
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RESHAPING ACTIVATION FUNCTIONS:A FRAMEWORK
FOR ACTIVATION FUNCTION OPTIMIZATION BASED
ON MOLLIFICATION THEORY

Anonymous authors
Paper under double-blind review

ABSTRACT

The deep learning paradigm is progressively shifting from non-smooth activa-
tion functions, exemplified by ReLU, to smoother alternatives such as GELU and
SiLU. This transition is motivated by the fact that non-differentiability introduces
challenges for gradient-based optimization, while an expanding body of research
demonstrates that smooth activations yield superior convergence, improved gen-
eralization, and enhanced training stability. A central challenge, however, is how
to systematically transform widely used non-smooth functions into smooth coun-
terparts that preserve their proven representational strengths while improving dif-
ferentiability and computational efficiency. To address this, we propose a general
activation smoothing framework grounded in mollification theory. Leveraging
the Epanechnikov kernel, the framework achieves statistical optimality and com-
putational tractability, thereby combining theoretical rigor with practical utility.
Within this framework, we introduce Smoothed ReLU (S-ReLU), a novel second-
order continuously differentiable (C²) activation derived from ReLU that inherits
its favorable properties while mitigating inherent drawbacks. Extensive experi-
ments on CIFAR-10, CIFAR-100, and ImageNet-1K with Vision Transformers
and ConvNeXt consistently demonstrate the superior performance of S-ReLU
over existing ReLU variants. Beyond computer vision, large-scale fine-tuning
experiments on language models further show that S-ReLU surpasses GELU, un-
derscoring its broad applicability across both vision and language domains and its
potential to enhance stability and scalability.

1 INTRODUCTION

The expressive capacity and optimization dynamics of artificial neural networks are largely influ-
enced by activation functions, which introduce nonlinearity to transform linear computations into
complex representations and capture complex data patterns. Over the past three decades, more than
400 activation functions have been proposed to enhance network performance and efficiency (Kunc
& Kléma, 2024). A clear evolutionary trend has emerged: a shift from nonsmooth activation func-
tions toward more smooth ones. The key reason is that the non-differentiability of nonsmooth func-
tions at certain points presents theoretical challenges for optimization algorithms and constitutes a
practical bottleneck limiting performance improvements. In contrast, a growing body of theoretical
work shows that smooth activation functions can deliver superior performance. Their smooth func-
tional curves lead to flatter loss landscapes, which guide optimizers away from poor local minima,
facilitate convergence to better solutions, and improve training stability. However, most existing
smooth functions are exploratory modifications that address nonsmoothness but do not necessarily
preserve the proven representational strengths of the original activation functions. Hence, develop-
ing a systematic framework for reshaping nonsmooth activation functions holds considerable value
for machine learning research.

Major Questions
1. Is there a systematic method to smooth non-smooth activation functions while retaining
their original desirable properties?
2. If yes, is there a relationship between the degree of smoothing and its gradient stability?
3. Can an example demonstrate how the proposed methodology is applied in practice?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our work addresses the three research questions outlined above. We first define a smoothing kernel
and apply it to transform a non-smooth activation into a smooth one. After verifying its smooth-
ness and approximation, we analyze its Lipschitz constant and establish the connection between
smoothness and gradient stability. To address the third question, we propose S-ReLU as a polished
variant of the traditional ReLU. We evaluate its effectiveness on Vision Transformer (Dosovitskiy
et al., 2020), its related derivatives (Han et al., 2021; Touvron et al., 2021), and ConvNeXt (Liu
et al., 2022), across CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and ImageNet-1K (Deng
et al., 2009). The results consistently show that S-ReLU outperforms baseline activation functions.
Moreover, fine-tuning experiments on large language models (LLMs) using Direct Preference Op-
timization (DPO) (Rafailov et al., 2023) further demonstrate that S-ReLU surpasses GELU, high-
lighting its broad applicability in practical scenarios. The principal contributions of this work are
summarized below:

• First, we show that the mollification can smoothly transform non-smooth activation func-
tions while preserving the desirable properties of the original. This ensures that the resulting
activation not only inherits the advantages of the base function but also benefits from smoothness.

• Second, we establish that higher degrees of smoothness lead to greater stability of training
gradients, and we derive a quantitative relationship between the two. This provides a theoret-
ical foundation for subsequent studies on activation functions.

• Third, we introduce S-ReLU, a new activation function derived from ReLU via mollifica-
tion. Extensive experiments across architectures, datasets, and tasks demonstrate that S-ReLU
consistently outperforms existing activation functions and achieves state-of-the-art performance.

2 RELATED WORK

The study of activation functions has evolved through several stages. Early works introduced com-
pression functions such as Sigmoid and Tanh (Hornik, 1991), which bound outputs to a finite interval
but often saturate under extreme inputs, leading to gradient vanishing. To address these limitations,
non-compression functions were proposed, with the rectified linear unit (ReLU) (Nair & Hinton,
2010) marking a landmark contribution. By preserving a unit gradient in the positive region and
truncating negative activations to zero, ReLU greatly improved optimization stability. However, its
asymmetric form results in structural drawbacks: neurons can become permanently inactive (“dying
ReLU”), and the absence of negative outputs introduces distributional bias in subsequent layers.

To overcome these issues, a variety of variants were developed. Leaky ReLU (Maas et al., 2013)
introduces a fixed negative slope to maintain gradient flow for sub-zero inputs, while Parameterized
ReLU (PReLU) (He et al., 2015) adapts this slope as a learnable parameter. The Exponential Linear
Unit (ELU) (Clevert et al., 2015) produces smooth negative outputs that reduce mean-shift effects,
and the Continuously Differentiable Exponential Linear Unit (CELU) (Barron, 2017) simplifies the
ELU parameterization for easier adjustment. More recently, smoother activations have gained trac-
tion for their theoretical and empirical benefits. Swish (SiLU) (Ramachandran et al., 2017) leverages
a smooth and differentiable form to improve gradient propagation and training stability, while Mish
(Misra, 2019) combines unbounded positive outputs with moderated negative values, facilitating
deeper signal transmission and enhancing generalization.

On the applied side, GELU (Hendrycks & Gimpel, 2016) and its variants have become the dominant
activations in large-scale vision and language architectures. They are the default in BERT and
RoBERTa (Devlin et al., 2019), used in ViT (Dosovitskiy et al., 2020), and widely believed to
support successive GPT models (Radford et al., 2019; Achiam et al., 2023) and recent models like
PaLM (Chowdhery et al., 2023), LLaMA (Touvron et al., 2023), and DeepSeek-V2 (Liu et al., 2024).
This reliance underscores the role of smooth activations in scaling and stabilizing deep learning.
By contrast, a few open-source models, notably Mixtral(Jiang et al., 2024), adopt SiLU, reflecting
continued exploration of alternatives.

3 MOTIVATION

Although piecewise linear activations such as ReLU are widely adopted for their simplicity and
effectiveness, they suffer from intrinsic drawbacks that hinder further progress in deep neural net-
works. These include gradient instability arising from non-differentiability (Biswas et al., 2022; Lee,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2023), inefficient information propagation that accelerates signal degradation in deep layers (Hayou
et al., 2019), and limited theoretical guarantees for regularization.

Our key idea is to build on the proven representational strengths of established activations and en-
hance them through systematic smoothing. By introducing smoothness while retaining the core
advantages of the original function, we aim to improve differentiability, stability of gradient-based
optimization, information propagation across layers, and regularization properties simultaneously.
This perspective shifts the focus from designing entirely new exploratory functions to refining and
elevating existing well-validated ones. Such an approach promises not only stronger and more sta-
ble performance in conventional deep learning tasks, but also provides a principled foundation for
advancing modern large-scale architectures, including contemporary vision and language models.

4 METHODOLOGY

4.1 SMOOTH ACTIVATION FUCTION IS BETTER

Research by Hayou et al. (Hayou et al., 2019) indicates that the smoothness of an activation func-
tion is a key factor influencing the effective propagation of information in deep neural networks. A
sufficient condition for an activation function to be smooth is that its second-order derivative can
be piecewise represented as a sum of continuous functions. For smooth activation functions, the
correlation between inter-layer neuron outputs converges to 1 at a rate of O(1/l), with the specific
formula being 1− cl ∼ βq/l, where c represents the correlation, l is the number of network layers,
and βq is a coefficient determined by the target variance q and the activation function f . In con-
trast, for non-smooth functions like ReLU, this correlation converges at a rate of O(1/l2), with the
specific relationship being 1− cl ∼ 9π2/2l2. This research reveals that in deep networks employ-
ing non-smooth activation functions, the correlation of neuron outputs rapidly approaches 1 as the
network depth increases. This high degree of correlation impedes the effective propagation of infor-
mation, leading to unstable gradients and diminished expressive power, ultimately impairing model
performance. Therefore, selecting activation functions that meet specific smoothness requirements
is an important strategy for enhancing both the training efficiency and the final performance of deep
learning models.

4.2 SMOOTHED KERNEL FUNCTION

To smooth non-smooth activation functions, we can use the mollification method. This approach
involves smoothing the target function by convolving it with a specific kernel. The goal is to create
a smooth approximation of the original function without sacrificing its valuable attributes.
Definition 1. We define smoothing kernel φ (x) as follows:

φ (x) =

{
Ae

1
x2−1 , |x|< 1
0, |x| ≥ 1

Where constant A is defined as

A =

(∫ 1

−1
e

1
x2−1 dx

)−1

Proposition 1. The smoothing kernel φ (x) is normalized, i.e.,
∫
R φ(u)du = 1.

Proposition 2. φ (x) ∈ C∞ (R), i.e., φ(x) is infinitely differentiable on R, and φ (k) (x) = 0, |x| ≥ 1.
Furthermore, for each natural number k, φ (k) (x) is bounded on R.

Detailed proofs of proposition1 and proposition2 can be found in Appendix B.
Definition 2. For any δ > 0 we define a family of smoothing kernels {φδ}δ>0 generated by scaling
the smoothing kernel φ(x) as follows:

φδ (x) =
1
δ

φ

(x
δ

)
This family of functions has several important properties. Each φδ (x) is normalized, maintaining∫
R φδ (x)dx = 1, and its support is scaled to the interval [−δ ,δ]. As δ → 0, the family φδ (x) con-

verges to the Dirac delta function in the sense of distributions. We can now employ this framework
to smooth the target activation function.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4.3 SMOOTHNESS OF THE MOLLIFIED ACTIVATION FUNCTION

Answer to Question 1: We show that the mollification can smoothly transform non-smooth
activation functions while preserving the desirable properties of the original.

Definition 3. Let f (x) be a locally integrable activation function. The convolution of f (x) with the
smoothing kernel φδ is called a smoothing of f (x), denoted by fδ (x) or f ∗φδ , and defined as:

fδ (x) = (f ∗φδ)(x) =
∫
R

f (y)φδ (x− y)dy =
∫
R

f (x− y)φδ (y)dy

Let H(x,y) = f (y)φδ (x− y). Taking partial derivative of it, we can get:

∂ k

∂xk H(x,y) =
∂ k

∂xk [f (y)φδ (x− y)] = f (y)
∂ k

∂xk φδ (x− y) = f (y)φ (k)
δ

(x− y)

This partial derivative exists for any k ≥ 1, because φδ is a C∞ function according to Proposition 2.
Let x0 ∈R be a fixed, arbitrary point. We will consider values of x within a neighborhood of x0. The
function φ

(k)
δ

is continuous and has compact support, which implies that it is bounded on the R. Let

Mk = sup
z∈R

|φ (k)
δ

(z)|< ∞ (1)

The support of the integrand with respect to y is the interval [x− δ ,x+ δ]. For any x in the chosen
neighborhood, this interval is contained in the larger compact set K = [x0 −1−δ ,x0 +1+δ]. From
Equation 1, we obtain the following bound:∣∣∣∣ ∂ k

∂xk H(x,y)
∣∣∣∣= ∣∣∣ f (y)φ (k)

δ
(x− y)

∣∣∣≤ | f (y)| ·Mk ·χK(y)

where χK is the characteristic function of the set K, its specific form is as follows:

χK(y) =
{

1, if y ∈ K
0, if y /∈ K

Since f ∈ L1
loc(R), it is integrable on the compact set K. This implies that the dominating function

| f (y)| ·Mk · χK(y) is integrable. This argument shows that for any order k, the control conditions
required for the differential operator dk

dxk are satisfied. According to Lebesgue Dominated Conver-
gence Theorem, we can move any order differential operator into the integral sign. Therefore, we
can directly calculate the k-th derivative of fδ :

f (k)
δ

(x) =
dk

dxk fδ (x) =
dk

dxk

∫
R

f (y)φδ (x− y)dy =
∫
R

∂ k

∂xk [f (y)φδ (x− y)]dy

=
∫
R

f (y)φ (k)
δ

(x− y)dy = (f ∗φ
(k)
δ

)(x)

This implies that the k-th derivative of fδ exists for any positive integer k. Let

gk(x) := f (k)
δ

(x) = (f ∗φ
(k)
δ

)(x)

Since the function φ
(k)
δ

(x) is continuous with compact support, it is uniformly continuous on R.
Consider an arbitrary h ∈ R, we then have

|gk(x+h)−gk(x)|=
∣∣∣∣∫R f (y)[φ (k)

δ
(x+h− y)−φ

(k)
δ

(x− y)]dy
∣∣∣∣

≤
∫
R
| f (y)| · |φ (k)

δ
(x+h− y)−φ

(k)
δ

(x− y)|dy
(2)

Then we establish a dominating function for the integrand. By the triangle inequality,

| f (y)| · |φ (k)
δ

(x+h−y)−φ
(k)
δ

(x−y)| ≤ | f (y)| ·(|φ (k)
δ

(x+h−y)|+ |φ (k)
δ

(x−y)|)≤ | f (y)| ·2Mk ·χK(y)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Due to the uniform continuity of φ
(k)
δ

, when h → 0, we have

lim
h→0

|φ (k)
δ

(x+h− y)−φ
(k)
δ

(x− y)|= 0 (3)

Now we can apply Equation 3 and the Dominated Convergence Theorem to the Equality 2:

lim
h→0

|gk(x+h)−gk(x)| ≤
∫
R

lim
h→0

(
| f (y)| · |φ (k)

δ
(x+h− y)−φ

(k)
δ

(x− y)|
)

dy = 0

Thus, we have proven that for any k ≥ 0, the derivative f (k)
δ

(x) is continuous, which implies fδ (x) ∈
C∞(R). This establishes that the mollification process transforms the original activation function
f (x) into a smooth approximation fδ (x).

4.4 APPROXIMATION PROPERTIES OF THE MOLLIFIED ACTIVATION FUNCTION

While achieving smoothness, a crucial question arises: to what degree does the new function fδ (x)
retain the core properties of the original function f (x)? Have we “distorted” the essence of the
activation function in pursuit of smoothness? Let’s discuss these questions next.

To analyze the approximation error, we start with the term | fδ (x)− f (x)|. Since the smoothing
kernel integrates to 1, we can rewrite f (x) in the following form:

f (x) = f (x) ·1 = f (x)
∫
R

φδ (u)du =
∫
R

f (x)φδ (u)du (4)

For the term fδ (x), recall its definition and perform a substitution by letting u = x−y, which implies
y = x−u. Thus,

fδ (x) =
∫

∞

−∞

f (y)φδ (x− y)dy =
∫ −∞

∞

f (x−u)φδ (u)(−du) =
∫

∞

−∞

f (x−u)φδ (u)du (5)

Combining Equation 4 and Equation 5, we get:

| fδ (x)− f (x)|=
∣∣∣∣∫ ∞

−∞

f (x−u)φδ (u)du−
∫

∞

−∞

f (x)φδ (u)du
∣∣∣∣ =

∣∣∣∣∫ ∞

−∞

[f (x−u)− f (x)]φδ (u)du
∣∣∣∣

According to the triangle inequality for integrals and the fact that φδ (u)≥ 0:

| fδ (x)− f (x)| ≤
∫

∞

−∞

| f (x−u)− f (x)|φδ (u)du =
∫

δ

−δ

| f (x−u)− f (x)|φδ (u)du

We consider the activation function f : R→R that is continuous. Let D ⊂R be an arbitrary compact
set. Since u ∈ [−δ ,δ], both x and x−u lie within the larger compact set D′ = D− [−δ ,δ] = {a−b |
a ∈ D,b ∈ [−δ ,δ]}. By the Heine-Cantor Theorem, a function that is continuous on a compact set
is also uniformly continuous. Therefore, f (x) is uniformly continuous on D′. By the definition of
uniform continuity, for any ε > 0 given at the beginning, there must exist a ∆ > 0 such that whenever
|u|< ∆, | f (z−u)− f (z)|< ε holds for all z ∈ D′. We choose our smoothing parameter δ to be less
than ∆ given by uniform continuity, i.e., 0 < δ < ∆. In this way, for all u ∈ [−δ ,δ] in our integral
expression, we have |u| ≤ δ < ∆. Therefore, for these u, applying the property of uniform continuity
yields the following:

| f (x−u)− f (x)|< ε (6)
Substitute Equation 6 back into our integral:

| fδ (x)− f (x)| ≤
∫

δ

−δ

| f (x−u)− f (x)|φδ (u)du <
∫

δ

−δ

ε ·φδ (u)du = ε

∫
∞

−∞

φδ (u)du = ε

In summary, we have proven that for any ε > 0, there exists a ∆ > 0 such that whenever 0 < δ < ∆,
then | fδ (x)− f (x)|< ε holds for all x ∈ D. From this, we can conclude the uniform convergence of
the smoothed activation function fδ (x) to the original activation function f (x) on the set D.

By choosing a sufficiently small smoothing parameter δ , we can make the smoothed activation
function approximate the original function arbitrarily accurately. Uniform convergence plays a key
role by ensuring that the smoothed activation function maintains the desirable characteristics of the
original. It also ensures that the maximum error between the two functions approaches zero over
any input interval of interest, thus avoiding unexpected deviations in specific regions.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.5 LIPSCHITZ CONTINUITY ANALYSIS

Answer to Question 2: We establish that higher degrees of smoothness lead to greater
stability of training gradients, and we derive a quantitative relationship between the two.

In the field of deep learning, an abstract mathematical concept—Lipschitz continuity—is increas-
ingly becoming a key factor in building more reliable, robust, and generalizable neural network
models. From theoretical analysis to practical applications, Lipschitz continuity provides a power-
ful tool for deeply understanding and effectively controlling the behavior of deep networks. Lip-
schitz continuity offers a stronger condition than standard continuity by constraining a function’s
maximum rate of change. To understand this property, we will start with its formal definition.

Definition 4. (Lipschitz Continuous Function)(Khromov & Singh, 2024)A function f : Rd → RK

with domain dom(f)⊆ Rd is said to be C-Lipschitz continuous with respect to an α-norm for some
constant C > 0 if the following condition holds for all x,y ∈ dom(f):∥ f (x)− f (y)∥α ≤C∥x− y∥α

In our analysis, we concentrate on the smallest value of C that satisfies the aforementioned condi-
tion. This value is formally defined as the Lipschitz constant. Lipschitz continuity of the activation
function is crucial for ensuring well-behaved optimization, thereby promoting efficient convergence
during training. Ensuring model stability by controlling the Lipschitz property is an effective way
to prevent gradient runaway(Erichson et al.; Fazlyab et al., 2019; Gamba et al., 2023; Latorre et al.).
The smaller the Lipschitz constant, the more stable the training gradients(Zhou et al., 2019; Khro-
mov & Singh, 2024).

From the previous derivation, we know that the support set of the smoothing kernel function φδ (x)
is [−δ ,δ]. The support set of a function derivative must be contained within the support set of the
original function. Therefore, the support set of φ ′

δ
(x) is also contained in [−δ ,δ].So we have

f ′
δ
(x) = (f ∗φ

′
δ
)(x) =

∫
∞

−∞

f (y)φ ′
δ
(x− y)dy =

∫ x+δ

x−δ

f (y)φ ′
δ
(x− y)dy

For a continuous function f (x), it must be bounded within the closed interval [x− δ ,x+ δ], so we
can find a constant M > 0 that satisfies the condition | f (y)| ≤ M. Substitute into the above equation
and simplify:

| f ′
δ
(x)| ≤

∫ x+δ

x−δ

| f (y)||φ ′
δ
(x− y)|dy ≤ M

∫ x+δ

x−δ

|φ ′
δ
(x− y)|dy (7)

Now let’s calculate the integral
∫ x+δ

x−δ
|φ ′

δ
(x− y)|dy. We know that φ ′

δ
(u) = 1

δ 2 φ ′(u
δ
), by variable

substitution v = (x− y)/δ :∫ x+δ

x−δ

|φ ′
δ
(x− y)|dy =

∫ x+δ

x−δ

1
δ 2

∣∣∣∣φ ′
(

x− y
δ

)∣∣∣∣dy =
1
δ

∫ 1

−1
|φ ′(v)|dv (8)

The value of this integral
∫ 1
−1 |φ ′(v)|dv is completely determined by the kernel function φ(x) we

initially chose. It is a constant that is independent of f , δ , and x, we denote this constant as Cφ .
Combining Equation 7 and Equation 8, we can conclude that

| f ′
δ
(x)| ≤ M ·

(
1
δ

Cφ

)
=

M ·Cφ

δ

This shows that the Lipschitz constant of fδ (x), Lδ , satisfies: Lδ ≤ M·Cφ

δ
.An increase in the value of

δ leads to a broader refinement range for the original activation function, consequently enhancing
its overall smoothness. Additionally, increasing the value of δ lowers the Lipschitz upper bound of
the enhanced activation function, thereby promoting a more stable training gradient. Therefore, we
can conclude: the higher the smoothness, the higher the training gradient stability, and there is a
quantitative relationship between the two, where the specific quantitative relationship is determined
by constants M and Cφ . This conclusion provides a principled guiding framework for the design of
activation functions in the future.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.6 RESHAPING RELU(S-RELU): FROM RELU TO BETTER

Answer to Question 3: We introduce S-ReLU, a new activation function derived from ReLU
via mollification.

In Section 4.1, we provide evidence that smoother activation functions are advantageous for enhanc-
ing both the efficiency of the training process and the final performance of the model. Sections 4.3
and 4.4 further establish that activation functions constructed via smoothing theory possess desir-
able smoothness and approximation properties; specifically, they are infinitely differentiable and
can approximate the original activation function arbitrarily closely, thereby preserving its favorable
characteristics. Building upon these findings, we next apply the proposed methodology to a con-
crete instance. In particular, we select the widely used ReLU function as the basis for mollification.
Regarding the choice of kernel, we strike a balance between theoretical rigor and engineering practi-
cality by adopting the Epanechnikov kernel, which is theoretically optimal for minimizing the Mean
Integrated Squared Error. Moreover, among the class of non-negative polynomials satisfying the
fundamental smoothness conditions, it exhibits the lowest degree and the simplest closed form.

The standard ReLU activation function computes the maximum of zero and its input, as given by
f (x) = ReLU(x) = max(0,x). We select the Epanechnikov kernel function, denoted as φδ (x), pa-
rameterized by the smoothing radius δ . This kernel acts as a weighting function with compact
support on the interval [−δ ,δ]. Its normalized form is:

φδ (x) =

{
3

4δ

(
1− x2

δ 2

)
, if |x| ≤ δ

0 , if |x|> δ

Applying the preceding theory yields the smoothed activation function S-ReLU:

fδ (x) = (f ∗φδ)(x) =
∫

R
max(0,y)φδ (x− y)dy =


0 ,if x ≤−δ

x
2 +

3x2

8δ
+ 3δ

16 − x4

16δ 3 ,if −δ < x < δ

x ,if x ≥ δ

Differentiating the S-ReLU function twice yields the following:

f ′′
δ
(x) =

{
3(δ 2−x2)

4δ 3 , if −δ < x < δ

0 , if |x| ≥ δ

This indicates that S-ReLU is an activation function with continuous second derivatives, satisfying
the definition of a smooth function in Section 4.1. We use the uniform error metric to quantify how
well S-ReLU approximates the target function. The calculation result is given as follows:

||S-ReLU(x)−ReLU(x)||∞ = sup
x∈R

|S-ReLU(x)−ReLU(x)|= 3δ

16

This result clearly demonstrates that, compared to ReLU, the approximation error of S-ReLU is
controllable and proportional to the smoothing radius δ . This is a valuable property, as it allows us
to precisely control the extent of the approximation error introduced by the smoothing operation by
choosing the value of δ . A detailed proof is provided in the Appendix C. Further details regarding
S-ReLU are available in the appendices. Specifically, Appendix D presents the Python-style
pseudocode, while Appendix E contains a more in-depth discussion of its characteristics. Finally,
we discuss Lipschitz continuity. Based on the theory in section4.5, we can calculate the Lipschitz
constant for each activation function.

Fact 1. Lipschitz constant of GELU is 1.084; Lipschitz constant of SiLU is 1.100; Lipschitz constant
of Mish is 1.089. Lipschitz constant of S-ReLU is 1.000.

The detailed proof can be found in Appendix F. S-ReLU’s Lipschitz constant of 1 ensures that
its output never changes more rapidly than its input. This property acts as a vital safeguard for
stabilizing gradient flow in the network, which helps prevent the problem of exploding gradients and
makes the model more robust to small input perturbations—a clear advantage over other activation
functions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

Experimental Setup. We conducted experiments on the CIFAR-10, CIFAR-100, and ImageNet-1K
datasets to evaluate the effectiveness of S-ReLU for image classification, as well as on LLM fine-
tuning with human preference datasets SHP (Ethayarajh et al., 2022), HH (Bai et al., 2022), and
GPT-2(Radford et al., 2019). We compare against representative ReLU variants, including GELU,
ELU, PReLU, CELU, SiLU, and Mish. Detailed training configurations and hyperparameters are
provided in Appendix H.
5.1 TASK OF IMAGE CLASSIFICATION

Evaluation of ViTs on CIFAR-10, CIFAR-100, and ImageNet-1K. To comprehensively evaluate
the proposed activation, we conducted experiments on ViT , DeiT and TNT. CIFAR-10 and CIFAR-
100 were selected to examine the sensitivity of activation functions under different data distributions,
while ImageNet-1K, with its larger image resolution and broader category coverage, was employed
to assess performance in more challenging large-scale scenarios.

As summarized in Table 1, S-ReLU consistently outperforms all existing ReLU variants across every
dataset and architecture. The gains are evident on both small-scale benchmarks(CIFAR-10/100),
where S-ReLU achieves markedly higher accuracy, and on the large-scale ImageNet-1K dataset,
where it surpasses strong baselines under more demanding conditions. These results demonstrate not
only the superior fitting ability of S-ReLU, but also its strong generalization capacity, showing that
the advantages of smoothing are preserved across data regimes of different scales and complexities.

Table 1: Test accuracy on CIFAR-10, CIFAR-100, and ImageNet-1K over 100 epochs.
Top-one Accuracy GELU ELU PReLU CELU SiLU Mish S-ReLU

CIFAR-10 ViT-Tiny 70.4±0.2 66.4±0.5 78.0±0.6 66.5± 0.6 68.6±0.3 68.7±0.3 81.0±0.6
CIFAR-10 DeiT-Tiny 72.4±0.7 67.6±0.6 75.4±0.1 67.7±0.8 69.9±0.5 70.2±0.6 81.1±0.3
CIFAR-10 TNT-Small 73.7±0.5 69.5±0.6 75.8±0.3 68.7±0.2 71.1±0.7 71.6±0.8 84.8±0.2

CIFAR-10 Average 72.2±0.5 67.8±0.6 76.4±0.3 67.6±0.5 69.9±0.5 70.2±0.6 82.3±0.4

CIFAR-100 ViT-Tiny 32.6±0.8 28.9±0.1 43.2±1.0 28.9±0.2 31.2±0.6 30.6±0.8 51.2±0.6
CIFAR-100 DeiT-Tiny 46.6±0.9 56.9±0.0 50.0±0.5 40.5±0.5 43.5±0.6 43.8±1.0 57.1±0.2
CIFAR-100 TNT-Small 47.5±0.8 43.6±0.3 49.0±0.7 43.0±0.5 45.0±0.9 45.5±0.8 61.6±0.4

CIFAR-100 Average 42.2±0.8 43.1±0.1 47.4±0.7 37.5±0.4 39.9±0.7 40.0±0.9 56.6±0.3

ImageNet-1K ViT-Tiny 53.9±0.3 37.2±0.6 56.8±0.3 37.6±0.5 46.1±0.7 46.9±1.1 56.6±0.4
ImageNet-1K DeiT-Tiny 61.7±0.4 49.1±0.7 60.8±0.4 48.9±0.8 58.5±0.7 58.9±0.3 64.9±0.4

ImageNet-1K Average 57.8±0.4 43.2±0.7 58.8±0.4 43.3±0.7 52.3±0.7 52.9±0.7 60.8±0.4

Evaluation of ConvNeXt on CIFAR-10, CIFAR-100 and ImageNet-1K. Beyond transformer
families, we investigate the universality of S-ReLU in convolutional networks by testing it on Con-
vNeXt, a leading convolutional model designed with modern principles to rival Transformers. This
setting provides a stringent test of whether the performance improvements of S-ReLU are tied to
specific architectural choices or generalize broadly across models.

Experimental results on CIFAR-10 and CIFAR-100 with 100 training epochs demonstrate that Con-
vNeXt models equipped with S-ReLU achieve consistently higher classification accuracy than those
with existing activation functions. Notably, on the more challenging ImageNet-1K benchmark, S-
ReLU continues to surpass GELU, SiLU, Mish, and other baselines, establishing new performance
levels for ConvNeXt. These results confirm that the advantages of S-ReLU are not restricted to
Transformer-based architectures but extend robustly to convolutional networks as well. Together
with our earlier findings on Vision Transformers, these results highlight that S-ReLU delivers both
architectural universality and strong generalization ability.

Table 2: Test accuracy of experiments conducted on ConvNeXt-tiny for 100 epochs.
Top-one Accuracy GELU ELU PReLU CELU SiLU Mish S-ReLU

CIFAR-10 ConvNeXt 64.9±0.4 59.8±0.5 64.6±1.4 59.8±0.5 60.6±0.2 61.4±0.4 89.9±0.1
CIFAR-100 ConvNeXt 36.6±0.3 30.3±0.4 35.2±0.5 30.5±0.2 35.0±0.9 35.3±0.7 66.8±0.1

ImageNet-1K ConvNeXt 72.9±0.3 71.7±0.5 72.9±0.5 71.8±0.9 72.3±0.7 72.8±0.6 73.1±0.2

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.2 TASK OF LARGE LANGUAGE MODEL (LLM) FINE-TUNING

To test the generalizability of our proposed S-ReLU activation function outside of computer vision,
we also evaluated its performance in the increasingly important field of Large Language Models.
Specifically, we fine-tune GPT-2 on the SHP and HH datasets using DPO. Importantly, both datasets
pose challenges of stability and nuanced representation, making them suitable testbeds for evaluat-
ing whether activation functions like S-ReLU can enhance optimization robustness and expressive
capacity. Because DPO relies on a reference strategy that may diverge from the true data distri-
bution, we begin with supervised fine-tuning (SFT) to reduce this gap and then apply DPO with
different penalty coefficients β ∈ 0.1,2,5.

Table 3 reports the mean and standard deviation for each evaluation metric, averaged over several
experimental runs. Compared with GELU, S-ReLU consistently achieves higher chosen rewards,
lower rejected rewards, larger reward margins, and improved preference accuracy. These results
indicate that S-ReLU not only enhances the model’s ability to assign higher utility to preferred
responses while penalizing non-preferred ones, but also strengthens its discriminative margin and
alignment with human feedback. The consistent performance gains on all metrics confirm that
introducing smoothness is an effective strategy, especially since it maintains the representational
capabilities of the initial activation function. This demonstrates that the advantages of S-ReLU gen-
eralize robustly from vision tasks to LLM preference optimization, thereby confirming its potential
as a broadly applicable activation function for deep learning.

Table 3: Metrics comparison between S-RELU and GELU in the task of LLM fine-tuning.
Evaluation Metrics Chosen Reward Rejected Reward Margin Reward↑ Preference Accuracy↑

β = 0.1 S-RELU 0.1501±0.0005 0.0517±0.0003 0.0984±0.0008 0.5938±0.0000
GELU -0.2037±0.0012 -0.2696±0.0007 0.0659±0.0019 0.5313±0.0012

β = 2 S-RELU 0.3861±0.0018 0.3329±0.0012 0.0532±0.0030 0.5156±0.0005
GELU -1.6600±0.0003 -1.7060±0.0052 0.0460±0.0055 0.5080±0.0022

β = 5 S-RELU 1.1062±0.0025 -0.7602±0.0016 1.8664±0.0041 0.5103±0.0017
GELU -3.6484±0.0031 -4.8299±0.0003 1.1815±0.0034 0.5012±0.0001

6 DISCUSSION

Developing effective activation functions has long been a central problem in machine learning.
While non-smooth activations suffer from well-documented limitations, smooth activations have
emerged as a promising direction. Yet, a general methodology for systematically smoothing non-
smooth activations remains absent. In this work, we introduce a mathematically rigorous and prac-
tically effective framework based on mollification theory to smooth non-smooth activations while
preserving their desirable properties. Within this framework, we establish a quantitative relationship
between smoothness and gradient stability, offering a theoretical foundation for advancing activa-
tion function design. Building on this, we derive a new activation function, S-ReLU, as a polished
variant of ReLU. Across image classification and LLM fine-tuning tasks, S-ReLU consistently out-
performs existing rectified ReLU variants. Our findings position S-ReLU as a strong new member of
the family of high-performance activation functions, while also opening avenues for future research
on smooth and stable architectures.

Limitations and Future Work. The results point to both theoretical and practical opportunities for
advancing activation research. First, we employed the Epanechnikov kernel as the smoothing kernel
due to its strong theoretical characterization, but alternative choices may yield improvements. In par-
ticular, shifting kernel design from fixed theoretical selection to dynamic, data-driven, or learnable
formulations could provide greater flexibility and performance. Second, the applicability of mol-
lification to other architectures, such as Kolmogorov–Arnold Networks (KANs), remains an open
question. Third, although this work establishes the link between smoothness and gradient stability
and analyzes the Lipschitz constant, deeper theoretical investigations are needed to understand the
impact of smoothing on representational capacity, generalization bounds, and convergence. Finally,
while S-ReLU demonstrates strong empirical results in image classification and large-scale language
model fine-tuning, its extension to broader domains holds promise for advancing future studies.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

All authors have read and agree to adhere to the ICLR Code of Ethics. We confirm that this work
complies with the ethical standards outlined therein, and we explicitly acknowledge our commitment
to these principles during the submission and review process.

8 REPRODUCIBILITY STATEMENT

All datasets used in this work are publicly available. Detailed descriptions of preprocessing, hyper-
parameters, and training configurations are provided in Section 5 and Appendix H. An anonymous
implementation of S-ReLU and experimental code is included in the supplementary material to fa-
cilitate full reproducibility.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Jonathan T Barron. Continuously differentiable exponential linear units. arXiv preprint
arXiv:1704.07483, 2017.

Koushik Biswas, Sandeep Kumar, Shilpak Banerjee, and Ashish Kumar Pandey. Smooth maximum
unit: Smooth activation function for deep networks using smoothing maximum technique. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 794–
803, 2022.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 4(5):11, 2015.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, G Heigold, S Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. In International Conference on Learn-
ing Representations, 2020.

N Benjamin Erichson, Omri Azencot, Alejandro Queiruga, Liam Hodgkinson, and Michael W Ma-
honey. Lipschitz recurrent neural networks. In International Conference on Learning Represen-
tations.

Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta. Understanding dataset difficulty with v
-usable information. In International Conference on Machine Learning, pp. 5988–6008. PMLR,
2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient
and accurate estimation of lipschitz constants for deep neural networks. Advances in neural
information processing systems, 32, 2019.

Matteo Gamba, Hossein Azizpour, and Mårten Björkman. On the lipschitz constant of deep net-
works and double descent. arXiv preprint arXiv:2301.12309, 2023.

Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer in
transformer. Advances in neural information processing systems, 34:15908–15919, 2021.

Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. On the impact of the activation function on
deep neural networks training. In International conference on machine learning, pp. 2672–2680.
PMLR, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4
(2):251–257, 1991.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Grigory Khromov and Sidak Pal Singh. Some fundamental aspects about lipschitz continuity of
neural networks. In The Twelfth International Conference on Learning Representations, 2024.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

Vladimír Kunc and Jiří Kléma. Three decades of activations: A comprehensive survey of 400
activation functions for neural networks. arXiv preprint arXiv:2402.09092, 2024.

Fabian Latorre, Paul Rolland, and Volkan Cevher. Lipschitz constant estimation of neural networks
via sparse polynomial optimization. In International Conference on Learning Representations.

Minhyeok Lee. Mathematical analysis and performance evaluation of the gelu activation function
in deep learning. Journal of Mathematics, 2023(1):4229924, 2023.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint arXiv:2405.04434, 2024.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural
network acoustic models. In Proc. icml, volume 30, pp. 3. Atlanta, GA, 2013.

Diganta Misra. Mish: A self regularized non-monotonic activation function. arXiv preprint
arXiv:1908.08681, 2019.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347–10357. PMLR, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Zhiming Zhou, Jiadong Liang, Yuxuan Song, Lantao Yu, Hongwei Wang, Weinan Zhang, Yong Yu,
and Zhihua Zhang. Lipschitz generative adversarial nets. In International conference on machine
learning, pp. 7584–7593. PMLR, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A USE OF LLMS

We used large language models (LLMs) solely for minor writing polish.

B POOF OF PROPOSITION 1 AND 2

Proposition 1. The Smoothing Kernel has normalization:∫
R

φ(u)du = 1

Proof. The Smoothing Kernel has normalization∫
R

φ(u)du =
∫ 1

−1
φ(u)du =

∫ 1

−1
Ae

1
u2−1 du =

1∫ 1
−1 e

1
u2−1 du

·
∫ 1

−1
e

1
u2−1 du = 1

Proposition 2. φ (x) ∈ C∞ (R) , i.e., φ(x) has continuous derivatives of any order, and φ (k) (x) =

0, |x| ≥ 1,Furthermore, for each natural number k,φ (k) (x) is bounded on R.

Proof. (a) For |x|> 1,In this interval, φ(x)= 0. Any derivative of the constant function is 0, so φ(x)
is C∞in this interval.

(b) For |x|< 1,φ(x) is an elementary function and naturally has derivatives of any order.

(c) For |x|= 1,since φ(x) is an even function, we only need to consider case where x = 1.According
to the definition, for x ≥ 1,φ(x) = 0,so all right-sided derivatives φ

(k)
+ (1) are 0. Our task is to prove

that all left-sided derivatives φ
(k)
− (1) are also 0.We use mathematical induction to prove that the

proposition P(k) : φ (k)(1) = 0 holds for all k ≥ 0.

For k = 0,obviously valid.Assume that P(k) holds for some k ≥ 0, i.e.,φ (k)(1)= 0.For |x|< 1,φ (k)(x)

takes the form:φ (k)(x) = Rk(x)e
1

x2−1 ,where Rk(x) is a polynomial with x and (x2 −1)−1 as variables,
i.e., a rational function.We need to prove that P(k + 1) holds, i.e., φ (k)(1) = 0.According to the
definition of derivatives

φ
(k+1)(1) = lim

h→0

φ (k)(1+h)−φ (k)(1)
h

Since φ (k)(1) = 0 and for h > 0,φ (k)(1+ h) = 0, the right limit is obviously 0. We only need to
calculate the left limit:

φ
(k+1)
− (1) = lim

h→0−

φ (k)(1+h)
h

= lim
x→1−

φ (k)(x)
x−1

= lim
x→1−

Rk(x)
x−1

e
1

x2−1 = 0

Therefore φ (k+1)(1) = 0,P(k + 1) holds true.According to mathematical induction, for all k ≥
0,φ (k)(x) = 0. Similarly, this also holds at x = −1.In summary, (a),(b), and (c) show that φ(x)
is infinitely differentiable over the entire R.

Lemma B.1. (Extreme Value Theorem)A continuous function defined on a compact set must be
bounded and can reach its maximum and minimum values.

From the lemma, we know that there exists a constant Mk > 0 such that for all x ∈ [−1,1],we have
|φ (k)(x)| ≤ Mk.And for all|x| ≥ 1,φ (k)(x) = 0.Therefore, for any x ∈R , we have |φ (k)(x)| ≤ Mk.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C PROOFS RELATED TO S-RELU

First, prove the expression for S-ReLU.

fδ (x) = (f ∗φδ)(x) =
∫

R
max(0,y)φδ (x− y)dy =

∫ x+δ

max(x−δ ,0)
y ·φδ (x− y)dy

(1)When x ≤ −δ , at this point, the right boundary of the integration window satisfies x+ δ ≤ 0.
This implies that the entire integration interval [x−δ ,x+δ] falls within the range y ≤ 0. Within this
interval, f (y) = max(0,y) = 0. Therefore, the integral is:

fδ (x) =
∫ x+δ

x−δ

0 ·φδ (x− y)dy = 0

(2)When x ≥ δ , at this point, the left boundary of the integration window satisfies x− δ ⩾ 0. This
means the entire integration interval [x− δ , x+ δ] lies within the range where y > 0. Within this
interval, f (y) = max(0,y) = y. The integral is:

fδ (x) =
∫ x+δ

x−δ

y ·φδ (x− y)dy

=
∫ −δ

δ

(x−u)φδ (u)(−du) =
∫

δ

−δ

(x−u)φδ (u)du

= x
∫

δ

−δ

φδ (u)du−
∫

δ

−δ

uφδ (u)du = x

(3)When −δ < x < δ , at this point, the integration interval [x−δ ,x+δ] spans the origin. According
to our previous analysis, the lower limit of integration is max(x− δ ,0) = 0, and the upper limit is
x+δ . The integral is:

fδ (x) =
∫ x+δ

0
y ·φδ (x− y)dy

=
∫ −δ

x
(x−u)φδ (u)(−du) =

∫ x

−δ

(x−u)φδ (u)du

=
3

4δ

∫ x

−δ

(x−u)
(

1− u2

δ 2

)
du

=
x
2
+

3x2

8δ
+

3δ

16
− x4

16δ 3

Therefore, the expression for S-ReLU is

fδ (x) =


0 ,if x ≤−δ

x
2 +

3x2

8δ
+ 3δ

16 − x4

16δ 3 ,if −δ < x < δ

x ,if x ≥ δ

Next, we will calculate the uniform error.When x≤−δ or x≥ δ : In these two intervals, the definition
of fδ (x) is identical to that of ReLU(x), so the error is 0. When 0 ≤ x < δ , the error function is given
by

E(x) = | fδ (x)− x|= |
(

x
2
+

3x2

8δ
+

3δ

16
− x4

16δ 3

)
− x|

This function is monotonically decreasing on [0,δ], so its minimum value isE(0) = 3a
16 .Similarly,

the same result holds for the interval [−δ ,0], so the uniform error is 3δ

16 .

D SMOOTHED RELU(S-RELU) PSEUDOCODE

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 1: Smoothed ReLU(S-ReLU) Pseudocode

import torch
import torch.nn as nn
import torch.nn.functional as F

class SReLU(nn.Module):
def __init__(self, trainable=False):

super().__init__()
super(SReLU, self).__init__()

def forward(self, x):
a = 0.01
condition1 = (x <= -a)
condition2 = (x > -a) & (x < a)
condition3 = (x >= a)
p1 = torch.zeros_like(x)
p2 = (x/2.0 + 3.0*x**2/(8.0*a) + 3.0*a/16.0 - x**4/(16.0*a**3))
p3 = x
output = torch.where(condition1, p1,torch.where(condition2, p2,p3))
return output

E FURTHER DICUSSION ON PROPERTIES OF S-RELU

Figure 1 shows S-ReLU images obtained for different values of δ . When δ approaches 0, the
function becomes the ReLU. As shown in the figure, the S-ReLU is smooth and differentiable ev-
erywhere, completely eliminating the non-differentiability of the ReLU at the origin, which is cru-
cial for gradient-based optimization algorithms. Smooth activation functions produce smoother loss
landscapes, theoretically helping to accelerate the optimization process and find better solutions.
Within the interval (−δ ,0), the S-ReLU function value varies, while its gradient persists and is
non-zero. This directly addresses the drawback of the standard ReLU, where the gradient is always
zero on the negative half-axis, effectively avoiding the "dead ReLU problem"—a phenomenon in
which neurons permanently stop learning due to improper weight updates δ , as an adjustable hyper-
parameter, allows precise control of the degree of smoothing based on specific task requirements.

Figure 1: S-ReLU with different δ value

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

F PROOF OF LIPSCHITZ CONTINUITY ANALYSIS

Remark 1. Lipschitz constant of GELU is 1.084.

Proof. To establish the Lipschitz continuity of the GELU activation function, we first analyze its
derivative to find its upper bound. The first derivative of GELU(x) is defined as:

dGELU(x)
dx

= Φ(x)+ xφ(x) = Φ(x)+ x
1√
2π

e−
x2
2

where Φ(x) is the cumulative distribution function and φ(x) is the probability density function of the
standard normal distribution. To find the maximum value of this derivative, we utilize the second
derivative test. The second derivative is calculated as:

d2GELU(x)
dx2 = φ(x)(2− x2) =

1√
2π

e−
x2
2 (2− x2)

The extrema of the first derivative occur where the second derivative equals zero. Setting
d2GELU(x)

dx2 = 0, we solve for x:
1√
2π

e−
x2
2 (2− x2) = 0

Since the exponential term is always positive, the expression is zero only when 2− x2 = 0. This
yields the critical points x = ±

√
2.By evaluating the first derivative at these critical points, we can

determine its maximum value. For x =
√

2, we find:

dGELU(x)
dx

∣∣∣∣
x=

√
2
= Φ(

√
2)+

√
2 · 1√

2π
e−1 ≈ 1.084

This value represents the maximum slope of the GELU function. Since the derivative is bounded by
this value, we confirm that GELU is Lipschitz continuous with a Lipschitz constant of approximately
1.084.

Remark 2. Lipschitz constant of SiLU is 1.100.

Proof. To establish the Lipschitz continuity of the SiLU (Sigmoid Linear Unit) function, we first
analyze its derivative to find its upper bound. The SiLU function is defined as:

SiLU(x) = xσ(x) =
x

1+ e−x

The Lipschitz constant is the maximum absolute value of its derivative, dSiLU(x)
dx . To find this maxi-

mum, we employ the second derivative test. The first and second derivatives are:

dSiLU(x)
dx

=
(x+1)e−x +1
(1+ e−x)2

d2SiLU(x)
dx2 =

ex(−ex(x−2)+ x+2)
(1+ ex)3

The extrema of the first derivative occur where the second derivative equals zero. Setting d2SiLU(x)
dx2 =

0, we solve for the critical points, which are found to be x ≈ ±2.3994. By evaluating the first
derivative at these critical points and analyzing its behavior, we find that its value is bounded within
the interval [−0.100,1.100]. The Lipschitz constant is the supremum of the derivative’s absolute
value. Therefore, we conclude that the Lipschitz constant for SiLU is approximately 1.100.

Remark 3. Lipschitz constant of Mish is 1.089.

Proof. To determine the Lipschitz constant for the Mish activation function, we perform an analysis
of its derivatives. The objective is to find the supremum of the absolute value of the first derivative,
which requires locating its global extrema. The Mish function is defined by the expression:

Mish(x) = x
e2x +2ex

e2x +2ex +2

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The extrema of its first derivative are found by identifying the roots of the second derivative. The
first and second derivatives are as follows:

dMish(x)
dx

=
ex[4(x+1)+4e2x + e3x + ex(4x+6)]

(e2x +2ex +2)2

d2Mish(x)
dx2 =

4ex(3e2x(x−2)+2e3x(x−1)−2(x+2)−2ex(x+4))
(e2x +2ex +2)3

By setting the second derivative to zero, we solve for the critical points of the first derivative. This
calculation yields two approximate solutions: x1 ≈ −2.2564 and x2 ≈ 1.4906. Evaluating the first
derivative at these critical points and analyzing its global behavior reveals that its values are bounded
within the interval [−0.113,1.089]. Therefore, the Lipschitz constant for the Mish function, which
is the maximum absolute value of its derivative, is established to be 1.089.

Remark 4. Lipschitz constant of S-ReLU is 1.000.

Proof. We know that the expression for SiLU:

S−ReLU(x) =


0 , ifx ≤−δ

x
2 +

3x2

8δ
+ 3δ

16 − x4

16δ 3 , if−δ < x < δ

x , ifx ≥ δ

Calculating the first derivative yields:

d(S−ReLU(x))
dx

=


0 , ifx ≤−δ

1
2 +

3x
4δ

− x3

4δ 3 , if−δ < x < δ

1 , ifx ≥ δ

Calculating the second derivative yields:

d2(S−ReLU(x))
dx2 =

{
3

4δ
− 3x2

4δ 3 , if−δ ≤ x ≤ δ

0 ,otherwise

We already know that on the interval (−∞,−δ), | d(S−ReLU(x))
dx | = 0, and on the interval (δ ,∞),

| d(S−ReLU(x))
dx |= 1. Now we need to analyze the extrema of the derivative on the interval (−δ ,δ).Let

g(x) = 1
2 +

3x
4δ

− x3

4δ 3 . We find its critical points by taking the derivative of g(x):

g′(x) =
d
dx

(
1
2
+

3x
4δ

− x3

4δ 3

)
=

3
4δ

− 3x2

4δ 3

Setting g′(x) = 0 to find the fixed point yields x = ±δ .The fixed point lies on the boundary of the
interval. This indicates that within the interval (−δ ,δ), g(x) is monotonic.For any x ∈ (−δ ,δ), we
have x2 < δ 2. Therefore, g′(x) = 3

4δ 3 (δ
2 − x2)> 0. Thus, calculating the derivative at the endpoint

yields:

lim
x→−δ+

d(S−ReLU(x))
dx

=
1
2
+

3(−δ)

4δ
− (−δ)3

4δ 3 = 0

lim
x→δ−

d(S−ReLU(x))
dx

(x) =
1
2
+

3δ

4δ
− δ 3

4δ 3 = 1

Therefore, the derivative of S-ReLU is bounded within the interval [0,1]. Therefore, S-ReLU’s
Lipschitz constant is 1.000.

G SENSITIVITY ANALYSIS OF PARAMETER δ

In this section, we focus on the impact of different δ on the final results. We set δ to 0.001, 0.01,
0.1, 0.2, 0.5, 1, 5 and 10, and conduct experiments on the CIFAR10 and CIFAR100 datasets using
ViT-tiny. We perform three runs and report the mean and standard deviation in Table 4.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 4: Test accuracy of 100 experiments using ViT at different sensitivity parameters
δ 0.001 0.01 0.1 0.2 0.5 1 5 10

CIFAR-10 81.0±0.6 80.1±0.2 80.4±0.3 78.2±0.2 80.4±0.2 73.9±0.3 63.4±0.5 58.5±0.3
CIFAR-100 51.2±0.6 48.7±0.3 48.7±0.5 48.5±0.5 45.5±0.3 41.4±0.6 43.8±1.0 25.7±0.2

H DETAILS OF EXPERIMENTAL SETTINGS

In this appendix, we provide implementation details and hyperparameter settings to facilitate repro-
ducibility. The main datasets and baseline methods are introduced in the main text (Section 5). Here
we report additional training configurations specific to each model and dataset. Hyperparameter
sensitivity to δ is reported in Appendix G; according to the experimental results, we use δ = 0.001
for all experiments.

Image classification. For CIFAR-10 and CIFAR-100, we trained ViT-Tiny, DeiT-Tiny, and TNT-
Small for 100 epochs. All models used AdamW with weight decay of 0.05, cosine annealing learn-
ing rate scheduling (initial learning rate 2.5× 10−4, minimum 1× 10−5, with 20 warmup epochs
starting from 1× 10−6), and gradient clipping of 1.0. Training was performed with a batch size of
256, cross-entropy loss, and layer normalization, without dropout or drop path. For CIFAR tasks,
images of size 32× 32 were divided into patches of size 4, with embedding dimensions of 192 for
ViT-Tiny and DeiT-Tiny and 384 for TNT-Small. Standard data augmentations provided by timm
were applied.

For ImageNet-1K, we trained ViT-Tiny and DeiT-Tiny for 100 epochs under largely similar opti-
mization settings. Images were resized to 224× 224, patch size was set to 16, and the embedding
dimension was 192. The same AdamW optimizer, learning rate schedule, batch size (256), loss
function, and normalization strategy were adopted, with no dropout or drop path used.

LLM fine-tuning. For SHP, HH, and GPT-2 fine-tuning tasks, we adopted full-parameter fine-
tuning. All experiments were conducted on 4×A100 GPUs, and each experiment was repeated
three times, with mean and standard deviation reported.

18

	Introduction
	Related Work
	Motivation
	Methodology
	Smooth Activation Fuction Is Better
	Smoothed Kernel Function
	Smoothness of the Mollified Activation Function
	Approximation Properties of the Mollified Activation Function
	Lipschitz Continuity Analysis
	Reshaping Relu(S-Relu): From Relu To Better

	Experiments
	Task of Image Classification
	Task of Large Language Model (LLM) Fine-tuning

	Discussion
	Ethics statement
	Reproducibility statement
	Use of LLMs
	Poof of Proposition 1 and 2
	Proofs Related to S-ReLU
	Smoothed ReLU(S-ReLU) Pseudocode
	Further Dicussion on Properties of S-ReLU
	Proof of Lipschitz Continuity Analysis
	Sensitivity Analysis of Parameter
	Details of Experimental Settings

