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ABSTRACT

Certified defenses against small-norm adversarial examples have received growing
attention in recent years; though certified accuracies of state-of-the-art methods
remain far below their non-robust counterparts, despite the fact that benchmark
datasets have been shown to be well-separated at far larger radii than the literature
generally attempts to certify. In this work, we offer insights that identify potential
factors in this performance gap. Specifically, our analysis reveals that piecewise
linearity imposes fundamental limitations on the tightness of leading certification
techniques. These limitations are felt in practical terms as a greater need for ca-
pacity in models hoped to be certified efficiently. Moreover, this is in addition to
the capacity necessary to learn a robust boundary, studied in prior work. How-
ever, we argue that addressing the limitations of piecewise linearity through scal-
ing up model capacity may give rise to potential difficulties—particularly regard-
ing robust generalization—therefore, we conclude by suggesting that developing
smooth activation functions may be the way forward for advancing the perfor-
mance of certified neural networks.

1 INTRODUCTION

Since the discovery of adversarial examples (Szegedy et al., 2014), defenses against malicious input
perturbations to deep learning systems have received notable attention. While many early-proposed
defenses—such as adversarial training (Madry et al., 2018)—are heuristic in nature, a growing body
of work seeking provable defenses has arisen (Cohen et al., 2019; Croce et al., 2019; Fromherz et al.,
2021; Huang et al., 2021; Jordan et al., 2019; Lee et al., 2020; Leino & Fredrikson, 2021; Leino
et al., 2021; Li et al., 2019; Singla et al., 2022; Trockman & Kolter, 2021; Wong et al., 2018; Zhang
et al., 2018). Generally, such defenses attempt to provide a certificate of local robustness (given
formally in Definition 1), which guarantees a network’s prediction on a given point is stable under
small perturbations (typically in Euclidean or sometimes `∞ space); this precludes the possibility of
small-norm adversarial examples on certified points.

The success of a certified defense is typically measured empirically using verified robust accuracy
(VRA), which reflects the fraction of points that are both (i) classified correctly and (ii) certified
as locally robust. Despite the fact that perfect robust classification (i.e., 100% VRA) is known to
be possible on standard datasets at the adversarial perturbation budgets used in the literature (Yang
et al., 2020b), this possibility is far from realized in the current state of the art. For example, on the
benchmark dataset CIFAR-10, state-of-the-art methods offering deterministic guarantees of `2 ro-
bustness1 have remained at approximately 60% VRA (Huang et al., 2021; Leino et al., 2021; Singla
et al., 2022; Trockman & Kolter, 2021), while non-robust models handily eclipse 95% accuracy.

It is difficult to precisely account for this discrepancy; though among other reasons, state-of-the-art
methods typically use loose bounds to perform certification—as exact certification is (for general
ReLU networks) NP-complete (Katz et al., 2017; Sinha et al., 2018)—which conceivably leads to
falsely flagging truly robust points or to over-regularization of the learned model. While conservative
approximations may be necessary to perform efficient certification (and to facilitate efficient robust
training), it is certainly possible that they foil reasonable hopes for “optimality.” In this work, we

1In this work we primarily consider certified defenses that provide a deterministic guarantee of local robust-
ness, as opposed to a statistical guarantee. For further discussion of this point, see Section 4.
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offer further insight into the shortcomings of modern certification techniques by analyzing their
limitations in the context of the architectural settings in which they are conventionally employed.

In particular, we find that piecewise linearity—a practically ubiquitous property of neural networks
considered in the certification literature (e.g., standard ReLU and the more recently popularized
“MinMax” (Anil et al., 2019) activations are both piecewise linear)—fundamentally limits the power
of Lipschitz-based `2 local robustness certification. In effect, we argue, this means that extra capacity
is needed simply for facilitating efficient certification—in addition to whatever capacity may be
required for learning a robust boundary (e.g., as examined by Bubeck & Sellke (2021)).

On the other hand, perhaps surprisingly, we prove that free from the constraint of piecewise lin-
earity, Lipschitz-based certification is powerful enough to perform complete certification on any
decision boundary, provided the implementation of the function giving rise to the boundary is under
the learner’s control (indeed, this is consistent with the fact that the highest performing certified
defenses incorporate Lipschitz-based certification into training). These latter findings suggest that
continued progress towards improving state-of-the-art VRA may be enabled through carefully cho-
sen smooth activation functions,2 which do not inherently limit the power of what are currently the
most promising forms of efficient local robustness certification.

In summary, the primary contributions of this work are as follows: (1) we show that piecewise
linearity imposes inherent limitations on the tightness of efficient robustness certification—our pri-
mary focus is Lipschitz-based certification, but we discuss similar limitations of other methods in
Appendix B; (2) we prove that Lipschitz-based certification is fundamentally powerful for tight ro-
bustness certification, provided (i) the robust learning procedure has power over the implementation
of the classifier, and (ii) the hypothesis class is not limited to piecewise linear networks; and (3)
we demonstrate that tight Lipschitz-based certification may require significant capacity overhead in
piecewise-linear networks. These findings offer a new perspective on the sticking points of modern
certified training methods, and suggest possible paths forward.

We begin in Section 2 by introducing the limitations piecewise linearity imposes on robustness certi-
fication, starting generally, and narrowing our focus specifically to Lipschitz-based certification. We
then discuss the role that capacity plays in mitigating these limitations in Section 3, which concludes
with a discussion of the implications of our findings, both retrospectively and prescriptively. Finally,
we discuss related work in Section 4, and offer our concluding remarks in Section 5.

2 LIMITATIONS OF PIECEWISE LINEARITY

The main insights in this work stem from the simple, yet crucial observation that the points lying
at a fixed Euclidean distance from a piecewise-linear decision boundary, in general, do not them-
selves comprise a piecewise-linear surface. Therefore, in order for a certification procedure to
precisely recover the set of robust points—those which lie a distance of at least ε from the deci-
sion boundary—it must be capable of producing a boundary between robust and non-robust points
that is not piecewise-linear, even on networks that are. However, as we will see, Lipschitz-based
certification, for example, is in fact constrained to produce a piecewise-linear “certified frontier”
on piecewise-linear networks, as the set of just-certifiable points essentially corresponds to a level
curve in the output of the network being certified.

On the other hand, if the level curves of the function being certified correspond (up to some constant
factor) to their distance from the decision boundary (and must therefore include smooth curves),
Lipschitz-based certification identifies precisely the points that are truly ε-locally robust, provided
a tight bound on the Lipschitz constant. As we will make clear, this has important implications
regarding the power of Lipschitz-based certification in properly suited network architectures.

In the remainder of this section, we formalize this intuition and discuss some of its implications.
Section 2.1 introduces our main theorem regarding the limitations imposed by piecewise linearity,
along with the necessary background and definitions. Section 2.2 narrows the focus to Lipschitz-
based certification, showing that despite being powerful in general, it is fundamentally limited within
the hypothesis class of piecewise linear networks. Finally, Section 2.3 presents a thought experiment
that provides basic intuition about the possible scale of the problems caused by these limitations.

2Or at least, activation functions which enable learning curved (as opposed to piecewise linear) functions.
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2.1 FUNDAMENTAL LIMITATIONS TO CERTIFICATION COMPLETENESS

For our purposes, we will consider a neural network to be a function f : Rn → Rm mapping n-
dimensional inputs to logit values corresponding to m different classes. From the network function
f , we derive a neural classifier, F : Rn → Rm, by letting F (x) = argmaxi∈[m] fi(x). When it
is clear from the context which we are referring to, we will use the term “neural network” for both
the network function f and its corresponding classifier F . Note that two different neural network
functions, f and f ′, may lead to the same predictions everywhere, i.e., ∀x . F (x) = F ′(x). When
this happens, we say that f and f ′ share the same decision boundary, where the decision boundary
is simply the set of points where fi(x) = fj(x) for some i 6= j ∈ [m].

In this work, we consider the problem of local robustness certification. As in prior work, we define
local robustness as a property of a point x and classifier F , parameterized by a perturbation budget,
or robustness radius, ε, as in Definition 1.
Definition 1 (ε-Local Robustness). A classifier F : Rn → [m] is ε-locally robust at point x ∈ Rn,
with respect to norm || · ||, if

∀x′ ∈ Rn . ||x− x′|| ≤ ε =⇒ F (x) = F (x′).

A certification procedure, cert, is a function that takes a neural network, f , a point, x, and a
perturbation budget, ε, and produces a label in {0, 1}, where an output of 1 means that f is certi-
fied as ε-locally robust at x. A valid certification procedure must be sound, i.e., cert(f, x, ε) =
1 =⇒ F is ε-locally robust at x; however, it need not be complete, i.e., it may be the case that
cert(f, x, ε) = 0 and yet F is in fact ε-locally robust at x.

For a given certification procedure, let the certified regions of f , Ccert(f, ε) = {x : cert(f, x, ε)}
be the set of points that can be positively certified by cert. Similarly, let the robust regions of f
be given by the set R(F, ε) = {x : F is ε-locally robust at x} of ε-locally robust points (note that,
in contrast to Ccert, R does not depend on the implementation of f , only its classification outputs,
given by F ).

Soundness entails that ∀f . Ccert(f, ε) ⊆ R(F, ε), but clearly it is desirable for Ccert(f, ε) to
match R(F, ε) as tightly as possible; when this is achieved perfectly we can consider cert to
be “complete.” However, as Ccert(f, ε) can depend on the underlying function, f , which has a
surjective mapping to classifiers, F , derived from the same hypothesis class, we must be careful
in defining completeness precisely. Let F be a hypothesis class—a family of functions of type
Rn → Rm, e.g., that are captured by some neural network architecture. We will also use the slight
abuse of notation, F ∈ F , to denote any F : Rn → [m] such that there exists a function f ′ ∈ F
which produces the same labels as F on all inputs, i.e., ∀x . F (x) = argmaxi∈[m] f

′
i(x). We say

that a certification procedure, cert, is complete on F if all possible decision boundaries achievable
by functions in the hypothesis class have at least one implementation in F for which cert perfectly
recovers the true robust regions. This is stated formally in Definition 2.
Definition 2. A certification procedure, cert, is complete on hypothesis class, F , if for ε > 0

∀F ∈ F . ∃f ′ ∈ F .
(
∀x . F (x) = argmax

i∈[m]

f ′i(x)
)
∧
(
Ccert(f ′, ε) = R(F, ε)

)
Essentially, completeness over a hypothesis class entails a notion of compatibility between the cer-
tification procedure and the hypothesis class; specifically, it means that for any decision bound-
ary expressible by the hypothesis class, it is possible for a learning procedure to produce a model
that implements the decision boundary in a way that makes the certification procedure complete.
Definition 2 provides a key relaxation from a stricter notion of completeness that would require
Ccert(f, ε) = R(F, ε) for all f , as this would not be achievable by any polynomial certification
procedure3 (Katz et al., 2017; Sinha et al., 2018). By requiring tight certification only modulo the
decision boundary, we avoid this limitation, splitting the responsibility for completeness between
the certification procedure, the learning algorithm, and the hypothesis class.

Next, we will also find it useful to define the certified frontier of F under cert (Definition 3);
essentially, the set of points that are just barely certified, which lie at the frontier of the certified

3Assuming P 6= NP .
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regions. We will similarly define the robust frontier as the set of points that are just barely ε-locally
robust, which lie at the frontier of the robust regions.
Definition 3 (Certified Frontier). The certified frontier of a neural network, F : Rn → [m], under
certifier, cert, at perturbation budget, ε, is the set of points

∆
(
Ccert(f, ε)

)
=
{
x : cert(f, x, ε) ∧

(
∀δ > 0 . ¬cert

(
f, x, ε+ δ

)) }
.

We now turn to the specifics of one of our main results, namely, that piecewise linearity is a lim-
iting factor for tight certification. Of course, as alluded to earlier, some certification procedures
do achieve complete certification on piecewise-linear networks—e.g., (Jordan et al., 2019; Tjeng
et al., 2019)—however, such methods are invariably exponential. Thus, we characterize the set of
piecewise-linear limited (PLL) methods in Definition 4. Intuitively, a certification procedure is PLL
if it is constrained to produce piecewise-linear certified frontiers on piecewise-linear models.
Definition 4 (Piecewise-linear Limited Certification). A certification procedure, cert, is
piecewise-linear limited (PLL) if

∀f . f is piecewise-linear =⇒ ∆
(
Ccert(f, ε)

)
is piecewise-linear

Note that the robust frontier of a network F is, in general, not piecewise linear, even if F (and thus its
decision boundary) is piecewise linear. Thus, if the certified frontier of cert is piecewise linear,
cert cannot be complete, i.e., C 6= R. Moreover, this means that any piecewise-linear limited
certification procedure cannot be complete on the hypothesis class of piecewise linear networks
(Theorem 1). The proof of Theorem 1 is given formally in Appendix A.1.
Theorem 1. Any piecewise-linear limited certification procedure is incomplete on the hypothesis
class of piecewise linear networks.

The proof of Theorem 1 relies on the fact that a piecewise-linear function cannot be equal to a func-
tion exhibiting smooth curves. However, it is known that neural networks, provided with enough
capacity, can approximate any function with arbitrary precision (Hornik, 1991). We address this
point in Section 3, where we discuss the implications of Theorem 1 regarding the capacity require-
ments of tightly certifiable networks.

2.2 THE POWER AND LIMITATIONS OF LIPSCHITZ-BASED CERTIFICATION

We will now narrow our focus to consider the specific family of Lipschitz-based certification meth-
ods. Such methods perform certification by using an upper bound, K, on the network’s Lipschitz
constant; essentially, a point is certified if the margin by which the top-predicted class exceeds all
other classes is greater than εK. In our work, we will set aside the details around how the Lipschitz
is obtained, though this is also a source of potential looseness in the general approach. That is, we
will (optimistically) take for granted that a tight bound is obtained in our analysis.

Lipschitz-based certification has proven effective in the literature, achieving state-of-the-art
performance—when paired with an appropriate training routine—despite its simplicity (Leino et al.,
2021; Trockman & Kolter, 2021). Lipschitz-based certification is advantageous in many ways; in
addition to being easy to incorporate into a robust learning objective, it enables zero-cost certifica-
tion at run time, as the Lipschitz constant does not need to be recomputed after training. On the
other hand, it would seem that Lipschitz-based certification is fundamentally underpowered—the
“global” Lipschitz constant is a conservative estimate of the local Lipschitz constant, which in turn
gives a conservative estimate of how much the net output can change within a given neighborhood.
If a primary sticking point for advancing certified accuracy is loose certification, it is fair to ask how
promising Lipschitz-based certification will continue to be.

The philosophy behind incorporating Lipschitz-based certification into training is essentially that
the potential shortcomings of Lipschitz-based certification can be addressed by learning a easily
certifiable network function. We show that this intuition is essentially correct. Perhaps surprisingly,
we show that Lipschitz-based certification is sufficiently powerful to be complete on the hypothe-
sis class of Lipschitz functions4 However, we also show that Lipschitz-based certification is PLL,
meaning this potential cannot be achieved with a hypothesis class constrained by piecewise linearity.

4I.e., with bounded Lipschitz constant. Note that this is not a meaningful constraint for neural networks, as
any neural network with Lipschitz activation functions and finite weights is Lipschitz in this sense.
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2.2.1 LIPSCHITZ-BASED CERTIFICATION IS POWERFUL

We begin by showing that for any boundary achievable by a Lipschitz network function, when the
learner is given control over the precise network function implementing the boundary, it is always
possible to find an implementation that can be tightly certified using Lipschitz-based certification.
This is stated formally in Theorem 2.

Theorem 2 further entails that there exists a network function for any 2ε-separated data that achieves
perfect VRA under Lipschitz-based certification. The proof of Theorem 2 is given in Appendix A.2.
Theorem 2. When the hypothesis class, F , is given as the set of Lipschitz functions, Lipschitz-based
certification is complete on F .

2.2.2 LIPSCHITZ-BASED CERTIFICATION IS LIMITED BY PIECEWISE-LINEARITY

Despite the power of Lipschitz-based certification for general functions, when restricted to the hy-
pothesis class of piecewise linear networks, it becomes fundamentally limited. That is, formally,
Lipschitz-based certification is PLL (Proposition 3).
Proposition 3. Lipschitz-based certification is piecewise-linear limited.

Proposition 3 follows essentially because the certified frontier of Lipschitz-based certification cor-
responds to a particular level curve of the network function, which is piecewise linear whenever the
function is. As a direct consequence of Proposition 3 and Theorem 1, we arrive at Corollary 4.
Corollary 4. Lipschitz-based certification is not complete on the hypothesis class of piece-wise
linear networks.

Note that taken in the context of Theorem 2, Corollary 4 means that in a sense, the fundamen-
tal limitation of Lipschitz-based certification is not intrinsic to its simplicity (e.g., because the lo-
cal Lipschitz constant might be tighter than the global constant on some functions), but rather, it
is related to the hypothesis class of networks being certified. Put differently, piecewise linearity
imposes real limitations on Lipschitz-based certification that cannot be attributed to practical, but
non-fundamental, issues, such as efficient computation of Lipschitz bounds, etc.

2.3 THE PROBLEM WITH CORNERS AND THE CURSE OF DIMENSIONALITY

The incongruence between the piecewise-linear certified frontier of Lipschitz-based methods, and
the robust frontier of a piecewise-linear boundary, which features smooth curves, becomes relevant
when the boundary comes to a “corner,” or relatively sharp inflection point. At corners, the robust
frontier curves at a fixed radius around the corner, while the certified frontier, absent aid from addi-
tional capacity (see Section 3), runs parallel to the facets forming the corner, offset by a fixed amount
(see Figure 2 in Appendix D for an illustration). The sharper the corner, the larger the difference
will be between the corresponding robust and certified regions. Additionally, we will see that this
is also true the higher the dimension of the corner, i.e., the more independent half-spaces meet to
create the corner.

As a thought experiment, we will model a d-dimensional corner as the intersection of d orthogonal
half-spaces. Assuming the level curves near the corner run parallel to the half-spaces, h ∈ H ,
forming the corner, in the best case, the certified region is given by the union of half-spaces obtained
by flipping each h ∈ H and shifting it by ε. Consider the hypercube of width ε just opposite the
corner. This hypercube lies entirely outside the robust region, meaning all points within it cannot be
certified using Lipschitz-based certification. However, only the points intersecting the hypersphere
of radius ε centered at the corner are truly non-ε-robust. We can compute the ratio of the volume of
the hypercube to the intersecting portion of the hypersphere, given by Equation 1:

πd/2

Γ
(
d
2 + 1

) · ( ε
2ε

)d
(1)

As the dimension increases, this ratio tends to zero, meaning that in high dimensions, almost all
points in this region opposite the corner are incorrectly uncertified. Furthermore, the maximum
distance from an uncertified point within this region to the boundary is equal to the diagonal of the
hypercube, which is given by

√
d · ε. This means that even points that are significantly more robust

than required may yet be uncertified.
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(a)

VRA: 0.909

(b)

VRA: 0.865

(c)

VRA: 0.947

(d)

VRA: 0.980

(e)

Figure 1: (a) synthetic dataset with two classes (shown in purple and yellow) derived to be positioned
at distance ε from an ideal boundary that forms a 90◦ corner. (b) MinMax network implementing
(with minimal capacity) an optimal boundary with respect to which all points are ε-locally robust.
The non-certifiable region is shown in green, and the level curves are also depicted. The Lipschitz
constant of this network is 1, but not all points in the top right quadrant can be certified. (c, d, e)
networks trained with 1×, 10×, and 100× the minimal capacity required for the optimal boundary
in (b). With 10× capacity the learned VRA exceeds that of the minimal implementation, but near-
perfect performance is not obtained with less than 100× capacity. The code used to generate these
examples is included in the supplementary material. Details are provided in Appendix C.

3 THE ROLE OF CAPACITY

The primary limitation of Lipschitz-based certification in piecewise-linear networks derives from the
fact that we cannot have smoothly curved level curves in such networks (or, more generally, that PLL
certification methods cannot have smoothly curved certified frontiers in such networks). However,
while this is true in the strictest sense, a function with smooth curves can be approximated with
arbitrary precision, given sufficient capacity. In other words, increased network capacity may be
one possible option to mitigate the fundamental limitations discussed throughout Section 2. In this
section, we investigate the capacity requirements necessary for tight PLL certification in piecewise-
linear networks.

While the precise meaning of “capacity” in a quantifiable sense is a bit nebulous, for our purposes,
we will consider capacity in a piecewise-linear network to correspond to the number of piecewise-
linear regions. This grows with the number of internal neurons, though the relationship may vary
depending on other aspects of the network architecture, e.g., the depth of the network.

Previous work has studied the capacity implications for learning a robust decision boundary, finding
that separating points while controlling Lipschitzness may require additional capacity beyond what
would be necessary to simply separate them (Bubeck & Sellke, 2021). Besides the capacity required
to represent the decision boundary in a robust network, our work asks instead about the capacity
required to tightly certify a given boundary. We find that in a piecewise linear network, even if the
boundary is optimal—in that all points in the distribution are indeed a distance of ε or more from
it—the network may require additional capacity to be able to prove this using the Lipschitz constant.

Taking the data distribution aside, we consider the goal of certifying all points that are sufficiently
far from the boundary. As highlighted in Section 2.3, in places where the decision boundary forms
high-dimensional “corners,” there may be relatively large volumes of points that are ε-far from the
boundary but cannot be certified as long as the level curves simply run parallel to the boundary. In
such cases, tight certification requires extra capacity specifically to round out the level curves around
the corners in the decision boundary. We begin by demonstrating this concept via an illustrative
example. We conclude by discussing the implications of our results and suggest avenues for future
work.

3.1 AN ILLUSTRATIVE EXAMPLE OF HOW CAPACITY ENABLES TIGHT CERTIFICATION

As an example of how Lipschitz-based certification can require excess capacity beyond what is
necessary to learn a robust boundary, we consider a synthetic 2-D dataset that can robustly separated
by a simple piecewise linear boundary. An illustration is provided in Figure 1a. We begin with a
decision boundary given by B = {(x1, x2) : max(x1, x2) = 0}; this boundary separates points
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with negative x- and y-coordinates from points in the other three quadrants, and forms a 90◦ corner
at the origin. The data are then generated such that all the points with label 0 lie a distance of at least
ε below and to the right of the boundary, and the points with label 1 lie a distance of at least ε above
and to the right of the boundary. Specifically, the 1-labeled points curve around the boundary such
that there is a tight margin of exactly 2ε about the boundary.

By construction, the function f(x) = [0,max(x1, x2)] produces logit values that yield the boundary
B, with respect to which all points in the dataset are ε-locally robust. This function can be trivially
implemented with minimal capacity by a simple MinMax network, f(x) = σ(xW 1)W 2, where σ
is the MinMax activation function, and W 1 and W 2 are given by Equation 2.

W 1 =

[
1 0
0 1

]
W 2 =

[
0 0
0 1

]
(2)

Furthermore, the Lipschitz constant of f is 1;5 this can even be tightly obtained by taking the layer-
wise product of the layer operator norms, as is typically done in practice. Hence, the points that can
be certified will be those for which |f1(x) − f0(x)| ≥ ε; that is, the points outside the level curves
max(x1, x2) = −ε and max(x1, x2) = ε. However, we see that this certified frontier fails to certify
many points in the positive x-y quadrant, despite the fact that all the points are indeed robust with
respect to the boundary of f . This is depicted in Figure 1b.

In order to certify these points, we need the level curve corresponding to f1(x)− f0(x) = ε to bend
smoothly around the boundary, rather than forming the same 90◦ angle. This requires more capacity.

To gain a sense of how this plays out in practice, we consider adding capacity via expanding the
number of neurons in the hidden layer (which contained only two neurons in our minimal example).
In Figures 1d and 1e, we show the boundaries of two additional learned networks, g and h, with 20
and 200 internal neurons, respectively. We see that increasing the number of internal neurons by
an order of magnitude yields a better set of level curves, but the network g still must compromise
as the level curves are not smooth enough to tightly follow the contour of the data. Finally, when
we increase the number of internal neurons by two orders of magnitude, we at last obtain a function
h that achieves nearly 100% VRA on our sample data. This function, as desired, forms essentially
smooth level curves that bend around the boundary corner with a radius of ε. Interestingly, h learns
a boundary that is somewhat different from the boundary originally used to derive the data; however,
both boundaries can be thought of as “equivalent” in the sense that they produce the same margin,
reflecting that the optimal boundary for this dataset is not unique.

Discussion. In our example, we needed 100 times more neurons than were necessary to construct
an optimal decision boundary in order to tightly certify the boundary with the Lipschitz constant.
While it is difficult to extrapolate from this toy example to a “real world” scenario, our results suggest
that smoothing the level curves may require significant overhead beyond the capacity necessary to
produce a truly robust boundary.

Another aspect of this experiment worth noting is that when the network had insufficient capacity to
learn an optimally robust, tightly certified boundary (e.g., in Figures 1c and 1d), the resulting model
tended to compromise by making the corner less sharp (compared to the desired 90◦ angle). Geomet-
rically, when the boundary has an inflection with a wider angle, the difference between the certifiable
frontier and the frontier of robust points is less pronounced (consider for example, what happens
then the inflection approaches 180◦). In effect, this means that while under-parameterization of
piecewise-linear models may be a problem for robust model performance in practice, this limitation
may be (at least in part) manifested as an under-fit model as opposed to one with many robust but
non-certifiable points. This is reflected in the empirical results for certifiably trained models in the
literature, which typically have lower “clean accuracies” than their standard-trained counterparts.
However, we note that these models also exhibit a discrepancy between their certified accuracy and
their vulnerability to actual attacks, leaving the possibility that they may also fail to certify some
truly robust points.

5More properly put, the Lipschitz constant of |f1−f0|—which represents the margin by which the predicted
class exceeds the non-predicted class—is 1.
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3.2 POTENTIAL DRAWBACKS OF THE CAPACITY ESCAPE HATCH

As we have seen, by adding capacity, we can help overcome the limitations of piecewise linearity by
enabling the network to approximate smooth curves around corners in the decision boundary. For
universal tight certification, this needs to be done in the neighborhood of all corners on the decision
boundary. To the extent that each corner requires independent capacity, hopes for the scalability
of such an approach seem slim; albeit, VRA only requires tight certification on the data manifold,
meaning that extra capacity should only be needed in places where the decision boundary has sharp
inflections near in-distribution points.

However, this, too, presents an interesting problem. Namely, the network only has incentive to
allocate capacity to round the level curves in the places that are necessary to certify its training set;
i.e., where inflections in the decision boundary encroach on training points. Meanwhile, if similar
inflections exist near test points not seen during training, the learned network may fail to certify
them—even if the boundary is general, and even if it is also robust. In other words, we are faced
with not only the challenge of learning a generally robust boundary, but additionally of learning a
generally certifiable function. Indeed, generalization of VRA is empirically observed to be worse
than the corresponding “clean accuracy” would indicate—a principle that has been noted in prior
work due to its privacy implications (Yeom et al., 2020).

A Proposed Way Forward. Another possibility for addressing the fact that Lipschitz-based cer-
tification is PLL is to expand the hypothesis class to enable smooth curves in the decision surface.
Ultimately, our analysis shows that Lipschitz-based certification is most effective when the level
curves of the network function accurately reflect the `2 distance to the boundary, which requires
the possibility of smooth curves. This goal may be best achieved by purpose-built activations, as
piecewise linearity stems from the choice in activation function.

State-of-the-art Lipschitz-based certifiable training methods have enjoyed increased success in re-
cent years through leveraging MinMax activations (Anil et al., 2019)—or a variant thereof proposed
by Singla et al. (2022)—which are piecewise linear. MinMax has a distinct advantage over the more
common ReLU activation, due to its gradient-norm-preserving (GNP) property, which Anil et al.
demonstrate is key for tight, efficient Lipschitz bounds. While the need for gradient norm preserva-
tion remains clear, we posit that some form of smoothness is an additional desirable property, as it
would free the hypothesis class from piecewise linearity. We believe the task of designing suitable
smooth activation functions for PLL-certified networks is a promising avenue for future work.

4 RELATED WORK

Power and Limitations of Lipschitz-based Certification. Several of the early efforts around ro-
bustness certification focused on post hoc certification of networks trained outside of the control of
the certifier. This is a fundamentally hard problem, shown to be NP-complete by Katz et al. (2017)
and Sinha et al. (2018). While this fundamentally limits the tractability of complete post hoc certi-
fication, the limitation is of lesser concern for modern approaches that incorporate certification into
the training objective, thus encouraging learning models that better facilitate efficient certification.

The specific limitations of Lipschitz-based certification have also been of great interest in the prior
literature. Most of these results particularly consider the practical problem of bounding a neural
network’s Lipschitz constant. For example, Huster et al. (2018) note that the common method of
using the product of the layer-wise operator norm cannot tightly bound the Lipschitz constant of
even basic functions in ReLU networks. Anil et al. (2019) study this point further demonstrating
a trade-off between expressive power and efficient Lipschitz bound computation in networks with
non-gradient-norm-preserving activation functions. This limitation is handled by using network ar-
chitectures with gradient-norm-preserving activation function such as MinMax, and orthonormal
linear operators (though the latter need not necessarily be strictly enforced as it is a learnable ob-
jective). Anil et al. conjecture that such networks are universal 1-Lipschitz function approximators,
suggesting that learning any Lipschitz function in such a way that the Lipschitz constant can be
bounded tightly and efficiently is possible. By contrast, our work points to previously unstudied
limitations that are separate from the Lipschitz constant bounding problem, and are indeed not miti-
gated through the use of MinMax activations, which are piecewise linear. However, we propose that
the limitations brought forth in our work may similarly be addressed via novel activation functions.
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On the flip side, previous work has also touched on the power of Lipschitz-based certification. (Leino
et al., 2021) showed that certification with the global Lipschitz constant can be as powerful as with
the local Lipschitz constant when the model is under the learner’s control. We extend this result in
a number of key ways. First, we prove a stronger result that can be stated for all points, rather than
for a finite set of points certified via the local Lipschitz constant. Second, we explicitly consider the
hypothesis class, demonstrating that smoothness is a necessary condition to achieve this result.

Capacity Requirements for Robust Neural Networks. Understanding the role of capacity in
deep neural networks has been a topic of interest in general, particularly due to the demonstrated
effectiveness of highly over-parameterized models (Arora et al., 2018; Bubeck & Sellke, 2021; Du
et al., 2019; Garg et al., 2022; Zhang et al., 2017). Recent work has also investigated this subject in
the particular context of robust models. Bubeck & Sellke (2021) showed that under mild regularity
assumptions, learning a highly accurate model with small Lipschitz constant requires significantly
more parameters than would be required with no constraint on the Lipschitz constant—where the
capacity overhead, in terms of the number of parameters, scales with the dimension. While a con-
trolled Lipschitz constant is central to successful Lipschitz-based certification, our work (e.g., our
example in Section 3.1), shows that a Lipschitz interpolation between points of opposite class is not
sufficient for certification. As our analysis is focused on certification rather than Lipschitz interpo-
lation, we complement the work of Bubeck & Sellke, showing that even further capacity may be
required to appropriately bend the function’s level curves to facilitate Lipschitz-based certification.

In addition to the information-theoretic capacity requirements, large numbers of parameters in deep
networks may be necessary to facilitate efficient learning (Arora et al., 2018; Du et al., 2019). Re-
cently, Garg et al. (2022) showed that robust learning in particular may require even greater over-
parameterization than standard learning. Results such as these are complimentary to work such as
ours, which focus on minimal parameterizations.

Randomized Smoothing. Our work has focused on deterministic certification. By contrast, ran-
domized smoothing (Cohen et al., 2019; Lecuyer et al., 2018) has become a popular method that
instead provides a statistical guarantee of robustness. Randomized smoothing (RS) essentially
modifies the original function by predicting the expected label under Gaussian6 noise. These predic-
tions are empirically determined through sampling, with the statistical certificate depending on the
unanimity of the sample labels. While RS provides a weaker robustness guarantee, it solidly out-
performs deterministic methods in terms of certified accuracy. Interestingly, it seems clear that RS
is not PLL, since it naturally smooths piecewise linear networks, leading to a smooth boundary and
certified frontier—this may be one of the keys to its success. This observation gives further support
to the notion that state-of-the-art deterministic methods may be held back by piecewise linearity,
and may benefit from smooth activation functions.

5 CONCLUSIONS AND FUTURE DIRECTIONS

Incorporating Lipschitz-based certification into robust training procedures has proven to be the most
effective way to achieve high deterministic `2 verified-robust accuracy yet considered in the litera-
ture. Due to our Theorem 2, there is reason to believe Lipschitz-based certification has the power
to remain as promising as current results suggest. However, we also showed that restricted to the
hypothesis class of piecewise-linear networks, as has been the standard regime, Lipschitz-based
certification becomes fundamentally limited. For piecewise-linear networks, this means that tight
Lipschitz-based certification may require significantly more parameters, which, even if tractable,
can complicate certifiably robust generalization (e.g., see Section 3.2). On the other hand, rather
than viewing this as a fundamental drawback for Lipschitz-based certification, we propose that
purpose-built activations—with the correct smoothness and gradient-norm-preserving properties—
is a promising avenue for future work to free the most promising form of efficient deterministic
certification from the limitations of piecewise linearity.

6Prior work has considered other distributions as well (Yang et al., 2020a)
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A PROOFS

A.1 PROOF OF THEOREM 1

Theorem Statement. Any piecewise-linear limited certification procedure is incomplete on the
hypothesis class of piecewise linear networks.

Proof. It suffices to show that there exists a boundary achievable by a piecewise-linear network
for which no PLL certification method can tightly certify. We proceed by producing a piecewise
linear boundary that induces a smooth robust frontier. This is sufficient to prove our theorem, as
∆
(
Ccert(f, ε)

)
6= ∆

(
R(F, ε)

)
=⇒ Ccert(f, ε) 6= R(F, ε).

Consider the 2-D boundary given by max(x, y) = 0. Clearly, this boundary exists within the class
of piecewise linear functions as the function f(x, y) = max(x, y) is piecewise linear. Now consider
the points in the positive x-y quadrant. The points in this quadrant that are at distance ε from the
boundary are given by

√
x2 + y2 = ε, which is not piecewise linear. By definition, any certification

method that is PLL must have a certified frontier that is piecewise linear. Thus, the certified frontier
of such any such method cannot be equal to

√
x2 + y2 = ε in this quadrant.

A.2 PROOF OF THEOREM 2

Theorem Statement. When the hypothesis class, F , is given as the set of Lipschitz functions,
Lipschitz-based certification is complete on F .

Proof. Let F be the set of Lipschitz functions. Consider the decision boundary of any function
f ∈ F . Define f ′ as follows: let d(x) be the minimum distance of x from the decision boundary
and let f ′(x) = d(x) · 1F (x), where 1F (x) is the one-hot encoding of F (x).

First, observe that f ′j − f ′i is 1-Lipschitz for all i 6= j. To see this consider the following. The
Lipschitz constant is given by

sup
x,x′

∣∣(f ′j(x)− f ′i(x))− (f ′j(x
′)− f ′i(x′))

∣∣
||x− x′||

= sup
x,x′

∣∣f ′j(x)− f ′j(x′) + f ′i(x
′)− f ′i(x)

∣∣
||x− x′||

(3)

Consider points x and x′, and let us assume that ||x−x′|| = δ. We would like to bound the quantity
given by (4), the numerator in (3), by δ.∣∣f ′j(x)− f ′j(x′) + f ′i(x

′)− f ′i(x)
∣∣ (4)

There are a few cases to consider. First if F (x) and F (x′) are both different from i and j, then (4)
is 0 ≤ δ. Since (4) is symmetric in both i and j, and x and x′, without loss of generality, we will
assume F (x) = j. This leaves two cases: when F (x′) = j, and when F (x′) 6= j (in the latter case
we will not be concerned with whether or not F (x′) = i).

In the first case we have

(4) = |f ′j(x)− f ′j(x′)| = |d(x)− d(x′)| (5)

= d(x)− d(x′) without loss of generality (6)

Let a be the nearest point on the boundary to x′, such that which d(x′) = ||x′ − a||. Thus,

d(x) ≤ ||x− a|| as a is on the boundary (7)

≤ ||x− x′||+ ||x′ − a|| by the triangle inequality (8)

= δ + d(x′) (9)

=⇒ d(x)− d(x′) ≤ δ as desired (10)

In the second case, x and x′ are given different labels and we have

(4) = |f ′j(x) + f ′i(x
′)| (11)

≤ d(x) + d(x′) as f ′i(x
′) is at most d(x′) (achieved when F (x′) = i) (12)

12
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Since x and x′ are given different labels, there must be at least one part of decision boundary that
bisects the line segment connecting x and x′; let a be this intersection point. Additionally, since a
is on the boundary, we must have that d(x) ≤ ||x− a|| and d(x′) ≤ ||x′ − a||. Thus, as desired,

d(x) + d(x′) ≤ ||x− a||+ ||x′ − a|| = δ (13)

This allows us to conclude that f ′j − f ′i is 1-Lipschitz for all i 6= j, as claimed.

The points that are certified by Lipschitz-based certification are those for which (14) holds, where
j = F (x) and Kji is the Lipschitz constant of f ′j − f ′i .

min
i6=j

{
f ′j(x)− f ′i(x)− εKji

}
≥ 0 (14)

Notice that when i 6= F (x), f ′i(x) = 0. Thus (14) can be simplified to f ′j(x) = d(x) ≥ ε, noting
also that Kji = 1 ∀i, j. Therefore, the points that can be certified via Lipschitz-based certification
are those for which d(x) ≥ ε, which are precisely the points that are locally robust.

A.3 PROOF OF PROPOSITION 3

Theorem Statement. Lipschitz-based certification is piecewise-linear limited.

Proof. Assume the function, f , being certified is piecewise linear. Without loss of generality, con-
sider inputs x for which the network predicts class j. The margin by which class j surpasses all
other classes is given by m(x) = mini {fj(x)− fi(x)}. Note that m is piecewise linear as f is
piecewise linear. Let K be the Lipschitz constant of m. The largest radius that can be certified at
x is then m/K. Thus, the certified frontier is given by m/K = ε; this corresponds to the level curve
of m corresponding to m = ε ·K. Since m is piecewise linear, this level curve is piecewise linear.
Thus, the certified frontier is piecewise linear, and Lipschitz-based certification is PLL.

B LIMITATIONS OF OTHER CERTIFICATION METHODS

B.1 LIMITATIONS OF LOCAL-LIPSCHITZ-BASED CERTIFICATION

State-of-the-art deterministic `2 certified performance is currently achieved using Lipschitz-based
certification, which outperforms other types of certified training methods (Leino et al., 2021; Trock-
man & Kolter, 2021) such as those based on convex relaxations—e.g., (Wong et al., 2018)—or max-
imizing linear regions—e.g., (Croce et al., 2019; Xiao et al., 2019). Unsurprisingly, however, meth-
ods that use the local Lipschitz constant for certification can achieve similarly high VRA (Huang
et al., 2021), though this comes at the cost of significantly slower certification.

The local Lipschitz constant at a point x is given by Kε(x) in Definition 5, which essentially corre-
sponds to the maximum slope of the function within an ε neighborhood of x.
Definition 5. The local Lipschitz constant is given by

Kε(x) = sup

x1,x2 .
||x−x1||≤ε
||x−x2||≤ε

{
|f(x1)− f(x2)|
||x1 − x2||

}

Local-Lipschitz-based certification, similar to Lipschitz-based certification (Section 2.2), certifies
points, x, when the margin by which the top-predicted class, F (x), exceeds all other classes is
greater than ε ·Kε(x).

While the local Lipschitz constant is always a lower bound for the global Lipschitz constant—and
therefore local-Lipschitz-based certification can possibly be tighter—local-Lipschitz-based certifi-
cation is nonetheless equally limited.

We will consider a generous setting in which the bound used for certification is exact, i.e., where
the certification procedure has oracle access to Kε(x). Because Kε(x) is not piecewise linear, local-
Lipschitz-based certification is not strictly piecewise-linear limited (PLL) in this setting. It is worth
noting, however, that methods for approximating the local Lipschitz constant may not leverage this
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smoothness in practice. Regardless, we show that local-Lipschitz-based certification is incomplete
on piecewise-linear networks (Theorem 5).

This result is related to the fact that when the learner is given control over the implementation of
the boundary, (global) Lipschitz-based certification can match the power of local-Lipschitz-based
certification; this result has been proven in a slightly weaker formulation by Leino et al. (2021). We
provide an alternative theorem statement and proof here that better aligns with the insights in this
work.
Theorem 5. Local-Lipschitz-based certification is not complete on the hypothesis class of
piecewise-linear networks.

Proof. It suffices to show that there exists a boundary achievable by a piecewise-linear network for
which no corresponding piecewise-linear implementation can be tightly certified by local-Lipschitz-
based certification. Recall that by Corollary 4 there exists such a boundary for (global) Lipschitz-
based certification. We will consider one of the same such boundaries.

For a particular value of ε, consider the points ∆ (R(F, ε)), which are at distance exactly ε from the
boundary. There are two cases to consider: either (1) the local Lipschitz constant is always the same
everywhere, i.e., ∀ε > 0, ∀x1, x2 ∈ ∆ (R(F, ε)), Kε(x1) = Kε(x2), or (2) there is some variation
in the local Lipschitz constant, such that ∃ε > 0, x1, x2 ∈ ∆ (R(F, ε)) where Kε(x1) 6= Kε(x2).

In the first case, we see that Kε(x) = K (the global Lipschitz constant), meaning that local-
Lipschitz-based certification will certify the exact same points as (global) Lipschitz-based certifi-
cation. Thus, by Corollary 4, there must be a point which is robust at radius ε but not certifiable.

In the second case, without loss of generality, assume Kε(x1) > Kε(x2). Because f is piecewise
linear, it is comprised of a finite number of linear functions, which in turn have a finite number of
distinct slopes (gradient norms). Thus, ifKε(x1) > Kε(x2),Kε(x1)−Kε(x2) = δ where δ belongs
to some finite set of strictly positive values.

Furthermore, without loss of generality, x1 and x2 can be chosen to be arbitrarily close together,
i.e., they lie arbitrarily near a point where the local Lipschitz constant changes. We will therefore
consider x1 and x2 that are chosen such according to Equation 15.

||x1 − x2|| <
ε · δ
K

(15)

Let m2 be the margin by which the top-predicted class, F (x2), exceeds all other classes. The
maximum radius that can be certified at x2 is thus m2/Kε(x2). Note that as certification is sound, we
have

m2

Kε(x2)
≤ ε (16)

Now consider the maximum radius that can be certified at x1. Let m1 be the margin by which the
top-predicted class, F (x1), exceeds all other classes. The maximum radius that can be certified at
x1 is thus m1/Kε(x1)

m1

Kε(x1)
=

m1

Kε(x2) + δ
by assumption (17)

≤ m2 +K||x1 − x2||
Kε(x2) + δ

by definition of the Lipschitz constant (18)

<
m2 + ε · δ
Kε(x2) + δ

by our choice of ||x1 − x2|| in (15) (19)

≤ ε ·Kε(x2) + ε · δ
Kε(x2) + δ

by (16) (20)

= ε (21)

Thus, we see that x1 cannot be certified with radius ε, despite that its distance from the boundary is
exactly ε.
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B.2 OTHER PIECEWISE-LINEAR LIMITED METHODS

Our work focuses primarily on Lipschitz-based certification, which we demonstrate is fundamen-
tally limited on the hypothesis class of piecewise linear networks. However, this limitation is not
due specifically to the use of the Lipschitz constant per se; instead, we attribute it more generally
to the fact that Lipschitz-based certification always produces a piecewise-linear certified frontier on
piecewise-linear networks, a property we refer to as PLL (Definition 4). In this section we briefly
discuss how this property may apply to other flavors of certification techniques that have been pro-
posed in the literature.

Convex Relaxations and Dual Networks. One classic approach for certification is through con-
vex relaxation. A survey of such methods is given by Salman et al. (2019), who point out the limi-
tations (regarding tight certification) of convex relaxations (though the authors do not consider our
setting where the learner may control the implementation of the boundary, but rather focus on post
hoc certification). Though many approaches in this family have been proposed, we will consider two
baseline methods that capture a primal and dual formulation of convex relaxations: Fast-Lin (Weng
et al., 2018), and an approach proposed by Wong & Kolter (2018), often referred to as “KW.”

Fast-Lin directly derives upper and lower bounds on the output of a ReLU network in order to
determine if an adversarial example might exist. This is done by iteratively computing upper and
lower bounds for the neurons in each layer and using them to replace the ReLU activations with
linear upper and lower bounds. This computation resembles a piecewise-linear network, suggesting
that Fast-Lin is PLL.

The KW approach formulates the adversary as an LP that optimizes over the convex outer approxi-
mation of the set of top-level activations reachable through a norm-bounded perturbation. Crucially,
for the sake of tractability, the LP can be bounded by the feasible set of the dual, which Wong &
Kolter show can be expressed as a dual network, which resembles a backwards pass in the network
being certified. For ReLU networks, the activations in the dual network are replaced with their upper
convex envelopes (a linear function) over the bounded set [`, u], where ` and u represent lower and
upper bounds on the pre-ReLU neural activations. The upper and lower bounds can be iteratively
computed in a similar way to in Fast-Lip; thus, in its simplest form,7 the dual network inherits the
piecewise linearity of the original ReLU network being certified, suggesting the resulting certified
frontier is piecewise linear, and certification is PLL.

Hyperplane Projections. As exact certification is NP-complete, the literature has often turned to
training procedures that help simple, approximate certification enjoy greater success. In piecewise
linear networks, the input can be partitioned into a polyhedral complex where each convex region
corresponds to a single activation pattern, over which the network is linear (Croce et al., 2019;
Fromherz et al., 2021; Jordan et al., 2019). Motivated by this view of ReLU networks, one family of
robust training approaches attempts to expand the linear regions of the network to simplify the com-
binatorial analysis of the possible ReLU activation patterns (Croce et al., 2019; Xiao et al., 2019).
Croce et al. proposed a simple certification technique for networks trained with their “Maximum
Margin Regularization” (MMR), where a point, x, is certified only if (1) the entire ε-ball around x
is contained in a single convex activation region, and (2) the linear function corresponding to the
region does not have a boundary within ε from x. This approach is clearly PLL, as the certified
regions can be obtained by shrinking each activation region (possibly split in two if a linear decision
boundary crosses it) by ε. Since the original regions are convex polytopes, so too are the certified
regions, thus the certified frontier is piecewise-linear.

In contrast to our findings for Lipschitz-based certification, it is worth noting that the limitations
of this approach go beyond PLL, as completeness of the MMR approach is in direct conflict with
non-linearity; and moreover, the approach is designed specifically for piecewise-linear networks.

C DETAILS ON EXPERIMENTS

The experiments presented in Figure 1 in Section 3 were performed using the gloro Python li-
brary, which implements the GloRo Net method of Leino et al. (2021) for training certifiably robust

7This approach has been refined in subsequent work that we do not consider here (Wong et al., 2018).
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Figure 2: Illustration of the “corner problem” described in Section 2.3.

models by incorporating Lipschitz-based certification into training. All networks in the experiments
consisted of a 1-hidden layer dense network with MinMax Anil et al. (2019) activations; three spe-
cific architectures were used, with 2, 20, and 200 hidden units, respectively. Models were trained
for 64 epochs, with a batch size of 128. We chose hyperparameters inspired by those used by Leino
et al. (see the original paper for details on the meaning of the various hyperparameters); namely, we
used GloRo-TRADES loss with λ = 1.2, we scaled ε logarithmically to its ultimate value of 0.5 by
the half-way point of training, and we linearly decreased the learning rate from 10−3 to 0 half-way
through training.

D AN ILLUSTRATIVE EXAMPLE OF THE CORNER PROBLEM

For illustrative purposes a diagram is provided in Figure 2 that serves as a visual explanation of
the “corner problem” described in Section 2.3. The boundary of a neural network, shown by the
bold black line, forms a sharp corner. The complement to the robust region, i.e., the set of points
that are not robust, is shown in gray. A simple implementation of this boundary has level curves
that make similar sharp corners; the level curve corresponding to the certified frontier is shown by
the dotted line, and the certified region is colored in blue. The region opposite the corner in the
boundary is highlighted. We see that in this region, there is a set of points, shown in orange, that are
not certified, despite the fact that they are robust, being at distance greater than ε from the boundary.
In this two-dimensional example, these falsely flagged points make up a relatively small fraction
of the uncertified points opposite the corner (represented as the union of the orange points and the
highlighted gray points in the diagram); however, in high dimensions, virtually all uncertified points
in this region would be falsely flagged, as indicated by Equation 1.
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