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Abstract

Event extraction (EE), as a crucial information
extraction (IE) task, aims to identify event trig-
gers and their associated arguments from un-
structured text, subsequently classifying them
into pre-defined types and roles. In the biomed-
ical domain, EE is widely used to extract com-
plex structures representing biological events
from the literature. Due to the complicated
syntactic nature and specialized domain knowl-
edge, it is challenging to construct biomedi-
cal EE datasets. Additionally, most existing
biomedical EE datasets primarily focus on cell
experiments or the overall experimental proce-
dures. Therefore, we introduce AniEE, a NER
and EE dataset concentrated on the animal ex-
periment stage. We establish a novel animal
experiment customized entity and event scheme
in collaboration with domain experts. We then
create an expert-annotated high-quality dataset
containing discontinuous entities and nested
events and evaluate the recent outstanding NER
and EE models on our dataset. The dataset is
publicly available at: https://github.com/
domyown/AniEE under CC BY-NC-ND 4.0 li-
cense.

1 Introduction

Scientific literature can provide a groundwork
for further investigations and offer a valuable
platform for turning academic achievements
into tangible industrial outcomes. Especially
in the biomedical domain, the volume of litera-
ture grows exponentially (Frisoni et al., 2021)1,
posing challenges in locating relevant experi-
mental key facts within unstructured text. To
help researchers discover related literature that
fulfills their needs, information extraction (IE)
is actively utilized. Across diverse IE tasks,
event extraction (EE) has been spotlighted to

*Equal Contributions.
1As of January 2021, PubMed alone has a total of 32M

articles dating back to the year 1781. In 2020, three papers
were published every minute.
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Figure 1: Each example for three event types from
AniEE: SampleAdministration, PositiveRegulation, and
NegativeRegulation

extract the complex syntactic structures of bio-
logical events. Each event consists of an event
trigger and event arguments, as well as the rela-
tions between them. Figure 1 (a) illustrates an
example of three SampleAdministration events,
which includes an event trigger “i.p.” and Ob-
ject, Subject, Schedule, and three Amount ar-
guments. Additionally, Figure 1 (b) and (c) de-
scribe examples of PositiveRegulation and Neg-
ativeRegulation, where“BNN27” is the Cause
of the events.

Among various biomedical literature, animal
experiment-related articles are one of the most
difficult texts to extract valuable information
from. The experimental phases can be gen-
erally divided into three stages: within cells,
animal experiments, and clinical trials. Com-
pared to cell experiments, animal research re-

https://github.com/domyown/AniEE
https://github.com/domyown/AniEE
https://creativecommons.org/licenses/by-nc-nd/4.0/


Dataset Topic Task Sub-task Number of Types Count
NER EE Disc.Entity Nest.Event Entity Role Event Entity Role Event

ShARe13 Clinical notes ✔ ✔ 1 - - 11,161 - -
CADEC Medical forum ✔ ✔ 5 - - 6,318 - -

GE11 Cell - proteins ✔ ✔ ✔ 2 6 9 16,976 10,270 14,840

MLEE
Cell, Animal,
Clinical trials

✔ ✔ ✔ 16 9 26 8,291 7,588 5,554

AniEE
(Ours)

Animal ✔ ✔ ✔ ✔ 12 5 3 22,105 17,538 10.546

Table 1: Comparison of two clinical-domain named entity recognition (NER) datasets and two biomedical-domain
event extraction (EE) datasets: CLEF eHealth Task 2013 (ShARe13) (Danielle et al., 2013), CADEC (Sarvnaz
et al., 2015), GENIA 2011 (GE11) (Kim et al., 2011), and Multi-level Event Extraction (MLEE) (Pyysalo et al.,
2012). To the best of our knowledge, AniEE is the first dataset on animal experiment literature containing both
discontinuous entities (Disc.Entity) and nested events (Nest.Event). The number of documents and sentences is
described in Appendix Table 12.

quires further due diligence because they must
consider ethical guidelines and have extensive
resource requirements. More importantly, be-
fore moving on to further clinical trials with
human participants, animal research serves as a
significant step to evaluate safety and efficacy.
Therefore, thorough investigations of previous
research are essential to design animal exper-
iments, verifying information such as species,
dosage, and duration, and the relations between
them, as shown in Figure 1.

Despite the importance of experimental infor-
mation, EE studies targeting animal experiment
literature have rarely been conducted. One of
the reasons is, as described in Table 12, exist-
ing EE datasets contain literature that is either
limited to the cell experiment stage (Kim et al.,
2011; Pyysalo et al., 2013; Ohta et al., 2013) or
does not specify a concrete experimental stage
(Pyysalo et al., 2012). Therefore, an entity and
event scheme that do not align with the dataset
scope make it difficult to identify specific event
triggers and their associated arguments, which
are prevalent in animal experiments.

Therefore, we introduce AniEE, a named en-
tity recognition and event extraction dataset
focused on animal experiments. We establish
a new entity and event scheme designed for
the animal experiment stage in collaboration
with domain experts. Our dataset is annotated
by biomedical professionals and applied to the
latest competitive NER and EE models. As de-
scribed in Table 1, the novelty of our dataset
lies in two aspects: addressing both 1) discon-

2In Table 1, note that the number of events, relations, and
entities are the sum of train and valid datasets in the case of
GE11, CG, and PC because the test datasets of them are not
available publicly. Also, if the number of trigger types is not
equal to the number of event types in the dataset, we count the
trigger type as the event type.

tinuous entities and 2) nested events. Existing
benchmark datasets do not include both discon-
tinuous entities and nested events. Therefore,
we anticipate our dataset will contribute to the
advance of all relevant NER and EE sub-tasks.

We sum up our contributions as follows:

• We introduce a new high-quality dataset
AniEE consisting of 350 animal experi-
mental literature annotated by domain ex-
perts.

• We define a novel entity and event scheme
tailored to animal experiments.

• We evaluate the recent NER and EE ap-
proaches on our dataset dealing with both
discontinuous entities and nested events.

2 Related Work

2.1 Complex Information Extraction

Traditional NER and EE formulate their tasks
as a sequence labeling problem (Lample et al.,
2016; Liu et al., 2018; Lin et al., 2019; Cao
et al., 2019), assigning a tag to each token from
a pre-defined tagging scheme (e.g., BIO tag-
ging scheme). When faced with challenging
syntactic scenarios such as nested or discontin-
uous text structures, the tagging scheme lacks
the flexibility to address such complexities ade-
quately. Consequently, alternative approaches
have been explored for each task.

To handle sophisticated NER sub-tasks, 1) span-
based methods (Luan et al., 2019; Wadden
et al., 2019; Yu et al., 2020; Yamada et al.,
2020), 2) hypergraph-based methods (Lu and
Roth, 2015; Muis and Lu, 2016; Katiyar and
Cardie, 2018; Wang and Lu, 2018), and 3) se-
quence generation-based methods (Straková
et al., 2019; Yan et al., 2021; Fei et al., 2021)



Entity type Frequency Ratio (%) Definition

SampleName 4,566 20.7
Include both inducers which promote a certain action, as well as inhibitors
which suppress a certain activity

SampleType 114 0.5 Refer to the nature of the sample, including extract, oil, and powder
Dosage 497 2.2 Amount of sample administered to animals
Duration 186 0.8 Total period of sample administration to animals, excluding the animal handling period
DosageFrequency 52 0.2 Interval of sample administration
AnimalSubject 1,199 5.4 Animal species
AnimalStrain 233 1.1 Subtypes or genetic variants of animal species
AnimalSex 102 0.5 Sex of animal species
Anatomy 3,514 15.9 Body components, such as organs and tissues
MolecularBiomarker 3,699 16.7 Quantitative or qualitative measurement indicators of cellular-level biological process
Response 6,323 28.6 Physiological changes or responses associated with MolecularBiomarker
DiseaseName 1,620 7.3 Target disease investigated in a study

Total 22,105 100.0

Table 2: Definition and frequency of entity types. Ratios are presented rounded to the second decimal place.

have been proposed. Luan et al. (2019) enumer-
ate all possible spans and recognize overlapped
entities by span-level classification. Lu and
Roth (2015) represent each sentence as a hyper-
graph with nodes indicating entity types and
boundaries for overlapped NER. Muis and Lu
(2016) extend this effort to apply discontinuous
NER. Straková et al. (2019) use the sequence-
to-sequence model to output a label sequence
with multiple labels for a single token for over-
lapped NER.

Due to the syntactic complexity, research has
focused on either nested or discontinuous enti-
ties. Recently, unified NER models (Li et al.,
2020b, 2021, 2022) have been proposed to
jointly extract these entity types.

On the other hand, to address advanced EE sub-
tasks, pipeline-based methods (Li et al., 2020a;
Sheng et al., 2021) have been introduced which
sequentially extract event triggers and argu-
ments. However, due to the inherent problem of
error propagation in such sequential processes,
OneEE (Cao et al., 2022) propose the one-step
framework to simultaneously predict the rela-
tionship between triggers and arguments.

2.2 Clinical and Biomedical Datasets

Among the various domains where informa-
tion extraction research is conducted, the clini-
cal and biomedical domains are highly active
fields based on numerous training datasets. In
the clinical domain, ShARe13 (Danielle et al.,
2013) and CADEC (Sarvnaz et al., 2015) are
clinical report datasets including discontinuous
drug event and disease entities. In the biomed-
ical domain, several datasets (Pyysalo et al.,
2009; Ohta et al., 2010) are derived from GE-
NIA corpus (Ohta et al., 2002; Kim et al., 2003),
including JNLPBA (Kim et al., 2004).

As a biomedical domain dataset for EE task,
GE11 (Kim et al., 2011) is focused on events
related to the transcription factors in human
blood cells. CG (Pyysalo et al., 2013) is con-
centrated on the biological processes involved
in the development of cancer. MLEE (Pyysalo
et al., 2012) extend throughout all levels of bio-
logical organization from the molecular to the
organism level, for both NER and EE tasks. In
short, existing EE datasets consist of literature
that is either restricted to cell experiments or
generalized to cover all experimental stages.
Hence, we introduce a novel dataset, AniEE,
which aims to extract key animal experimental
information.

3 Dataset Construction

3.1 Dataset Collection

The raw corpus was collected from PubMed,
which is a widely-used online database contain-
ing a vast collection of biomedical literature.
We collaborated with two senior domain ex-
perts to define the search terms, with the aim to
crawl a diverse set of animal experimental liter-
ature. Medical subject headings (MesH), which
serve as a hierarchical search index for the
PubMed database, were used to determine the
search term. First, we included ([MesHTerms]
AnimalDiseaseModel OR [MesHTerms] Ani-
mals) in the search term to retrieve literature
that performed animal experiments. Then, to
obtain a literature collection on a wide range
of topics, we set the search terms of ([MesH-
Subheading] Physiopathology OR [MesHSub-
heading] Chemistry) to include the literature
which falls under physiopathology or chemistry
as broad categories, while we excluded review
articles. Thus, the final search terms consisted
of ([MesHTerms] AnimalDiseaseModel OR



Event Type Argument Role Definition Freq. Ratio (%)

SampleAdministration
Object, Subject, Site,
Amount, Schedule

Administration of a specific sample
to the experimental subject, including injection,
oral administration, and topical application

1,364 12.9

PositiveRegulation Object, Cause, Site
Stimulation of a biological process or system
in animals that increases the activity, expression,
or response of a particular target.

5,811 55.1

NegativeRegulation Object, Cause, Site
Suppression or inhibition of a biological process
or system in animals, resulting in reduced activity,
expression, or response of a specific target.

3,371 32.0

Table 3: Definition of event types and their corresponding argument roles. Ratios are presented rounded to the
second decimal place.

[MesHTerms] Animals) AND ([MesHSubhead-
ing] Physiopathology OR [MesHSubheading]
Chemistry) AND (Not Review). We collected
the titles and abstracts of the literature from the
top search results. We then removed the arti-
cles without the direct involvement of animal
experiments, resulting in a total of 350 articles.

3.2 Entity and Event Type Scheme

AniEE contains 12 entity types and 3 event
types. Table 2 and Table 3 describe the en-
tity types and event types in our dataset, re-
spectively. The event arguments are detailed in
Appendix Table 13.

Entity Types Existing benchmark datasets
(Ohta et al., 2002; Pyysalo et al., 2012) have
typically focused on anatomical information,
encompassing various entity types, especially
at the cellular level. Given our primary focus on
animal experiments, we consolidated these var-
ious types into a single unified category named
Anatomy. On the other hand, the animal types
are more fine-grained: AnimalSubject as a gen-
eral identifier (e.g., “mice”) and AnimalStrain
as a specific identifier (e.g., “C57BL/6J”). Also,
we introduce numerical entities, which are key
attributes of the animal experiment design, such
as Dosage, Duration, and DosageFrequency.

Sample Administration We annotate
SampleAdministration on the text spans rep-
resenting a specific approach to administering
a sample. It can be a verb, such as a typical
event trigger, but it can also be a non-noun
part of speech, including a specialized abbrevi-
ation (e.g., “i.c.v”) or an adverb (e.g., “orally”).
When literature explicitly describes a method
of administering a sample, we prioritize anno-
tating specific expressions over generic verbs
(e.g., “administered” and “treated”), as illus-
trated in Figure 1 (a). The event has five ar-

gument roles 3, including our two novel event
argument roles to express the relations between
the event trigger and arguments linked to exper-
imental conditions (i.e., Dosage, Duration).

Positive and Negative Regulation We an-
notate PositiveRegulation and NegativeRegula-
tion on the text spans that induce or interfere
with biological processes. PositiveRegulation,
such as the increase in cancer cells, does not
necessarily mean an ultimately positive effect,
and the same concept applies to NegativeRegu-
lation. A unique characteristic of our dataset is
that it contains nested events. Figure 1 (c) de-
scribes an example of nested events where the
event PositiveRegulation (“activation”) is the
Object argument of another event NegativeReg-
ulation (“reversed”).

3.3 Annotation Procedure & Strategy

3.3.1 Annotation Procedure

To maintain annotation consistency between
annotators, our annotation process consisted
of two stages: pilot annotation and expert an-
notation. All annotators were instructed with
detailed annotation guidelines 4.

Pilot Annotation Prior to performing the
actual annotation process, a pilot annotation
was conducted to train the annotators due to
their varying levels of domain knowledge. It
was performed to apply our newly defined
scheme on 10 pieces of literature, which are
extracted if they are related to the animal exper-
iment stage from the MLEE corpus (Pyysalo
et al., 2012), a publicly available biomedical
event extraction dataset. During the annotation,
we developed the annotation guidelines, and
the annotators became familiar with the task

3Object refers to Theme in previous work.
4The annotation guidelines and examples are released at

https://github.com/domyown/AniEE.



and tagtog 5, a web-based annotation tool with
a user-friendly interface.

Expert Annotation Six domain experts
were recruited as annotators who are masters or
Ph.D. candidates in the biomedical field. Two
annotators independently annotated each piece
of the literature.

3.3.2 Annotation for Complex
Scenarios

Traditional annotation methods focus on contin-
uous text spans, making it difficult to annotate
certain entities and events due to the complex
semantic nature of the animal experiment lit-
erature. To address this issue, we developed
specialized annotation strategies to handle two
specific scenarios: 1) the occurrences of dis-
continuous entities and 2) the instances where
a solitary event trigger indicates several events.

Discontinous Entity As shown in the
Dosage case in Figure 1 (a), for numerical en-
tity types, a substantial amount of literature
list several numbers and then mention their
unit only once at the end, resulting in discon-
tinuous entities. To minimize the annotators’
errors, these entities were subdivided into nu-
meric (e.g., “8”) and unit (e.g., “mg/kg”) enti-
ties during the annotation process with a spe-
cial relation type only for mapping the num-
ber and unit. We then post-process to merge
them into a single entity (e.g., “8 mg/kg”). For
Dosage, because the daily dosage units can
be described, we temporarily segmented the
unit entity into two unit sub-entities: Dosage-
Unit (e.g., “mg/kg”) and DosageDayUnit (e.g.,
“/day”), which were later combined into one
(e.g., “8 mg/kg /day”).

Multiple Events on a Single Event Trig-
ger Given an example of “ginsenoside Rb1
(35 mg/kg) and losartan (4.5 mg/kg) i.c.v”, an
event trigger (“i.c.v”) has two samples and cor-
responding dosages for each sample. Since
an event trigger corresponds to only a single
instance of an Object argument, the example
represents one event for each sample, with a
total of two events. However, prior research
has found that these scenarios are challenging
to extract due to the inherent semantic intricacy,
which has consequently been acknowledged as
a limitation (Friedrich et al., 2020). In order to
accurately extract these events, we introduce a
supplementary relation type to link each dosage
associated with each respective sample (e.g.,

5www.tagtog.com

Statistics Train Valid Test

Number 250 50 50
Avg.Sent 11.6 11.6 10.8
Avg.Token 455.5 474 429.3
Avg.Entities/Doc 83.5 86.4 76.1
Avg.Events/Doc 30.4 31.3 28.5

Table 4: Statistics of AniEE. The average length of sen-
tences per document (Avg.Sent), the average number of
tokens per sentence (Avg.Token), the average number
of entities (Avg.Entities/Doc), and events per document
(Avg.Events/Doc) are reported.

Tasks P R F1 IAA

NER 0.943 0.947 0.944 0.973
EE 0.687 0.656 0.662 0.586

Table 5: Annotation quality related scores of 10 ran-
domly sampled documents. Precision (P), recall (R),
and F1 score are macro averaged, and inter-annotator
agreement (IAA) is Krippendorff’s α.

between “losartan” and “4.5 mg/kg”) and in-
struct the annotators. After the annotation pro-
cess, post-processing is conducted to produce
two distinct events for each sample.

3.4 Dataset Statistics and
Characteristics

The AniEE corpus contains a total of 350 ani-
mal experimental articles. We split our dataset
into 4:1:1 for the training, validation, and test
sets. Table 4 6 presents their statistics.

Named Entity Types Table 2 shows the
long-tail distribution of the frequency of the
entity types in our dataset similar to other
datasets (Pyysalo et al., 2012; Luo et al., 2022),
including Response (28.6%), SampleName
(20.7%), MolecularBiomarker (16.7%), and
Anatomy (15.9%). Our dataset contains 644
discontinuous entities.

Event Types Table 3 presents the frequency
of event types in our dataset, such as Sam-
pleAdministration (12.9%), PositiveRegula-
tion (55.1%), and NegativeRegulation (32.0%).
In addition, for PositiveRegulation and Neg-
ativeRegulation event types, since an event
can be a possible argument for another event,
AniEE has 709 (6.7%) nested events.

6BioBERT from https://huggingface.co/dmis-lab/
biobert-v1.1

www.tagtog.com
https://huggingface.co/dmis-lab/biobert-v1.1
https://huggingface.co/dmis-lab/biobert-v1.1


IAA To evaluate the annotation quality, we
report a standard measure of the inter-annotator
agreement (IAA) of Krippendorff’s α (Krippen-
dorff, 2011), as well as precision, recall, and F1
measure. We estimate each score for two tasks:
NER and EE tasks on ten randomly-sampled
documents. Each document is independently
annotated by two annotators: one Ph.D. can-
didate and one master’s student. We consider
the annotation labels of the Ph.D. candidate as
the ground truth and compare them to the other
one’s. Table 5 shows the IAA results. Krippen-
dorff’s α are 0.973, and 0.586 for the NER and
EE tasks, respectively. Morante et al. (2009)
has reported that the IAA scores of Sasaki et al.
(2008) and GENIA event corpus are 0.49, and
0.56. These low scores were attributed to the
difficulty of the annotation due to the complex-
ity of the EE dataset structure. Compared to
these scores, our IAA scores are favorable.

4 Experiments

4.1 Settings

To examine the effectiveness and challenges
of AniEE corpus, we conduct experiments on
recent superior baseline models for the NER
and EE tasks.

NER Models We evaluate our dataset on
unified NER models, which allow us to extract
discontinuous and flat entities. W2NER (Li
et al., 2022) is an unified NER framework by
modeling 2D grid matrix of word pairs. Span-
NER (Li et al., 2021) proposes a span-based
model which extracts entity fragments and the
relations between fragments to jointly recog-
nize both discontinuous and overlapped enti-
ties.

EE Models Given the nascent nature of the
nested event extraction (EE) task, only a limited
number of approaches have been introduced in
recent years. In our study, we assess our dataset
using end-to-end models, wherein both event
triggers and arguments are predicted simultane-
ously. The current methodologies encompass
two major categories: pipeline-based multi-
staged approaches and one-staged approaches.
CasEE (Sheng et al., 2021) sequentially type
detection task, followed by trigger and argu-
ment detection task with a cascading decoding
strategy. OneEE (Cao et al., 2022) simultane-
ously perform event extraction task using word-
word relation matrix. All models are sentence-
level baselines, but we extend the baseline input
to the document level, feeding multiple sen-
tences as input, to predict the events based on a

Baselines P R F1

SpanNER 66.84 71.88 69.27
W2NER 72.24 69.64 70.92

Table 6: NER performance on two baselines:
W2NER (Li et al., 2022) and SpanNER (Li et al., 2021).
All scores are the percentage (%).

W2NER P R F1

Sample
SampleName 80.67 79.11 79.88
SampleType 66.67 50.00 57.14

Dose
Dosage 77.27 77.27 77.27
Duration 57.14 70.59 63.16
DosageFrequency 60.00 25.00 35.29

Animal
AnimalSubject 89.39 93.57 91.43
AnimalStrain 61.70 90.62 73.41
AnimalSex 1.0 69.23 81.82

Target
Anatomy 71.52 74.27 72.87
MolecularBiomarker 77.06 69.56 73.12
Response 58.99 61.02 59.99
DiseaseName 76.35 78.06 77.20

Table 7: NER performance of W2NER (Li et al., 2022)
for each entity type. The entity types are grouped by
Gray categories for readability.

better understanding of contextual representa-
tions. Since several documents are longer than
the maximum sequence length of BioBERT, we
split the document into smaller chunks.

Evaluation Metric Following previous
work in the NER and EE tasks (Sheng et al.,
2021; Cao et al., 2022), we report Precision
(P), Recall (R), and F measure. We measure
four evaluation metrics for the EE task. 1) Trig-
ger Identification: an event trigger is correctly
identified if the predicted trigger matches with
a ground truth; 2) Trigger Classification: an
event trigger is correctly classified if the identi-
fied trigger is identical to the right event type;
3) Argument Identification: an event argument
is correctly identified if the predicted argument
aligns with a ground truth; 4) Argument Clas-
sification: an event argument is correctly iden-
tified if the identified argument is assigned to
the right role. In short, we can organize iden-
tification as the task of finding the region of a
trigger or entity and classification as predicting
the class of each object.



Models Trigger Identification Trigger Classification Argument Identification Argument Classification
P R F1 P R F1 P R F1 P R F1

CasEE 70.83 73.54 72.16 67.56 70.23 68.87 54.07 59.19 56.51 53.31 58.54 55.81
OneEE 68.98 34.82 46.28 67.25 33.95 45.12 59.04 29.42 39.47 60.23 26.40 36.71

Table 8: Event extraction performance comparison of two baseline models for the four evaluation metrics: trigger
identification, trigger classification, argument identification, and argument classification (see Section 4.1).

Implementation Detail We use
BioBERT (Lee et al., 2020) as a pre-
trained language model and adopt AdamW
optimizer (Ilya and Frank, 2019) with a
learning rate of 2e-5. The batch size is 8,
and the hidden size dh is 768. We train all
baselines with 200 epochs.

4.2 Experimental Results

4.2.1 Named Entity Recognition

Table 6 shows the precision, recall, and micro-
average F1 scores of the NER baselines.
W2NER slightly outperforms SpanNER based
on F1 score.

Prediction of Entity Types Table 7
presents the precision, recall, and F1 scores
of W2NER for each entity type. We assume
that the long-tail frequency distribution and
the number of unique expressions within each
entity type affect the performance. Head-
frequency entity types, such as SampleName
and DiseaseName, where their frequencies are
4,566 and 1,620, show higher performance
than tail entity types, such as SampleType and
DosageFrequency, where their frequencies are
114 and 52, respectively. Also, the F1 scores of
AnimalSubject and AnimalSex are higher than
other entity types. This is because the concepts
of animal subjects and sex are less specific
to animal experiments than other entity types,
making it easier to leverage the knowledge
gained from the pretrained language model.

4.2.2 Event Extraction

Table 8 shows the EE results for the four evalu-
ation metrics. CasEE consistently outperforms
OneEE, except for the precision scores for the
argument identification and classification met-
rics. Overall, CasEE has a higher recall than
precision across all metrics, which suggests
that the model produces more false positive
predictions than false negatives. On the other
hand, OneEE has a large gap between precision
and recall across all metrics, which implies that
the model generates a lot of false negatives and
easily misses gold triggers and entities.

CasEE P R F1

SampleAdministration 56.56 64.49 60.26
PositiveRegulation 65.32 68.88 67.05
NegativeRegulation 76.89 74.81 75.83

Table 9: Event extraction performance of the triggers
for each event type.

CasEE P R F1

SampleAdministration
Object 54.68 69.09 61.04
Subject 61.54 80.00 69.57
Site 83.33 71.43 76.92
Amount 67.80 90.91 77.67
Schedule 83.33 40.00 54.05

PositiveRegulation
Object 47.54 53.49 50.34
Cause 60.33 70.29 64.92
Site 34.29 30.77 32.43

NegativeRegulation
Object 53.47 51.25 52.33
Cause 59.87 73.39 65.94
Site 15.38 11.11 12.90

Table 10: Event extraction performance of the argu-
ments for each event type.

Extraction of the Event Types Table 9
shows the precision, recall, and F1 score for
each event type. This is the result when the
model proceeds to trigger identification and
classification jointly. The low accuracy of Sam-
pleAdministration, where the frequency ratio
is 12.9%, can be explained by the low fre-
quency compared with other event types. How-
ever, although PositiveRegulation (55.1%) ap-
pears more frequently than NegativeRegulation
(32.0%), the model predicts NegativeRegula-
tion more accurately than PositiveRegulation.
Hence, we further analyze this observation in
Section 5.1.

Extraction of the Event Arguments Ta-
ble 10 describes the extraction performance of
the event arguments for each event type. This
is the result when the model predicts the argu-



ment identification and classification together.
CasEE (Sheng et al., 2021) shows the highest
F1 score on the Amount in SampleAdministra-
tion. This result can be explained by the fact
that the mentions of Amount usually consist
of a numeric and a specific unit component,
making it easier for the model to detect this
consistent pattern in unstructured documents.

In addition, the F1 scores of Site in Posi-
tiveRegulation and NegativeRegulation are sig-
nificantly lower compared to SampleAdminis-
tration. Site in SampleAdministration typically
refers to the location of administration and has
a low variance. In contrast, Site in regulation
refers to where the effect occurs and therefore
includes a wider range of locations than the
location of administration. Therefore, Sites
in PositiveRegulation and NegativeRegulation
can be described as more difficult to detect com-
pared to SampleAdministration because of the
variety of places where effects occur.

Recognition of the Event Trigger On
the EE task, the model needs to detect the
span of the event trigger. We set this task
to NER, which detects the span of the event
trigger mention. As described in Table 11,
W2NER (Li et al., 2022) shows progressively
higher scores for NegativeRegulation, Posi-
tiveRegulation, and SampleAdministration. It
is similar to the event trigger classification per-
formance in Table 9; the order of score is the
same, Thus, we can analyze that the low NER
performance of PositiveRegulation is due to the
imbalanced distribution of trigger mentions.

5 Analysis

5.1 Distribution of the Event Mentions

In the event trigger classification task, we
expected that the model would predict Pos-
itiveRegulation more accurately than Nega-
tiveRegulation because the frequency of Pos-
itiveRegulation is 1.7 times greater than one
of NegativeRegulation. However, the results
shown in Table 9 contradict our expectations.
To analyze this experiment, we collected the
mentions of the event triggers for each event
type and extracted the lemmas to group the
mentions in a semantic manner 7. To calculate
the frequency ratio of a lemma cluster per total
mention frequency, we summed the frequencies
of all the mentions belonging to the cluster.

7We utilize NLTK WordNet Lemmatizer. Top-5 lemma
cluster for each event type is described in Appendix A.2

W2NER P R F1

SampleAdministration 60.53 56.56 58.48
PositiveRegulation 71.06 60.28 65.23
NegativeRegulation 82.64 67.34 74.21

Table 11: NER performance scores when detecting the
text span of the event triggers. All scores are the per-
centage (%).
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Figure 2: Freqeucny ratio comparison for each event
type. Each line represents an event type. We plot the
percentage of the event mention distribution (Y-axis)
accounted for by the top five lemma clusters (X-axis).

As shown in Figure 2, in PositiveRegulation,
the top-1 lemma cluster with the lemma “in-
duced” accounts for 20% of the overall fre-
quency ratio, while the second lemma clus-
ter (“increased”) accounts for 5.8%. This is
distinguishable with other event types, such
as SampleAdministration and NegativeRegula-
tion, where the frequency percentage gradually
decreases with each subsequent lemma cluster.
Therefore, the low performance of PositiveReg-
ulation in Table 9 can be explained by the im-
balanced distribution of the trigger mentions.

6 Conclusion

In order to enhance the efficiency and accuracy
of a comprehensive review of existing animal
experiment literature, we introduce AniEE, an
event extraction dataset designed specifically
for the animal experimentation stage. The dis-
tinctiveness of our dataset can be summarized
through two key points. To the best of our
knowledge, our dataset represents the first event
extraction dataset focusing on animal exper-
imentation. In addition, our dataset encom-
passes both discontinuous named entities and
nested events within texts at the document level.
We anticipate that introducing our novel dataset,
AniEE, will contribute significantly to advanc-
ing document-level event extraction not only in



the biomedical domain, but also in the natural
language processing.

Limitations

We acknowledge that our dataset, which con-
tains 350 abstracts, is not huge due to labor-
intensive manual annotation. However, con-
sidering the number of annotated events and
entities, as well as our experimental results, the
current dataset size is sufficient to develop NER
and EE models.
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A Dataset Construction

A.1 Dataset Statistic

Dataset Count Corpus
Event Role Entity Document Sentence

ShARe13 - - 11,161 298 18,767
CADEC - - 6,318 1250 7,597

GE11 10,270 14,840 16,976 1,514 14,962
MLEE 5,554 7,588 8,291 262 2,607
AniEE
(Ours)

9,140 14,151 21,973 398 4,581

Table 12: Dataset statistic comparison.

Table 12 shows the dataset comparison with
existing benchmarks with corpus information.
Also, we describe the definition and frequency
of event arguments in Table 13.

A.2 Top-5 Lemma Cluster of Event
Type

As mentioned in Section 5.1, we collect the
mentions of event triggers and group them by
lemma based on NLTK WordNet Lemmatizer.
For instance, if “activated by” is a trigger men-
tion, the cluster of “activated” includes it. For
each event type, the top-5 frequent lemma clus-
ters with their total frequency and ratio (%) are
as follows:

• PositiveRegulation: induced (752,
20.1%), increased (219, 5.8%), increase
(89, 2.4%), associated (72, 1.9%),
improved (70, 1.9%)

• NegativeRegulation: reduced (178,
8.1%), decreased (148, 6.7%), anti (103,
4.7%), inhibitor (78, 3.5%), attenuated
(69, 3.1%)

• SampleAdministration: administration
(112, 12.0%), treated (98, 10.5%), injec-
tion (84, 9.0%), treatment (75, 8.0%), ad-
ministered (57, 6.1%)

B Case Study

To further investigate 1) discontinuous entities
and 2) nested events in our dataset, we visualize
six samples of our dataset.

B.1 Discontinuous Entity

We extract data samples that contain discon-
tinuous entities, color the named entities with
each color of their entity type, and tag whether
the prediction of this entity is a success or fail.
W2NER (Li et al., 2022) is utilized to extract

model prediction. As shown in Table 14, the
model predicts the discontinuous entities for
the first three examples accurately. However,
the model fails to detect the duration entity of
the fourth example (i.e., “five days”) since it
predicts “five consecutive days” as a flat entity.
This is because we define Duration as a number
and unit in the annotation strategy.

B.2 Nested Event

Similar to discontinuous entities, we color the
event triggers in a given data sample and tag
whether CasEE (Sheng et al., 2021) correctly
predicts them. Also, we extract the relations
between two event triggers when one of the
triggers is an argument of the other. The rela-
tions between triggers are described by a triplet,
where the first is the event trigger of the cur-
rent example, the second is the argument of
the first, and the third is the role of the second
argument within the event of the first trigger.
Table 15 shows two examples of nested events.
The model shows incorrect prediction in the
first example and correct prediction in the sec-
ond example, but the argument roles are the
same as for Object.



Argument Role Frequency Ratio (%) Definition

SampleAdministration
Object 1,366 41.90 A material which is used for an event
Subject 690 21.17 An animal experimental subject of an event
Site 240 7.36 Body region where an event occurrs
Amount 729 22.36 Quantity measurement of a sample
Schedule 215 6.59 A time frame of an event
Total 3,240 100.0

PositiveRegulation
Object 5,575 62.85 Physiological parameters affected by an event “SampleAdministration”
Cause 2,734 30.82 Attribute that influences the modifications of the target factor
Site 562 6.3 Physiological region where an Object argument is observed
Total 8,871 100.0

NegativeRegulation
Object 3,267 60.20 Physiological parameters affected by an event “SampleAdministration”
Cause 1,888 34.79 Attribute that influences the modifications of the target factor
Site 272 5.0 Physiological region where an Object argument is observed
Total 5,427 100.0

Table 13: Definition and frequency of arguments for each event type. We sum up the frequency of arguments for
each event type and get the ratio in the event type. Ratios are presented rounded to the second decimal place.

Example Discontinuous
Entity Prediction

Mice (Swiss Webster) were exposed to toluene (0, 2000 or 4000 ppm, 30 min a day)
0 ppm Success
2000 ppm

Female Sprague-Dawley rats were treated orally with an ascending methadone
dosage schedule (5, 10, 15, 20, 25 and 30 mg/kg/day)

5 mg/kg/day

Success
10 mg/kg/day
15 mg/kg/day
20 mg/kg/day
25 mg/kg/day

3xTg mice were fed a control or Cr-supplemented (3% Cr (w/w)) diet for 8-9 weeks 8 weeks Success
The rats were treated with SeNPs by intraperitoneal injection (0.52̆009mg SeNP/kg)
for five consecutive days

five days Fail

Types: Dosage, Duration

Table 14: Event examples of AniEE that contain discontinuous entities. Note that the second column only describes
the discontinuous entities, excluding the flat ones, such as “30 min”, “9 weeks”, and “0.52̆009mg SeNP/k”. The
entity types are represented as colors for readability.

Example Nested Events Prediction

the mechanical and metabolic disruption of cartilage
was prevented in vivo.

(prevented, disruption, Object) Fail

Protective and anti-inflammatory effect of selenium nano-particles
against bleomycin-induced pulmonary injury in male rats

(against, protective, Object) Success

Types: PositiveRegulation, NegativeRegulation

Table 15: Nested event examples. The event types are represented as colors for readability. The relation between the
event trigger and its argument is described in relation triplet: (Trigger mention, Argument mention, Relation).


