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Abstract

The accurate detection of water extent in streams and rivers is pivotal to un-
derstanding inland water hydrodynamics and terrestrial-aquatic interactions of
biogeochemical cycles, in particular bank erosion and the resulting transfer of
nutrient elements such as phosphorus (P). Prior studies have employed a vari-
ety of computational methods, ranging from hand-crafted decision rules based
on spectral indices to advanced image segmentation techniques. However, these
methods are limited in their generalizability when implemented in new regions.
Furthermore, the recent development of vision foundation models such as the
Segment Anything Model (SAM) has brought about opportunities for water extent
detection due to their exceptional generalization capabilities. Nevertheless, the
adaptation of these models remains challenging due to the computational overhead
of fully fine-tuning the entire model. Taking these desiderata into account, this
work proposes Segment Any Stream (SAS), which employs the Low-Rank Adap-
tation (LoRA) method to perform low-rank updates on a pretrained SAM with a
small amount of curated high-resolution aerial imagery to map the water extents
in the Mackinaw watershed, a HUC-8 watershed in central Illinois. Through our
experiments, we show that SAS is lightweight yet highly effective: it enables
efficient fine-tuning on a single consumer-grade GPU while achieving a high IoU
of 0.76. This research highlights a generalizable framework for repurposing foun-
dation models to support river/stream segmentation. We believe this framework
can benefit the accurate and scalable quantification of streambank erosion as as-
sessed by bank migration and width changes over time, a significant source of
sediment and nutrient losses in agricultural landscapes. Code and data are released
at https://github.com/zoezheng126/SAMed-river/tree/development.
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Figure 1: Segment Any Stream (SAS) implements an efficient and effective fine-tuning pipeline for
adapting the Segment Anything Model (SAM) to water extent segmentation tasks.

1 Introduction

Water extent detection plays a crucial role in our understanding of the temporal change in inland water
hydrodynamics and bank erosion. A conventional approach to map the water extent is to calculate
spectral indices such as NDWI shown in Equation (2), and then perform thresholding to obtain a
binary water extent mask [McFeeters, 1996, 2013, Xu, 2006]. In addition, deep-learning-based image
segmentation models such as U-Net and VGG-Net are also utilized to map lake dynamics [Pi et al.,
2022, Nyberg et al., 2023, Moortgat et al., 2022]. More recently, computer vision foundation models
such as CLIP [Radford et al., 2021], Segment Anything [Kirillov et al., 2023] and DINOV2 [Oquab
et al., 2023] have demonstrated exceptional performance on a variety of downstream computer vision
tasks such as image classification, semantic segmentation, depth estimation, etc, in a few-shot or even
zero-shot manner, for which we discuss in detail in Section 2. However, despite having the emergent
capabilities of existing foundation models, the adaptation to water extent mapping is still non-trivial
due to the high computational overhead of fully fine-tuning the model and the out-of-distribution
nature of overhead aerial imagery. In light of the aforementioned challenges and the imperatives of
water extent mapping, this work aims to ask: Can we repurpose an existing vision foundation model
such as Segment Anything to achieve better and more efficient water extent mapping? How does the
adapted model perform on out-of-distribution aerial images?

To address these challenges, this work develops Segment Any Stream (SAS), a regional watershed
dataset and an efficient fine-tuning strategy to adapt SAM to our new dataset, which is illustrated
in Figure 1. This work is highly relevant to national and regional water quality efforts, notably the
Mississippi River Basin nutrient reduction targets set by U.S. Environmental Protection Agency
(EPA). Our contributions can be summarized as follows:

• We propose to employ the Low-Rank Adaptation (LoRA) method to fine-tune a pretrained
SAM in an efficient manner. LoRA constrains the weight updates to a low-rank subspace,
facilitating a lightweight yet effective adaptation of SAM, circumventing the computational
exigencies typically associated with full-scale fine-tuning.

• We curated a high-quality regional river extent dataset (as visualized in Figure 2) with
high-resolution aerial imagery from the United States Department of Agriculture (USDA).

2 Related Works

Foundation Models in Computer Vision. In the quest to develop a foundation model that can
be easily adapted for computer vision tasks, a variety of works try to tackle this problem from the
perspectives of pretraining methods, model architecture, and downstream applications. Radford et al.
proposed CLIP, an image-text pertaining framework that learns a joint vision-language embedding
useful for a variety of downstream tasks such as zero-shot classification and image retrieval. In
addition, He et al. [2022] proposes MAE, a scalable self-supervised pretraining method for vision
transformer (ViT) models by reconstructing randomly masked image patches. In order to overcome
the limitations of image-text pretraining, Oquab et al. [2023] proposes DINOV2, a data curation
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Figure 2: Mackinaw River Watershed in Illinois. The red star refers to the location of the image
visualized in Figure 3.

and self-supervised training recipe that better learns the local information in an image. Kirillov
et al. [2023], on the other hand, proposes the Segment Anything Model (SAM), a data curation
and large-scale supervised training pipeline to tackle the problem of interactive image segmentation.
Due to the superior performance of these models, the earth observation (EO) community has gained
substantial interest in their applications. In particular, Cong et al. [2022] proposes SATMAE, a
variant of MAE that can pretrain ViTs on multitemporal and multispectral satellite imageries. Zhang
et al. [2023] proposes TEXT2SEG, a pipeline to perform text-conditioned segmentation for EO data.
Taking advantage of the generalization capability of SAM, Wang et al. proposes an annotation
pipeline for EO data to obtain a diverse set of remote sensing segmentation datasets.

Parameter-Efficient Adaption of Foundation Models. The efficient adaption of foundation
models towards specific downstream tasks has been of growing interest to the research community
due to the need to leverage their capabilities under computational and memory constraints. Houlsby
et al. [2019] introduces a parameter-efficient transfer learning method for NLP tasks using adapter
modules, allowing task-specific training with fewer additional parameters, without altering the
original network’s parameters. Furthermore, motivated by the observation that over-parametrized
models lie in a low intrinsic dimension, Hu et al. [2022] proposes a finetune technique to adapt large
language models (LLMs) with a few low-rank matrices inserted into self-attention layers, significantly
reducing computational and memory overhead compared with full finetuning. During inference time,
LoRA can be merged with main weights, posing no additional overhead during inference. Similarly,
Zaken et al. [2022] introduces a straightforward approach that only finetunes the bias terms of a
model. Extending into the vision domain, He et al. [2023] presents a method for adapting Vision
Transformers (ViTs), which first selects adaptation candidates by measuring their local intrinsic
dimensions and then projects them into subspace for further decomposition via a novel Kronecker
Adaptation method.

3 Method

Parameter-Efficient Adaptation of the Image Encoder. In order to specialize SAM into the
river segmentation task under data and computation constraints, we use LoRA Hu et al. [2022] to
constrain the weight updates during fine-tuning to a low-rank subspace. LoRA contributes to our
goal in the following ways: 1) it is parameter-efficient, which allows us to adapt SAM on watershed
segmentation tasks by tuning less than 5% of the original parameters with limited computation and
memory; 2) it poses no additional overhead during inference, allowing us to merge the LoRA modules
seamlessly back to the main model for future inference; 3) it can preserve the utility of the original
model. Intuitively, since we are fine-tuning the model on relatively out-of-distribution (OoD) data
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compared to the original training dataset, limiting the model update to a low-rank subspace can
prevent the drastic change of the model weight due to certain data points that incur high losses.

Concretely, given a weight matrix W0 ∈ Rd×k of the projection layers in the transformer blocks
of a pretrained SAM, we insert a low-rank matrix ∆W = BA where B ∈ Rd×r and A ∈ Rr×k

with r ≪ min (d, k). Here r is a tunable hyper-parameter during our fine-tuning process. During
fine-tuning, we completely freeze W0 and only let ∆W receive gradients with a reparametrized
forward pass as below.

(W0 +∆W )x = W0x+∆Wx (1)

During fine-tuning, we insert LoRA modules into the query and key projection layers of the self-
attention blocks of the image encoder as a reparametrization shown on the right-hand side of Equation
1. This is simply a residual connection over the selected weight matrices. After training, we seamlessly
merge the learned ∆W with the original weight W0 as the left-hand side of Equation 1 so that we
can perform inference with the modified weights without additional overheads.

Adaptation of Prompting Techniques. To make the downstream performance of SAS less de-
pendent on the prompting techniques, we initialize an additional learnable prompt embedding vector
and fine-tune it together with the prompt encoder. During inference, we simply use this learned
embedding vector associated with rivers as the input to the prompt encoder. By doing so, we eliminate
the need for the point and box prompts from the user.

Data Curation. To obtain our training and testing dataset, we downloaded the high-resolution
aerial images of Illinois taken during the leaf-off season of 2011 by the National Agriculture Imagery
Program (NAIP) [Earth Resources Observation and Science (EROS) Center, 2018], with a spatial
resolution of 0.3 m and RGB and NIR bands. Based on the previous records of river centerlines, we
cropped the NAIP imageries for a human annotator with basic knowledge of hydrology to annotate a
polygon of the current extent of the Mackinaw watershed. Finally, the annotated polygon is overlaid
with the raster image to generate ground truth masks. We randomly split the resulting dataset to
512× 512 chips. Finally, we visualize our study region in Figure 2.

4 Experiments

Baselines. To evaluate SAS, We mainly consider spectral indices thresholding, U-Net, and untuned
SAM as our baselines. Concretely, we first calculate the NDWI index based on the reflectance
and set the NDWI threshold for each image based on the Otsu’s algorithm [Otsu, 1979] or as the
corresponding NDWI at the local minimum of the Kernel Density Estimation (KDE) function.

NDWI =
Xgreen −Xnir

Xgreen +Xnir
(2)

We also consider U-Net [Ronneberger et al., 2015] as another baseline for which we train the model
from scratch on the same training dataset for 60 epochs with AdamW optimizer and learning rate
decay from 1e− 3. In addition, we consider the vanilla SAM without fine-tuning as another baseline.

Setup. In order to fine-tune the LoRA layers in SAS, we follow the recipe in Zhang and Liu [2023]
to use learning rate warmup and a weighted combination of cross entropy and dice loss. We also
fine-tune for 60 epochs for a fair comparison.

4.1 Segment Any Stream

In Table 1, we compare SAS to the aforementioned baselines in terms of IoU, precision, recall,
accuracy, f-1 score, and kappa score. In terms of all metrics, SAS demonstrates superior performance
compared with the baseline methods. Most notably, SAS demonstrates a substantial performance
increase compared with SAM with default prompting methods. In Figure 3, we further provide a
qualitative comparison between different methods. Compared with NDWI thresholding and U-Net,
SAS produces smoother segmentation results without fuzzy edges and holes in the middle.

4



Table 1: Test performance of spectral-index thresholding (NDWI), U-Net, SAM, and SAS in selected
study regions. SAM-D uses the default prompt and untuned SAM. SAM-P uses random point
prompts sampled from the NDWI mask and untuned SAM.

Method Input Bands IoU Precision Recall Accuracy f-1 Kappa

NDWI (KDE) G, NIR 0.35 0.55 0.42 0.86 0.78 0.68
NDWI (Otsu) G, NIR 0.35 0.55 0.42 0.83 0.78 0.64

U-Net RGB 0.71 0.87 0.79 0.89 0.83 0.75
SAM-D RGB 0.17 0.33 0.26 0.57 0.29 -0.01
SAM-P RGB 0.54 0.66 0.75 0.78 0.70 0.53

SAS (ours) RGB 0.76 0.90 0.83 0.90 0.86 0.79

Ground Truth SAS (Ours)NDWI U-NetOriginal Imagery

Figure 3: Visualization of the Comparison Among Different Methods

Table 2: Test Performance of SAS in Selected Study Regions. The best result regarding each metric
is highlighted in bold.

Rank % of Parameters Trained IoU Precision Recall Accuracy f-1 Kappa

1 4.19 0.75 0.89 0.82 0.91 0.84 0.77
2 4.23 0.74 0.89 0.82 0.90 0.83 0.76
4 4.31 0.75 0.88 0.82 0.88 0.82 0.78
6 4.39 0.74 0.88 0.82 0.91 0.84 0.78
8 4.79 0.75 0.89 0.82 0.91 0.84 0.77

4.2 Ablation Studies

In order to gauge the influence of the choice of LoRA rank on the segmentation results, we perform an
ablation study with different LoRA ranks ranging from 1 to 8. In Table 2, we report the corresponding
testing results along with the number of trained parameters during fine-tuning. As detailed in Table 2,
we do not observe a significant change in testing results when varying the rank.

5 Conclusions

In this work, we propose SAS, a parameter-efficient fine-tuning framework that enables the adapta-
tion of a state-of-the-art SAM model on a consumer-grade GPU within two hours. We also curate
a regional watershed extent dataset in Illinois based on our annotations of the Mackinaw water-
shed. Through our experiments, we show that SAS demonstrates superior performance despite low
computational overhead.
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