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Abstract

Understanding protein dynamics is critical for elu-
cidating their biological functions. The increasing
availability of molecular dynamics (MD) data en-
ables the training of deep generative models to
efficiently explore the conformational space of
proteins. However, existing approaches either
fail to explicitly capture the temporal dependen-
cies between conformations or do not support
direct generation of time-independent samples.
To address these limitations, we introduce CON-
FROVER, an autoregressive model that simulta-
neously learns protein conformation and dynam-
ics from MD trajectories, supporting both time-
dependent and time-independent sampling. At the
core of our model is a modular architecture com-
prising: (i) an encoding layer, adapted from pro-
tein folding models, that embeds protein-specific
information and conformation at each time frame
into a latent space; (ii) a temporal module, a se-
quence model that captures conformational dy-
namics across frames; and (iii) an SE(3) diffusion
model as the structure decoder, generating con-
formations in continuous space. Experiments on
ATLAS, a large-scale protein MD dataset of di-
verse structures, demonstrate the effectiveness of
our model in learning conformational dynamics
and supporting a wide range of downstream tasks.
CONFROVER is the first model to sample both
protein conformations and trajectories within a
single framework, offering a novel and flexible
approach for learning from protein MD data.
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1 Introduction

Proteins are flexible molecules that can adopt multiple struc-
tures, called conformations. Their ability to transition be-
tween different conformations enables biological processes
critical to life. Characterizing the behavior of a protein,
including its (1) dynamic motions, (2) conformational dis-
tribution, and (3) transitions between different states, is
crucial for understanding its function and guiding the design
of novel proteins (McCammon, 1984; Frauenfelder et al.,
1991; Berendsen & Hayward, 2000). Molecular dynam-
ics (MD) simulations are the “gold standard” for studying
protein conformational changes (McCammon et al., 1977,
Childers & Daggett, 2017; Karplus & Kuriyan, 2005). These
simulations use physical models to describe the energy of a
protein conformation and the forces acting on its atoms. By
simulating atomic motion through classical mechanics and
iteratively sampling conformations over time, MD enables
researchers to explore different conformations, approximat-
ing the conformational distribution at equilibrium, and gain
mechanistic insights into protein’s behavior. However, MD
simulations are both computationally expensive and tech-
nically challenging due to long simulation times and the
tendency to become trapped in local energy minima.

These challenges have motivated the use of deep generative
models to study proteins, leveraging the rich conforma-
tional and dynamic information provided by large-scale MD
datasets (Liu et al., 2024a; Vander Meersche et al., 2024):

(1) Generating the dynamic motions of proteins is a direct
analog to MD simulation. Pioneering works modeled this
by learning transition probabilities of future conformations
from the current state (Klein et al., 2024; Schreiner et al.,
2024; Costa et al., 2024). However, MD trajectories are
often non-Markovian due to partially observed coordinates
(e.g., protein-only atoms) and environmental coupling (e.g.,
using Langevin thermostats). To mitigate this, Cheng et al.
(2024) incorporated higher-order information using multiple
context frames, though this requires fix context windows
and limits flexibility. Jing et al. (2024b) instead modeled
the joint distribution over the entire trajectory, capturing
complex dependencies among frames. Due to training on
fixed-length trajectories and the non-autoregressive design,
their model has limited inference-time flexibility that can-
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Figure 1: Key ideas of CONFROVER. (A) Various conformation generation tasks are unified as conditional generation,
learned via frame-level autoregressive factorization. Each block represents a frame and conditioning frames are outlined
in black. The arrow indicates frame dependency. (B) CONFROVER models each frame as a conditional distribution given
preceding frames p(x!|x<!). Sequential dependencies are captured through latent variables h, and conformations are
sampled from a diffusion decoder, conditioned on the updated latent.

not generate variable-length trajectories. Li et al. (2025)
introduced an autoregressive approach for flexible trajectory
extension, but its deterministic formulation cannot capture
trajectory distributions or generate diverse samples.

(2) Learning the conformational distribution enables sam-
pling time-independent conformations. Several meth-
ods (Noé et al., 2019; Jing et al., 2024a; Wang et al., 2024,
Zheng et al., 2024; Lewis et al., 2024) train diffusion- or
flow-based generative models on conformation ensembles
from MD simulation data, bypassing the need for sequential
sampling. While effective for generating samples in parallel,
they disregard temporal information in MD trajectories and
therefore cannot simulate physical motion of proteins.

(3) Conformation interpolation generate transition path-
ways between different states. Recent works (Du et al.,
2024; Jing et al., 2024b) have extended generative modeling
to conformation interpolation, where the goal is to generate
plausible intermediate samples between known start and
end conformational states. Jing et al. (2024b) framed in-
terpolation as a conditional trajectory generation task, but
it requires training task-specific model and has not been
evaluated on large proteins.

As these generative problems all stem from the same un-
derlying physical principles and involve sampling from a
protein’s conformational space, a natural question arises:
can we develop a general framework to learn all of these
objectives? We present CONFROVER, a framework for
simultaneous learning protein conformation distribution
and dynamics from MD trajectory data (Figure 1). Our
key observation is that, for an MD trajectory x'¥ of
length L, by adopting a general autoregressive formulation,
p(xtil) = Hlel p(x![x<!), where x<! denotes all preced-
ing frames of x! in the sequence, we can unify multiple
generation objectives as instances of frame generation: (1)
generating future frame conditioned on all previous frames,
suitable for simulating non-Markovian dynamics; (2) un-
conditional single-frame generation, p(x|&), corresponding
to time-independent conformation sampling; (3) flexible
frame sequence ordering redefines the dependency structure,

enabling tasks such as conformation interpolation.

Our contributions are summarized as follows:

* We introduce a simple yet general framework to learn
both the conformational distribution and dynamics from
MD data, supporting multiple generation tasks includ-
ing trajectory simulation, time-independent conformation
sampling, and conformation interpolation.

* We design a modular architecture that captures temporal
dependencies in latent space using efficient causal trans-
formers (i.e., Llama (Touvron et al., 2023)), and directly
models conformations in continuous SE(3) space using a
diffusion decoder, avoiding discretize structural tokens.

* Experiments show strong capabilities of CONFROVER: it
outperforms MDGEN (Jing et al., 2024b) in trajectory sim-
ulation, matches the performance of ALPHAFLOW (Jing
et al., 2024a) and CONFDIFF (Wang et al., 2024) in time-
dependent generation, and can effectively sample confor-
mations interpolating two endpoints.

2 Background

2.1 Data Generation from Molecular Dynamics

Molecular dynamics describes the motion of molecules
through Newtonian mechanics Mx = —VU(x), where
x denotes coordinates of atoms in the system, M is the
atomic mass, U(x) is the potential energy of the configu-
ration and —VU (x) represents the forces acting on atoms.
In practice, stochastic and frictional forces are integrated to
model energy exchange with the environment and maintain
temperature control of the system, converting the equations
of motion to a Langevin process:

M% = —VU(x) — yM% + \/2M~kpTn(t),

where 7 is the friction coefficient, kp is the Boltzmann con-
stant, T is the temperature, and 1(¢) is a Gaussian noise
term delta-correlated in time (n;(¢)n;(t')) = 8;;0(t — ).
Sampling from this stochastic process generates a time
evolution of system configurations. Over time, the sam-
ples converges to the Boltzmann distribution p(x)
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exp(—U(x)/kpT). The trajectory of protein coordinates,
Xt = (Kot Xirots - - - » Xpror)» 15 extracted and saved at pre-
scribed simulation intervals, providing both distributional
and kinetic information the protein conformational dynam-
ics. For simplicity, we omit the subscript ‘prot” and use x to

denote protein coordinates throughout the paper.

2.2 Protein Representations

Proteins are chain-like molecules composed of amino acid
residues, each selected from 20 standard amino acid types.
We parameterize the coordinates of heavy atoms in a protein
using the SE(3)-torsional convention (Jumper et al., 2021):
the backbone atoms (N-Ca—C) of each residue define a lo-
cal coordinate via a Gram-Schmidt process, referred to as a
rigid. The position and orientation of each rigid relative to
the global coordinate system are described by a translation-
rotation transformation in SE(3) space. The backbone con-
formation of a protein with N residues can then be repre-
sented as x = (T,R) € SE(3)", where T € RV*3 and
R € SO(3)" are the translation and rotation components.
The coordinates of the oxygen atom of the backbone and
the side chain atoms can be determined with the addition
of up to 7 torsional angles (¢, v, w, Xx1,---,x4) describ-
ing the bond rotation. Therefore, the complete configura-
tion of a protein structure is parameterized in the space:
X= (T7 Ra ¢7wvwa ) SERRER) X4) € (SE(?)) X T7)N’

2.3 SE(3)-Diffusion for Protein Conformation
Generation

Diffusion generative models are capable of learning com-
plex data distributions. Training involves progressively cor-
rupting data with noise and learning to reverse this process
through denoising, thereby modeling the original data distri-
bution (Ho et al., 2020; Song et al., 2021). Recently, diffu-
sion models operating in SE(3) space have been proposed
to model protein backbone structures (Yim et al., 2023;
Wang et al., 2024). Below, we provide a brief overview of
diffusion model and defer the details to Appendix B:

Given a protein backbone conformation as xy =
(To,Ry) € SE(3)", and conditioned on the protein iden-
tity (omitted in the equations for clarity), we aim to train
a neural network to jointly estimate the score functions of
the reverse-time marginal distributions at varying diffusion
time ¢, sp(Xt,t) &~ Vy, log pt(x¢). This model is trained
using the denoising score matching (DSM) loss:

Losm = Exg i [ME)[[s0(x1,) —

Here p;|o(x¢|x0) is the forward transition kernel defined in
the SE(3) space, x; = (T, R;) is the noisy data at time
t, and \(t) is a time-dependent weight. During inference,
DPM generates clean conformations from random noise by
simulating the reverse diffusion process with the learned
score network sg(X¢,t).

Vi, log pjo(x¢[x0)[1?] -

3 CONFROVER

3.1 Modeling MD Trajectories through Autoregression

Autoregressive generative models factorize the distribution
of a sequence as a series of conditional generations over
frames. We cast this idea to MD trajectories, modeling a
sequence of L frames as:

L
p(Xl:L|7)) — Hp(Xl|X<l,73), ()

=1
where x<! is the preceding frames and P denotes the

protein-specific conditioning input.

Despite its simplicity, this formulation naturally supports
multiple learning objectives in protein conformation mod-
eling. In its base form, it models temporal dependencies
across the frames, learning to generate the trajectory. When
L =1, it removes the frame context and reduces to a single-
frame distribution p(x|P), learning to direct sample time-
independent conformations. In addition, the sequential de-
pendency in Equation (1) can be extended to any desired
frame-conditioned generation tasks. By prepending condi-
tioning frames /C to the sequence, we train the model to
learn any conditional generation p(x':’|KC, P), including
conformation interpolation by setting X = {x*, x*}. Simi-
lar idea was applied in text infilling tasks by shuffling the
order of text contexts (Bavarian et al., 2022).

After defining the main learning objectives for trajectory
simulation, single-frame (time-independent), and confor-
mation interpolation, we describe how to effectively model
autoregressive dependencies over protein conformations in
Section 3.2. More critically, in Section 3.3, we explain how
to adapt sequence models, traditionally designed for discrete
tokens, to the continuous space of protein conformations.
Lastly, we introduce a specific choice of architectures of
CONFROVER in Section 3.4.

3.2 Latent Causal Modeling

We propose a modular design composed of an encoder,
a latent sequence model, and a stochastic decoder. This
design enables the use of modern causal transformers, such
as in Llama (Touvron et al., 2023), to efficiently capture
sequential dependencies between frames in the latent space
(Figure 2). During training, the input sequence is shifted
by one frame and a mask token “[M]” is prepended; the
generation process also begins with the mask token and
conditioning frames (e.g., x').

To model p(x!|x<!, P), the context frames x <! are first en-
coded into intermediate latent states h<! = (h!,... h!~1)
using a shared encoder network with protein-specific condi-
tion P:

h' = fo(x!, P), i=1,2,...,0—1. )
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Figure 2: Causal sequence model to generate trajectory
(%2,...) from the mask token “[M]” and the conditioning
frame x!. Each frame only attend to its previous frames.
Attention activations for X are highlighted in orange.

A temporal module is then used to capture the sequential
dependencies between the frame latents. Causal attention is
used to ensure the latent for frame h' is only updated by its
preceding frames:

hflpdaled = gemp (hla h2’ ey hl_l) . (3)

Since that both the encoder and the temporal module are
chosen to be deterministic, p(x!|x<!) reduces to a condi-
tional generation over the updated latent, realized through a
probabilistic decoder:

p(xl |X<l’ ,P) = pgec (Xl |hf1pdated)' (4)

Details on this latent modeling is provided in Appendix C.
As a result, we train a model (7, £, 9) by jointly optimizing
temp dec

the three modules f"°, f,5 , and py*°.

This setup easily accommodates learning single-frame dis-
tribution: by replacing all input frames with a mask token
and using identity attentions, where each frame only attends
to itself, we effectively disable inter-frame information flow.
This trains the model to directly sample conformations. A
similar strategy has been used in image-video training (Liu
et al., 2024b; Ho et al., 2022b).

3.3 Training Autoregressive Model with SE(3)
Diffusion Loss

The main challenge in applying autoregressive modeling to
conformation trajectories lies in representing the continuous
distribution of protein conformations within a framework
typically used for discrete token sequences. While some
studies have approached this by discretizing the protein
structural space into discrete tokens (Hayes et al., 2025; Liu
et al., 2023; Lu et al., 2024a), such approaches inherently
suffer from discretization error, which can lead to subopti-
mal performance in modeling protein conformations.

Instead, we propose to directly model the continuous confor-
mational space using diffusion probabilistic models and em-
ploy the DSM loss for autoregressive model training, similar
to Li et al. (2024). Specifically, we perform DSM loss train-

ing in SE(3) space: Given a clean frame x), = (T}, R}),

its latent embedding with temporal context h' (omit sub-
script “update” for clarity), the forward transition kernels

pijo(T4|TE) and pyo(RE|RY) for the translation and ro-
tation component of SE(3), and a score network to jointly
estimate the translation and rotation scores sg(T%, h, ¢) and
sy (RY, 1), the loss is defined as

L580 = B [ADllso(Th, b, £) = Vg log pupo (T4 T0) ]

+E [N ()55 (Ri, b, 6) = Vi log puo (REIR) ]
)

where the expectation is taken over the diffusion time ¢ and
noisy structure x. = (T!, R}) sampled from the forward
process. Gradients with respect to h' are then backpropa-
gated to update the weights in the temporal module fgemp
and encoder f7". During inference, we decode each frame
autoregressively by performing reverse sampling as in Equa-
tion (6), replacing the scores with estimated values from

so(TL, h!,t) and sj(RL, h!,t).
3.4 Model Architecture

An overview of model architecture is shown in Figure 3,
with detailed illustrations of each module provided in Ap-
pendix D.1.

Encoding Layer. A FoldingModule, parameterized
by a pretrained OPENFOLD model (Ahdritz et al., 2022),
extracts protein-specific embeddings P consisting of a sin-
gle representation (s) and a pair representation (z), shared
across frames. For each frame, a FrameEncoder, adapted
from the template module used in prior works (Jumper
et al., 2021; Jing et al., 2024a), encodes pairwise distance
of pseudo—Cg atoms via triangular updates and merges
this frame pair representations zk,,,.. with the protein pair
representation z. The resulting frame latent embedding,
h! = [s!, z!], are invariant to global translation and rotation
of the conformations, and are passed to the Trajectory Mod-
ule. Following causal sequence modeling, a masked frame
token “[M]” is introduced by zeroing out the pseudo-Cg
pairwise distances to remove structural information.

Trajectory Module.  The Trajectory Module models
structural and temporal dependencies across frames, up-
dateing each frame’s embedding based on its preceding
frames. It consists of interleaved StructualUpdate
and TemporalUpdate layers that operate on the frame-
wise latent embeddings. StructralUpdate incorpo-
rates Pairformer layers, a core architecture in protein
structure modeling, to update single and pair embed-
dings through triangular operations (Ahdritz et al., 2022).
TemporalUpdate employs a Llama-based causal trans-
former layer for channel-wise self-attention over the se-
quence of frame embeddings. Each channel in the single
and pair embeddings is updated independently. Frame in-
dices are encoded using Rotary Position Embedding (Su
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Figure 3: Architecture overview. (A) Encoding Layer embeds protein sequence and input structure to each frame as a frame
latent representation h!, comprised of single and pair embeddings; (B) The Trajectory Module then updates frame latent
h! using interleaved structural and temporal update blocks; (C) A diffusion-based Structure Decoder learns to denoise a
noisy conformation conditioned on the updated frame latent h'; during inference, it samples conformations from the prior

distribution. See Appendix D.1 for details.

et al., 2023). This interleaved design enables efficient up-
dates while maintaining flexibility in modeling sequential
dependencies.

Structure Decoder. The updated latent embeddings from
trajectory module serve as conditioning signals for generat-
ing the conformation at each frame. For the SE(3) diffusion
model described in Section 2.3, we adopt CONFDIFF (Wang
et al., 2024) as the Di ffusionDecoder to generate 3D
conformations. CONFDIFF composes of layers of Invariant
Point Attention and Transformer (on single embeddings) to
collectively update the residue SE(3) rigids, as well as single
and pair embeddings. Trained with denoising score match-
ing in Equation (5), the DiffusionDecoder learns to
iteratively denoise noisy frame structures drawn from a prior
SE(3) distribution, conditioned on the frame latent embed-
dings, to generate accurate backbone conformations of the
frame. To reconstruct full-atom geometry, we additionally
predict the 7 torsional angles (¢, ¥, w, X1, - .-, X4) using a
light-weight AngleResNet, for the coordinates of back-
bone oxygen atom and side-chain atoms.

4 Experiments

Dataset. We evaluate model performance on ATLAS (Van-
der Meersche et al., 2024), a large-scale protein MD dataset
covering ~1300 proteins with diverse sizes and structures.
For each protein, it contains triplicated 100 ns simulation tra-
jectories. All models are trained on training trajectories and
evaluated on test trajectories split by protein identity (Jing
et al., 2024a; Wang et al., 2024; Jing et al., 2024b). This
presents a challenging task for assessing the generalization
to unseen protein structures and dynamics.

Model training. All modules are trained from scratch,
except for the FoldingModule (frozen OPENFOLD
weights) and the DiffusionDecoder (initialized from
CONFDIFF). During training, sub-trajectories of length
L = 8 with varying strides (1 ~ 1024 MD snapshots saved
at 10 ps intervals) are sampled to enable learning across

multiple timescales. For the main CONFROVER model, we
adopt a hybrid training strategy using a 1:1 ratio of trajec-
tory and single-frame training objectives; For conformation
interpolation task, we continue training the model with a
1:1:1 ratio of trajectory, single-frame and interpolation ob-
jectives. See Appendix D.2 for training details.

Baselines. We compare CONFROVER with state-of-the-art
deep learning models for each task: For trajectory sim-
ulation, we compare against MDGEN, a flow-based non-
autoregressive trajectory model trained on ATLAS; For time-
independent generation, we evaluate against ALPHAFLOW
and CONFDIFF, flow- and diffusion-based conformation
generation models finetuned on ATLAS; For conformation
interpolation, no existing baseline is available, so we focus
on analyzing results of our model.

Remarks on baseline availability. As this is an emerging
research area, baseline models remain limited. While recent
works on trajectory simulation (Klein et al., 2024; Costa
et al., 2024; Cheng et al., 2024) and conformation interpola-
tion (Du et al., 2024; Jing et al., 2024b) have been proposed,
unfortunately, they are not tailored for large proteins as in
ATLAS or are not publicly available. See Appendix A for
more discussions.

4.1 Trajectory Simulation

Since trajectories from both MD and models are stochas-
tic samples, directly comparing them using frame-wise er-
ror, such as root-mean-square-deviation (RMSD) between
atomic coordinates, is not appropriate. Therefore, we evalu-
ate the model’s ability to recover trajectory dynamics from
two perspectives: (1) how well it captures the magnitude of
conformation changes across varying start conformations
and timescales; (2) how well it recovers the conformational
states and principal dynamic modes observed in long-time
MD simulations.

Evaluating conformation change accuracy on multi-start
benchmark. We curated a test benchmark consisting of
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Table 1: Pearson correlations of conformation changes be-
tween sampled and reference trajectories in multi-start. The
better scores are highlighted in bold.

Ca coordinates
Traj. AFrame

MDGEN 0.55 0.45 0.40
CONFROVER  0.77 0.63 0.53

PCA 2D

Frame

Traj. Frame AFrame

MDGEN 0.16 0.11 0.10
CONFROVER  0.75 0.50 0.43

short trajectories with L = 9 frames, extracted from 82 AT-
LAS test proteins. For each protein, we choose from varying
starting frames (snapshot index 1000 ~ 7000) and strides
(128 ~ 1024 snapshots), resulting in a total of ~ 2,700
generation conditions. For each trajectory, we measure
three aspects of conformational changes: Trajectory, the
total changes over the entire sequence ZZL=711 d(x!, x!t1);
Frame, the changes of each frame relative to the starting
frame d(xl ,x1); A Frame, the changes between consecu-
tive frames d(x!,x'*1). Here, d(-, -) measures the distance
between two conformations. We report both the L2-distance
in projected 2D PCA space and the RMSD (in A) of alpha-
carbon (Ca) atoms. This benchmark captures diverse dy-
namics at both the trajectory and frame levels and enables
comprehensive evaluation across varying conditions and
timescales (see Appendix E.1 for details).

ConfRover shows superior performance in recovering the
magnitude of conformational changes. We report the Pear-
son correlation of measured conformation changes between
model-generated and reference trajectories in Table 1, with
additional results in Appendix E.1. Compare with MD-
GEN, CONFROVER shows a significant improvement in
correlation scores, mean absolute error and structural qual-
ity (Table 7), indicating its stronger ability to recover the
magnitude of conformation changes across different start-
ing conditions in the conformational space. The greater
difference observed in PCA highlights that CONFROVER
more accurately captures conformational changes along the
feature dimensions most relevant to the structural variance
observed in MD. Figure 4 visualizes ensembles of conforma-
tions in generated trajectories, with additional examples in
Figure 11. CONFROVER exhibit more notable conformation
changes than MDGEN, and reflects the major movements
in the structured and loop domains observed in the MD
reference.

MDGEN is a non-autoregressive model trained on trajecto-
ries of length L = 250. Adjusting its inference setup results
in degraded conformation. To ensure fair comparison, we
use the original inference setting (S = 40, L = 250) and

MD REF. MDGEN CONFROVER MD REF. MDGEN CONFROVER

Figure 4: Visualization of six proteins from multi-start.
Trajectory conformations are colored by their secondary
structures and superposed to show the dynamic ensemble.
MDGEN primarily exhibits local movements, whereas CON-
FROVER captures conformations changes similar to MD
simulations.

downsampled the trajectories for evaluation. To confirm that
this post-processing step does not introduce artifacts, we
also trained MDGEN models under the evaluation setups.
The results are consistent with the downsampled version
(see Appendix E.5).

Table 2: State recovery in 100 ns simulation. Mean values
over the first two PCA components are reported. Precision
scores for all models are close to 1 and omitted. The better
scores are highlighted in bold. MD 100NS is the oracle and
excluded in the comparison.

JISD({) Recall (1) F1(1)
MD 100NS 0.31 0.67 0.79
MDGEN 0.56 0.30 0.44
CONFROVER 0.51 0.42 0.58

Assessing long trajectory generation on 100 ns simula-
tion. We further evaluate model’s ability to recover con-
formational states and principal dynamics of proteins. For
each of protein, we simulate a trajectory of L = 80 frames
at stride S' = 120, approximating the 100 ns MD simula-
tion in ATLAS. To assess state recovery, model-generated
conformations are projected into a reduced PCA space and
compared with the reference trajectory. Specifically, we
discretize each principal component into 10 evenly sized
“states” and measure the distribution similarity using Jensen-
Shannon Distance (JSD). We also compute precision, re-
call, and F1-score on whether sample conformations fall
within these known states (Lu et al., 2024b; Wang et al.,
2024; Zheng et al., 2024). To evaluate dynamic mode re-
covery, we perform time-lagged independent component
analysis (tICA) at varying lag times on both reference and
sample trajectories. We then compute Pearson correlations
between the per-residue contribution to the leading compo-
nents, based on the tICA coefficients. See Appendix E.2
for details. We include one of the triplicate MD trajecto-
ries—excluded from ground-truth evaluation—as an “oracle”
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Table 3: Time-independent generation benchmark. ALPHAFLOW and CONFDIFF are specialized SOTA models. The best
scores are highlighted in bold and the second-best scores are underlined. *MDGEN does not support time-independent

sampling; its sequential sampling result are evaluated.

Pairwise  Per target RMWD MD Joint Weak Transient Exposed

RMSD RMSF L) PCA PCA  contacts  contacts residue
r(1) () Wa(l) WD) J D) JM) J(M)
ALPHAFLOW 0.53 0.85 2.64 1.55 2.29 0.62 0.41 0.69
CONFDIFF 0.59 0.85 2.75 1.41 2.27 0.63 0.39 0.65
MDGEN* 0.41 0.74 2.81 1.95 2.38 0.50 0.28 0.57
CONFROVER-TRAJ 0.47 0.85 2.83 141 2.30 0.53 0.36 0.60
CONFROVER 0.51 0.85 2.62 1.39 2.28 0.61 0.38 0.67
reference, denoted as MD 100NS, representing the perfor- A) e e posen T Conthover

mance expected if the model were as accurate as an MD
simulation run.

ConfRover recovers more conformational states than MD-
Gen and accurately captures the principal dynamics. As
shown in Table 2, CONFROVER outperforms MDGEN in
state recovery, achieving lower JSD, higher recall and F1
scores, showing its improved ability to capture diverse con-
formations. Additionally, CONFROVER shows clear ad-
vantage in capturing the principal dynamic modes across
varying lag times, performing even comparably to the MD
oracle (Figure 5A). This results suggest CONFROVER can
learn and generalize dynamics to unseen proteins and still
capture the most important dynamic modes. We visualize
simulated trajectories in the PCA space in Figure 5B and
Figure 12. These examples again confirm that CONFROVER
is more capable of sampling over the conformational space
of the proteins and covering diverse conformations. Yet,
we also observe some cases where MD 100NS overcame
the energy barrier and achieved more remote states while
CONFROVER did not (e.g., 7NMQ-A in Figure 5B).

Summary. These experiments demonstrate that CON-
FROVER outperforms the current state-of-the-art model in
trajectory simulation, effectively learning protein dynamics
from MD data and generalizing well to unseen proteins.
While a gap remains compared to the oracle MD 100NS,
particularly in state recovery, the improvement narrows the
gap between deep generative models and established simu-
lation methods.

4.2 Time-independent Conformation Sampling

We evaluate the time-independent sampling performance of
CONFROVER, following the benchmark setup in Ye et al.
(2024). For each protein, 250 independent conformations
are generated and compared to MD reference ensembles.
Key metrics are summarized in Table 3 with full results in
Appendix E.3.

ConfRover matches the performance of state-of-the-art spe-
cialized models. Compared to ALPHAFLOW and CONFD-
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Figure 5: Results from 100 ns simulation. (A) Correlations
of principal dynamic modes between sample and reference
trajectories, evaluated at varying lag time. (B) Examples
trajectories illustrating the states explored by different meth-
ods (downsampled by 5 frames for visualization). The blue
background indicates the density of the ground-truth confor-
mation distribution from MD reference.

IFF, both specialized for time-independent conformation
sampling, CONFROVER achieves overall comparable perfor-
mance and outperforms at least one of the SOTA models in
five evaluation criteria. This demonstrate that CONFROVER,
despite being a general-purpose model capable of trajecotry
generation, also performs strongly in sampling independent
conformations that approximate the equilibrium distribution
from MD simulation. In contrast, MDGEN, which is trained
solely for trajectory generation, shows suboptimal results
with sequentially sampled conformations.

Effect of hybrid training. Without explicit single-frame
training, the model primarily learns time-dependent genera-
tion, with only the first frame of each trajectory learning to
generate conformation unconditionally (i.e., from a masked
token input). To test the importance of hybrid training,
we ablated the single-frame objective and trained a variant,
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Figure 6: Results from conformation interpolation. (A) Ca-RMSD distance of intermediate frames to the start and end
frames, normalized by the distance between start and end frames. Reported values are averaged over 38 cases selected from
the multi-start benchmark. (B) Example interpolations results. CONFROVER-INTERP generates smooth pathways between
the start and end frames, capturing the dynamics observed with the MD reference. Start and end frames are shown as solid
structures; intermediate conformations are shown in fading colors. Main motions are indicated by blue dashed arrows.

CONFROVER-TRAJ, solely on trajectory generation. As
shown in Table 3, while this variant still outperforms time-
dependent results from MDGEN, it shows decreased per-
formance across several metrics compared to CONFROVER.
This highlights the importance of hybrid training in balanc-
ing the learning objectives and enhancing the model’s for
generating independent conformations.

4.3 Conformation Interpolation

To enable CONFROVER for conformation interpolation, we
continue training CONFROVER with a hybrid objective com-
bining trajectory, single-frame and interpolation, referred
as CONFROVER-INTERP. We select 38 short trajectories
from multi-start for this evaluation where the reference MD
trajectories exhibit clear conformation changes and state
transitions, see Appendix E.4 for details. To condition on
both start and end frames, we prepend the end frame to the
start frame and autoregressively generate the remaining (in-
termediate) frames. To evaluate whether the model generate
smooth transitions towards the target end state, we measure
Ca-RMSD and L2-distance in the PCA space between each
intermediate frame and the start/end frames.

Training on the interpolation objective enables smooth in-
terpolation between conformations. As shown in Figure 6A,
the distance to the start frame increases while the distance
to the end frame decreases with frame index, indicating
smooth and directed transitions. Without explicit interpo-
lation training, the original CONFROVER (dashed lines in
Figure 6A) generates trajectory that do not progress towards
the end state. Figure 6B visualizes intermediate structures
and transition pathways in PCA space, showing that inter-
mediate conformations from CONFROVER-INTERP closely
resemble those in the MD reference. In contrast, as shown
in Figure 14, the original CONFROVER can miss key tran-
sitions and fails to reach the end state. Additional results
and visualizations are provided in Appendix E.4. These re-

sults highlight the effectiveness of our interpolation training
strategy: by adjusting the dependency order in the sequence
model, CONFROVER-INTERP learns to generate smooth
transitions between two conformations.

5 Conclusions and Limitations

We introduce CONFROVER, a general framework for learn-
ing protein conformational dynamics from MD trajectory
data. Through autoregressive factorization, CONFROVER
supports three tasks in a unified manner: trajectory simula-
tion, time-independent sampling, and conformation interpo-
lation. This formulation reflects the temporal nature of MD
while naturally encompassing conditional and unconditional
frame-level generation. Extensive experiments and analyses
highlight several empirical advantages: (1) CONFROVER
outperforms the current state-of-the-art in trajectory sim-
ulation, accurately capturing the magnitude of dynamics,
conformational state recovery, and principal motions; (2)
Despite being a multi-purpose model, it achieves competi-
tive performance in time-independent sampling compared
to specialized methods; (3) With simple sequence reorder-
ing training, CONFROVER learns to generate intermediate
conformations to interpolate between two given states.

Nevertheless, several limitations remain: (1) Trajectory sim-
ulation and interpolation are emerging tasks with limited
baselines. We hope this work encourages further devel-
opment and open-sourcing of models for comprehensive
benchmarking; (2) Some evaluation metrics are still prelim-
inary. While interpolation results are intuitive, they would
benefit from more meaningful benchmarks reflecting func-
tional state transitions. Evaluation is also constrained by
the ATLAS dataset, which is limited to 100 ns simulations
and mainly local dynamics. (3) Although CONFROVER
narrows the gap with classical MD, it still falls short in
fully capturing the conformational space. Future gains may
come from scaling training data, using more efficient archi-
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tectures, and leveraging additional information from MD,
such as energy information. (4) Finally, while the triangular
updates in the structural modules ensure high accuracy, their
computational cost limits scalability to larger proteins and
longer trajectories. Despite these challenges, CONFROVER
demonstrates the promise of autoregressive models in molec-
ular simulation, offering a unified, efficient, and extensible
approach to modeling protein dynamics.

6 Impact Statement

This work aims to advance machine learning for protein
modeling, with broad applications in biology and drug dis-
covery. By enabling efficient simulation of protein dynamics
and conformational changes, our method has the potential
to accelerate research in structural biology and therapeu-
tic development. Beyond proteins, the approach may also
be adapted to other domains of computer-aided design, in-
cluding small molecule design, materials science, and chip
design. While the potential benefits are significant, it is im-
portant to ensure responsible use and prevent misuse of the
technology. Developing appropriate safeguards and regula-
tory frameworks will be essential to mitigate any potential
negative impacts.
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A Extended Discussions
A.1 Related Work

Deep Generative Models for MD Trajectories. Recent works have explored protein trajectory generation as a surrogate
for MD simulations. Models such as TIMEWARP (Klein et al., 2024), ITO (Schreiner et al., 2024), and EQuIJuMP (Costa
et al., 2024) learn stochastic transport functions to sample future conformations at a lagged time (longer than MD intervals),
reducing the computational costs of long-timescale simulations. However, these methods assume Markovian dynamics
by relying solely on the current state for prediction, which may not be suitable for non-Markovian dynamics common
in protein MD data. To capture higher-order dependencies between the frames, ALPHAFOLDING (Cheng et al., 2024)
incorporates history frames via “motion nodes”, but it requires a fixed context window. MDGEN (Jing et al., 2024b) takes a
different approach by directly modeling the joint distributions of frames in a trajectory and learning frame dependencies
through “masked frame modeling”, similar to masked language modeling. However, its key-frame parameterization requires
separate models for different tasks, and its non-autoregressive paradigm limits flexible generation (e.g., not compatible
for generating trajectories with variable lengths). GST (Li et al., 2025) applies autoregression for future frame prediction,
enabling variable-length conditioning context and prediction horizons. While the autoregressive approach is conceptually
similar to CONFROVER, their work differs in several key aspects: it performs deterministic prediction rather than generative
trajectory sampling; it employs a graph-based architecture with fixed structural priors from an adjacency graph, instead
of full attention across all residues; it is trained and evaluated on a single protein instead of diverse proteins from ATLAS
under a transferable setting.

Beyond forward trajectory simulation, generative models have also been applied to conformation interpolation, that is,
generating the intermediate trajectories between two conditioned states. The non-autoregressive framework of MDGEN (Jing
et al., 2024b) can be extended to sample transition pathways between such states; however, its key-frame parameterization
requires training a separate model for this task, and it has not been tested on large proteins like those in ATLAS. Du
et al. (2024) proposed a simulation-free objective for transition-pathway sampling based on Doob’s h-transform, but their
approach has only been validated on numerical models and the small protein Chignolin. Its generalizability to larger, more
diverse proteins remains unassessed.

Notably, the above models focus on learning temporal dependencies between frames and do not support direct, time-
independent conformation sampling from the learned distribution. In contrast, CONFROVER is a general framework that
learns both the trajectory generation tasks as well as direct sampling of independent protein conformations.

Deep Learning Models for Molecular Conformations. Another line of work focuses on direct sampling of conformations
in a time-independent manner. Early efforts include perturbing the input to folding models (e.g., AlphaFold) (del Alamo et al.,
2022; Wayment-Steele et al., 2023; Stein & Mchaourab, 2022) or perturbing the conformation using a structural diffusion
model (Lu et al., 2024b). However, these models are trained solely on static PDB structures and do not explicitly model the
conformational distribution. Recent works have shifted to deep generative paradigms that directly learn protein-specific
conformational distributions (Jing et al., 2023; Zheng et al., 2024; Jing et al., 2024a; Wang et al., 2024; Lu et al., 2024a;
Lewis et al., 2024). Several models in this category, including ALPHAFLOW, CONFDIFF, and BIOEMULATOR, fine-tune
pretrained structure models on large-scale MD datasets, enhancing their ability to capture conformational distributions. A
related approach trains normalizing flow models to approximate the Boltzmann distribution (Noé et al., 2019; Kohler et al.,
2020), but their invertibility constraints limit scalability and transferability beyond small molecules and peptides. While
these methods can generate time-independent conformations, they overlook temporal relationships and do not capture the
kinetic aspects of protein dynamics. CONFROVER handles both time-dependent trajectory generation and time-independent
conformation learning.

Image-Video Generation. The challenge of modeling protein dynamics conceptually parallels tasks in image and video
generation, requiring both data distribution learning and temporal modeling. Recent advances in video generation offer
valuable insights into addressing these challenges. Given limited video data, extending image generative models to video
has proven effective. Several works (Ho et al., 2022b; Blattmann et al., 2023; Ho et al., 2022a) achieve this by incorporating
temporal attention layers, enabling frame-to-frame communication. Disabling temporal attention reverts them to image
models, allowing flexible training across both modalities. These approaches efficiently model time correlations without
explicitly tracking offsets between frames. Meanwhile, the extension of autoregressive language models to image and video
domains has shown strong potential for sequential generation in different data modalities. Li et al. (2024) integrates language
models’ sequential modeling with diffusion models’ ability to model continuous distributions, showing that discrete tokens
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are not essential for autoregressive models. MARDINTI (Liu et al., 2024b) extends the concept to video generation with
efficient llama-style temporal planning and high-resolution video generation via a diffusion decoder. By applying masked
“frame” modeling, MARDINI allows the model to learn flexible temporal relationships and enables diverse tasks such
as frame interpolation. CONFROVER differs from these works from video models in several aspects: it employs SE(3)
diffusion for 3D structure generation; by using an autoregressive paradigm, it explicitly decouples the diffusion generation
from temporal modeling, unlike the spatiotemporal denoising process in MARDINT; in addition, the causal autoregressive
framework enables more flexible trajectory generation with variable lengths.

A.2 Training and Inference Cost

CONFROVER models in this work contains 19.6 M trainable parameters. All model training and sampling were carried
out using 8 NVIDIA H100 GPUs with Distributed Data Parallel. We trained the main CONFROVER model for 180 epochs
(~ 37 hrs) and CONFROVER-INTERP model for additional 220 epochs (~ 45 hrs).

Inference cost varies with protein size and benchmark scale. For a moderately sized protein (e.g., 300 amino acids),
simulating a short trajectory of 9 frames takes less than 1 minute, while generating an 80-frame trajectory (equivalent to
100 ns ATLAS setting in the paper) takes approximately 8.3 minutes. In comparison, a standard MD simulation under the
ATLAS setup requires roughly 10 hours to reach 100 ns.

For our large-scale benchmarks, multi-start trajectory simulation (2,700+ trajectories) took 8 hours and 30 minutes, while
time-independent sampling (250 conformations per protein) took 3 hours and 20 minutes.

A.3 Baseline Limitation

As an emerging research area, few models currently support learning protein dynamics in transferable settings. Exist-
ing approaches based on forward transport operators have been primarily trained and evaluated on small peptides (e.g.,
TIMEWARP (Klein et al., 2024)) or small fast-folding proteins (e.g., EQUIJUMP (Costa et al., 2024)). Although AL-
PHAFOLDING (Cheng et al., 2024) was trained on ATLAS, its models are not yet publicly available. Due to these limitations,
we use MDGEN as the only available model for trajectory-based comparison. For conformation interpolation, neither
sampling-based method (Du et al., 2024) nor video-like method MDGEN (Jing et al., 2024b) have been trained and evaluated
on large proteins.

13
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B Diffusion Models on SE(3) Space

Diffusion Probabilistic Models (DPM) model complex distributions through iterative denoising. In the context of protein
conformations, DPMs defined over SE(3) translation-rotation space have been applied for protein backbone structural
generation (Yim et al., 2023; Wang et al., 2024). Following Section 2.2, xo = (T, Ro) € SE(3)" denotes the translations
and rotations of backbone rigids in data. The diffusion processes defined in the translation and rotation subspace add noise
to corrupt the data:

1
th = *iﬁtPTt dt + v BthWt,

d SO(3
dR, = \/—o? dw; O,

where ¢t € [0,1] is the diffusion time, 8; and o, are predefined time-dependent noise schedules and P is a projection

operator removing the center of mass. w; and th 9G) are the standard Wiener processes in N(0, I3)®Y and 4 (SO(3))®N

respectively.

The transition kernel of T satisfies p;jo(T¢|To) = N (T;; /oy To, (1 — a;)I), where ay = e~ I3 Bds The transition kernel
of R satisfies p;|o(R¢|Ro) = ZGSO3(Ry; Ro, t), where ZGSO3 is the isotropic Gaussian distribution on SO(3) (Yim
et al., 2023).

The associated reverse-time stochastic differential equation (SDE) follows:
1
AT, =P |~ 5T, - Btwogpm)} dt + /BPdw,
R, = — L 52V log py (Ry)d d o 2qw50® 6
t= =0t og pi(Ry)dt + Rt (6)

O(3)

_ _s . . .
where w; and W} denote standard Wiener processes in the reverse time.

The reverse process can be approximated by a neural network through the denoising score matching loss for translation and
rotation:
L£(0) =LT(0) + LB(H) (7
=E [A(t)|Iso(T¢, t) — Vo, log pyjo(T¢|To) |*]
+E I:)\r(t)||55(Rt7 t) - vRt logpt|0(Rt|R0)H2} )
where A(t) and \"(t) are time-dependent weights, so(Ty, t) and sj (R, t) are the score networks commonly parameterized

with shared weights. The expectations are taken over diffusion time ¢ ~ U[tmin, 1], and over noisy and clean data pairs from
the forward process (Tg, T;) and (Rg, Ry).

14



Simultaneous Modeling of Protein Conformation and Dynamics via Autoregression

C Derivation of Equations in Section 3.2

Here we provide a more rigorous derivation of equations in Section 3.2. For clarity, we omit the conditioning variable P in
the intermediate steps.

As defined in Equation (1), our goal is to model the frame-level conditional distribution p(x!|x<!). To achieve this, we
encode the previous frames {x’}!Z1 into a sequence of latent embeddings {h?}.Z1, and model inter-frame dependencies in
this latent space.

By applying the Bayes’ rule, we can factor the joint distribution over the current conformation x' and intermediate latent
embeddings h = (h!, h<!) as:

p(x B! x ) = | B x=) p(h! |, x <) p(h | x<),
Integrating both sides over the latent variables h yields:

p(x' [ x<) = /p(xl | B, b=l x<) p(h! [ B!, x<) p(b<! [ x<') dh. ®)
h

In our approach, both p(h! | h<!,x<!) and p(h<! | x<!) are modeled using deterministic neural networks: an encoder

fere(x") and an autoregressive temporal module f¢™" (h<"), respectively.

These mappings reduce both p(h! | h<!,x<") and p(h<! | x<!) to Dirac delta functions, and the conditional dependencies
can be simplified as:

p(hl|h<l, X<l) — p(hl|h<l)
p(x'|h’, b=, x<") = p(x'|h').

Substituting into Equation (8) gives:

) = [ o) - plb! 1) - (b ©
h

Again, due to the deterministic nature of the encoder and temporal module, there is no marginalization involved in Equation
(9), yielding:

p(x'[x=") = p(x'|n')
where h' = fsnc(xi,P), 1=1,2,...,0—1
and h'= £ (h'b% ... W'Y

Finally, we approximate p(x!|h') with a parameterized model p&(x!|h?).
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D Method Details

D.1 Detailed Module Architectures

Encoding Layer. The protein-specific single and pair representations are obtained from the Evoformer stack of a
pretrained OpenFold model (with frozen weights), after three recycle iterations. In addition, we encode residue-level
sequence information by combining sinusoidal positional embeddings of residue indices with learnable embeddings for the
20 standard amino acid types. These features are concatenated with the single representation from the FoldingModule.

To encode the structural information of each conformation frame, we introduced the FrameEncoder, a pseudo-beta-
carbon (Cg) coordinate encoder similar to the Input Embedding module from ALPHAFLOW (Jing et al., 2024a) (without
diffusion time embedding). Specifically, this module first compute the pairwise distances between residues using Cg
coordinates. These distances are then binned, embedded into latent embedding, and further refined through triangular update
blocks including triangle attention and multiplication updates (Jumper et al., 2021). See Algorithm 1 for the specifics. The
resulting per-frame C pair embedding zk,,,. is concatenated with the pair representation from FoldingModule.

Both single and pair embeddings are projected into the same dimension of d for simplicity, forming the latent embedding

h! = [s!, ] for each frame. See detailed illustration in Figure 7.

Encoding Layer

Amino acid (AA) concat.

O©——|MLP
(resi_index, aa_type)
Sequence single repr.s: (IV, ds) :za Te[|az'e":']
...MANLLVLFVDLG. .. s sz
f ) L——» singlerepr. s’ (N,d)
FoldingModule
(frozen) pair representation
2: (N, N, d;)
l pair representation
concat. Q—> [MLP|—> = z:(W,N,d)
Cp pairwise distance
Frame [ input structure ‘ |
\ g f I Pair$: k Co B
R Distogram Ly AGE RS embedding
g _ — (Triangular Attention + > .
n' Triangular Multiplication) add ‘Frame
1
FrameEncoder

Figure 7: Architecture details of the Encoding Layer. A frozen FoldingModule encodes the protein-specific information
from its sequence, containing prior knowledge on its chemical environment and folding structures. The single representation
is further concatenated with additional amino acid embeddings and projected to a hidden dimension of size d; The pair
representation is concatenated with frame conformation information, encoded in Cg pair embedding, and projected to a
hidden dimension of size d. Both frame-level single and pair embeddings form the frame-level latent for downstream
modules.

Algorithm 1 FRAMEENCODER

Input: Pseudo beta carbon (Cg) coordinates x € RV >3, time ¢ € [0, 1]
Output: Input pair embedding z € RV *Vx64
zij < |xi — x|
z;; + Bin(z;;, min = 3.25 A, max = 50.75 A, Npjns = 39)
z;; < Linear(OneHot(z;;))
for [ < 1 to Npjocks = 4 do
{z}; += TriangleAttentionStartingNode(z;;, ¢ = 64, Nheag = 4)
{z};; += TriangleAttentionEndingNode(z;;, c = 64, Nyeaa = 4))
{z};; += TriangleMultiplicationOutgoing(z;;, c = 64)
{z};; += TriangleMultiplicationIncoming(z;;, c = 64)
{z},; += PairTransition(z;;,n = 2)
end for
z;; = LayerNorm(z;;)
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Trajectory Module. In the Trajectory Module, we interleave layers of St ructuralUpdate and TemporalUpdate
to iteratively update the latent [s’, z'], enabling the temporal reasoning across frames and structural refinement within each
frame.

For the StructuralUpdate, we adopt a Pairformer block from AlphaFold 3 (Ahdritz et al., 2022), which jointly
updates the single and pair embeddings of the current frame through structural reasoning. After the St ructuralUpdate,
the pair embedding is flattened from [N, N, d] to [N x N, d] and concatenated with the single embedding before being
passed into the TemporalUpdate.

To model temporal dependencies between frames, we use a lightweight Llama architecture (Touvron et al., 2023). We
transpose the input such that the temporal dimension is treated as the sequence axis for channel-wise self-attention across
time. Rotary positional encoding (Su et al., 2023) is applied to encode the temporal position for each frame. A causal
attention mask is applied to restrict each frame to only attend to previous frames. After the temporal update, the latent
embedding are reshaped and split back into single and pair embeddings.

Figure 8 and Table 4 provide the detailed module architecture and hyperparameter configurations, respectively. A
StructuralUpdate block is included for every two TemporalUpdate layers.

Trajectory Module

Other frames

:
:f““e[ 'ﬁ'e"‘i StructuralUpdate Updated h! TemporalUpdate Updated b
=[s!,z
single repr. s': (N, d) —L> | AttentionPairBias |—~ &H Transition
add

Channel-wise temporal self-attention
with rotary positional encoding

——> |single repr. s': (N}d) ——> -

_,é_. single repr. s': (N, d)
add

split

attn bias concat i : reshape

U N
PairStack . ] —h i — -
s s oaon a , I

(Triangular Multiplic + I3} o (N, N,d) ———— 1l H d)
Triangular Attention) ]aﬂﬂ reshape G i

Figure 8: Architecture details of the Trajectory Module. Trajectory Module contains interleaving blocks of
StructuralUpdate and TemporalUpdate (only one block of each is shown). St ructuralUpdate leverages the
Pairformer architecture from Abramson et al. (2024), updating the pair embeddings with triangular updates and the single
embeddings using with pair bias from the updated pair. The updated pair embeddings are flatten and concatenate with single
embedding for channel-wise temporal update. The attention is applied along the temporal dimension and update each single
and pair embedding channels independently. The embeddings from TemporalUpdate are split and reshape back into
single and pair embeddings.

>

Table 4: Hyperparameter choices of Trajectory Module

Hyperparameters Values

Lightweight Llama (TemporalUpdate)

Number of layers 8
Dimension of the MLP embeddings 256
Dimension of the hidden embeddings 128
Number of attention heads 4

Pairformer (St ructuralUpdate)

Dimension of single embeddings 128
Dimension of pair embeddings 128
Dimension of triangle multiplication hidden embeddings 128
Number of triangle attention heads 4
Dimension of pair attention embeddings 32
Transition layer expanding factor 4
Pair attention dropout rate 0.25

Structure Decoder. Conformation generation, conditioned on the temporal signals from the Trajectory Module, is
performed using the model architecture from CONFDIFF (Wang et al., 2024), As shown in Figure 9, following CONFDIFF,
the inputs to the denoising model include diffusion time ¢, pairwise distance between residue rigids, and residue indices (not
shown). They are encoded and concatenated with the single and pair embeddings from FoldingModule. In addition, the
single and pair embeddings from the Trajectory Module are projected back to the latent dimension ds and d,, respectively,
to modify the single and pair embeddings used by CONFDIFF.
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The core of the Structure Decoder consists of multiple IPA-transformer blocks, which update single and pair
embeddings as well as the SE(3) rigids of noisy conformations. In the final block, torsional angles are predicted by
TorsionPred and, together with denoised rigids, to reconstruct the atomic structure of generated conformation. The

corresponding hyperparameter settings are summarized in Table 5.

Structure Decoder

Trajectory Module
output h'
pai representation

o
singe rept. ' (N ) i@ "2
Protein embedding
from FoldingModule )
=0 e © " (N, N,ds) geTransition
‘ aca [ EdgeTras
o —
singe ropr. s': (N, ) —>D— 1> [MLP|>® singlo ropr. ' (N, dy) _'“"A“““_P oIntl | & » gl rép s’ (N3 @) > Transformer
i 3| ttention Ly

diffusion time ¢

3
SE
rigids (R}, T}) g

‘encode

rigids (R}, T})

pai representation

— (N, Nd) >

o &4 Transition |- Mgt () — - — S o (48— Torsionpred |

rigids (R}, T})

IPA-transformer block

[ Backbonetpdte |

Atomic structure

Figure 9: Architecture details of the Structure Decoder. Single and pair embeddings from Trajectory Module is used to update
the original embeddings from FoldingModule. The resulting embeddings are fed into blocks of IPA-transformer
to update single, pair embeddings and denoise rigids, SE(3) representation of protein backbone conformations. Denoised
rigids together with torsion angles predicted by TorsionPred recovers the atomic structure of protein conformation at

this frame.

Table 5: Hyperparameter choices of the Structure Decoder

Hyperparameters Values
Neural network
Number of IPA blocks 4
Dimension of single embedding (ds) 256
Dimension of pair embedding (d,) 128
Dimension IPA hidden embedding 256
Number of IPA attention heads 4
Number of IPA query points 8
Number of IPA value points 12
Number of transformer attention heads 4
Number of transformer layers 2
SE(3)-diffusion SDE
Number of diffusion steps 200
Translation scheduler Linear
Translation Sy, 0.1
Translation By,ax 20
Rotation scheduler Logarithmic
Rotation o i, 0.1
Rotation o5 1.5
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D.2 Training and Inference details.

We train all CONFROVER models on the trajectories from the ATLAS training set, following the train-validation-test split
of previous works (Jing et al., 2024a; Wang et al., 2024; Jing et al., 2024b). Specifically, we exclude the training proteins
longer than 384 amino acid residues, leading to 1080 training proteins.

Most components of CONFROVER models were trained from scratch, except for the FoldingModule, where we used
frozen weights from OpenFold to extract the single and pair representations from three recycling iterations, and the
DiffusionDecoder, which was initialized from ConfD1i f f—~OF-r3-MD checkpoint provided by the authors'.

During each training epoch, we randomly sample stride length from 2° to 210 to extract sub-trajectories of length L = 9
at varying time scales. With the use of causal transformers, input frames were shifted forward by one frame with a
[MASK] token padded at the beginning of the trajectory. Combined with the use of a causal mask in temporal attention, the
design ensures that each frame is trained to sample conditioned only on previous frames and the first frame is generated
unconditionally using only the [MASK] token as input.

We trained main CONFROVER model 180 epochs (~ 37 hrs) and CONFROVER-INTERP model for additional 220 epochs
(~ 45 hrs). Additional training hyperparameters can be found in Table 6. All model training and sampling were carried out
using 8 NVIDIA H100 GPUs.

Table 6: Training hyperparameters

Hyperparameters Values

Batch Size 1

Frames Num 8

Gradient Clip 1.0

Learning Rate 1x1074

Optimizer Adam (weight decay = 0.0)

"https://github.com/bytedance/ConfDiff

19



Simultaneous Modeling of Protein Conformation and Dynamics via Autoregression

E Additional Experimental Results

E.1 Trajectory Simulation: multi-start

Benchmark Curation. In multi-start, we sample short trajectories from varying starting point while ensuring the
generation within the scope of the reference trajectory. For example, we select frame index of 1000, 3000, 5000, and 7000
as starting frames for stride S = 128/256, resulting in 12 test trajectories from triplicates; frame index 1000, 3000, 5000 as
starting frames for stride S = 512, and frame index 1000 for stride S = 1024 to avoid exceeding total of 10000 frames.
This provided us 2,706 different starting conditions from 82 proteins from the ATLAS test set for evaluation.

PCA Projection. Following previous works (Jing et al., 2024a; Wang et al., 2024), we project the Ca: coordinates of
proteins into a reduced PCA space to focus on the principal dimensions that best capture the structural variations observed
in MD simulations. Briefly, for each protein, conformations from triplicate MD simulations in ATLAS are all aligned to the
reference conformation (input structure for simulations). The coordinates of each Ca atoms are then flattened and used to fit
a per-protein PCA model. For all subsequent analyses, sampled conformation are aligned to the reference structure before
computing their PCA projections.

Additional Results. Here we also include the scatterplot of Pearson correlation in Figure 10 and additional metrics
from the multi-start experiments at different strides in Table 7. Across different strides, CONFROVER models consistently
outperforms MDGEN in recovering the correct level of dynamics.

Table 7: Additional metrics from the multi-start benchmark. Results for different strides are shown in separate blocks. The
better score in each block is highlighted in bold (excluding diversity)

Diversity MAE on PCA-2D (}) MAE on CA coordinates ({.) Quality
Pairwise . Frame . Frame  PepBond
RMSD Trajectory  Frame Next Trajectory ~ Frame Next Brréak % )
Stride=128
MDGEN 1.26 6.53 1.28 091 5.02 0.96 0.71 27.9
CONFROVER 1.63 3.10 1.10 0.74 3.83 0.81 0.64 17.3
Stride=256
MDGEN 1.34 7.66 1.54 1.06 6.00 1.14 0.85 27.9
CONFROVER 1.78 391 1.28 0.87 4.60 0.91 0.75 16.6
Stride=512
MDGEN 1.40 9.12 1.94 1.25 7.27 1.41 1.01 28.0
CONFROVER 1.89 4.84 1.53 1.01 5.66 1.07 0.89 16.7
Stride=1024
MDGEN 1.51 11.48 2.62 1.55 9.04 1.80 1.24 28.1
CONFROVER 2.04 6.75 1.89 1.25 7.39 1.26 1.09 16.7
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Figure 10: Scatterplots of conformation changes in sample trajectories versus those in the reference trajectories, measured by
trajectory-level conformation changes, frame-level conformation changes, and next-frame difference (AFrame), measured
by the RMSD of alpha carbons (unit: A) or L? distance in the projected PCA space. MDGEN tends underestimate the
magnitude of conformation changes while CONFROVER generate samples at similar level as the MD reference. The exact
match of measured conformation changes is not possible due to stochastic sampling in both MD simulation and generative

models.
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Additional Visualization of Trajectory. We additional unfiltered examples (randomly selected) for visual comparison of
conformations generated by different models in the multi-start experiments, as shown in Figure 11.

MD REF. MDGEN
7RM7-A

6H86-A

6Y2X-A

6TGK-C
Aas -
6LUS-A

CONFROVER

MD REF. MDGEN CONFROVER

6GUS-A

6IN7-A

Figure 11: Visualization of 10 trajectories randomly selected from the Multi-start benchmark. Trajectory conformations are
colored by their secondary structures and superposed to show the dynamic ensemble. MDGEN exhibits primarily local
motions while CONFROVER better reflects the motions observed in MD reference.
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E.2 Trajectory Simulation: 100 ns Long Trajectory Simulation on ATLAS

Details on Evaluation Metrics. Conformational state recovery is evaluated by comparing the distribution of model-
generated and reference conformations in a PCA space. Same as in the multi-start benchmark, each conformation is
projected into the PCA space parameterized by the 3D coordinates of Ca atoms. To compare distributions, each principal
component is discretized into 10 evenly spaced bins. After projecting the conformations into this space, we count their
occurrences in each bin and compute the distribution similarity using Jensen—Shannon Distance (JSD). We also binarize the
occupancy counts to compute precision, recall, and F1-score—evaluating whether sampled conformations fall within known
states, following prior work (Lu et al., 2024b; Wang et al., 2024; Zheng et al., 2024).

Dynamic mode recovery is assessed using time-lagged independent component analysis (tICA) applied separately to
reference and generated trajectories across varying lag times. After fitting, we extract tICA coefficients for each Car atom
and compute Pearson correlations between the per-residue contributions to the leading components, evaluating alignment of
dynamic modes.
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Additional Visualizations. We additionally provide unfiltered (randomly selected) PCA plots in Figure 12.
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Figure 12: Visualization the ATLAS-100ns trajectories from 20 randomly selected cases. The blue background indicates the
density of the ground-truth conformation distribution from MD reference. CONFROVER shows improved conformation state
recovery in several cases (e.g., 7JRQ-A, 6YHU-B, 7TAQX-A, 6L4L-A, 60Z1-A, etc), sampling more diverse conformations.
Yet, the gap between the oracle MD 100NS and deep learning models is evident in some cases (e.g., 7JFL-C, 6TLY-A,
6JWH-A, etc)
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E.3 Time-independent Conformation Sampling

We follow the evaluation protocol of Ye et al. (2024) to assess time-independent conformation sampling on the ATLAS test
set. For each protein, 250 independent samples are generated. Since MDGEN does not support time-independent sampling,
we approximate its performance using samples from its 100-ns trajectory, serving as a sequential-sampling baseline. The
performance of state-of-the-art models, ALPHAFLOW and CONFDIFF, is taken from Table 10 of Ye et al. (2024), using their
best-performing variants: ALPHAFLOW-MD and CONFDIFF-OPEN-MD. Full results are shown in Table 8.

Table 8: Performance on time-independent conformation generation on ATLAS. A total of 250 conformations were sampled
for each protein, and the median values across 82 proteins are reported. The best performance is highlighted in bold, and the
second-best is underlined. *MDGEN does not support time-independent sampling and the result from sequential sampling is
used.

Diversity Flexibility: Pearson r on Distributional accuracy

Pairwise Pairwise Global  Per target MD PCA  Joint PC sim

RMSD  RMSF  pyispt RMSET RMSET RMWDL oy 1 pca Whl > 0.5 %1
ALPHAFLOW 2.87 1.63 0.53 0.66 0.85 2.64 1.55 2.29 39.0
CONFDIFF 3.43 2.21 0.59 0.67 0.85 2.75 1.41 2.27 35.4
MDGEN* 1.38 0.78 0.41 0.49 0.74 2.81 1.95 2.38 13.4
CONFROVER-TRAJ 3.21 1.74 0.47 0.61 0.85 2.83 1.41 2.30 41.5
CONFROVER 3.63 2.23 0.51 0.64 0.85 2.62 1.39 2.28 36.6

Ensemble observables Quality

Weak Transient Exposed Exposed MI CA clash PepBond
contacts J T contacts JT residue J 1T matrix p T % |  break % |

ALPHAFLOW 0.62 0.41 0.69 0.35 0.0 22.2
CONEDIFF 0.63 0.39 0.65 0.33 0.5 6.5

MDGEN* 0.50 0.28 0.57 0.26 0.3 29.0
CONFROVER-TRAJ 0.53 0.36 0.60 0.27 0.4 12.2
CONFROVER 0.61 0.38 0.67 0.32 0.5 19.2
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E.4 Conformation Interpolation

In conformation interpolation experiment, we selected trajectories from multi-start. These trajectories exhibit sufficient
conformation changes (e.g., RMSD between the start and end frames > 4 A) and clear interpolation path in the PCA space.
The list of selected cases are in Table 9.

The L? distance of generated intermediate frames to the start and end frames in the PCA spaces are reported in Figure 13.
Distances are normalized by the distance between start and end frames. Similar to the results measured by Ca-RMSD,
CONFROVER-INTERP shows smooth interpolation between the start and end frames while CONFROVER does not. This
result shows that by continue training the model on interpolation objective, CONFROVER can learn to generated interpolating
trajectories conditioned on the end state.

Table 9:  List of 38 selected cases from multi-init for interpolation test. Naming conventions:

“{PDB_ID}_{Chain_ID} R{ATLAS repeat}F{Starting index }S{Stride}”

0 5ZNJ-A-R2F1000S512 6L4L-A-R1F3000S256 6TGK-C-R1F5000S256  7JFL-C-R2F3000S256

1 6E7E-A-R3F3000S512 6LRD-A-R1F1000S1024  6TLY-A-R2F1000S256 7JRQ-A-R1F1000S1024
2 6GUS-A-R2F7000S8256 6LUS-A-R2F3000S128 6XDS-A-R1F1000S128  7LA6-A-R1F1000S512
3 6H49-A-R2F1000S1024  60VK-R-R2F7000S128 6XRX-A-R3F50005128  7LP1-A-R2F50005256
4  6H86-A-R2F1000S1024  60Z1-A-R1F1000S512 6Y2X-A-R2F3000S512  7P41-D-R2F3000S256
5 6IN7-A-R3F5000S128 6P5SH-A-R1F1000S1024  7AEX-A-R3F50005256  7P46-A-R3F5000S256
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Figure 13: Normalized PCA distance of intermediate frames to the start and end frames, averaged over 38 cases selected from
the multi-start benchmark. [Left] a comparison between CONFROVER-INTERP and CONFROVER, where CONFROVER-
INTERP generates smooth pathways while CONFROVER does not; [Right] a comparison between CONFROVER-INTERP and
reference trajectories.
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Additional Visualizations. Here we include additional visualization on interpolation results.
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Figure 14: Example interpolations results. CONFROVER-INTERP generates smooth pathways between the start and end
frames, capturing the dynamics observed with the MD reference while CONFROVER does not show the correct intermediate
conformations. Start and end frames are shown as solid structures; intermediate conformations are shown in fading
colors. Main motions are indicated by blue dashed arrows. These examples highlight the difference between the original
CONFROVER and CONFROVER-INTERP that further trained on the interpolation objective. The original CONFROVER can
miss key motions of the transition while CONFROVER-INTERP correctly capture these motions.
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Figure 15: PCA plot of 38 selected interpolation cases. MD reference trajectories and results from CONFROVER-INTERP
are shown in each plot.
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E.5 Retraining MDGen for Experiment-Specific Setups

Due to its non-autoregressive design and training on fixed-length trajectories, MDGEN cannot directly generate sequences
of varying lengths. Therefore, in our evaluation, we generate trajectories using the original settings (named MDGEN-
SSTRIDEFLENGTH) and subsample them to match the evaluation setup. However, this post-processing may introduce
artifacts. To address this concern, we retrain MDGEN under the evaluation settings and compare the results on the Multi-start
benchmark (stride = 256) and 100 ns long trajectory simulations, as shown below in Table 10, Table 11, Table 12 and
Figure 16. As shown in these experiments, no significant difference of performance for key metrics observed comparing
MDGEN with post-processed results and models specifically trained at the evaluation settings, suggesting no evident
decrease of trajectory quality from the subsampling post-process.

Table 10: Compare MDGEN-S256F9 with MDGEN from subsampling post-process. Here is the table summarizing the
Pearson correlations of conformation changes between sampled and reference trajectories in multi-start. MDGEN-S256F9
is trained and sampled with stride of 256 MD snapshots and length of 9 frames. The best scores are highlighted in bold.

Ca coordinates

Trajectory Frame AFrame

MDGEN 0.57 0.46 0.41
MDGEN-S256F9 0.56 0.45 0.38
CONFROVER 0.77 0.62 0.53
PCA 2D
Trajectory Frame AFrame

MDGEN 0.18 0.13 0.11
MDGEN-S256F9 0.21 0.19 0.11
CONFROVER 0.75 0.5 0.44

Table 11: Compare MDGEN-S256F9 with MDGEN from subsampling post-process. Here is the table summarizing
additional metrics in multi-start benchmark. MDGEN-S256F9 is trained and sampled with stride of 256 MD snapshots and
length of 9 frames. The best scores are highlighted in bold.

Diversity MAE on PCA-2D (}) MAE on CA coordinates () Quality

Pairwise . . PepBond
RMSD Traj. Frame AFrame Traj. Frame  AFrame P

Break %({)
MDGEN 1.34 7.66 1.54 1.06 6.00 1.14 0.85 27.9
MDGEN-S256F9 1.59 6.90 1.47 1.03 5.33 1.13 0.82 16.2
CONFROVER 1.78 3.91 1.28 0.87 4.60 091 0.75 16.6

Table 12: Compare MDGEN-S256F9 with MDGEN from subsampling post-process. Here is the table summarizing the
state recovery performance in 100 ns long trajectory simulation. MDGEN-S120F80 is trained and sampled with stride of
120 MD snapshots and length of 80 frames. The best scores are highlighted in bold.

JSD () Recall(?) F1(1)

MD 100NS 0.31 0.67 0.79
MDGEN 0.56 0.30 0.44
MDGEN-S120F80 0.57 0.29 0.42
CONFROVER 0.51 0.42 0.58
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Figure 16: Compare MDGEN-S256F9 with MDGEN from subsampling post-process. This figure shows correlations of
main dynamic modes between sampled trajectory and reference trajectory. MDGEN-S120F80 is trained and sampled with
stride of 120 MD snapshots and length of 80 frames.

E.6 Extension to Masked Sequence Modeling

In addition to the causal transformer used in CONFROVER, alternative sequence modeling approaches can also be adopted
for autoregressive generation. Similar to Li et al. (2024), sequence models trained with bidirectional attention and masked
sequence modeling can perform autoregressive generation by iteratively predicting frames in a specified order. At each
iteration, the generated frames replace their corresponding masks and are used as input for the next step. We trained a variant
CONFROVER-MASK following this approach. Specifically, we replaced causal attention with bidirectional attention in the
transformer and implemented a scheduled masking strategy for training, linearly increasing the mask rate from 45% to 88%.

M ox! %2 L xt % M M
%2 %3 %2 %3
Causal Sequence Model Masked Sequence Model

Figure 17: Illustration of autoregressive generation using causal and masked language modeling. “[M]” denotes the mask
token and x! is the initial conditioning frame for trajectory simulation. Attention activations for the current predicting frame
%3 are highlighted in orange. For masked sequence model, the entire sequence is provided as the input with unpredicted
frames masked, the frames are generated iteratively to replace the input frames in the future iteration.

As shown in Table13, this masked version performed slightly worse than the CONFROVER (causal) model in recovering the
magnitude of conformation changes from various initial conditions, although both clearly outperform MDGEN. These results
suggest the potential to extend our framework to broader sequence modeling approaches for autoregressive generation.

However, we also observed several practical limitations with masked sequence modeling. Similar to previous non-
autoregressive model, CONFROVER-MASK lacks flexibility to generate trajectories of variable lengths. We found structural
degradation when inferring with lengths greatly different from the training setup, such as setting L = 1 for time-independent
conformation sampling. As a result, it is not suitable for generating long trajectories without resorting to workarounds such
as sliding window prediction with window sizes consistent with training window size. While training improvements, such as
varying training window sizes, might mitigate these issues, we leave such exploration for future work.
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Table 13: Results of CONFROVER-MASK on the Pearson correlations of conformation changes between sampled and
reference trajectories in multi-start. The better scores are highlighted in bold.

Ca coordinates

Traj. Frame  AFrame

MDGEN 0.55 0.45 0.40
CONFROVER 0.77 0.63 0.53
CONFROVER-MASK 0.71 0.60 0.49
PCA 2D

Traj. Frame  AFrame
MDGEN 0.16 0.11 0.10
CONFROVER 0.75 0.50 0.43
CONFROVER-MASKED  0.73 0.49 0.41
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