled and interpretable.

Appendix C. Simplification of the Riemann tensor for shallow neural
networks

In this section, we show how the general form of the Riemann tensor can be simplified
for metrics of the form induced by shallow neural network feature maps. We first show
that the Riemann tensor and Ricci scalar simplify substantially for metrics such that ∂αgµν
is completely symmetric under permutation of its indices, and then show that the neural
networks of the form considered in this work satisfy this property. As elsewhere, our
conventions follow Dodson and Poston (1991).

C.1. Simplification of the Riemann tensor

Assuming ∂αgµν is symmetric under permutation of its indices, the Christoffel symbols of
the second kind reduce to

Γα
βγ =

1

2
gαµ(∂βgγµ − ∂µgβγ + ∂γgµβ) (C.1)

=
1

2
gαµ∂βgγµ. (C.2)

S3

Zavatone-Veth Yang Rubinfien Pehlevan

The (3, 1) Riemann tensor is then

Rµ
ναβ = ∂αΓ

µ
βν − ∂βΓ

µ
αν + Γρ

ανΓ
µ
βρ − Γρ

βνΓ
µ
αρ (C.3)

=
1

2
[∂α(g

µρ∂βgνρ)− ∂β(g
µρ∂αgνρ)]

+
1

4

[
(gρλ∂αgνλ)(g

µσ∂βgρσ)− (gρλ∂βgνλ)(g
µσ∂αgρσ)

]
(C.4)

=
1

2
[∂αg

µρ∂βgνρ − ∂βg
µρ∂αgνρ + gµρ(∂α∂βgνρ − ∂β∂αgνρ)]

+
1

4

[
−∂αgνλ∂βgµλ + ∂βgνλ∂αg

µλ
]

(C.5)

=
3

4
(∂αg

µρ∂βgνρ − ∂βg
µρ∂αgνρ), (C.6)

where we have used the fact that partial derivatives commute and recalled the matrix calculus
identity

∂αg
µν = −gµρgνλ∂αgρλ. (C.7)

Then, the (4, 0) Riemann tensor is

Rµναβ = gµλR
λ
ναβ (C.8)

= −3

4
gρλ(∂αgµρ∂βgνλ − ∂βgµρ∂αgνλ) (C.9)

which, given the permutation symmetry of the derivatives of the metric, can be re-expressed
as

Rµναβ = −3

4
gρλ(∂ρgµα∂λgνβ − ∂ρgµβ∂λgνα). (C.10)

It is then easy to see that the simplified formula for the Riemann tensor has the expected
symmetry properties under index permutation:

Rµναβ = −Rµνβα (C.11)

Rµναβ = −Rνµαβ (C.12)

Rµναβ = +Rαβµν (C.13)

and satisfies the Bianchi identity

Rµναβ +Rµαβν +Rµβνα = 0. (C.14)

Finally, the Ricci scalar is

R = gβνRα
ναβ (C.15)

= −3

4
gµαgνβgρλ(∂αgµρ∂βgνλ − ∂βgµρ∂αgνλ) (C.16)

= −3

4
gρλ(∂αg

αρ∂βg
βλ − ∂βg

αρ∂αg
βλ). (C.17)

The expression on the second-to-last line is useful for numerical purposes as it does not require
one to automatically differentiate through a matrix inverse. Moreover, it is significantly
more efficient to evaluate than first evaluating the Christoffel symbols and then using that
result to compute the Ricci scalar from the Riemann tensor in its un-simplified form.

S4

How does training shape the Riemannian geometry of neural network representations?

C.2. Proof of symmetry of metric derivatives for shallow neural networks

We now want to prove that the derivatives of the metrics induced by shallow neural networks
satisfy the useful symmetry property noted above. Consider a shallow network metric of the
general form

gµν = Ew,b[ϕ
′(w · x+ b)2wµwν], (C.18)

where we do not assume that the distribution of the weights and biases is Gaussian. For
such a metric, we have

∂αgµν = 2Ew,b[ϕ
′(w · x+ b)ϕ′′(w · x+ b)wαwµwν], (C.19)

which is symmetric under permutation of its indices, as desired.

Appendix D. Expansion of geometric quantities for a shallow network
with fixed weights

In this appendix, we derive formulas for the geometric quantities of a finite-width shallow
network with fixed weights. Our starting point is the metric

gµν =
1

n
ϕ′(zj)

2wjµwjν , (D.1)

where zj = wj · x+ bj is the preactivation of the j-th hidden unit.

D.1. Direct derivations for 2D inputs

As a warm-up, we first derive the geometric quantities for two-dimensional inputs (d = 2),
using simple explicit formulas for the determinant and inverse of the metric. These derivations
have the same content as those in following sections for general input dimension, but are
more straightforward. In this case, we will explicitly write out summations over hidden units,
as we will need to exclude certain index combinations. As the metric is a 2× 2 symmetric
matrix, we have immediately that

det g = g11g22 − g212 (D.2)

=
1

n2

n∑
j,k=1

ϕ′(zj)
2ϕ′(zk)

2(w2
j1w

2
k2 − wj1wj2wk1wk2) (D.3)

=
1

n2

∑
k ̸=j

ϕ′(zj)
2ϕ′(zk)

2(w2
j1w

2
k2 − wj1wj2wk1wk2) (D.4)

=
1

n2

∑
k<j

M2
jkϕ

′(zj)
2ϕ′(zk)

2 (D.5)

=
1

2n2

∑
j,k

M2
jkϕ

′(zj)
2ϕ′(zk)

2, (D.6)

where we have defined

Mjk = det

(
wj1 wj2

wk1 wk2

)
= wj1wk2 − wj2wk1. (D.7)

S5

Zavatone-Veth Yang Rubinfien Pehlevan

This shows explicitly that the metric is invertible if and only if at least one pair of weight
vectors is linearly independent, as one would intuitively expect. Moreover, we of course have

gµν =
1

det g

(
g22 −g12
−g12 g11

)
. (D.8)

As we are working in two dimensions, the Riemann tensor has only one independent
component, and is entirely determined by the Ricci scalar (Dodson and Poston, 1991):

Rµναβ =
R

2
(gµαgνβ − gµβgνα). (D.9)

Given the permutation symmetry of ∂αgµν , we can combine the results of Appendix C with
the simple formula for gµν to obtain

R =
3

2(det g)2

[
g11(∂1g22∂2g12 − ∂2g22∂1g12)

+ g12(∂1g11∂2g22 − ∂2g11∂1g22)

+ g22(∂1g12∂2g11 − ∂2g12∂1g11)

]
(D.10)

In general, we have

∂αgνρ∂βgλγ − ∂βgνρ∂αgλγ =
4

n2

∑
k ̸=j

ϕ′(zj)ϕ
′′(zj)ϕ

′(zk)ϕ
′′(zk)

× (wjαwkβ − wjβwkα)wjνwjρwkλwkγ (D.11)

hence, using the fact that Mjj = 0, we have

(det g)2

3
R =

2

n3

n∑
i,j,k=1

Mjkϕ
′(zi)

2ϕ′(zj)ϕ
′(zk)ϕ

′′(zj)ϕ
′′(zk)

× (w2
i1w

2
j2wk1wk2 + wi1wi2w

2
j1w

2
k2 + w2

i2wj1wj2w
2
k1) (D.12)

As Mkj = −Mjk, we can antisymmetrize the term in the round brackets in those indices,
yielding

(det g)2

3
R =

1

n3

n∑
i,j,k=1

Mjkϕ
′(zi)

2ϕ′(zj)ϕ
′(zk)ϕ

′′(zj)ϕ
′′(zk)

×
[
(w2

i1w
2
j2wk1wk2 + wi1wi2w

2
j1w

2
k2 + w2

i2wj1wj2w
2
k1)− (j ↔ k)

]
.

(D.13)

With a bit of algebra, we have

(w2
i1w

2
j2wk1wk2 + wi1wi2w

2
j1w

2
k2 + w2

i2wj1wj2w
2
k1)− (j ↔ k) = −MjkMijMik. (D.14)

S6

How does training shape the Riemannian geometry of neural network representations?

Therefore,

R = − 3

n3(det g)2

n∑
i,j,k=1

M2
jkMijMikϕ

′(zi)
2ϕ′(zj)ϕ

′(zk)ϕ
′′(zj)ϕ

′′(zk). (D.15)

As Mii = 0, the non-vanishing contributions to the sum are now triples of distinct indices.
We remark that the index i is singled out in this expression. If n = 2, the Ricci scalar, and
thus the Riemann tensor, vanishes identically. This follows from the fact that in this case
the feature map is a change of coordinates on the input space (Misner et al., 2017; Dodson
and Poston, 1991). If n = 3, we have the relatively simple formula

R =
2

9(det g)2
M12M23M31ϕ

′(z1)ϕ
′(z2)ϕ

′(z3)

×
[
M23ϕ

′(z1)ϕ
′′(z2)ϕ

′′(z3)−M13ϕ
′(z2)ϕ

′′(z1)ϕ
′′(z3) +M12ϕ

′(z3)ϕ
′′(z1)ϕ

′′(z2)

]
.

(D.16)

D.2. The volume element

We now consider the volume element for general input dimension d. We use the Leibniz
formula for determinants in terms of the Levi-Civita symbol ϵµ1···µd (Penrose, 2005; Misner
et al., 2017):

det g = ϵµ1···µdg1µ1 · · · gdµd
(D.17)

=
1

d!
ϵµ1···µdϵν1···νdgµ1ν1 · · · gµdνd . (D.18)

This gives

det g =
1

d!
ϵµ1···µdϵν1···νdgµ1ν1 · · · gµdνd (D.19)

=
1

ndd!
ϵµ1···µdϵν1···νdϕ′(zj1)

2 · · ·ϕ′(zjd)
2wj1µ1wj1ν1 · · ·wjdµd

wjdνd (D.20)

=
1

ndd!
ϕ′(zj1)

2 · · ·ϕ′(zjd)
2(ϵµ1···µdwj1µ1 · · ·wjdµd

)(ϵν1···νdwj1ν1 · · ·wjdνd) (D.21)

=
1

ndd!
M2

j1···jdϕ
′(zj1)

2 · · ·ϕ′(zjd)
2, (D.22)

where

Mj1···jd = ϵµ1···µdwj1µ1 · · ·wjdµd
(D.23)

= det

wj11 · · · wj1d
...

. . .
...

wjd1 · · · wjdd

 (D.24)

is the minor of the weight matrix obtained by selecting rows j1, . . . , jd. For d = 2, this result
agrees with that which we obtained in Appendix D.1.

S7

Zavatone-Veth Yang Rubinfien Pehlevan

D.3. The Riemann tensor and Ricci scalar

To compute the curvature for general input dimension, we need the inverse of the metric,
which can be expanded using the Levi-Civita symbol as (Penrose, 2005)

gµν =
1

(d− 1)! det g
ϵµµ2···µdϵνν2···νdgµ2ν2 · · · gµdνd . (D.25)

Then, applying the results of Appendix C for

∂αgµν =
2

n
ϕ′(zj)ϕ

′′(zj)wjαwjµwjν , (D.26)

the (4, 0) Riemann tensor is

Rµναβ = −3

4
gρλ(∂ρgµα∂λgνβ − ∂ρgµβ∂λgνα) (D.27)

= − 3

nd+1(d− 1)! det g
ϕ′(zj2)

2 · · ·ϕ′(zjd)
2ϕ′(zi)ϕ

′′(zi)ϕ
′(zk)ϕ

′′(zk)

× ϵρµ2···µdϵλν2···νdwj2µ2wj2ν2 · · ·wjdµd
wjdνd

× (wiρwiµwiαwkλwkνwkβ − wiρwiµwiβwkλwkνwkα) (D.28)

= − 3

nd+1(d− 1)! det g
ϕ′(zj2)

2 · · ·ϕ′(zjd)
2ϕ′(zi)ϕ

′′(zi)ϕ
′(zk)ϕ

′′(zk)

× (ϵρµ2···µdwiρwj2µ2 · · ·wjdµd
)(ϵλν2···νdwkλwj2ν2 · · ·wjdνd)

× (wiµwiαwkνwkβ − wiµwiβwkνwkα) (D.29)

= − 3

nd+1(d− 1)! det g
ϕ′(zj2)

2 · · ·ϕ′(zjd)
2ϕ′(zi)ϕ

′′(zi)ϕ
′(zk)ϕ

′′(zk)

×Mij2···jdMkj2···jdwiµwkν(wiαwkβ − wiβwkα). (D.30)

Raising one index, the (3, 1) Riemann tensor is

Rλ
ναβ = gλµRµναβ (D.31)

= − 3

n2[nd−1(d− 1)! det g]2

× ϕ′(zl2)
2 · · ·ϕ′(zld)

2ϕ′(zj2)
2 · · ·ϕ′(zjd)

2ϕ′(zi)ϕ
′′(zi)ϕ

′(zk)ϕ
′′(zk)

×Mij2···jdMkj2···jdMil2···ldϵ
λν2···νdwl2ν2 · · ·wldνdwkν(wiαwkβ − wiβwkα) (D.32)

hence the Ricci tensor is

Rνβ = Rλ
νλβ (D.33)

= − 3

n2[nd−1(d− 1)! det g]2
ϕ′(zj2)

2 · · ·ϕ′(zjd)
2ϕ′(zl2)

2 · · ·ϕ′(zld)
2

× ϕ′(zi)ϕ
′′(zi)ϕ

′(zk)ϕ
′′(zk)

×Mij2···jdMkj2···jdMil2···ldwkν(Mil2···ldwkβ − wiβMkl2···ld). (D.34)

S8

How does training shape the Riemannian geometry of neural network representations?

Finally, the Ricci scalar is

R = gνβRνβ (D.35)

= − 3

n2[nd−1(d− 1)! det g]3

× ϕ′(zi)ϕ
′′(zi)ϕ

′(zj)ϕ
′′(zj)ϕ

′(zk2)
2 · · ·ϕ′(zkd)

2ϕ′(zl2)
2 · · ·ϕ′(zld)

2ϕ′(zm2)
2 · · ·ϕ′(zmd

)2

×Mik2···kdMjk2···kd(M
2
il2···ldM

2
jm2···md

−Mil2···ldMjl2···ldMim2···md
Mjm2···md

). (D.36)

We now observe that the quantity outside the round brackets is symmetric under
interchanging lµ ↔ mµ, hence we may symmetrize the quantity in the round brackets, which,
as

(M2
il2···ldM

2
jm2···md

−Mil2···ldMjl2···ldMim2···md
Mjm2···md

) + (lµ ↔ mµ) (D.37)

= M2
il2···ldM

2
jm2···md

+M2
im1···md

M2
jl2···ld − 2Mil2···ldMjl2···ldMim2···md

Mjm2···md
(D.38)

= (Mil2···ldMjm2···md
−Mim2···md

Mjl2···ld)
2, (D.39)

yields

R = − 3

2n2[nd−1(d− 1)! det g]3
ϕ′(zi)ϕ

′′(zi)ϕ
′(zj)ϕ

′′(zj)ϕ
′(zk2)

2 · · ·ϕ′(zkd)
2Mik2···kdMjk2···kd

× ϕ′(zl2)
2 · · ·ϕ′(zld)

2ϕ′(zm2)
2 · · ·ϕ′(zmd

)2(Mil2···ldMjm2···md
−Mim2···md

Mjl2···ld)
2.
(D.40)

If d = 2, we can show by direct computation that

MilMjm −MimMjl = MijMlm, (D.41)

hence this result simplifies to

R = − 3

2n5[det g]3
ϕ′(zi)ϕ

′′(zi)ϕ
′(zj)ϕ

′′(zj)ϕ
′(zk)

2MikMjkM
2
ij

× ϕ′(zl)
2ϕ′(zm)2M2

lm (D.42)

= − 3

n3(det g)2
ϕ′(zi)ϕ

′′(zi)ϕ
′(zj)ϕ

′′(zj)ϕ
′(zk)

2MikMjkM
2
ij , (D.43)

which recovers the formula (D.15) we obtained in Appendix D.1.

D.4. Example: error function activations

In this section, we perform explicit computations for error function activations ϕ(x) =
erf(x/

√
2). In this case, ϕ′(x) =

√
2/π exp(−x2/2), so

det g =
1

ndd!
M2

j1···jdϕ
′(zj1)

2 · · ·ϕ′(zjd)
2 (D.44)

=
1

d!

(
2

πn

)d

M2
j1···jd exp[−(z

2
j1 + · · ·+ z2jd)]. (D.45)

S9

Zavatone-Veth Yang Rubinfien Pehlevan

Each contribution to this sum is a Gaussian bump, which we write as

exp[−(z2j1 + · · ·+ z2jd)] = exp [−(Qj1···jd)µν [xµ − (cj1···jd)µ][xν − (cj1···jd)ν]] (D.46)

for a d× d precision matrix Qj1···jd and a center point cj1···jd . Expanding out the sum of
squares in the exponential, we have

z2j1 + · · ·+ z2jd = (wj1µxµ + bj1)
2 + · · ·+ (wjdµxµ + bjd)

2 (D.47)

= (wj1µwj1ν + · · ·+ wjdµwjdν)xµxν

+ 2(bj1wj1µ + · · ·+ bjdwjdµ)xµ

+ (b2j1 + · · ·+ b2jd), (D.48)

from which we can see that the precision matrix is

(Qj1···jd)µν = wj1µwj1ν + · · ·+ wjdµwjdν , (D.49)

while the center point is given by (cj1···jd)µ = −(Q−1
j1···jd)µν(bj1wj1ν + · · ·+ bjdwjdν). Using

the Leibniz formula for determinants (D.17), we have

detQj1···jd =
1

d!
ϵµ1···µdϵν1···νd(Qj1···jd)µ1ν1 · · · (Qj1···jd)µdνd (D.50)

=
1

d!

d∑
i1,··· ,id=1

ϵµ1···µdϵν1···νdwji1µ1wji1ν1
· · ·wjidµd

wjidνd
(D.51)

=
1

d!

d∑
i1,··· ,id=1

(ϵµ1···µdwji1µ1 · · ·wjidµd
)(ϵν1···νdwji1ν1

· · ·wjidνd
) (D.52)

=
1

d!

d∑
i1,··· ,id=1

(ϵji1 ···jid)2M2
j1···jd (D.53)

= M2
j1···jd , (D.54)

hence we may write

det g =
1

d!

(
2

πn

)d

det(Qj1···jd) exp

(
− (Qj1···jd)µν [xµ − (cj1···jd)µ][xν − (cj1···jd)ν]

)
. (D.55)

If all the bias terms are zero, then the bump must be centered at the origin.

S10

How does training shape the Riemannian geometry of neural network representations?

If the bias terms do not vanish, then the center point is

(cj1···jd)µ

= −(Q−1
j1···jd)µν(bj1wj1ν + · · ·+ bjdwjdν) (D.56)

= − 1

(d− 1)! detQj1···jd

d∑
i1,··· ,id=1

ϵµµ2···µdϵνν2···νdwji2µ2wji2ν2
· · ·wjidµd

wjidνd
bji1wji1µ

(D.57)

= − 1

(d− 1)! detQj1···jd
Mj1···jd

d∑
i1,··· ,id=1

ϵνν2···νdwji2ν2
· · ·wjidνd

bji1 ϵ
ji1 ···jid (D.58)

= − 1

(d− 1)!Mj1···jd

d∑
i1,··· ,id=1

ϵνν2···νdϵji1 ···jid bji1wji2ν2
· · ·wjidνd

(D.59)

= − 1

(d− 1)!Mj1···jd
ϵνν2···νdBj1···jd,ν2···νd (D.60)

where we let

Bj1···jd,ν2···νd = det


bj1 wj1ν2 · · · wj1νd

bj2 wj2ν2 · · · wj2νd
...

...
. . .

...
bjd wjdν2 · · · wjdνd

 . (D.61)

In general, this is not particularly useful.
In the special case of two-dimensional inputs, we have

det g =

(
2

πn

)2∑
j<k

det(Qjk) exp

(
− (Qjk)µν [xµ − (cjk)µ][xν − (cjk)ν]

)
. (D.62)

for center

cjk =
1

Mjk

(
−(bjwk2 − bkwj2)
bjwk1 − bkwj1

)
(D.63)

and precision matrix

Qjk =

(
w2
j1 + w2

k1 wj1wj2 + wk1wk2

wj1wj2 + wk1wk2 w2
i2 + w2

j2

)
. (D.64)

As ϕ′′(x) = −
√
2/πx exp(−x2/2), the Ricci curvature has a similar expansion in terms

of Gaussian bumps, but the bumps are now modulated by products of preactivations.
As an illustrative example, consider an erf network with three hidden units, with biases

uniformly equal to b and weight matrix

W =

 1 0

−1/2
√
3/2

−1/2 −
√
3/2

 . (D.65)

S11

Zavatone-Veth Yang Rubinfien Pehlevan

-2 -1 0 1 2

-2

-1

0

1

2

x1

x 2

det(g), b=0

0.0096

0.0192

0.0288

0.0384

0.0480

0.0576

0.0672

0.0768

0.0864

0.0960

-2 -1 0 1 2

-2

-1

0

1

2

x1

x 2

R, b=0

-8.55

-6.65

-4.75

-2.85

-0.95

0.95

2.85

4.75

6.65

8.55

-2 -1 0 1 2

-2

-1

0

1

2

x1

x 2

det(g), b=1

0.0032

0.0064

0.0096

0.0128

0.0160

0.0192

0.0224

0.0256

0.0288

0.0320

-2 -1 0 1 2

-2

-1

0

1

2

x1

x 2

R, b=1

-8.55

-6.65

-4.75

-2.85

-0.95

0.95

2.85

4.75

6.65

8.55

Figure D.1: Volume element (left) and Ricci scalar R (right) for erf networks with three
hidden units on the unit circle and bias zero (top) or one (bottom). See text for
full description of the setup.

In this case, there are three unique pairs of weights that contribute to the volume element:
12, 23, and 13. We can easily see that M12 = M23 = −M13 = +

√
3/2, and then that the

bump centers are at

c12 = b

(
−1
−
√
3

)
, c23 = b

(
+2
0

)
, and c13 = b

(
−1
+
√
3

)
. (D.66)

with precision matrices

Q12 =

(
5/4 −

√
3/4

−
√
3/4 5/4

)
, Q12 =

(
1/2 0
0 3/2

)
, and Q12 =

(
5/4

√
3/4√

3/4 5/4

)
.

(D.67)

We can also explicitly write out

det g =
1

3π2
e−

3
2
(∥x∥2+2b2)

[
e(x1+b)2 + e

1
4
(x1+

√
3x2−2b)2 + e

1
4
(x1−

√
3x2−2b)2

]
. (D.68)

S12

How does training shape the Riemannian geometry of neural network representations?

Therefore, the volume element has a three-fold rotational symmetry for b > 0, and six-fold
symmetry for b = 0. Considering the Ricci scalar, we can use the explicit formula obtained
for three hidden units in Appendix D.1 to work out that

R = − 1

π3(det g)2
(∥x∥2 − 4b2)e−

3
2
(∥x∥2+2b2) (D.69)

= −9π

4

(∥x∥2 − 4b2)e
3
2
(∥x∥2+2b2)[

e(x1+b)2 + e
1
4
(x1+

√
3x2−2b)2 + e

1
4
(x1−

√
3x2−2b)2

]2 . (D.70)

Again, the Ricci scalar has six-fold symmetry if b = 0, and three-fold symmetry if b > 0. We
visualize this behavior in Figure D.1.

Appendix E. Derivation of geometric quantities at infinite width

In this section, we derive the geometric quantities for the infinite-width metric (or, equiva-
lently, the average finite-width metric) at initialization:

gµν = Ew∼N (0,σ2Id),b∼N (0,ζ2)[ϕ
′(w · x+ b)2wµwν]. (E.1)

For the remainder of this section, we will simply write the expectation over w ∼ N (0, σ2Id)
and b ∼ N (0, ζ2) as E[·]. We let

z ≡ w · x+ b, (E.2)

which has an induced N (0, σ2∥x∥2 + ζ2) distribution. We remark that it is easy to show
that (E.1) is the metric induced by the NNGP kernel

k(x,y) = E[ϕ(w · x+ b)ϕ(w · y + b)] (E.3)

using the formula (Burges, 1999)

gµν =
1

2

∂2

∂xµ∂xν
k(x,x)−

[
∂2

∂yµ∂yν
k(x,y)

]
y=x

(E.4)

for a sufficiently smooth activation function. We note also that here the differentiability
conditions may be relaxed to weak differentiability conditions (Daniely et al., 2016; Zavatone-
Veth et al., 2021).

Applying Stein’s lemma twice, we have

gµν = E[ϕ′(z)2wµwν] (E.5)

= σ2E[ϕ′(z)2]δµν + 2σ2E[ϕ′(z)ϕ′′(z)wν]xµ (E.6)

= σ2E[ϕ′(z)2]δµν + 2σ4E[ϕ′′(z)2 + ϕ′(z)ϕ′′′(z)]xµxν . (E.7)

Then, we can see that the metric is of a special form. Noting that E[ϕ′(z)2] ≥ 0 and that

σ2E[ϕ′′(z)2 + ϕ′(z)ϕ′′′(z)] = σ2 d

d(σ2∥x∥2 + ζ2)
E[ϕ′(z)2] (E.8)

=
d

d∥x∥2
E[ϕ′(z)2] (E.9)

S13

Zavatone-Veth Yang Rubinfien Pehlevan

by Price’s theorem (Price, 1958) and the chain rule, we may write

gµν = eΩ(∥x∥2)[δµν + 2Ω′(∥x∥2)xµxν], (E.10)

where we have defined the function Ω(∥x∥2) by

expΩ(∥x∥2) ≡ σ2E[ϕ′(z)2]. (E.11)

E.1. Geometric quantities for metrics of the form induced by the shallow
NNGP kernel

Motivated by the metric induced by the shallow NNGP kernel, we consider metrics of the
general form

gµν = eΩ(∥x∥2)[δµν + 2Ω′(∥x∥2)xµxν], (E.12)

where Ω is a smooth function with derivative Ω′. For brevity, we will henceforth suppress
the argument of Ω.

Such metrics have determinant

det g = edΩ(1 + 2∥x∥2Ω′) (E.13)

by the matrix determinant lemma, and inverse

gµν = e−Ω

[
δµν −

2Ω′

1 + 2∥x∥2Ω′xµxν

]
(E.14)

by the Sherman-Morrison formula. It is also easy to see that the eigenvalues of the metric at
any given point x are eΩ(1 + 2∥x∥2Ω′) with corresponding eigenvector x/∥x∥, and eΩ with
multiplicity d− 1, with eigenvectors lying in the null space of x.

We now consider the Riemann tensor. For such metrics, we have

∂αgµν = 2eΩΩ′(xαδµν + xµδαν + xνδαµ) + 4eΩ[Ω′′ + (Ω′)2]xαxµxν , (E.15)

which is symmetric under permutation of its indices. Then, we may use the simplified
formula for the (4, 0) Riemann tensor obtained in Appendix C, which yields

Rµναβ = − 3eΩ(Ω′)2

1 + 2∥x∥2Ω′

[
∥x∥2δµαδνβ +

(
1 + 2∥x∥2Ω

′′

Ω′

)
(xνxβδµα + xµxαδνβ)− (α↔ β)

]
(E.16)

after a straightforward computation, where we have noted that

gρλxρ = e−Ω 1

1 + 2∥x∥2Ω′xλ (E.17)

and

gρλxρxλ = e−Ω ∥x∥2

1 + 2∥x∥2Ω′ (E.18)

S14

How does training shape the Riemannian geometry of neural network representations?

We can then compute the Ricci scalar

R = gµαgνβRµναβ (E.19)

= − 3eΩ(Ω′)2

1 + 2∥x∥2Ω′

[
∥x∥2(gααgββ − gαβgβα)

+ 2

(
1 + 2∥x∥2Ω

′′

Ω′

)
(gααgνβxνxβ − gµαgµβxαxβ)

]
(E.20)

which, as

gααgββ − gαβgβα = e−2Ω

(
d− 2

2∥x∥2Ω′

1 + 2∥x∥2Ω′

)
(d− 1) (E.21)

and

gααgνβxνxβ − gµαgµβxαxβ = e−2Ω ∥x∥2

1 + 2∥x∥2Ω′ (d− 1) (E.22)

yields

R = −3(d− 1)e−Ω(Ω′)2∥x∥2

(1 + 2∥x∥2Ω′)2

[
d+ 2 + 2∥x∥2

(
(d− 2)Ω′ + 2

Ω′′

Ω′

)]
. (E.23)

E.2. Examples

As an analytically-tractable example, we consider the error function ϕ(x) = erf(x/
√
2). For

such networks, the NNGP kernel is

k(x,y) =
2

π
arcsin

σ2x · y + ζ2√
(1 + σ2∥x∥2 + ζ2)(1 + σ2∥y∥2 + ζ2)

, (E.24)

which is easy to prove using the integral representation of the error function (Saad and Solla,
1995). In this case, we have the simple result ϕ′(x) =

√
2/π exp(−x2/2), hence we can easily

compute

E[ϕ′(z)2] =
2

π
√

1 + 2(σ2∥x∥2 + ζ2)
. (E.25)

This yields

Ω(∥x∥2) = −1

2
log[1 + 2(σ2∥x∥2 + ζ2)] + log

2σ2

π
(E.26)

hence we easily obtain the volume element

√
det g =

(
2σ2

π

)d/2 √
2ζ2 + 1

[1 + 2(σ2∥x∥2 + ζ2)](d+2)/4
(E.27)

and the Ricci scalar

R = − 3π(d− 1)(d+ 2)σ2∥x∥2

2(2ζ2 + 1)
√
1 + 2(σ2∥x∥2 + ζ2)

. (E.28)

S15

Zavatone-Veth Yang Rubinfien Pehlevan

n=50
n=100
n=250
n=500
n=1000
n=∞

de
t(g

)1/
2

erf

0

0.4

R

x2

-8

2a

║x║
0 2

de
t(g

)1/
2

0

12

R

-1

0b

1
║x║

0 21
║x║

0 21
║x║

0 21

0

-2

-4

x2erf

-60.1

0.2

0.3
8

4

-0.2

-0.4

-0.6

-0.8

n=50
n=100
n=250
n=500
n=1000 n=∞

Figure E.1: Convergence of geometric quantities for finite-width networks with Gaussian
random parameters to the infinite-width limit. a. The magnification factor√
det g (left) and Ricci scalar R (right) as functions of the input norm ∥x∥

for networks with ϕ(x) = erf(x/
√
2). Empirical results for finite networks,

computed using (D.1) and (D.15) are shown in blue, with solid lines showing the
mean and shaded patches the standard deviation over 25 realizations of random
Gaussian parameters. In all cases, σ = ζ = 1. The infinite-width result is shown
as a black dashed line. b. As in a, but for normalized quadratic activation
functions ϕ(x) = x2/

√
3.

In this case, it is easy to see that R is negative for all d > 1 and that it is a monotonically
decreasing function of ∥x∥, hence curvature becomes increasingly negative with increasing
radius. In Figure E.1, we illustrate the convergence of the empirical geometry of finite
networks to this infinite-width result.

Another illustrative example is the monomial ϕ(x) = xq/
√

(2q − 1)!! for integer q ≥ 1,
normalized such that

k(x,x) =
1

(2q − 1)!!
E[z2q] = (σ2∥x∥2 + ζ2)q. (E.29)

Though this is not required to obtain the metric, an explicit formula for the NNGP kernel
for two distinct inputs can be obtained using the Mehler expansion of the bivariate Gaussian
density (Daniely et al., 2016; Zavatone-Veth and Pehlevan, 2021), or by direct computation
using Isserlis’ theorem (Zavatone-Veth et al., 2021). Following the first approach, we expand
the kernel as

k(x,y) =
1

(2q − 1)!!
Ew,b[(w · x+ b)q(w · y + b)q] (E.30)

= [(σ2∥x∥2 + ζ2)(σ2∥y∥2 + ζ2)]q/2
1

(2q − 1)!!
E[uqvq], (E.31)

where we have (
u
v

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
(E.32)

for

ρ =
σ2x · y + ζ2√

(σ2∥x∥2 + ζ2)(σ2∥y∥2 + ζ2)
. (E.33)

S16

How does training shape the Riemannian geometry of neural network representations?

Then, using the Mehler expansion, we have

E[uqvq] =
∞∑
k=0

ρk

k!
Et∼N (0,1)[Hek(t)t

q]2 (E.34)

where Hek(t) is the k-th probabilist’s Hermite polynomial. Using the inversion formula

tq = q!

⌊ q
2

⌋∑
m=0

1

2mm!(q − 2m)!
Heq−2m(t) (E.35)

and the orthogonality relation

Et∼N (0,1)[Hek(t)Heq−2m(t)] = (q − 2m)!δk,q−2m, (E.36)

we have

Et∼N (0,1)[Hek(t)t
q] = q!

⌊ q
2

⌋∑
m=0

1

2mm!
δk,q−2m. (E.37)

Let us first consider the case in which q is even. Let q = 2ℓ. Then, only terms with even k
contribute, and, writing k = 2j, we have

E[uqvq] =
∞∑
j=0

ρ2j

(2j)!

[
(2ℓ)!

ℓ∑
m=0

1

2mm!
δj,ℓ−m

]2
(E.38)

=

ℓ∑
j=0

ρ2j

(2j)!

[
(2ℓ)!

2ℓ−j(ℓ− j)!

]2
(E.39)

= [(2ℓ− 1)!!]22F1

(
−ℓ,−ℓ; 1

2
; ρ2
)
, (E.40)

where 2F1 is the Gauss hypergeometric function (DLMF). Now consider the case in which q
is odd. Letting q = 2ℓ+ 1, only terms with odd k = 2j + 1 contribute, and we have

E[uqvq] =
∞∑
j=0

ρ2j+1

(2j + 1)!

[
(2ℓ+ 1)!

ℓ∑
m=0

1

2mm!
δj,ℓ−m

]
(E.41)

=
ℓ∑

j=0

ρ2j+1

(2j + 1)!

[
(2ℓ+ 1)!

2ℓ−j(ℓ− j)!

]2
(E.42)

= [(2ℓ+ 1)!!]2ρ 2F1

(
−ℓ,−ℓ, 3

2
, ρ2
)
. (E.43)

Combining these results, we obtain an expansion for the kernel.
For these activation functions, we have

E[ϕ′(z)2] =
q2

2q − 1
(σ2∥x∥2 + ζ2)q−1, (E.44)

S17

Zavatone-Veth Yang Rubinfien Pehlevan

q=2

q=3

q=4

q=5

q=6

q=7

q=8

q=9

q=10

0.2 0.4 0.6 0.8 1.0
|x|

-1.5

-1.0

-0.5

R; d=2
d=2

d=3

d=4

d=5

d=6

d=7

d=8

d=9

d=10

0.5 1.0 1.5 2.0
|x|

-20

-15

-10

-5

R; q=2

Figure E.2: Ricci curvature scalar R (E.46) as a function of input modulus ∥x∥ for monomial
activation function NNGPs of varying degree q and input dimension d. At left,
we show the effect of varying the degree q (with lighter shades of red indicated
higher degrees) for fixed dimension d = 2. At right, we show the effect of varying
the dimension d (with lighter shades of purple indicating higher degrees) for
fixed degree q = 2. In all cases, the weight and bias variances are fixed to unity,
i.e., σ2 = ζ2 = 1.

yielding the volume element

√
det g =

√
1 + 2(q − 1)

σ2∥x∥2
σ2∥x∥2 + ζ2

(
q2σ2(σ2∥x∥2 + ζ2)q−1

2q − 1

)d/2

(E.45)

and the Ricci scalar

R = −3(d− 1)(q − 1)2(2q − 1)σ2∥x∥2[(d+ 2)ζ2 + (d− 2)(2q − 1)σ2∥x∥2]
q2(σ2∥x∥2 + ζ2)q[(2q − 1)σ2∥x∥2 + ζ2]2

. (E.46)

If ζ = 0, this simplifies substantially to√
det g = qd(2q − 1)(1−d)/2σdq∥x∥(q−1)d (E.47)

and

R

∣∣∣∣
ζ=0

= −3(d− 1)(d− 2)(q − 1)2

q2(σ2∥x∥2)q
. (E.48)

For all ζ ≥ 0, all dimensions d ≥ 1, and all q > 1,
√
det g is a monotone increasing function

of ∥x∥2.
The Ricci curvature is somewhat more complicated. First, we can see that R = 0 if q = 1

or d = 1, which we would expect. We can then restrict our attention to d > 1 and q > 1.
If ζ = 0, R = 0 if d = 2 and R < 0 for all d > 2, but, unlike for the error function, |R| is
monotonically decreasing with ∥x∥. We now consider ζ > 0. By differentiation, we have

∂R

∂(σ2∥x∥2)
∝ (d− 2)(2q − 1)2q(σ2∥x∥2)3 + (2q − 1)[(2q − 1)d+ 6]ζ2(σ2∥x∥2)2

− [8 + q(d− 14)]ζ4(σ2∥x∥2)− (d+ 2)ζ6, (E.49)

S18

How does training shape the Riemannian geometry of neural network representations?

where the implied constant of proportionality is strictly positive. This suggests that R
is non-monotonic, with an initial decrease followed by a gradual increase towards zero as
∥x∥ → ∞. We illustrate this behavior across degrees q and input dimensions d in Figure E.2.
In d = 2, we have the simplification that the equation ∂R/∂(σ2∥x∥2) = 0 is quadratic rather
than cubic, and we find easily that ∂R/∂(σ2∥x∥2) < 0 if σ2∥x∥2 < C, ∂R/∂(σ2∥x∥2) = 0 if
σ2∥x∥2 = C, and ∂R/∂(σ2∥x∥2) > 0 if σ2∥x∥2 > C, where the threshold value is determined
by

[2q2 + q − 1]C2 + (3q − 2)ζ2C − ζ4 = 0, (E.50)

hence

C =

√
17q2 − 8q − 3q + 2

2(2q2 + q − 1)
ζ2. (E.51)

For q = 2, this gives
√
C ≃ 0.42ζ, which is consistent with our numerical results in Figure

E.1.

Appendix F. Comparing the shallow Neural Tangent Kernel to the NNGP

In this section, we compare the shallow NTK to the shallow NNGP. For a shallow network

f(x) =
1√
n

n∑
j=1

vjϕ(wj · x+ bj), (F.1)

the empirical NTK is

Θe(x,y) =
1

n

n∑
j=1

ϕ(wj · x+ bj)ϕ(wj · y + bj)

+
1

n

n∑
j=1

v2jϕ
′(wj · x+ bj)ϕ

′(wj · y + bj)(1 + x · y) (F.2)

and, taking w ∼ N (0, σ2Id), b ∼ N (0, ζ2), and v ∼ N (0, ξ2In), the infinite-width NTK is

Θ(x,y) = E[ϕ(w · x+ b)ϕ(w · y + b)] + ξ2E[ϕ′(w · x+ b)ϕ′(w · y + b)](1 + x · y) (F.3)

where the remaining expectations are taken over w and b.
Writing z ≡ w · x+ b, we have

∂2

∂xµ∂xν
Θ(x,x)

=
∂2

∂xµ∂xν

[
E[ϕ(z)2] + ξ2E[ϕ′(z)2](1 + ∥x∥2)

]
(F.4)

=
∂

∂xµ

[
2E[ϕ(z)ϕ′(z)wν] + 2ξ2E[ϕ′(z)ϕ′′(z)wν](1 + ∥x∥2) + 2ξ2E[ϕ′(z)2]xν

]
(F.5)

= 2E[{ϕ′(z)2 + ϕ(z)ϕ′′(z)}wµwν] + 2ξ2E[{ϕ′′(z)2 + ϕ′(z)ϕ′′′(z)}wµwν](1 + ∥x∥2)
+ 4ξ2E[ϕ′(z)ϕ′′(z)wν]xµ + 4ξ2E[ϕ′(z)ϕ′′(z)wµ]xν + 2ξ2E[ϕ′(z)2]δµν (F.6)

S19

Zavatone-Veth Yang Rubinfien Pehlevan

while

∂2

∂yµ∂yν
Θ(x,y)

=
∂2

∂yµ∂yν

[
E[ϕ(w · x+ b)ϕ(w · y + b)] + ξ2E[ϕ′(w · x+ b)ϕ′(w · y + b)](1 + x · y)

]
(F.7)

=
∂

∂yµ

[
E[ϕ(w · x+ b)ϕ′(w · y + b)wν] + ξ2E[ϕ′(w · x+ b)ϕ′′(w · y + b)wν](1 + x · y)

+ ξ2E[ϕ′(w · x+ b)ϕ′(w · y + b)]xν

]
(F.8)

= E[ϕ(w · x+ b)ϕ′′(w · y + b)wµwν] + ξ2E[ϕ′(w · x+ b)ϕ′′′(w · y + b)wµwν](1 + x · y)
+ ξ2E[ϕ′(w · x+ b)ϕ′′(w · y + b)wν]xµ + ξ2E[ϕ′(w · x+ b)ϕ′′(w · y + b)wµ]xν (F.9)

hence[
∂2

∂yµ∂yν
Θ(x,y)

]
y=x

= E[ϕ(z)ϕ′′(z)wµwν] + ξ2E[ϕ′(z)ϕ′′′(z)wµwν](1 + ∥x∥2)

+ ξ2E[ϕ′(z)ϕ′′(z)wν]xµ + ξ2E[ϕ′(z)ϕ′′(z)wµ]xµ. (F.10)

Therefore, we have

gµν =
1

2

∂2

∂xµ∂xν
Θ(x,x)−

[
∂2

∂yµ∂yν
Θ(x,y)

]
y=x

(F.11)

= E[ϕ′(z)2wµwν] + ξ2E[ϕ′′(z)2wµwν](1 + ∥x∥2)
+ ξ2E[ϕ′(z)ϕ′′(z)wν]xµ + ξ2E[ϕ′(z)ϕ′′(z)wµ]xν + ξ2E[ϕ′(z)2]δµν . (F.12)

By Stein’s lemma, as in the NNGP case,

E[ϕ′(z)2wµwν] = σ2E[ϕ′(z)2]δµν + 2σ4E[ϕ′′(z)2 + ϕ′(z)ϕ′′′(z)]xµxν (F.13)

and

E[ϕ′′(z)2wµwν] = σ2E[ϕ′′(z)2]δµν + 2σ4E[ϕ′′′(z)2 + ϕ′′(z)ϕ′′′′(z)]xµxν (F.14)

while

E[ϕ′(z)ϕ′′(z)wν] = σ2E[ϕ′′(z)2 + ϕ′(z)ϕ′′′(z)]xν , (F.15)

and therefore

gµν

= E[ϕ′(z)2wµwν] + ξ2E[ϕ′′(z)2wµwν](1 + ∥x∥2)
+ ξ2E[ϕ′(z)ϕ′′(z)wν]xµ + ξ2E[ϕ′(z)ϕ′′(z)wµ]xν + ξ2E[ϕ′(z)2]δµν (F.16)

=

[
(σ2 + ξ2)E[ϕ′(z)2] + σ2ξ2E[ϕ′′(z)2](1 + ∥x∥2)

]
δµν

+ 2σ2

[
(σ2 + ξ2)E[ϕ′′(z)2 + ϕ′(z)ϕ′′′(z)] + σ2ξ2E[ϕ′′′(z)2 + ϕ′′(z)ϕ′′′′(z)](1 + ∥x∥2)

]
xµxν

(F.17)

S20

How does training shape the Riemannian geometry of neural network representations?

This metric is not quite of the special form of the NNGP metric, as

d

d∥x∥2

[
(σ2 + ξ2)E[ϕ′(z)2] + σ2ξ2E[ϕ′′(z)2](1 + ∥x∥2)

]
= σ2

[
(σ2 + ξ2)E[ϕ′′(z)2 + ϕ′(z)ϕ′′′(z)] + σ2ξ2E[ϕ′′′(z)2 + ϕ′′(z)ϕ′′′′(z)](1 + ∥x∥2)

]
+ σ2ξ2E[ϕ′′(z)2] (F.18)

by Price’s theorem, hence we have

gµν = ω(∥x∥2)δµν + 2
[
ω′(∥x∥2)− σ2ξ2E[ϕ′′(z)2]

]
xµxν (F.19)

for

ω(∥x∥2) = (σ2 + ξ2)E[ϕ′(z)2] + σ2ξ2E[ϕ′′(z)2](1 + ∥x∥2) (F.20)

Even though the geometric quantities associated with this metric are not as easy to compute
as those for the NNGP kernel, we can see that it shares similar symmetries. In particular, it
still takes the form of a projection, and the volume element will depend on the input only
through its norm.

Appendix G. Perturbative finite-width corrections in shallow Bayesian
neural networks

In this section, we describe how one may compute perturbative corrections to geometric
quantities in shallow Bayesian neural networks at large but finite width (Zavatone-Veth
et al., 2021; Roberts et al., 2022). For simplicity, we will focus on corrections to the volume
element. We will not go through the straightforward but tedious exercise of computing
perturbative corrections to the Riemann tensor and Ricci scalar (Misner et al., 2017). We
will follow the notation and formalism of Zavatone-Veth et al. (2021); we could equivalently
use the formalism of Roberts et al. (2022).

We begin by considering the effect of a general perturbation to the metric that preserves
the index-permutation symmetry of its derivatives. We write the metric tensor as gµν =
ḡµν +hµν for some background metric ḡµν and a small perturbation hµν . By Jacobi’s formula
for the variation of a determinant, we have

det g = [1 + ḡµνhµν +O(h2)] det ḡ, (G.1)

hence the volume element expands as√
det g =

[
1 +

1

2
ḡµνhµν +O(h2)

]√
det ḡ. (G.2)

G.1. Metric perturbations for a wide Bayesian neural network

We now consider the concrete setting of a Bayesian neural network with a single hidden
layer of large but finite width n and m-dimensional output,

f(x;W,V) =
1√
n

n∑
i=1

viϕ(wi · x). (G.3)

S21

Zavatone-Veth Yang Rubinfien Pehlevan

We fix isotropic standard Gaussian priors over the weights, and, for a training dataset
{(xa,ya)}pa=1 of p examples, choose an isotropic Gaussian likelihood of inverse variance β:

p({(xa,ya)}pa=1 |W,V) ∝ exp

(
−β

2

p∑
a=1

∥f(xa;W,V)− ya∥22

)
. (G.4)

We denote expectation with respect to the resulting Bayes posterior by ⟨·⟩. Our choice of
unit-variance priors is made without much loss of generality, as changing the prior variance
does not change the qualitative structure of perturbative feature learning (Zavatone-Veth
et al., 2021).

Using the nomenclature of Zavatone-Veth et al. (2021) and Roberts et al. (2022), the
metric

gµν =
1

n

n∑
i=1

ϕ′(wj · x)2wiµwiν (G.5)

is a hidden layer observable, with infinite-width limit given by the metric ḡµν associated
with the NNGP kernel of the network,

ḡµν = EWgµν = Ew∼N (0,Id)[ϕ
′(w · x)2wµwν] (G.6)

where EW denotes expectation with respect to the prior distribution. Then, we may apply
the result of Zavatone-Veth et al. (2021) for the perturbative expansion of posterior moments
of gµν at large width. To state the result, we must first introduce some notation. Let

k(x,y) =
1

n

n∑
i=1

ϕ(wi · x)ϕ(wi · y) (G.7)

be the hidden layer kernel, and

k̄(x,y) = Ew∼N (0,Id)[ϕ(w · x)ϕ(w · y)] (G.8)

be its infinite-width limit, i.e., the NNGP kernel. Then, define the p× p matrix

Ψ ≡ Γ−1GyyΓ
−1 − Γ−1, (G.9)

where the p× p matrix Γ is defined as

Γab ≡ k̄(xa,xb) + β−1δab (G.10)

and Gyy is the normalized target Gram matrix,

(Gyy)ab =
1

m
ya · yb. (G.11)

Then, the result of Zavatone-Veth et al. (2021) yields the perturbative expansion

⟨gµν⟩ = ḡµν +
1

2
m

p∑
a,b=1

Ψab covw[k(xa,xb), gµν] +O
(

1

n2

)
(G.12)

S22

How does training shape the Riemannian geometry of neural network representations?

where the required posterior covariance can be explicitly expressed as

n covw[k(xa,xb), gµν] = Ew∼N (0,Id)[ϕ(za)ϕ(zb)ϕ
′(z)2wµwν]− k̄(xa,xb)ḡµν , (G.13)

where we write za ≡ w · xa and z ≡ w · x. This formula alternatively follows from applying
the result of Zavatone-Veth et al. (2021) for the asymptotics of the mean kernel, and then
using the formula for the metric in terms of derivatives of the kernel (Burges, 1999).

In general, this expression is somewhat unwieldy, and the integrals are challenging to
evaluate in closed form. However, the situation simplifies dramatically if we train with only
a single datapoint, and focus on the zero-temperature limit β →∞. In this case, we can set
m = 1 with very little loss of generality. We then have the simplified expression

⟨gµν⟩ = ḡµν +
1

2

(
y2a

Ew[ϕ(za)2]
− 1

)
covw[k(xa,xa), gµν]

Ew[ϕ(za)2]
+O

(
1

n2

)
(G.14)

hence, to the order of interest, the volume element expands as

⟨
√
det g⟩√
det ḡ

=

√
det⟨g⟩√
det ḡ

+O
(

1

n2

)
(G.15)

= 1 +
1

4n

(
y2a

Ew[ϕ(za)2]
− 1

)
(χ− d) +O

(
1

n2

)
, (G.16)

where we have defined

χ ≡ ḡµνEw[ϕ(za)
2ϕ′(z)2wµwν]

Ew[ϕ(za)2]
(G.17)

and used the facts that ḡµν ḡµν = d and k̄(xa,xa) = Ew[ϕ(za)
2].

From Appendix E, we know that

ḡµν = e−Ω

[
δµν −

2Ω′

1 + 2∥x∥2Ω′xµxν

]
(G.18)

for Ω(∥x∥2) defined by

expΩ(∥x∥2) ≡ Ew[ϕ
′(z)2], (G.19)

so we have

χ =
1

eΩEw[ϕ(za)2]
Ew[ϕ(za)

2ϕ′(z)2wµwνδµν]

− 1

eΩEw[ϕ(za)2]

2Ω′

1 + 2∥x∥2Ω′Ew[ϕ(za)
2ϕ′(z)2z2] (G.20)

Using Stein’s lemma, we have

Ew[ϕ(za)
2ϕ′(z)2wµwνδµν] = dEw[ϕ(za)

2ϕ′(z)2]

+ 2Ew[ϕ(za)ϕ
′(za)zaϕ

′(z)2 + ϕ(za)
2ϕ′(z)ϕ′′(z)z]. (G.21)

S23

Zavatone-Veth Yang Rubinfien Pehlevan

G.2. A tractable example: monomial activation functions

We now specialize to the case of ϕ(x) = xq/
√

(2q − 1)!!, in which all of the required
expectations can be evaluated analytically. In this case, we have the explicit formula

expΩ(∥x∥2) = E[ϕ′(z)2] =
q2

2q − 1
∥x∥2q−2. (G.22)

Noting that

Ew[ϕ(za)ϕ
′(za)zaϕ

′(z)2] = qEw[ϕ(za)
2ϕ′(z)2] (G.23)

and

Ew[ϕ(za)
2ϕ′(z)ϕ′′(z)z] = (q − 1)Ew[ϕ(za)

2ϕ′(z)2], (G.24)

we have

Ew[ϕ(za)
2ϕ′(z)2wµwνδµν] = [d+ 2(2q − 1)]Ew[ϕ(za)

2ϕ′(z)2] (G.25)

=
q2

[(2q − 1)!!]2
[d+ 2(2q − 1)]Ew[z

2q
a z2q−2] (G.26)

and, similarly,

Ew[ϕ(za)
2ϕ′(z)2z2] =

q2

[(2q − 1)!!]2
Ew[z

2q
a z2q]. (G.27)

Then, using the formula for eΩ and the fact that Ew[ϕ(za)
2] = ∥xa∥2q, we have

χ(ρ2) =
(2q − 1)

[(2q − 1)!!]2
[d+ 2(2q − 1)]Ew[u

2q
a u2q−2]− 2(q − 1)

[(2q − 1)!!]2
Ew[u

2q
a u2q] (G.28)

where we have let (
ua
u

)
=

(
za/∥xa∥
z/∥x∥

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
(G.29)

for

ρ =
xa · x
∥xa∥∥x∥

. (G.30)

In general, we have

1

[(2q − 1)!!]2
Ew[u

2q
a u2q] = 2F1

(
−q,−q; 1

2
; ρ2
)

(G.31)

and

2q − 1

[(2q − 1)!!]2
Ew[u

2q
a u2q−2] = 2F1

(
1− q,−q; 1

2
; ρ2
)

(G.32)

S24

How does training shape the Riemannian geometry of neural network representations?

q=1

q=2

q=3

q=4

q=5

q=6

q=7

q=8

q=9

q=10

0.0 0.2 0.4 0.6 0.8 1.0
ρ0.0

0.2

0.4

0.6

0.8

1.0

χ(ρ)/χ(1); d=2

q=1

q=2

q=3

q=4

q=5

q=6

q=7

q=8

q=9

q=10

0.0 0.2 0.4 0.6 0.8 1.0
ρ0.0

0.2

0.4

0.6

0.8

1.0

χ(ρ)/χ(1); d=100

Figure G.1: Normalized perturbative expansion factor χ(ρ2)/χ(ρ = 1) as a function of
overlap ρ for Bayesian MLPs with monomial activation functions of varying
degree q (with larger q indicated by lighter shades of red) in d = 2 (left) and
d = 100 (right). See main text for details.

in terms of the Gauss hypergeometric function (DLMF). Thus, we have

χ(ρ2) = [d+ 2(2q − 1)]2F1

(
1− q,−q; 1

2
; ρ2
)
− 2(q − 1)2F1

(
−q,−q; 1

2
; ρ2
)
. (G.33)

Each of these hypergeometric functions is a polynomial with all-positive coefficients in
ρ2, and both evaluate to unity when ρ = 0 (DLMF). At small order, we have

χ

∣∣∣∣
q=1

− d = 2 (G.34)

for linear networks and

χ

∣∣∣∣
q=2

− d = 4

(
4

3
ρ4 + (d+ 2)ρ2 + 1

)
(G.35)

for quadratic networks. Then, at ρ = 0, one can easily show that

χ(ρ = 0) = d+ 2q (G.36)

and, as ρ increases from zero to one, χ increases monotonically (for all q > 1; for q = 1 it is
constant) to

lim
ρ↑1

χ(1) =
(2(2q − 1)− 1)!!

[(2q − 1)!!]2
[(2q − 1)d+ 2q] (G.37)

using formulas for hypergeometric functions of unit argument (DLMF). Thus, χ(ρ2)− d is
strictly positive for all ρ, d, and q. We plot χ(ρ2)/χ(1) for varying degrees in d = 2 and
d = 100 in Figure G.1 to illustrate the increasing relative separation between ρ(0) and ρ(1)
with increasing d and q.

S25

Zavatone-Veth Yang Rubinfien Pehlevan

Collecting our results, the general expansion (G.15) for the magnification factor simplifies
to

⟨
√
det g⟩√
det ḡ

= 1 +
1

4n

(
y2a
∥xa∥2q

− 1

)
(χ(ρ2)− d) +O

(
1

n2

)
. (G.38)

As χ(ρ2) > d for all ρ, we can see that if ∥xa∥2q > y2a, the leading correction compresses
areas, while if ∥xa∥2q < y2a, it expands them. As χ(ρ2)− d is monotonically increasing in
the overlap ρ = xa·x

∥xa∥∥x∥ , the expansion or contraction is minimal for points orthogonal to
the training example xa, and maximal for points parallel to the training example.

We remark that the dependence on the scale of xa relative to ya parallels the conditions
under which generalization error decreases with increasing width in deep linear networks
(Zavatone-Veth et al., 2022b, 2021): with unit-variance priors, increasing width is beneficial
if

y2a
∥xa∥2

> 1 (G.39)

as shown in Zavatone-Veth et al. (2021). This is a simple consequence of the fact that the
sign of the leading perturbative correction is determined by the same quantity. We note
that, under the prior, as v ∼ N (0, In),

Ew,v[f(xa)
2] = Ew[ϕ(za)

2] (G.40)

= ∥xa∥2q, (G.41)

so this is a comparison of the variance of the function output under the prior to the target
magnitude.

As an example, consider training a network on one point of the XOR task: (1, 1) 7→ 0.
In this case, ∥xa∥2q > y2a, so the volume element will be contracted everywhere, maximally
along the line x1 = x2 and minimally orthogonal to this line.

Appendix H. The geometry of kernel learning algorithms

In this appendix, we give a detailed analysis of the changes in representational geometry
resulting from the original kernel learning algorithm of Amari and Wu (1999), as well as
kernel learning algorithms recently proposed by Radhakrishnan et al. (2022) and Simon
et al. (2023).

H.1. The supervised kernel learning algorithm of Amari and Wu

We begin with a detailed, pedagogical analysis of the kernel learning algorithm proposed by
Amari and Wu that we mentioned in §A. This analysis follows that in their original paper,
with some additional detail. For some base kernel k(x,y), they fit an SVM to obtain a set
of support vectors SV(k) for k. Then, fixing a bandwidth parameter τ > 0, they define a
new kernel

k̃(x,y) = h(x)h(y)k(x,y) (H.1)

S26

How does training shape the Riemannian geometry of neural network representations?

for

h(x) =
∑

v∈SV(k)

exp

[
−∥x− v∥2

2τ2

]
, (H.2)

and fit a new SVM with the modified kernel k̃. Under this transformation, the induced
metric changes as

g̃µν = h(x)2gµν +
∂h(x)

∂xµ

∂h(x)

∂xν
k(x,x) + h(x)

[
∂h(x)

∂xµ

∂k(x,y)

∂yν
+

∂h(x)

∂xν

∂k(x,y)

∂yµ

]
y=x

,

(H.3)

where gµν is the metric induced by k. In their original work, Amari and Wu (1999) focus on
a single iteration of this algorithm, though they consider multiple updates in later works
(Wu and Amari, 2002; Williams et al., 2007).

Here, we will follow their original paper, and consider the effect of a single update starting
from the radial basis function kernel

k(x,y) = exp

[
− 1

2σ2
∥x− y∥2

]
(H.4)

of bandwidth σ2 on the induced geometry. For the RBF kernel, we of course have

∂k(x,y)

∂yµ

∣∣∣∣
y=x

= − 1

σ2
k(x,y)(xµ − yµ)

∣∣∣∣
y=x

= 0, (H.5)

hence the third term in (H.3) vanishes and the first update to the metric is rank-1. Moreover,
the metric induced by the radial basis function kernel is

gµν =
1

σ2
δµν (H.6)

as shown by Amari and Wu (1999) and by Burges (1999), which leaves us with

g̃µν =
h(x)2

σ2
δµν +

∂h(x)

∂xµ

∂h(x)

∂xν
(H.7)

as k(x,x) = 1. Now, by the matrix determinant lemma, we have

det g̃ =

(
h(x)2

σ2

)d(
1 +

σ2

h(x)2
∂h(x)

∂xµ

∂h(x)

∂xµ

)
. (H.8)

As

∂h(x)

∂xµ
=

1

τ2

∑
v∈SV(k)

exp

[
−∥x− v∥2

2τ2

]
(vµ − xµ), (H.9)

we will therefore have contributions of the volume element (or rather to its square) from
different subsets of the support vectors. In their analysis, Amari and Wu (1999) focus on
the case in which the support vectors are well-separated, and the bandwidth is small enough
such that one can neglect the influence of all but one support vector on the metric. Then,
locally, one has only a single Gaussian bump to contend with.

S27

Zavatone-Veth Yang Rubinfien Pehlevan

H.2. The supervised kernel learning algorithm of Radhakrishnan et al.

We now discuss the method for iterative supervised kernel learning proposed by Radhakr-
ishnan et al. (2022). Their method starts with a translation-invariant kernel of the general
form

kM(x,y) = h(∥x− y∥2M), (H.10)

where h : R≥0 → R≥0 is a suitably smooth scalar function and

∥x− y∥2M = (x− y)⊤M(x− y) (H.11)

is the squared Mahalanobis distance between x and y for a constant positive-semidefinite
symmetric matrix M.

Then, for a dataset {(xa, ya)}pa=1, they initialize M = Id, fit a kernel machine

fM(x) =

p∑
a=1

ya(K
−1
M)abkM(xb,x) (H.12)

for (KM)ab = kM(xa,xb) the kernel Gram matrix, update

Mµν ←
1

p

p∑
a=1

∂fM
∂xµ

(xa)
∂fM
∂xν

(xa) (H.13)

to the expected gradient outer product, and repeat.
For a smoothed Laplace kernel, Radhakrishnan et al. (2022) show that this method

achieves accuracy on simple image (CelebA) and tabular datasets that is competitive
with fully-connected neural networks. They also link the expected gradient outer product
to the first-layer weight matrix W1 ∈ Rn×d of a fully-connected network, showing that
W⊤

1 W1 ≃M.
But, using the formula (Burges, 1999)

gµν =
1

2

∂2

∂xµ∂xν
k(x,x)−

[
∂2

∂yµ∂yν
k(x,y)

]
y=x

, (H.14)

the kernel (H.10) induces a metric

gµν =
1

2

∂2

∂xµ∂xν
h(0)−

[
∂2

∂yµ∂yν
h[(x− y)⊤M(x− y)]

]
y=x

(H.15)

= −2h′(0)Mµν . (H.16)

on the input space. This generalizes the result of Burges (1999) for M = Id to general M.
This metric is constant over the entire input space, and is therefore flat (Dodson and Poston,
1991). Thus, Radhakrishnan et al. (2022)’s method achieves strong performance on certain
tasks despite the fact that it results in kernels that always induce flat metrics.

In a footnote, Radhakrishnan et al. (2022) comment that their method can be extended
to general, non-translation-invariant base kernels k(x,y) by defining the transformed kernel

kM(x,y) = k(M1/2x,M1/2y) (H.17)

S28

How does training shape the Riemannian geometry of neural network representations?

for a symmetric positive-definite matrix M with symmetric positive-definite square root
M1/2. If M is positive-definite, this is of course simply a global change of coordinates
x 7→M1/2x on the input space, and so one finds that the the metric gM induced by kM has
components

(gM)µν =
1

2

∂2

∂xµ∂xν
k(M1/2x,M1/2x)−

[
∂2

∂yµ∂yν
k(M1/2x,M1/2y)]

]
y=x

(H.18)

= (M1/2)µρ(M
1/2)νλgµλ, (H.19)

where gµλ is the metric induced by the base kernel k(x,y), evaluated at the point (M1/2x,M1/2y),
and the determinant

det gM = (detM) det g. (H.20)

This is still a rigidly-constrained form of feature learning, as this change of coordinates does
not change the Ricci curvature of the manifold. Moreover, Radhakrishnan et al. (2022) do
not test the performance of the algorithm for non-translation-invariant base kernels.

H.3. The self-supervised kernel learning algorithm of Simon et al.

We now consider the self-supervised kernel learning algorithm proposed in very recent work
by Simon et al. (2023). This method starts with a base kernel

k(x,y) (H.21)

and a dataset of positive pairs {(xa,x
′
a)}

p
a=1. Define the p × p kernel matrix KXX by

(KXX)ab = k(xa,xb), and define KXX ′ , KX ′X , KX ′X ′ analogously. Let

K̃ =

(
KXX KXX ′

KX ′X KX ′X ′

)
∈ R2p×2p (H.22)

be the combined kernel, and let

Z =
1

2n

(
KXX ′KXX K2

XX ′

KX ′X ′KXX KX ′X ′KXX ′

)
+ (transpose) ∈ R2p×2p. (H.23)

Define the symmetric matrix

KΓ = K̃−1/2ZK̃−1/2 ∈ R2p×2p, (H.24)

where we interpret the inverses as pseudoinverses if necessary. Finally, for some integer d, let

K≤d
Γ (H.25)

be the matrix formed by discarding all but the top d eigenvalues of KΓ, and let (K≤d
Γ)+ be

its pesudoinverse. That is, if Kγ has an orthogonal eigendecomposition

KΓ = Udiag(γ1, . . . , γ2p)U
⊤ (H.26)

S29

Zavatone-Veth Yang Rubinfien Pehlevan

for ordered eigenvalues γ1 ≥ γ2 ≥ · · · ≥ γ2p, then

K≤d
Γ = Udiag(γ1, . . . , γd, 0, . . . , 0)U

⊤. (H.27)

Here, we neglect the possibility of degenerate eigenvalues for convenience, and assume
that KΓ has at least d nonzero eigenvalues. In terms of this eigendecomposition, we have
(K≤d

Γ)+ = U diag(1/γ1, . . . , 1/γd, 0, . . . , 0)U
⊤. Then, their method returns a modified kernel

kss(x,y) =

(
KxX
KxX ′

)⊤
K̃−1/2(K≤d

Γ)+K̃−1/2

(
KyX
KyX ′

)
, (H.28)

where we define the p-dimensional vectors KxX and KxX ′ by (KxX)a = k(x,xa) and
(KxX ′)a = k(x,x′

a), respectively. For brevity, we define the 2p× 2p spatially constant matrix

Q = K̃−1/2(K≤d
Γ)+K̃−1/2, (H.29)

such that

kss(x,y) =

(
KxX
KxX ′

)⊤
Q

(
KyX
KyX ′

)
. (H.30)

The kernel kss induces a metric

(gss)µν =
1

2

∂2

∂xµ∂xν
kss(x,x)−

[
∂2

∂yµ∂yν
kss(x,y)

]
y=x

(H.31)

=

(
∂xµKxX
∂xµKxX ′

)⊤
Q

(
∂xνKxX
∂xνKxX ′

)
, (H.32)

which for general base kernels will differ substantially from that induced by the base kernel.

Appendix I. Numerical methods and supplemental figures

I.1. XOR and sinusoidal tasks

As an especially simple toy problem, we begin by training neural networks to perform a
standard XOR classification task. Single-hidden-layer fully-connected networks with Sigmoid
non-linearities are initialized with widths [2, w, 2] where w = 2 and trained on a dataset
consisting of the four points

{(−1,−1), (−1, 1), (1,−1), (1, 1)} (I.1)

with respective labels {0, 1, 1, 0}. Networks are trained via stochastic gradient descent
(learning rate 0.02, momentum 0.9, and weight decay 10−4) with cross entropy-loss for 2000
epochs. As is standard practice in geometric representation learning (Kochurov et al., 2020;
Miolane et al., 2020), in all tests we adopt 64-bit floating point precision (float64) to
minimize instabilities (Mishne et al., 2022).

In addition to architectures with two hidden units, we also attempted higher dimensions.
The redundancy in this case gives rise to vastly different patterns from the architecture with

S30

How does training shape the Riemannian geometry of neural network representations?

a width of 2. Figure I.2, Figure I.3, and Figure I.4 visualize the training dynamics of Ricci
curvature, volume element, and prediction (decision boundary) for w ∈ {10, 100, 250, 500}
hidden units using the Sigmoid non-linearity. As we increase the width of the hidden layer,
both Ricci and volume elements get spherically symmetric as expected, since in the limit the
volume element and curvature only depends on the norm of the query point (Appendix E).

For a slightly more complex toy problem, we train neural networks to classify points
according to a sinusoidal decision boundary. Two-hidden-layer fully-connected networks are
initialized with widths [2,8,8,2] and trained on a dataset consisting of uniformly random
sampled 400 points (x, y) ∈ [−1, 1]× [−1, 1] with labels{

1 y > 3
5 sin (7x− 1)

0 y ≤ 3
5 sin (7x− 1)

(I.2)

Networks are trained via stochastic gradient descent (learning rate 0.05, momentum 0.9, and
zero weight decay) with cross-entropy loss for 10,000 epochs.

In both cases, we calculate the volume element and Ricci scalar induced by the network
at 1,600 points evenly spaced in [−1.5, 1.5] × [−1.5, 1.5] periodically throughout training
(the magnitudes of these two quantities at each of the 1,600 points are plotted as heat maps
in Figures I.1 and 1). The metric we consider is the one induced by the map from input
space to the first hidden layer of the network (in the case of XOR, the single hidden layer),
i.e., the feature map Φj(x) = n−1/2ϕ(wj · x+ bj) for weights wj , biases bj , and activation
function ϕ. The metric is then calculated as

gµν = ∂µΦi∂νΦi, (I.3)

The volume element induced by the network is then dV (x) =
√
det gµν(x), which we can

compute directly using the explicit formula (D.6) from Appendix D. We use the explicit
formula (D.15) to compute the Ricci scalar.

Here, we avoid all-purpose automatic-differentiation-based curvature computation, since
we have empirically observed that automatic differentiation leads to a consistent overestima-
tion of the Ricci curvature quantities due to numerical issues. In particular, in a preliminary
version of this work presented at the NeurIPS 2022 Workshop on Symmetry and Geometry
in Neural Representations, we reported results for the curvature computed using automatic
differentiation (Zavatone-Veth et al., 2022a). In preparing this extended manuscript, we
found that those results were unreliable. This instability was not detected by our previous
small-scale tests of the code. We provide corrected versions of the relevant panels of Figure
1 and 2 of our workshop paper as Figures I.2 and I.6, respectively. The main result of our
workshop paper—that areas are magnified near decision boundaries—is not affected by this
numerical inaccuracy, and we have further tested that the automatic-differentiation-based
volume element computation produces accurate results. We regret any confusion resulting
from this error.

S31

Zavatone-Veth Yang Rubinfien Pehlevan

(a) (b) (c)

Figure I.1: Evolution of the volume element over training in a network trained to perform an
XOR classification task (single hidden layer, two hidden units). Red lines indicate
the decision boundaries of the network. See Appendix I.1 for experimental details
and visualizations for higher hidden dimensions. Note that for two hidden unit
case, the curvature is identically zero.

S32

How does training shape the Riemannian geometry of neural network representations?

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure I.2: Ricci curvature for XOR classification, with an architecture [2, w, 2] for w = 10
(first row), w = 100 (second row), w = 250 (third row), and w = 500 (forth row)
hidden units across different epochs. As the number of hidden units increase, the
curvature structure grows increasingly regularized and spherically symmetric.

S33

Zavatone-Veth Yang Rubinfien Pehlevan

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure I.3: Volume element for XOR classification, with an architecture [2, w, 2] for w = 10
(first row), w = 100 (second row), w = 250 (third row), and w = 500 (forth row)
hidden units across different epochs. The volume element structures likewise
become spherically symmetric as the number of hidden units increase.

S34

How does training shape the Riemannian geometry of neural network representations?

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure I.4: Prediction for XOR classification, with architecture [2, w, 2] for w = 10 (first
row), w = 100 (second row), w = 250 (third row), and w = 500 (forth row)
hidden units across different epochs. As the hidden units increase, the prediction
boundary converges to XOR quicker.

S35

Zavatone-Veth Yang Rubinfien Pehlevan

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure I.5: Evolution of the volume element over training in a network with with architecture
[2, w, 2] for w = 5 (first row), w = 20 (second row), and w = 250 (third row)
hidden units across different epochs trained to classify points separated by a
sinusoidal boundary y = 3

5 sin(7x−1). Red lines indicate the decision boundaries
of the network. See Appendix I.1 for experimental details and visualizations at
other widths.

S36

How does training shape the Riemannian geometry of neural network representations?

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure I.6: Evolution of the Ricci curvature over training in a network trained to classify
points separated by a sinusoidal boundary (single hidden layer with 5 hidden units
(top), 20 hidden units (mid), and 250 hidden units (bottom)), clipped between -
100 and 100 for visualization purposes. Red lines indicate the decision boundaries
of the network. More hidden units offer smoother curvature transition when
traversing the boundary, though the pattern presented here is less illustrative
than the volume element in Figure 1.

S37

Zavatone-Veth Yang Rubinfien Pehlevan

(a)

(b)

(c)

Figure I.7: Evolution of the volume element over training in an architecture of [2, 8, 8, 8, 2]
trained to classify points separated by a sinusoidal boundary. From left to right,
each panel correspond to the feature map induced by the first, second, and third
hidden layers. Red lines indicate the decision boundaries of the network. Note
that the learning is performed predominantly at the first layer, and later layers
offer a better demarcation by polarizing the volume elements at regions near and
away from the decision boundaries. See Appendix I.1 for experimental details.
More hidden units result in a better approximation to the sinusoid curve.

S38

How does training shape the Riemannian geometry of neural network representations?

I.2. Shallow networks trained to classify MNIST digits

We next compute the metric induced on input space by shallow networks trained to classify
MNIST digits (LeCun et al., 2010). Single-hidden-layer fully-connected networks are initial-
ized with widths [784, 2000, 10], representing a modest 2.6-fold representational expansion,
and trained on the 60000 28× 28 pixel handwritten digit images for MNIST dataset and
120000 MNIST plus ambiguous MNIST digit images of the same size for Dirty MNIST
dataset. We perform a 75/25 train test split, and no preprocessing is made on either training
or testing set. Batches of 1000 images and their labels from the training set (numbers 0− 9)
are fed to the network for 200 epochs; the networks are trained via the Adam optimizer
(learning rate 0.001, weight decay 10−4) with negative log-likelihood loss. At the end of 200
epochs both training and testing accuracy exceed 95%. The metric induced by the trained
network at a series of input images is then computed with autograd, e.g., PyTorch (Paszke
et al., 2019). Here, as in Appendix I.1, we use float64 precision (Kochurov et al., 2020;
Miolane et al., 2020; Mishne et al., 2022).

We give two styles of visualization: linear interpolation and plane spanning. For
linear interpolation, the images we consider are images yi interpolated between two test
images x1,x2 as follows: y(t) = (1 − t)x1 + tx2 for t ∈ [0, 1]; for plane spanning, the
images are all in the plane spanned by three random test samples assigned at the edge
of a unit equilateral triangle, so that each edge of the triangle correspond to the linear
interpolation as previously noted. Concretely, we consider y(t1, t2, t3) = t1x1 + t2x2 + t3x3

for {t1, t2, t3 ∈ [0, 1] : t1 + t2 + t3 = 1}. Eigenvalues of the metric matrix gµν tend to become
small as training progresses, and so, due to the high dimensionality of the input space,
the metric

√
det gµν becomes minuscule and difficult to compute within machine precision.

Therefore, instead of
√
det gµν , we compute its logarithm (for efficiency, in production, we

compute the log of the singular values of the Jacobians ∂µΦi so as to avoid the complexity of
large matrix multiplication in figuring out the metric). We find that this log volume element
consistently grows (relatively) large at input images near the decision boundary, as shown in
Figure 2 for the linear interpolation and the plane spanning.

As a preliminary investigation of geometry beyond interpolated low-dimensional slices in
pixel space, we consider the Dirty-MNIST dataset (Mukhoti et al., 2021), which consists of
VAE-generated ambiguous digit images. We also report the distribution of volume element
at train and test samples in Figure I.15 for MNIST and Dirty MNIST digits 0, 7, and 9. In
the large, the volume element evaluated at the ambiguous images is larger than at the clean
images, which is consistent with the local magnification of areas near decision boundaries.
A more rigorous investigation, however, is required to support such a claim.

We conclude this experiment by commenting on the numerical stability of the com-
putations described above. In addition to the geometric quantities, we also examine the
numerical singularity of the metrics. Figure I.13 visualizes the full eigenvalue spectrum of at
the anchor points corresponding to Figure I.11. As training progresses, the decay becomes
slower initially, but expedites at respective tails, potentially as a manipulation by the
network to contract local volumes compared to the boundary towards a better generalization,
whose exact mechanism should be subject to further scrutiny. Importantly, note that all
eigenvalues are of reasonable log scale in the float64 paradigm within 200 training epochs.
Unfortunately, this may not hold when we increase the training epochs or perturb other

S39

Zavatone-Veth Yang Rubinfien Pehlevan

hyperparameters. The tail eigenvalues would become too small even in the float64 range
(smaller than 10−320, perilously close to the smallest positive number a float64 object can
hold), and subsequent arithmetic operations break down. This close-to-singular behavior
of the metric is ticklish and inevitable, and the naive solution of imposing threshold below
which eigenvalues are discarded for volume element computation may risk not observing the
central message of this paper that the volume element is large at the boundary since only
parts of the eigenspectrum is taken into consideration.

(a) (b) (c)

(d) (e) (f)

Figure I.8: log(
√
det g) induced at interpolated images between 1 and 5 (top row) and 1 and

6 (bottom row) by networks trained to classify MNIST digits. Sample images
are visualized at the endpoints and midpoint for each set. Each line is colored by
its prediction at the interpolated region and end points. As training progresses,
the volume elements bulge in the middle (near decision boundary) and taper off
at both endpoints. See Appendix I.2 for experimental details.

S40

How does training shape the Riemannian geometry of neural network representations?

(a) (b) (c)

(d) (e) (f)

Figure I.9: log(
√
det g) induced at interpolated images between 1 and 5 (top row) and 1

and 6 (bottom row) by networks trained to classify Dirty MNIST digits. Sample
images are visualized at the endpoints and midpoint for each set. Each line is
colored by its prediction at the interpolated region and end points. As training
progresses, the volume elements bulge in the middle (near decision boundary)
and taper off at both endpoints. See Appendix I.2 for experimental details.

S41

Zavatone-Veth Yang Rubinfien Pehlevan

(a)

(b)

(c)

Figure I.10: Digit predictions and log(
√
det g) for the hyperplane spanned by three randomly

sampled training point (5, 6, and 7) across different epochs.

S42

How does training shape the Riemannian geometry of neural network representations?

(a)

(b)

(c)

Figure I.11: Digit predictions and log(
√
det g) for the hyperplane spanned by three randomly

sampled training point (5, 6, and 1) across different epochs.

S43

Zavatone-Veth Yang Rubinfien Pehlevan

(a)

(b)

(c)

Figure I.12: Digit predictions and log(
√
det g) for the hyperplane spanned by three randomly

sampled training point (7, 6, and 1) across different epochs.

S44

How does training shape the Riemannian geometry of neural network representations?

(a) 0 100 200 300 400 500 600 700 800

50

40

30

20

10

0

lo
g(

i)

log(i) at 5
epoch

0
50
200

(b) 0 100 200 300 400 500 600 700 800

50

40

30

20

10

0

lo
g(

i)

log(i) at 6
epoch

0
50
200

(c) 0 100 200 300 400 500 600 700 800
40

35

30

25

20

15

10

5

0

lo
g(

i)

log(i) at 1
epoch

0
50
200

Figure I.13: The base-10 logarithms of the square roots of non-zero eigenvalues λi of the
metric g at anchor points 5, 6, and 1 corresponding to Figure I.11

S45

Zavatone-Veth Yang Rubinfien Pehlevan

(a)

(b)

(c)

Figure I.14: Digit predictions and log(
√
det g) for the hyperplane spanned by three randomly

sampled training point (5, 6, and 1 in Dirty MNIST) across different epochs.

S46

How does training shape the Riemannian geometry of neural network representations?

(a) (b) (c)

Figure I.15: Vol element distribution of three different samples: clean MNIST (train), clean
MNIST (test), and ambiguous MNIST (test) samples of class 0, 7, and 9
respectively, using model trained only on the training set of clean MNIST for
200 epochs. Assuming equal variance, all groups yield a p < 10−4 for two-sample
t-test between clean and ambiguous samples.

S47

Zavatone-Veth Yang Rubinfien Pehlevan

I.3. ResNets trained on CIFAR-10

Finally, we experiment on a deep network trained to classify CIFAR-10 images. CIFAR-10
contains 60000 train and 10000 test images, each of a size 3× 32× 32 (Krizhevsky, 2009).
10 classes of images cover plane, car, bird, cat, deer, dog, frog, horse, ship, and truck, with
an equal distribution in each class. Some preprocessing is made to boost performance: for
training set, we pad each image for 4 pixels and crop at random places to keep it of size
32× 32, randomly horizontally flip images with probability 0.5, and translate each channel
by subtracting (0.4914, 0.4822, 0.4465) and scale by dividing (0.2023, 0.1994, 0.2010); for
testing, we only perform the translation and scaling (Liu et al., 2021). We use ResNet-34
(He et al., 2016) with GELU activation functions (Hendrycks and Gimpel, 2016), trained
with SGD using a learning rate 0.01, weight decay 10−4, and momentum 0.9. Batches
of 1024 images are fed to train for 200 epochs. Our ResNet code was adapted from the
publicly-available implementation by Liu et al. (2021), distributed under an MIT License.
At the final epoch the training accuracy reaches above 99% and testing accuracy around
92%.

The images we consider are generated from samples in the preprocessed testing set and
interpolated in the same fashion as in the MNIST dataset (Appendix I.2). The geometric
quantity considered here is likewise log(

√
det g) and is computed using autograd. For

demonstration purposes, although geometric quantities are computed on preprocessed images,
the images in Figures throughout this paper are their unpreprocessed counterparts. In general,
the message in CIFAR-10 experiment is consistent with our findings that along decision
boundaries we observe large volume elements but is less clear: The linear interpolation
plot in Figure I.16 demonstrate similar behaviors as in its counterpart in Figure I.8; Figure
I.18, Figure I.19, and Figure I.20 each visualizes the convex hull anchored by different
combinations of classes and demonstrates much more convoluted decision boundaries in
the interpolated space. Likewise, the volume element enlarges when traversing the decision
boundaries and stays small within a class prediction region.

We also visualized the volume element expansion factor induced by metrics pulled back
from respective blocks of ResNet-34. The readouts from layer 1 to 4 are patched with a
average pooling with kernel sizes (16, 8), (8, 8), (8, 4), (4, 4) to ensure a output dimension of
512 from each intermediate layer and abide by the memory constraints of the computations.
Figure 4 and Figure I.23 both demonstrated consistent result with the final layer pullback
metrics. Interestingly, later blocks show more contrasts than early ones, potentially suggesting
that the distinguishing features of images are mostly capture by the last block.

In addition to the convex hull visualization, we provide the affine hull (i.e. the region
extrapolated from the anchor points) in Figure I.21 along with the entropy of the softmax
outputs by ResNet-34. The entropy here is computed with log10 to scale values between
0 and 1 for this 10 class classification task. Note that places with high entropy (more
uncertainty) not only delineate the decision boundaries but also correspond to places with
large volume element.

Moreover, we also show that volume element does not expand in regions away from the
decision boundaries. We illustrate this phenomenon in Figure I.22 by sampling images from
the same class to span the plane and conclude that the volume element expansion is only
pronounced when there is an explicit decision boundary, regardless of it being a correct one.

S48

How does training shape the Riemannian geometry of neural network representations?

(a) 0 10 20 30 40 50 60
930

925

920

915

910

905

900

895

890

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 0

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

(b) 0 10 20 30 40 50 60

1080

1060

1040

1020

1000

980

960

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 50

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

(c) 0 10 20 30 40 50 60

1160

1140

1120

1100

1080

1060

1040

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 200
class prediction

plane
car

bird
cat

deer
dog

frog
horse

ship
truck

(d) 0 10 20 30 40 50 60
1020

1000

980

960

940

920

900

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 0

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

(e) 0 10 20 30 40 50 60

1060

1040

1020

1000

980

960

940

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 50

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

(f) 0 10 20 30 40 50 60

1140

1120

1100

1080

1060

1040

1020

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 200

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

Figure I.16: log(
√
det g) induced at interpolated images between a car and a dog (top row)

and between a car and a frog (bottom row) by ResNet-34 trained to classify
CIFAR-10 digits. Sample images are visualized at the endpoints and midpoint
for each set. Each line is colored by its prediction at the interpolated region and
end points. As training progresses, the volume elements bulge in the middle
(near decision boundary) and taper off at both endpoints. See Appendix I.3 for
experimental details.

The same pattern is observed for the same achitecture but with ReLU activation. Even
though ReLU is not differentiable, it still yields consistent prediction as in the GELU cases
where the volume element expands near the decision boundaries. These are demonstrated by
the linear interpolation in Figure I.25 and convex hull plane visualization in Figure I.27, I.28,
I.29 and affine hull plane visualization in Figure I.30. Examination of the eigen spectrum in
Figure I.26 does not flag any numerical issues in computations

We conclude this section by commenting on the memory consumption. Note that for
this experiment only, we enforce float32 out of memory concerns. This fortunately does
not pose a numerical challenge since all eigenvalues are in a reasonable range (shown in
Figure I.17), bounded away from the smallest positive number float32 can hold (10−38).
However, the memory issue effectively constraints the choice of our model, since the exact log
volume element at a single training sample computed through autograd for deeper network
(e.g. ResNet-50, ResNet-101) requires more than 80GB, exceeding the largest memory
configuration of any single publicly available GPU as of the time of writing (NVIDIA A100).
To enable the study of larger models, it would be useful to have an approximation for the
volume element with tractable memory footprint in the future.

S49

Zavatone-Veth Yang Rubinfien Pehlevan

(a) 0 100 200 300 400 500
4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

lo
g(

i)

log(i) at dog
epoch

0
50
200

(b) 0 100 200 300 400 500

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

lo
g(

i)

log(i) at frog
epoch

0
50
200

(c) 0 100 200 300 400 500

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

lo
g(

i)

log(i) at car
epoch

0
50
200

Figure I.17: The base-10 logarithms of square roots of the eigenvalues λi of the metric g
at the anchor points in Figure I.18: dog (left), frog (mid), and car (right).
As training proceeds, the spectrum is shifted downward and consequently the
volume element decreases at these points.

S50

How does training shape the Riemannian geometry of neural network representations?

(a)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.3

0.4

0.5

0.6

0.7

0.8

0.9

entropy (log10)

1150

1100

1050

1000

950

900

850

log10 volum
e elem

ent

Epoch 0

(b)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.1

0.2

0.3

0.4

0.5

entropy (log10)

1140

1110

1080

1050

1020

990

960

log10 volum
e elem

ent

Epoch 50

(c)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.0

0.1

0.2

0.3

0.4

0.5

entropy (log10)

1200

1160

1120

1080

1040

1000

log10 volum
e elem

ent

Epoch 200

Figure I.18: Digit predictions, log10(entropy), and log10(
√
det g) for the hyperplane spanned

by three randomly sampled training point a dog, a frog, and a car across
different epochs.

S51

Zavatone-Veth Yang Rubinfien Pehlevan

(a)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.5

0.6

0.7

0.8

0.9

entropy (log10)

1050

1020

990

960

930

900

log10 volum
e elem

ent

Epoch 0

(b)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.1

0.2

0.3

0.4

0.5

entropy (log10)

1180

1140

1100

1060

1020

980

940

log10 volum
e elem

ent

Epoch 50

(c)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.0

0.1

0.2

0.3

0.4

0.5

entropy (log10)

1280

1240

1200

1160

1120

1080

1040

1000

log10 volum
e elem

ent

Epoch 200

Figure I.19: Digit predictions, log10(entropy), and log10(
√
det g) for the hyperplane spanned

by three randomly sampled training point a dog, a frog, and a horse across
different epochs.

S52

How does training shape the Riemannian geometry of neural network representations?

(a)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.3

0.4

0.5

0.6

0.7

0.8

entropy (log10)

1140

1100

1060

1020

980

940

900

860

log10 volum
e elem

ent

Epoch 0

(b)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.1

0.2

0.3

0.4

entropy (log10)

1200

1160

1120

1080

1040

1000

960

log10 volum
e elem

ent

Epoch 50

(c)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.0

0.1

0.2

0.3

0.4

0.5

entropy (log10)

1220

1180

1140

1100

1060

1020

log10 volum
e elem

ent

Epoch 200

Figure I.20: Digit predictions, log10(entropy), and log10(
√
det g) for the hyperplane spanned

by three randomly sampled training point a horse, a frog, and a car across
different epochs.

S53

Zavatone-Veth Yang Rubinfien Pehlevan

(a)

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.3

0.4

0.5

0.6

0.7

0.8

0.9

entropy (log10)

1100

1050

1000

950

900

850

log10 volum
e elem

ent

Epoch 0

(b)

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.1

0.2

0.3

0.4

0.5

0.6

entropy (log10)

1200

1150

1100

1050

1000

log10 volum
e elem

ent

Epoch 50

(c)

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.0

0.1

0.2

0.3

0.4

0.5

0.6

entropy (log10)

1300

1250

1200

1150

1100

1050

log10 volum
e elem

ent

Epoch 200

Figure I.21: Digit predictions and log(
√
det g) for the hyperplane spanned by three randomly

sampled training point a dog, a frog, and a car across different epochs. The
entire affine hull (instead of the convex hull) is visualized. The middle panel is
the entropy of the softmax-ed probabilities of the ResNet-34 outputs. Places
with high entropy demarcate the decision boundary as well as regions with
relatively large volume element as expected, though less clear in the latter case.

S54

How does training shape the Riemannian geometry of neural network representations?

(a)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

2

4

6

8

entropy (log10)

1e 6

1220

1200

1180

1160

1140

1120

1100

log10 volum
e elem

ent

Epoch 200

(b)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.1

0.2

0.3

0.4

0.5

entropy (log10)

1300

1260

1220

1180

1140

1100

1060

log10 volum
e elem

ent

Epoch 200

Figure I.22: Regions away from decision boundaries do not have a clear volume element
pattern: we randomly select three figures from the same class (top: frogs,
bottom: planes) and perform the plane extrapolation. We visualize digit
predictions, log10(entropy), and log10(

√
det g) at the end of training for both

cases. The top graph predicts frog universally with slight volume element
variation across the landscape; the bottom graph has an incorrect prediction
of plane (treating it as a ship), and creates an artifact of a decision boundary,
which explains the vol element expansion at near that region.

S55

Zavatone-Veth Yang Rubinfien Pehlevan

F
igu

re
I.2

3:
V
isu

a
liza

tio
n
o
f
v
o
lu
m
e
elem

en
ts

a
cro

ss
b
lo
ck
s
o
f
a
R
esN

et-3
4
w
ith

G
E
L
U

a
ctiva

tio
n
s.

C
la
ssifi

ca
tio

n
a
n
d
v
o
lu
m
e

elem
en
ts

of
sam

p
les

in
terp

olated
b
y
a
d
og,

a
frog,

an
d
a
car

at
th
e
b
egin

n
in
g
of

train
in
g
(top

p
an

el),
ep

o
ch

50
(m

id
p
an

el),
an

d
ep

o
ch

500,
th
e
en
d
of

train
in
g
(b
ottom

p
an

el).
A
s
illu

strated
in

th
e
on

e-d
im

en
sion

al
slices

in
F
igu

re
4,

th
e

vo
lu
m
e
elem

en
t
is

co
n
sisten

tly
largest

n
ear

d
ecision

b
ou

n
d
aries,

w
ith

con
trast

in
creasin

g
w
ith

d
ep

th
.
S
ee

A
p
p
en

d
ix

I.3
fo
r
ex
p
erim

en
tal

d
eta

ils.

S56

How does training shape the Riemannian geometry of neural network representations?

(a) 0 10 20 30 40 50 60
1040

1030

1020

1010

1000

990

980

970

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 0

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

(b) 0 10 20 30 40 50 60

1140

1120

1100

1080

1060

1040

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 50

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

(c) 0 10 20 30 40 50 60

1225

1200

1175

1150

1125

1100

1075

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 200

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

(d)

Figure I.24: Top panel : log10(
√
det g) induced at interpolated images between a horse and

a frog by ResNet-34 with ReLU activation trained to classify CIFAR-10 images.
Bottom panel : Digits classification of a horse, a frog, and a car. The volume
element is the largest at the intersection of several binary decision boundaries,
and smallest within each of the decision region. See Appendix I.3 for details of
these experiments and additional figures.

S57

Zavatone-Veth Yang Rubinfien Pehlevan

(a) 0 10 20 30 40 50 60

940

930

920

910

900

890

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 0

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

(b) 0 10 20 30 40 50 60

1160

1140

1120

1100

1080

1060

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 50

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

(c) 0 10 20 30 40 50 60

1200

1180

1160

1140

1120

1100

1080

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 200

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

(d) 0 10 20 30 40 50 60

960

950

940

930

920

910

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 0

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

(e) 0 10 20 30 40 50 60
1160

1140

1120

1100

1080

1060

1040

1020

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 50

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

(f) 0 10 20 30 40 50 60

1200

1180

1160

1140

1120

1100

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 200

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

Figure I.25: log(
√
det g) induced at interpolated images between a car and a dog (top

row) and between a car and a frog (bottom row) by ResNet-34 with ReLU
activation trained to classify CIFAR-10 digits. Sample images are visualized at
the endpoints and midpoint for each set. Each line is colored by its prediction
at the interpolated region and end points. As training progresses, the volume
elements bulge in the middle (near decision boundary) and taper off at both
endpoints. See Appendix I.3 for experimental details.

(a) 0 100 200 300 400 500

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

lo
g(

i)

log(i) at dog
epoch

0
50
200
500

(b) 0 100 200 300 400 500

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

lo
g(

i)

log(i) at frog
epoch

0
50
200
500

(c) 0 100 200 300 400 500

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

lo
g(

i)

log(i) at car
epoch

0
50
200
500

Figure I.26: The base-10 logarithms of square roots of the eigenvalues λi of the metric g
at the anchor points in Figure I.27: dog (left), frog (mid), and car (right).
As training proceeds, the spectrum is shifted downward and consequently the
volume element decreases at these points.

S58

How does training shape the Riemannian geometry of neural network representations?

(a)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.4

0.5

0.6

0.7

0.8

0.9

entropy (log10)

1080

1040

1000

960

920

880

840

log10 volum
e elem

ent

Epoch 0

(b)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.1

0.2

0.3

0.4

0.5

entropy (log10)

1160

1120

1080

1040

1000

960

920

log10 volum
e elem

ent

Epoch 50

(c)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.0

0.1

0.2

0.3

0.4

0.5

0.6

entropy (log10)

1220

1180

1140

1100

1060

1020

980

log10 volum
e elem

ent

Epoch 200

Figure I.27: Same as Figure I.18 but with ReLU activation. Digit predictions, log10(entropy),
and log10(

√
det g) for the hyperplane spanned by three randomly sampled

training point a dog, a frog, and a car across different epochs.

S59

Zavatone-Veth Yang Rubinfien Pehlevan

(a)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.4

0.5

0.6

0.7

0.8

0.9

entropy (log10)

1005

975

945

915

885

855

log10 volum
e elem

ent

Epoch 0

(b)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.0

0.1

0.2

0.3

0.4

entropy (log10)

1220

1180

1140

1100

1060

1020

980

log10 volum
e elem

ent

Epoch 50

(c)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.0

0.1

0.2

0.3

0.4

entropy (log10)

1300

1250

1200

1150

1100

1050

1000

log10 volum
e elem

ent

Epoch 200

Figure I.28: Same as Figure I.19 but with ReLU activation. Digit predictions, log10(entropy),
and log10(

√
det g) for the hyperplane spanned by three randomly sampled

training point a dog, a frog, and a horse across different epochs.

S60

How does training shape the Riemannian geometry of neural network representations?

(a)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.4

0.5

0.6

0.7

0.8

entropy (log10)

1060

1020

980

940

900

860

log10 volum
e elem

ent

Epoch 0

(b)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.0

0.1

0.2

0.3

0.4

entropy (log10)

1200

1160

1120

1080

1040

1000

960

log10 volum
e elem

ent

Epoch 50

(c)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.0

0.1

0.2

0.3

0.4

entropy (log10)

1240

1200

1160

1120

1080

1040

1000

log10 volum
e elem

ent

Epoch 200

Figure I.29: Same as Figure I.20 but with ReLU activation. Digit predictions, log10(entropy),
and log10(

√
det g) for the hyperplane spanned by three randomly sampled

training point a horse, a frog, and a car across different epochs.

S61

Zavatone-Veth Yang Rubinfien Pehlevan

(a)

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.4

0.5

0.6

0.7

0.8

0.9

entropy (log10)

1050

1000

950

900

850

log10 volum
e elem

ent

Epoch 0

(b)

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

entropy (log10)

1250

1200

1150

1100

1050

1000

950

log10 volum
e elem

ent

Epoch 50

(c)

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

entropy (log10)

1300

1250

1200

1150

1100

1050

1000

log10 volum
e elem

ent

Epoch 200

Figure I.30: Same as Figure I.21 but with ReLU activation. Predictions and log(
√
det g)

for the hyperplane spanned by three randomly sampled training point a dog, a
frog, and a car across different epochs. The entire affine hull (instead of the
convex hull) is visualized. The middle panel is the entropy of the softmax-ed
probabilities of the ResNet-34 outputs. Places with high entropy demarcate
the decision boundary as well as regions with relatively large volume element
as expected, though less clear in the latter case.

S62

How does training shape the Riemannian geometry of neural network representations?

I.4. Self-supervised learning on CIFAR-10: Barlow Twins and SimCLR

Our hypothesis likewise extends to self-supervised learning frameworks. We employ the
Barlow Twins architecture (Zbontar et al., 2021) with a ResNet-34 backbone, GELU
activation, and a single-layer projector of dimension 256. We train the network for 1000
epochs with SGD optimizer, a learning rate of 0.01, weight decay 10−4, and a batch size of
1024. In the following we report the model performance at initialization, 200 epochs, and
1000 epochs respectively.

Data augmentation is done slightly differently from training end-to-end ResNet-34 as
above and we follow exactly the same procedure as in (Zbontar et al., 2021): random crop
to 32 by 32 images, random horizontal flip with probability 0.5, a color jitter with bright-
ness=0.4, contrast=0.4, saturation=0.2, hue=0.1, and probability 0.8, random grayscale
with probability 0.2, a gaussian blur with probability 1.0 and 0.1 for two augmented inputs,
solarization with probability 0 and 0.2 for two augmented inputs, and finally a normalization
by subtracting [0.485, 0.456, 0.406] and dividing by [0.229, 0.224, 0.225] channelwise.

Unlike supervised training, in the self-supervised framework the network is not exposed
to labels during training. The predictor is separately trained using a multiclass logistic
regression with an l2 regularization of 1 on features obtained by the ResNet-34 backbone
at different snapshots of the training epochs. For ResNet-34 in particular each image is
represented by a vector of dimension 512. At the end of 1000 epochs, a multiclass logistic
regression is able to reach 84% accuracy on training set and 70% accuracy on testing set.
We acknowledge that the performance can be further improved if we use a deeper backbone
(e.g. ResNet 50) or a more expressive projector appended to the ResNet backbone. Figure
I.32 shows the linear interpolation between two samples and Figure I.35, I.34, I.33 show
the convex hull generated by three samples. Likewise, we also display the eigenspectrum in
Figure I.36, which does not indicate any numerical issues.

One intriguing phenomenon is that we observe the opposite behavior for the contrastive
learning model SimCLR (Chen et al., 2020). The volume element is now dipping at
decision boundaries. We suspect that this is due to SimCLR’s explicit requirement that the
embeddings lie on a unit sphere. As a result, it is possible that pulling back the Euclidean
metric from embedding space is no longer appropriate, and one should instead pull back the
flat metric on the sphere. Investigating this phenomenon could be an interesting topic for
future work. One demonstration of this phenomenon is displayed in figure I.38, I.40, I.39.

S63

Zavatone-Veth Yang Rubinfien Pehlevan

(a) 0 10 20 30 40 50 60

4080

4060

4040

4020

4000

3980

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 0

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

(b) 0 10 20 30 40 50 60

1640

1620

1600

1580

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 200

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

(c) 0 10 20 30 40 50 60

1900

1880

1860

1840

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 1000

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

(d)

Figure I.31: Top panel : log10(
√
det g) induced at interpolated images between a horse and

a frog by Barlow Twins with a ResNet-34 backbone with GELU activation.
Bottom panel : Digits classification of a horse, a frog, and a car, prediction
given by a multiclass logistic regression on the features by the ResNet backbone.
The volume element is the largest at the intersection of several binary decision
boundaries, and smallest within each of the decision regions. See Appendix I.4
for details of these experiments and additional figures.

S64

How does training shape the Riemannian geometry of neural network representations?

(a) 0 10 20 30 40 50 60
4000

3900

3800

3700

3600

3500

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 0

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

(b) 0 10 20 30 40 50 60

1550

1525

1500

1475

1450

1425

1400

1375
lo

g1
0

vo
lu

m
e

el
em

en
t

Epoch 200
class prediction

plane
car

bird
cat

deer
dog

frog
horse

ship
truck

(c) 0 10 20 30 40 50 60
1825

1800

1775

1750

1725

1700

1675

1650

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 1000

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

(d) 0 10 20 30 40 50 60

2850

2800

2750

2700

2650

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 0

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

(e) 0 10 20 30 40 50 60

1720

1700

1680

1660

1640

1620

1600

1580

1560

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 200

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

(f) 0 10 20 30 40 50 60

1950

1925

1900

1875

1850

1825

1800

1775

lo
g1

0
vo

lu
m

e
el

em
en

t

Epoch 1000

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

Figure I.32: log(
√
det g) induced at interpolated images between a car and a dog (top row)

and between a car and a frog (bottom row) by Barlow Twins with ResNet-
34 backbone and a GELU activation. Sample images are visualized at the
endpoints and midpoint for each set. Each line is colored by its prediction at
the interpolated region and end points. As training progresses, the volume
elements bulge in the middle (near decision boundary) and taper off at both
endpoints. See Appendix I.4 for experimental details.

S65

Zavatone-Veth Yang Rubinfien Pehlevan

(a)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.86

0.88

0.90

0.92

0.94

0.96

0.98

entropy (log10)

4200

4000

3800

3600

3400

3200

3000

log10 volum
e elem

ent

Epoch 0

(b)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

entropy (log10)

1650

1620

1590

1560

1530

1500

1470

log10 volum
e elem

ent

Epoch 200

(c)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

entropy (log10)

1920

1890

1860

1830

1800

1770

1740

1710

log10 volum
e elem

ent

Epoch 1000

Figure I.33: Digit predictions, log10(entropy), and log10(
√
det g) for the hyperplane spanned

by three randomly sampled training point a horse, a frog, and a car across
different epochs for Barlow Twins with ResNet-34 backbone using GELU
activation.

S66

How does training shape the Riemannian geometry of neural network representations?

(a)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.98425

0.98450

0.98475

0.98500

0.98525

0.98550

0.98575

0.98600

0.98625

entropy (log10)

4160

4080

4000

3920

3840

3760

3680

3600

log10 volum
e elem

ent

Epoch 0

(b)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.1

0.2

0.3

0.4

0.5

0.6

0.7

entropy (log10)

1640

1600

1560

1520

1480

1440

1400

log10 volum
e elem

ent

Epoch 200

(c)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.1

0.2

0.3

0.4

0.5

0.6

entropy (log10)

1875

1845

1815

1785

1755

1725

1695

log10 volum
e elem

ent

Epoch 1000

Figure I.34: Digit predictions, log10(entropy), and log10(
√
det g) for the hyperplane spanned

by three randomly sampled training point a dog, a frog, and a horse across
different epochs for Barlow Twins with ResNet-34 backbone using GELU
activation.

S67

Zavatone-Veth Yang Rubinfien Pehlevan

(a)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.86

0.88

0.90

0.92

0.94

0.96

0.98

entropy (log10)

4200

4000

3800

3600

3400

3200

3000

log10 volum
e elem

ent

Epoch 0

(b)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

entropy (log10)

1640

1600

1560

1520

1480

1440

1400

log10 volum
e elem

ent

Epoch 200

(c)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.2

0.4

0.6

0.8

entropy (log10)

1860

1830

1800

1770

1740

1710

1680

log10 volum
e elem

ent

Epoch 1000

Figure I.35: Digit predictions, log10(entropy), and log10(
√
det g) for the hyperplane spanned

by three randomly sampled training point a dog, a frog, and a car across different
epochs for Barlow Twins with ResNet-34 backbone using GELU activation.

S68

How does training shape the Riemannian geometry of neural network representations?

(a) 0 100 200 300 400 500

10

8

6

4

2

0

lo
g(

i)

log(i) at dog
epoch

0
50
200
500
1000

(b) 0 100 200 300 400 500

10

8

6

4

2

0

lo
g(

i)

log(i) at frog
epoch

0
50
200
500
1000

(c) 0 100 200 300 400 500

10

8

6

4

2

0

lo
g(

i)

log(i) at car
epoch

0
50
200
500
1000

Figure I.36: The base-10 logarithms of square roots of the eigenvalues λi of the metric g
at the anchor points in Figure I.35: dog (left), frog (mid), and car (right) for
Barlow Twins with ResNet-34 backbone using GELU activation. As training
proceeds, the spectrum is initially shifted upward and then shifted downward
and consequently the volume element decreases at these points.

S69

Zavatone-Veth Yang Rubinfien Pehlevan

(a)

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.65

0.70

0.75

0.80

0.85

0.90

0.95

entropy (log10)

4000

3800

3600

3400

3200

3000

log10 volum
e elem

ent

Epoch 0

(b)

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.2

0.4

0.6

0.8

entropy (log10)

1800

1750

1700

1650

1600

1550

1500

1450

1400

log10 volum
e elem

ent

Epoch 200

(c)

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.2

0.4

0.6

0.8

entropy (log10)

2000

1950

1900

1850

1800

1750

1700

log10 volum
e elem

ent

Epoch 1000

Figure I.37: Digit predictions, log10(entropy), and log10(
√
det g) for the affine hull spanned

by three randomly sampled training point a dog, a frog, and a car across different
epochs for Barlow Twins with ResNet-34 backbone using GELU activation.
This corresponds to Figure I.35.

S70

How does training shape the Riemannian geometry of neural network representations?

(a)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

entropy (log10)

19.75

19.25

18.75

18.25

17.75

17.25

16.75

16.25

log10 volum
e elem

ent

Epoch 0

(b)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

entropy (log10)

9.5

9.0

8.5

8.0

7.5

7.0

6.5

log10 volum
e elem

ent

Epoch 200

(c)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

entropy (log10)

8.0

7.6

7.2

6.8

6.4

6.0

5.6

log10 volum
e elem

ent

Epoch 1000

Figure I.38: Digit predictions, log10(entropy), and log10(
√
det g) for the hyperplane spanned

by three randomly sampled training point a horse, a frog, and a car across
different epochs for SimCLR with ResNet-34 backbone using GELU activation.
This contradicts our predictions since the volume elements dip at decision
boundaries, possibly due to the inappropriateness of approximating a sphere
using a linear interpolation.

S71

Zavatone-Veth Yang Rubinfien Pehlevan

(a)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.75

0.80

0.85

0.90

0.95

entropy (log10)

12.2

11.8

11.4

11.0

10.6

10.2

log10 volum
e elem

ent

Epoch 0

(b)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.1

0.2

0.3

0.4

0.5

0.6

0.7

entropy (log10)

1.2

0.8

0.4

0.0

0.4

0.8

1.2

log10 volum
e elem

ent

Epoch 200

(c)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

entropy (log10)

3.6

3.2

2.8

2.4

2.0

1.6

1.2

log10 volum
e elem

ent

Epoch 1000

Figure I.39: Digit predictions, log10(entropy), and log10(
√
det g) for the hyperplane spanned

by three randomly sampled training point a dog, a frog, and a horse across
different epochs for SimCLR with ResNet-34 backbone using GELU activation.
This contradicts our predictions since the volume elements dip at decision
boundaries, possibly due to the inappropriateness of approximating a sphere
using a linear interpolation.

S72

How does training shape the Riemannian geometry of neural network representations?

(a)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.75

0.80

0.85

0.90

0.95

entropy (log10)

12.45

12.15

11.85

11.55

11.25

10.95

log10 volum
e elem

ent

Epoch 0

(b)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

entropy (log10)

1.5

1.0

0.5

0.0

0.5

1.0

log10 volum
e elem

ent

Epoch 200

(c)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

class prediction
plane

car
bird

cat
deer

dog
frog

horse
ship

truck

0.2

0.4

0.6

0.8

entropy (log10)

3.6

3.2

2.8

2.4

2.0

1.6

log10 volum
e elem

ent

Epoch 1000

Figure I.40: Digit predictions, log10(entropy), and log10(
√
det g) for the hyperplane spanned

by three randomly sampled training point a dog, a frog, and a car across
different epochs for SimCLR with ResNet-34 backbone using GELU activation.
This contradicts our predictions since the volume elements dip at decision
boundaries, possibly due to the inappropriateness of approximating a sphere
using a linear interpolation.

S73

Zavatone-Veth Yang Rubinfien Pehlevan

I.5. Data and code availability

All datasets used in this work are either programmatically generated (Appendix I.1) or
publicly available (Appendices I.2, I.3, and I.4; LeCun et al. (2010) and Krizhevsky (2009)).
PyTorch Paszke et al. (2019) code to train all models and generate figures will be made
available on GitHub upon acceptance. As noted above, our ResNet implementation is
adapted from Liu et al. (2021)’s MIT-licensed implementation.

S74

	Introduction
	Preliminaries
	Representational geometry of shallow neural network feature maps
	Changes in shallow network geometry during gradient descent training
	Changes in representational geometry for two-dimensional toy tasks
	Changes in geometry for networks trained to classify MNIST digits

	Beyond shallow learning
	Deep residual networks with smooth activation functions
	Deep ReLU networks
	Self-supervised learning with Barlow Twins

	Discussion
	Detailed overview of related works
	Supplementary discussion
	Simplification of the Riemann tensor for shallow neural networks
	Simplification of the Riemann tensor
	Proof of symmetry of metric derivatives for shallow neural networks

	Expansion of geometric quantities for a shallow network with fixed weights
	Direct derivations for 2D inputs
	The volume element
	The Riemann tensor and Ricci scalar
	Example: error function activations

	Derivation of geometric quantities at infinite width
	Geometric quantities for metrics of the form induced by the shallow NNGP kernel
	Examples

	Comparing the shallow Neural Tangent Kernel to the NNGP
	Perturbative finite-width corrections in shallow Bayesian neural networks
	Metric perturbations for a wide Bayesian neural network
	A tractable example: monomial activation functions

	The geometry of kernel learning algorithms
	The supervised kernel learning algorithm of Amari and Wu
	The supervised kernel learning algorithm of Radhakrishnan et al.
	The self-supervised kernel learning algorithm of Simon et al.

	Numerical methods and supplemental figures
	XOR and sinusoidal tasks
	Shallow networks trained to classify MNIST digits
	ResNets trained on CIFAR-10
	Self-supervised learning on CIFAR-10: Barlow Twins and SimCLR
	Data and code availability

