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Abstract
Due to the complex mapping relations, one-to-001
many and many-to-one phenomena are huge002
challenges for open-domain dialogue genera-003
tion task, which tend to make dialogue mod-004
els generate irrelevant, incoherent or non-005
diverse responses. Most existing methods006
avoid learning such phenomena through intro-007
ducing the external information, reconstruct-008
ing the optimization function or manipulating009
data samples. However, avoiding confronting010
such challenges ignores valuable information011
in these responses, and the dialogue mod-012
els cannot learn the nature of such phenom-013
ena. In this paper, we propose a Sentence Se-014
mantic Segmentation guided Conditional Vari-015
ational Auto-Encoder (SegCVAE) to directly016
learn one-to-many and many-to-one responses.017
SegCVAE uses prominent semantics to replace018
the original semantics to learn the distribution019
of latent variables, which avoids the gap be-020
tween latent variables and the context, thus en-021
suring the relevance and coherence of the gen-022
erated responses. Furthermore, SegCVAE can023
segment multiple prominent semantics to en-024
sure the diversity of generated responses. To025
evaluate the model, we first define two new026
tasks named one-to-many dialogue learning027
task and many-to-one dialogue learning task.028
And then provide two new dialogue datasets029
named One-to-Many and Many-to-One, which030
are extracted from the well-established dataset.031
Finally, we also propose the evaluation strate-032
gies based on some commonly-used metrics.033
The experiment results show that our model034
achieve better performance than the baseline035
models in addressing these two new tasks.036

1 Introduction037

One-to-many and many-to-one phenomena, com-038

monly occurring in human dialogue, arise huge039

challenges for open-domain dialogue generation040

models (Csaky et al., 2019; Sun et al., 2021): The041

one-to-many phenomenon could lead the model042

to generate irrelevant and incoherent responses,043

context 1 nothing works with my toothache now.
context 2 oh!!! i have a horrible toothache.
response you should go to the dentist.
context 1 could you tell me how to use it?
context 2 what should i do with the token?
response you put it in the slot at the turnstile and

then push the turnstile to get into the
platform.

context 1 how nice these frames are!
context 2 how nice these sunglasses are!
response yes, they are the latest designs. would

you like to try them on?

Table 1: The many-to-one dialogue pairs (multiple con-
texts with the same response) extracted from DailyDia-
log dataset.

while the many-to-one phenomenon could make 044

the model generate non-diverse responses. Fac- 045

ing such phenomenon, most existing methods are 046

trying to avoid directly training models from the 047

one-to-many and many-to-one phenomena to im- 048

prove their performance. For instance, some meth- 049

ods (Luong et al., 2015; Li et al., 2016b) introduce 050

external information to convert the one-to-many 051

dialogue pairs into one-to-one dialogue pairs, thus 052

reducing the difficulty of training models; Some 053

methods (Li et al., 2016a; Zhang et al., 2018b; Liu 054

et al., 2020) reconstruct the optimization functions, 055

which allows the model to learn to generate qual- 056

ified responses instead of ground-truth responses, 057

thereby avoiding the directly training on the many- 058

to-one dialogue pairs; Some methods (Xu et al., 059

2018b; Csaky et al., 2019; Akama et al., 2020) train 060

the model through the filtered datasets, which usu- 061

ally contains little one-to-many and many-to-one 062

dialogue pairs. 063

We do agree that avoiding the one-to-many and 064

many-to-one dialogue pairs is an effective way to 065

improve the performance of dialogue generation 066

models. However, avoiding such dialogue pairs 067
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Figure 1: The validation results of responses generated
by Seq2Seq model fine-tuned by one-to-many/many-to-
one dialogue pairs.

cannot help the model learn the essential knowl-068

edge of the one-to-many and many-to-one phenom-069

ena in natural human conversation. Furthermore,070

some one-to-many and many-to-one dialogue pairs071

are beneficial to help the model in certain aspects.072

For example, Table 1 shows some many-to-one di-073

alogue pairs extracted from DailyDialog (Li et al.,074

2017) dataset, which are not only not generic, but075

can also be used for helping models summarize the076

response patterns.077

In addition, a simple and effective experiment078

can prove the above point of view. We first pre-079

trained a Sequence-to-sequence dialogue genera-080

tion model (Seq2Seq) (Shang et al., 2015) with-081

out one-to-many/many-to-one dialogue pairs, and082

then fine-tuned the model with a certain percentage083

(0.1-0.9) of the original one-to-many/many-to-one084

dialogue pairs in the OpenSubtitles dataset (Lison085

and Tiedemann, 2016). Figure 1 shows the result of086

the experimental investigation regarding the influ-087

ence of the ratio of one-to-many and many-to-one088

dialogue pairs in fine-tuning the Seq2Seq model.089

In Figure 1, the Distinct (Li et al., 2016a) rep-090

resents the diversity of generated responses; the091

BLEU (Papineni et al., 2002) and the Embedding-092

Average (Liu et al., 2016) represent the difference093

between generated responses and ground-truth re-094

sponses in word-overlap level and semantics level,095

respectively; and the Coherence (Xu et al., 2018b)096

represents the degree of correlation between the097

generated responses and the context. It can be098

noticed from this figure that the one-to-many dia-099

logue pairs could increase the distinct of generated100

responses, but reduce the embedding-average and101

coherence of the generated responses. On the con-102

trary, the many-to-one dialogue pairs could reduce 103

the distinct, but increase the embedding-average 104

and coherence. Moreover, the BLEU will be re- 105

duced while fine-tuning with both one-to-many and 106

many-to-one dialogue pairs, which shows the dif- 107

ficult that training the models with these non-one- 108

to-one dialogue pairs. Table 1 and Figure 1 demon- 109

strate that one-to-many and many-to-one dialogue 110

pairs are both beneficial and harmful to the per- 111

formance of a dialog generation model. Therefore, 112

except to avoid or filter these dialogue pairs, how to 113

enable the model to effectively learn the essential 114

and useful knowledge from these dialogue pairs 115

while avoiding being affected by the disadvantages 116

is a problem worthy of in-depth study. 117

To address such problems, we present a Sentence 118

Semantic Segmentation guided Conditional Vari- 119

ational Auto-Encoder (SegCVAE). Inspired from 120

the complexity and ambiguity of the language, we 121

found that focusing on different words or word- 122

combinations will highlight different semantic in- 123

formation that we called the prominent semantics 124

from the original semantics. The prominent seman- 125

tics could explain the one-to-many and many-to- 126

one phenomena naturally: For one-to-many phe- 127

nomenon, the multiple responses may correspond- 128

ing to the multiple prominent semantics summa- 129

rized from different words. In addition, for many- 130

to-one phenomenon, the one response may cor- 131

responding to the similar prominent semantics in 132

different contexts. Therefore, we propose the inter- 133

nal separation to extract multiple different word- 134

combinations for obtaining such prominent seman- 135

tics. However, also due to the ambiguity of word, 136

such word-combinations may also have the unclear 137

semantics. Thence, we propose the external guid- 138

ance to obtain multiple instructive words from the 139

vocabulary to constrain the semantic information of 140

the extracted word-combinations. Finally, we use 141

the word-combinations and the instructive words 142

together to summary the prominent semantics, and 143

then generate the response. Furthermore, to build 144

the mapping between the prominent semantics and 145

the response, we propose semantic alienation norm, 146

semantic centralization norm, and semantic distil- 147

lation norm), which are detailed in Section 4. Our 148

contributions are as follow: 149

First, we proposed the novel SegCVAE to learn 150

the essential knowledge from the one-to-many and 151

many-to-one dialogue pairs. By using the sentence 152

semantic segmentation, our SegCVAE can con- 153
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struct the mappings between the multiple responses154

and multiple different possible prominent seman-155

tics, thereby naturally explaining one-to-many and156

many-to-one phenomena. Then, we defined the157

one-to-many and many-to-one dialogue learning158

tasks, collected the One-to-Many (O2M) and Many-159

to-One (M2O) dialogue datasets, and presented160

some automatic evaluation strategies to assess the161

ability of the dialogue model on processing one-162

to-many and many-to-one dialogue pairs. Finally,163

we conducted extensive experiments to show the164

superior performance of our SegCVAE in dealing165

with one-to-many and many-to-one phenomena.166

2 Related Work167

The open-domain dialogue generation task has re-168

ceived extensive attention since 2014 (Sutskever169

et al., 2014; Shang et al., 2015; Sordoni et al., 2015).170

At that time, Sutskever et al. (2014) have identi-171

fied that the noisy dialogue pairs, including one-to-172

many and many-to-one dialogue pairs, will affect173

the performance of the dialogue generation models.174

To address such noisy dialogue pairs and improve175

the performance of the dialogue model, more and176

more dialogue generation methods have been pro-177

posed in recent years. For instance, some methods178

design a scoring method and filter the noisy dia-179

logue pairs (Xu et al., 2018b; Csaky et al., 2019;180

Akama et al., 2020); some methods introduce the181

external information to reduce the number of noisy182

dialogue pairs (Luong et al., 2015; Li et al., 2016b;183

Serban et al., 2016; Zhao et al., 2017; Huber et al.,184

2018; Ghazvininejad et al., 2018; Tao et al., 2018;185

Chen et al., 2018; Feng et al., 2020b); and some186

methods reconstruct the optimization function to187

avoid training dialogue models directly on such188

noisy dialogue pairs (Li et al., 2016c; Xu et al.,189

2017; Zhang et al., 2018a; Xu et al., 2018a; Zhang190

et al., 2018b; Feng et al., 2020a; Liu et al., 2020;191

He and Glass, 2020).192

However, these methods cannot actually learn193

the essential knowledge of one-to-many and many-194

to-one dialogue pairs, nor can they make full use195

of the advantages of such dialogue pairs. For ex-196

ample, Csaky et al. (2019) uses the entropy, cal-197

culating based on the conditional probability, to198

assess the dialogue pairs (high entropy represents199

low score), which easily filters the one-to-many200

and many-to-one dialogue pairs before training; Li201

et al. (2016b) uses personal information to reduce202

the one-to-many dialogue pairs. They believed203

that different personal information with the same 204

context will lead to different responses; The Re- 205

inforcement Learning based methods only require 206

the generated response could get high reward rather 207

than similar with the ground-truth, which means 208

that some many-to-one dialogue pairs are ignored 209

during training. 210

In addition to the methods illustrated above, the 211

CVAE-based dialogue generation methods (Shen 212

et al., 2017; Zhao et al., 2017; Chen et al., 2018; 213

Gao et al., 2019; Sun et al., 2021) provide an idea 214

to learn the essential knowledge of the one-to-many 215

and many-to-one phenomena. They try to learn the 216

knowledge into a latent space, a posterior probabil- 217

ity distribution, and a prior probability distribution. 218

By sampling latent variables form the latent space 219

based on the probability distributions, the model 220

could easily generate multiple responses for one 221

context. Based on the advantages of the CVAE 222

architecture in solving one-to-many and many-to- 223

one phenomena, we proposed the SegCVAE, which 224

uses the sentence semantic segmentation to regu- 225

larize and guide the latent variables. 226

3 Task Definition 227

One-to-Many Dialogue Learning Let c be a 228

context, and rs=r1, r2, . . . , rn be the responses 229

to c. Follow the general dialogue generation 230

task, we put the c and rs into n dialogue pairs 231

(c, r1), (c, r2), . . . , (c, rn). Let D1n be the dataset 232

that only contains such one-to-many dialogue pairs. 233

This task requires a dialogue generation model to 234

learn the one-to-many knowledge, and to generate 235

multiple coherent and informative responses for 236

every context sentence. 237

Many-to-One Dialogue Learning Relatively 238

speaking, let cs=c1, c2, . . . , cn be the contexts, and 239

r be a response to the cs. Correspondingly, we use 240

Dn1 to represent a dataset that only contains many- 241

to-one dialogue pairs (c1, r), (c2, r), . . . , (cn, r). 242

This task requires the dialogue generation model 243

to learn the many-to-one knowledge, and to distin- 244

guish which of the contexts can give the same re- 245

sponse, and then increase the diversity while keep- 246

ing the coherence of the generated response. 247

4 Sentence Semantic Segmentation 248

guided CVAE 249

Overview This paper proposes the SegCVAE to 250

study the relations of prominent semantics and one- 251

to-many and many-to-one phenomena. SegCVAE 252

3



uses multiple prominent semantics (x1, x2, x3, . . .)253

to replace the original semantics to learn the proba-254

bility distribution of latent variables and the gener-255

ation process. To train our model, We introduce the256

Stochastic Gradient Variational Bayes framework257

(Kingma and Welling, 2014; Sohn et al., 2015; Yan258

et al., 2016) and gradient blocking trick (Sun et al.,259

2021):260

L(r, x+) = max
i=1,2,3,...

Eqφ(z|re,xi)(log pdec(r|z, xi))261

−KL(qφ(z|re, xi)||pθ(z|xi)), (1)262

The qφ(z|re, xi) and pθ(z|xi) are the recognition263

network and prior network that used for sampling264

the latent variable z. The re = enc(r) is the se-265

mantic vector computed by model’s encoder enc266

based on the response r. The dec is the model’s267

decoder, generating the output token based on the268

conditional probability pdec(r|z, xi).269

To obtain the multiple prominent semantics, the270

SegCVAE employs the internal separation and ex-271

ternal guidance. To make the prominent semantics272

meaningful, three novel semantic norms: semantic273

alienation norm, semantic centralization norm, and274

semantic distillation norm are proposed.275

4.1 Internal Separation276

The internal separation mainly focuses on extract-277

ing the multiple semantics from the context itself,278

which processes sentences through multiple trig-279

gers and extracts multiple sets of different word-280

combinations, which can be used to get different281

prominent semantics.282

Each trigger consists of a convolution network283

Conv and a dense network Dense. The input284

of the it is a embedded matrix representation285

Cmax_clen×N of a context, where max_clen rep-286

resents the maximum length of a context that can287

be received and N is the dimension of the word-288

embedding. The Cmax_clen×N will be processed289

by the Conv whose kernel K and stride S are290

(m,N, 1, chan) and (1, 1, 1, 1), respectively.291

Fc = Conv(Cmax_clen×N ,K, S), (2)292

where chan is the number of channels of the con-293

volution operation. After that, we can get the se-294

mantic features Fc. According to the channel, we295

squeeze and transpose the Fc from (max_clen−296

m + 1, 1, chan) to (chan,max_clen − m + 1),297

and put it into the Dense network. The weight298

of Dense is W(max_clen−m+1,max_clen), and the 299

activation function of it is SoftMax: 300

Fd = SoftMax(Fc ×W), (3) 301

SoftMax : yij =
eoij∑k
1 e

oik
, (4) 302

where y ∈ Fd and o ∈ (Fc × W). Hence, the 303

shape of Fd is (chan,max_clen), which can rep- 304

resent the probability of words in the context of 305

attention in different channels. Then, we select the 306

word with the highest probability in each channel, 307

which will be processed by the model’s encoder 308

to extract a certain semantic information. How- 309

ever, this discrete process will hamper the opti- 310

mization of the model. In order to ensure the gra- 311

dient back-propagation, we have introduced the re- 312

parameterization tricks (i.e. Gumbel SoftMax) to 313

replace the SoftMax and selection process, which 314

shown in Eq. 5: 315

F ′d = GumbelSoftMax(Fc ×W), (5) 316

GumbelSoftMax : y′ij =
eoij/τ∑k
1 e

oik/τ
, (6) 317

where y′ ∈ F ′d and τ is the temperature parameter. 318

We can control the τ to be as small as possible so 319

that the result of F ′d is as close as possible to the 320

result of argmax(Fd). 321

Finally, we can get the embedded matrix rep- 322

resentation of the extracted word-combination 323

CISchan×N = F ′d × Cmax_clen×N . Therefore, the 324

internal separation can randomly initializes M 325

triggers to extractM embedded matrix represen- 326

tations (CIS,1chan×N , CIS,2chan×N , . . . , CIS,Mchan×N ) of dif- 327

ferent word-combinations from a context. 328

4.2 External Guidance 329

The external guidance is responsible for extract- 330

ing instructive information from the outside of 331

the sentence (i.e. the vocabulary) according to 332

the context semantics. To achieve this goal, we 333

change the hyper-parameter of the dense network 334

in the trigger that defined in the previous section. 335

The new weight matrix of the dense in external 336

guidance is W ′, whose shape is changed from 337

(max_clen−m+1,max_clen) to (max_clen− 338

m+1, vocab_size). The vocab_size is the size of 339

the vocabulary. Hence, the results of the dense net- 340

work represents the probability of words in the vo- 341

cabulary of attention in different channels. There- 342

fore, the output of external guidance is a matrix 343
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representation V EG
chan×N of some words in vocabu-344

lary related to the semantics of the input sentence:345

V EG
chan×N = GumbelSoftMax(Fc ×W ′)× Em346

where Em is the word-embedding matrix.347

Finally, the external guidance also randomly348

initializes M new triggers to extract V EG,1
chan×N ,349

V EG,2
chan×N , . . ., V EG,M

chan×N .350

Therefore, the CISchan×N and the V EG
chan×N are351

used together to calculate multiple different promi-352

nent semantics of a context. We concatenate them353

as [(CIS,1chan×N , V EG,1
chan×N ), (CIS,2chan×N , V EG,2

chan×N ),354

. . ., (CIS,Mchan×N , V EG,M
chan×N )], and input them into the355

enc to get the prominent semantics xi.356

xi = enc((CIS,ichan×N , V
EG,i
chan×N )), i = 1, . . . ,M357

4.3 Semantic Norms358

We introduce the self-supervise learning ideas, and359

propose semantic alienation norm, semantic cen-360

tralization norm, and semantic distillation norm, to361

constrain the relations between the multiple promi-362

nent semantics and the responses.363

Semantic Alienation Norm We first propose the364

semantic alienation norm to make each prominent365

semantics as different as possible from other promi-366

nent semantics, which is computed by:367

Lsan = |IM×M − SoftMax(xM×N × xTM×N )|368

The IM×M is an identity matrix, and xM×N =369

concatenate([x1, x2, . . . , xM]) is the context vec-370

tors calculated by the model’s encoder enc. The371

xi represents one certain semantic vector among372

M prominent semantic vectors, so the xM×N ×373

xTM×N can represent the correlation between a cer-374

tain prominent semantic vector and other promi-375

nent semantic vectors.376

Semantic Centralization Norm Then we pro-377

pose the semantic centralization norm to ensure378

the ensemble result of these prominent semantic379

vectors ([x1, x2, . . . , xM]) is similar with the se-380

mantics of the original context.381

Lscn = 1− cosine(enc(Cmax_len×N ),

M∑
i

xi)382

Semantic Distillation Norm Finally, we pro-383

pose the semantic distillation norm, which uses384

the relationship knowledge among the ground-truth385

response to teach the model to learn the semantic 386

relation of these prominent semantic information. 387

Lsdn = KL(SoftMax(CB×N × CTB×N )|| 388

SoftMax(X+ ×X+T )), 389

where the CB×N represents the semantic matrix of 390

batch size B ground-truth responses obtained by 391

the model’s encoder enc. And the X+ is the con- 392

catenated result of B positive prominent semantic 393

information x+ obtained by gradient blocking. 394

4.4 Likelihood Function 395

Therefore, the final likelihood function that is used 396

for training our model is: 397

Lall = L(r, x+)− Lsan − Lscn − Lsdn, (7) 398

where L(r, x+) is shown in Eq (1). 399

5 Experiment1 400

Data Setting We use the processed OpenSub- 401

titles (Lison and Tiedemann, 2016) dataset that 402

proposed by Sun et al. (2021) for general dia- 403

logue generation task, which has 5M, 100K, and 404

50K dialogue pairs in training, validation and, 405

test set, respectively. Meanwhile, we also extract 406

two special datasets from the original OpenSub- 407

titles: One-to-Many and Many-to-One, for our 408

Non-One-to-One dialogue learning tasks. To build 409

these two datasets, we first extract single-turn di- 410

alogues from the OpenSubtitles: T − 1 single- 411

turn dialogues [(u1, u2), (u2, u3), ..., (uT−1, uT )] 412

can be extracted from one multi-turn dialogue 413

(u1, u2, ..., uT ), where u represents an utterance 414

in each dialogue. Then, we selected and collected 415

a large collection of one-to-many dialogue pairs 416

as the One-to-Many (O2M) dataset, and another 417

large collection of many-to-one dialogue pairs as 418

the Many-to-One (M2O) dataset. Finally, we use 419

the token-list of GloVe (Pennington et al., 2014) 420

to filter the O2M and M2O datasets. For each dia- 421

logue pair (context ci, response ri), we first obtain 422

its tokens after word segmentation, and then judge 423

whether its tokens are all contained in GloVe’s 424

token-list. If the GloVe do not contain any tokens 425

of (ci, ri), we drop all dialogue pairs containing the 426

ci or ri from the dataset. Table 2 lists key statistics 427

of the dataset after processing. 428

1See Appendix A for other experiment settings.
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dataset type # tokens # pairs # contexts(c) # responses(r) avg # r avg # c max # r max # c
training 40,875 778,658 284,516 778,658 2.74 - 1,546 -

O2M validation - 222,126 81,057 222,126 2.74 - 689 -
test - 110,446 40,710 110,446 2.71 - 497 -
training 40,331 768,183 768,183 279,978 - 2.74 - 1,588

M2O validation - 217,474 217,474 79,552 - 2.73 - 957
test - 109,815 109,815 39,795 - 2.76 - 321

Table 2: Statistics for One-to-Many (O2M) and Many-to-One (M2O) datasets. The # tokens is the vocabulary
size, and the # pairs/contexts/responses is the number of the dialogue pairs/contexts/responses in datasets. The
avg/max # r is the average/maximum number of responses for each context, and the avg/max # c is the aver-
age/maximum number of contexts for each response. “-” means the cell is not necessary for this type/dataset.

model ppl Distinct-1 Distinct-2 Length BLEU-1 BLEU-2 BLEU-3 Average Coherence
Seq2Seq 45.9±.13 0.002±.00 0.010±.00 11.8±.81 0.236±.04 - - 0.465±.08 0.281±.05
CVAE+BOW 12.2±.17 0.005±.00 0.095±.00 13.1±.26 0.172±.02 - - 0.285±.04 0.195±.03
K-CVAE+BOW 12.1±.20 0.006±.00 0.098±.00 13.1±.10 0.203±.02 - - 0.311±.06 0.200±.05
SepaCVAE 2.0±.06 0.016±.00 0.282±.01 12.6±.11 0.417±.00 - - 0.836±.01 0.707±.01
SegCVAE 3.0±.09 0.011±.00 0.232±.01 12.4±.10 0.412±.01 0.339±.01 0.287±.00 0.842±.00 0.719±.01
Seq2Seq - 0.003±.00 0.015±.00 11.8±.82 - 0.193±.03 0.163±.03 0.465±.08 0.281±.05
CVAE+BOW - 0.009±.00 0.131±.00 13.1±.24 - 0.144±.02 0.123±.02 0.285±.04 0.195±.03
K-CVAE+BOW - 0.010±.00 0.135±.00 13.1±.10 - 0.169±.02 0.144±.01 0.308±.06 0.198±.05
SepaCVAE - 0.025±.00 0.330±.03 13.5±.58 - 0.326±.01 0.276±.01 0.807±.02 0.677±.01
SegCVAE - 0.021±.00 0.323±.01 14.4±.80 0.437±.01 0.364±.01 0.310±.01 0.836±.00 0.707±.01

Table 3: Mterics results on validation data (up) and test data (down) of the OpenSubtitles dataset. The best score
in each column is marked with underline. Note that our BLEU-1,2,3 scores are normalized to [0, 1]. - represents
the result is not calculated or not published in the reference.

Evaluation Strategy for Non-one-to-one Tasks429

The non-one-to-one tasks require the new strategies430

to apply the automatic evaluation metrics.431

Diversity: This is mainly used to evaluate432

whether the model can learn the ability to generate433

multiple diverse responses. Therefore, we assess434

the diversity by calculating the distinct-n of multi-435

ple generated responses [r̂1, r̂2, . . . , ˆrM] generated436

based on one context:437

Diversity =
unique(Tokens[r̂1,r̂2,..., ˆrM])

Tokens[r̂1,r̂2,..., ˆrM]
438

Word consistency: We use the maximum BLEU439

of each ground-truth response and multiple gener-440

ated responses to represent the word consistency:441

WordCons =
1

Rs

Rs∑
i=1

max
j=1,··· ,M

(Bleu(ri, r̂j)),442

where Rs is the number of the ground-truth re-443

sponses (r1, r2, . . . , rRs) for the context, and the444

Rs = 1 for Many-to-One task.445

Semantics consistency: We use the maximum446

embedding-average value of each ground-truth re-447

sponse and multiple generated responses to repre-448

sent the semantics consistency.449

Complex coherence: We use the ratio of the av- 450

erage coherence between the context and generated 451

responses and that between the same context and 452

ground-truth responses to evaluate the complex co- 453

herence of the model: 454

CompCohe =

∑M
i=1 cohence(c, r̂i)/M∑Rs
j=1 cohence(c, rj)/Rs

455

The bset CompCohe should be close to 1.0, which 456

means that the model has learned the semantic rela- 457

tionship between the context and the true response. 458

6 Results and Analysis 459

General Dialogue Generation Task Table 3 re- 460

ports the automatic results of SegCVAE and base- 461

line models on validation and test data of the Open- 462

Subtitles dataset. These results show that our SegC- 463

VAE achieves the best performance in terms of 464

BLEU, Average, and Coherence, which demon- 465

strates the superior performance of our model on 466

generating coherent and semantically related re- 467

sponses. In addition, the Distinct of our SegC- 468

VAE is far superior to Seq2Seq, CVAE+BOW and 469

K-CVAE+BOW, and is closer to the state-of-the- 470

art SepaCVAE, which illustrates the ability of our 471

model in generating diverse responses. 472
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model ppl Distinct-1 Distinct-2 length BLEU-1 BLEU-2 Average Coherence
CVAE+BOW 15.79±.22 0.003±.000 0.050±.007 12.18±.13 0.425±.006 0.346±.005 0.849±.005 0.738±.007
K-CVAE+BOW 15.72±.10 0.003±.001 0.045±.008 12.04±.18 0.448±.006 0.360±.005 0.865±.005 0.742±.008
SepaCVAE 2.49±.02 0.006±.000 0.185±.006 12.63±.22 0.432±.002 0.354±.002 0.846±.006 0.712±.014
SegCVAE 3.58±.10 0.005±.000 0.145±.011 12.26±.11 0.441±.017 0.361±.013 0.848±.002 0.714±.005
GroundTruth 0.0 0.0103 0.1315 12.49 1.0 1.0 1.0 0.7078
CVAE+BOW 11.10±.09 0.002±.000 0.032±.004 9.35±.03 0.424±.003 0.338±.003 0.843±.003 0.743±.004
K-CVAE+BOW 11.15±.11 0.002±.000 0.032±.001 9.28±.20 0.451±.001 0.357±.002 0.858±.001 0.741±.003
SepaCVAE 3.03±.02 0.005±.000 0.137±.012 9.56±.23 0.449±.009 0.358±.007 0.830±.012 0.685±.024
SegCVAE 4.66±.13 0.003±.001 0.077±.007 9.75±.44 0.413±.010 0.332±.007 0.839±.002 0.716±.006
GroundTruth 0.0 0.0093 0.0792 9.57 1.0 1.0 1.0 0.7077

Table 4: Metrics results on validation data of O2M (up) and M2O (down). The score closest to the GroundTruth
in each column is shown in bold. The best score in each column is marked with underline.

model Diversity-1 Diversity-2 Diversity-3 WordCons SemaCons CompCohe MaxCohe MinCohe
CVAE+BOW 0.007±.001 0.078±.009 0.280±.023 0.318±.001 0.901±.001 1.017±.011 0.828±.002 0.593±.023
K-CVAE+BOW 0.007±.001 0.070±.010 0.262±.023 0.313±.002 0.898±.002 1.039±.013 0.837±.003 0.626±.021
SepaCVAE 0.015±.001 0.261±.022 0.694±.029 0.318±.004 0.894±.002 0.953±.043 0.810±.010 0.493±.094
SegCVAE 0.012±.001 0.193±.009 0.626±.011 0.315±.003 0.895±.000 0.973±.001 0.798±.000 0.554±.002
GroundTruth 0.0341 0.2244 0.5073 1.0 1.0 1.0 0.7822 0.6965
CVAE+BOW 0.002±.000 0.032±.004 0.144±.009 0.313±.000 0.901±.000 2.669±.033 0.830±.001 0.604±.011
K-CVAE+BOW 0.002±.000 0.032±.001 0.144±.003 0.309±.002 0.896±.000 2.598±.083 0.832±.001 0.608±.008
SepaCVAE 0.005±.000 0.130±.011 0.466±.022 0.315±.001 0.893±.003 2.436±.096 0.807±.005 0.470±.072
SegCVAE 0.004±.001 0.072±.007 0.328±.018 0.309±.003 0.893±.001 2.421±.074 0.803±.002 0.564±.012
GroundTruth 0.0250 0.1381 0.2838 1.0 1.0 1.0 0.7352 0.7352

Table 5: Mterics results on test data of O2M (up) and M2O (down). The score closest to the GroundTruth in each
column is shown in bold. The best score in each column is marked with underline.

model Informativeness Relevance Erudition
CVAE+BOW 3.19 2.20 2.33
K-CVAE+BOW 3.40 2.11 2.35
SepaCVAE 1.52 2.79 2.21
SegCVAE 1.79 2.28 1.89
CVAE+BOW 2.84 2.00 1.96
K-CVAE+BOW 3.13 1.83 1.89
SepaCVAE 1.79 2.53 1.92
SegCVAE 2.00 2.11 1.92

Table 6: Human evaluation results on test data of O2M
(up) and M2O (down). The best score in each column
is marked with underline.

One-to-Many and Many-to-One Dialogue473

Learning Tasks To evaluate whether the model474

has learned the knowledge of one-to-many and475

many-to-one phenomena, we not only underlined476

the best scores, but also bolded the scores that477

are closest to the ground-truth in Table 4 and 5.478

As can be seen, our SegCVAE is closer to the479

information collected in the dataset in terms of480

coherence and distinct, which proves to a certain481

extent that our model can learn some specific482

knowledge from the dataset. In Table 4 and 5, the483

performance of CVAE+BOW and K-CVAE+BOW484

is greatly improved compared to Table 3, which is485

due to the presence of noise in the O2M and M2O486

dataset. When we checked the dataset, we found487

that there are samples with the same semantics 488

but different performance, such as “is that” and 489

“ls that”, “ok” and “okay”, etc. These samples 490

make the difference between the maximum and 491

minimum coherence getting smaller, resulting in 492

a concentrated prior distribution. This increases 493

the coherence and relevance performance of 494

CVAE+BOW and K-CVAE+BOW but decrease 495

the diversity of them. 496

Human Evaluation This result is shown in Ta- 497

ble 6. As discussed above, the CVAE+BOW and 498

K-CVAE+BOW sample latent variables from a con- 499

centrated prior distribution, which leads high rel- 500

evance but low informativeness. The SepaCVAE 501

using the orthogonal vectors for sampling latent 502

variables, which increases the informativeness but 503

decreases the number of relevant responses. Our 504

SegaCVAE generates multiple responses based on 505

multiple prominent semantics, resulting in a proper 506

result. Moreover, SegaCVAE achieves the best 507

Erudition score, which demonstrates the superior 508

ability of it in handling one-to-many samples. Fol- 509

lowing the existing work (Xu et al., 2018a; Feng 510

et al., 2020a), the Pearson’s correlation coefficient 511

is 0.83 on Informativeness, 0.55 on Relevance, and 512

0.51 on Erudition, with p < 0.0001 and below 0.001, 513

which indicates high correlation and agreement. 514
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model Diversity-1 Diversity-2 Diversity-3 WordCons SemaCons CompCohe MaxCohe MinCohe
SegCVAE 0.012±.001 0.193±.009 0.626±.011 0.315±.003 0.895±.000 0.972±.001 0.798±.001 0.554±.002
-wo. IS 0.011±.001 0.156±.031 0.506±.076 0.317±.002 0.892±.001 0.942±.011 0.790±.002 0.508±.019
-wo. EG 0.012±.001 0.183±.009 0.598±.019 0.316±.000 0.896±.000 0.979±.010 0.801±.001 0.547±.048
-wo. Lsan 0.013±.001 0.218±.022 0.655±.024 0.318±.001 0.895±.002 0.980±.022 0.801±.004 0.568±.044
-wo. Lscn 0.011±.002 0.187±.023 0.596±.072 0.315±.002 0.895±.001 0.969±.010 0.801±.001 0.519±.062
-wo. Lsdn 0.013±.001 0.200±.020 0.621±.026 0.314±.003 0.892±.003 0.932±.041 0.792±.006 0.485±.077
SegCVAE 0.004±.001 0.072±.007 0.328±.018 0.309±.003 0.893±.001 2.421±.074 0.803±.002 0.564±.012
-wo. IS 0.003±.000 0.058±.010 0.270±.041 0.306±.005 0.892±.003 2.358±.066 0.802±.003 0.564±.026
-wo. EG 0.003±.000 0.064±.001 0.314±.006 0.314±.003 0.895±.000 2.523±.029 0.809±.001 0.589±.010
-wo. Lsan 0.004±.000 0.071±.000 0.299±.005 0.304±.003 0.892±.000 2.149±.088 0.800±.002 0.471±.022
-wo. Lscn 0.003±.001 0.058±.019 0.238±.095 0.301±.006 0.889±.005 2.075±.456 0.799±.006 0.279±.239
-wo. Lsdn 0.004±.001 0.078±.009 0.337±.016 0.311±.000 0.894±.001 2.418±.048 0.803±.002 0.542±.039

Table 7: Ablation results on test data of O2M (up) and M2O (down).

Context I’m sorry, you’re mistaken.
EG Confided Confided <pad>
IS I Mistaken <pad>

SegCVAE So, I’ll help my mate and you. listen,
one day to tell me to go from the fields
together.

Context Move! What have you done?
EG Rendezvous Humiliate <pad>
IS Move ! <pad>

SegCVAE Hey, please. relax.
Context Not this year, dani. Mom said you have

to.
EG Tying <pad> Tying
IS Said Not Said

SegCVAE I’m compounded you talk about our
great <unk> in the other times.

Table 8: Generated responses and their corresponding
keyword-combinations of SegCVAE. EG and IS repre-
sent the External Guidance and the Internal Separation.
Note that the results of EG and IS are used for extract-
ing prominent semantics.

Ablation Study Table 7 reports the ablation re-515

sults of the SegCVAE. As can be seen, the Internal516

Separation (IS) and External Guidance (EG) mainly517

affect the performance of the model, while the se-518

mantic norms (i.e. Lsan, Lscn, and Lsdn) mainly519

affects the stability of the model.520

Case Study Table 8 reports several generated521

samples and their related word-combinations. Ta-522

ble 9 and Table 10 (in Appendix B) show two sam-523

ples of the generated responses of contexts in test524

set of O2M and M2O datasets This result illustrates525

that the SegCVAE could effectively build the re-526

lations between the multiple prominent semantics527

and the multiple responses.528

7 Conclusion and Future Outlook529

This paper mainly focuses on the one-to-many and530

many-to-one phenomena in dialogue generation531

task. Therefore, we present the one-to-many and532

Context I’d rather die than live with you! freak-
ing unk!

Responses Relax! where does it hurt?
Stop! ma’am, ma’am!

CVAE+BOW I’m gonna get you to know!
That’s a bad idea, mister.
I have a hell!
It’s a joke that you said he’s a special
agent! why do you want me to believe?
You have something to do with this? aah.
Hey, you’re ready? yeah.
The world’s in the mood!
Here, put your hands in the bowl.

SegCVAE Yep tonight really... to me. sean?
Calm down. hurry any, hurry unk.
Nothing, they are hot / hey,
No-no, your unk. i...
God? uh... did not fit...
Be it then let’s abandon it. 9 pigs. 1
50,000. open.
Really is going with nothing? all unk
came in the past hours.
Most way. hell and i are unk

Table 9: Generated responses from the baseline and
SegCVAE on O2M dataset. Note that the generated
“Calm down.” and “No-no,” are corresponding to the
“Relax!” and “Stop” in true responses.

many-to-one dialogue learning tasks, collect two 533

datasets, and provide multiple automatic evaluation 534

strategies. Futuremore, we also propose the SegC- 535

VAE, which has three novel components: internal 536

separation, external guidance and semantic norms. 537

SegCVAE uses the sentence semantic segmenta- 538

tion to analyze and learn the essential knowledge 539

of one-to-many and many-to-one phenomena. As 540

demonstrated in the experimental results, the SegC- 541

VAE could learn the essential knowledge of one- 542

to-many and many-to-one phenomena, and uses 543

such knowledge to handle these two tasks better 544

than the baseline models. In future, we plan to (1) 545

clean the O2M and M2O data sets; (2) study new 546

semantic segmentation approaches; (3) study new 547

Non-One-to-One dialogue learning frameworks. 548
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A Experiment Settings699

Automatic Evaluation Metrics We use700

Distinct-n, BLEU, Embedding Average (Aver-701

age), and Coherence introduced in the Section 1702

to assess our model and baseline models. In703

addition, we also employ the Perplexity (ppl)704

(Neubig, 2017) and Response length (Csaky705

et al., 2019): ppl is an indicator commonly used706

in dialogue generation tasks, is usually used to707

evaluate the degree of convergence of the model.708

Response length is the average number of words709

of all generated responses.710

Human Evaluation We conduct human evalu-711

ation to further evaluate our model and baseline712

models. First of all, each model received 50 identi-713

cal contexts randomly extracted from the test sets714

of the two dialogue datasets respectively, and gen-715

erated 400 responses. Then, three annotators were716

invited to rank our SegCVAE and baseline mod-717

els with respect to three aspects of their generated718

responses: Informativeness, Relevance and Eru-719

dition. Ties are allowed. Informativeness indi-720

cates how much diverse and informative responses721

are provided by the generative models. Relevance722

means how many generated responses are relevant723

to the context. Erudition specifies whether multi-724

ple generated responses have the same information725

and semantics as the ground-truth responses.726

Baseline Models We compare our model with727

several state-of-the-art generative dialogue models:728

A sequence-to-sequence (Seq2Seq) (Shang et al.,729

2015; Sordoni et al., 2015), a general CVAE (Shen730

et al., 2017), a knowledge guide CVAE (Zhao et al.,731

2017), and a self-separated CVAE (Sun et al., 2021)732

are used as the baselines in our experiment. Due733

to the lack of the knowledge information, we in-734

troduce the cluster method (i.e. K-means(K)), and735

use the cluster results as the knowledge.736

Training Details For a fair comparison, we used737

the 300-dimensional GloVe embeddings as the738

word-embedding matrix. The hidden size of all739

models are set to 300. The maximum length of740

context and response are set to 25. We set the batch741

sizes to 32 for all datasets (OpenSubtitles, O2M,742

and M2O). Adam is utilized for optimization. The743

initial learning rate is set to 0.001. We train all744

models in 50 epochs on a RTX 2080Ti GPU card745

with Tensorflow, and save the generated responses746

when the ppl reaching minimum. The random seed747

is set as 123456. Greedy search is used to generate 748

responses for evaluation. 749

B Several Cases 750

Context A sacrifice that the island demanded. ex-
cuse me?

CVAE+BOW Why? because it’s only a strange.
No, really. what were you talking about?
No. this is my job.
It’s a unk. i was a member of the united
states states states.
When you’ve been here, i will get back
to your senses. you must have it.
I’m not sure. you know why?
What are your parents? he’s just gonna
take his place after your marriage, he
lives.
Why? because it’s just like that.

SegCVAE Yes, unk. yes.
Pretty much, unk. we’re looking.
Yeah. a kid that call it before you put
him off.
Then everybody in red. there’s tom.
That’s disgusting. brother!
Everyone, that’s in a way and that
brain’s trapped in strength feelings, but
all holy unk.
I take. he said i was dead.
In her is the master. she’s the.

Table 10: Generated responses from the baseline and
SegCVAE on M2O dataset.
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