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Abstract
In this paper, we propose a new recommenda-
tion algorithm for addressing the problem of two-
sided online matching markets with complemen-
tary preferences and quota constraints, where
agents’ preferences are unknown a priori and
must be learned from data. The presence of
mixed quota and complementary preferences con-
straints can lead to instability in the matching pro-
cess, making this problem challenging to solve.
To overcome this challenge, we formulate the
problem as a bandit learning framework and pro-
pose the Multi-agent Multi-type Thompson Sam-
pling (MMTS) algorithm. The algorithm com-
bines the strengths of Thompson Sampling for
exploration with a new double matching tech-
nique to provide a stable matching outcome. Our
theoretical analysis demonstrates the effective-
ness of MMTS as it can achieve stability and
has a total Õ(Q

√
KmaxT )-Bayesian regret with

high probability, which exhibits linearity with re-
spect to the total firm’s quota Q, the square root
of the maximum size of available type workers√
Kmax and time horizon T . In addition, simula-

tion studies also demonstrate MMTS’ effective-
ness in various settings. We provide code used
in our experiments https://github.com/
Likelyt/Double-Matching.

1. Introduction
Two-sided matching markets have been a mainstay of the-
oretical research and real-world applications for several
decades since the seminal work by Gale & Shapley (1962).
Matching markets are used to allocate indivisible “goods”
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to multiple decision-making agents based on mutual com-
patibility as assessed via sets of preferences. We consider
the setting of matching markets with recommender systems,
where preferences are usually unknown in the recommenda-
tion process due to the large volume of participants. One of
the key concepts that contribute to the success of matching
markets is stability, which criterion ensures that all partic-
ipants have no incentive to block a prescribed matching
(Roth, 1982). Matching markets often consist of partici-
pants with complementary preferences that can lead to in-
stability (Che et al., 2019). Examples of complementary
preferences in matching markets include: firms seeking
workers with skills that complement their existing work-
force, sports teams forming teams with players that have
complementary roles, and colleges admitting students with
diverse backgrounds and demographics that complement
each other. Studying the stability issue in the context of com-
plementary preferences is crucial in ensuring the successful
functioning of matching markets with complementarities.

In this paper, we propose a novel algorithm and present an in-
depth analysis of the problem of complementary preferences
in matching markets. Specifically, we focus on a many-to-
one matching scenario and use the job market as an example.
In our proposed model, there is a set of agents (e.g., firms),
each with a limited quota, and a set of arms (e.g., workers),
each of which can be matched to at most one agent. Each
arm belongs to a unique type, and each agent wants to
match with a minimum quota of arms for each type and
a maximum quota of arms from all types. This leads to
complementarities in agents’ preferences. Additionally, the
agents’ preference of arms from each type is unknown a
priori and must be learned from data, which we refer to as
the competing matching under complementary preference
recommendation problem (CMCPR).

The main contributions can be summarized as follows. Our
first result is the formulation of CMCPR into a bandit learn-
ing framework as described in Lattimore & Szepesvári
(2020). Using this framework, we propose a new algorithm,
the Multi-agent Multi-type Thompson Sampling (MMTS),
to solve CMCPR. Our algorithm builds on the strengths of
Thompson Sampling (TS) (Thompson, 1933; Agrawal &
Goyal, 2012; Russo et al., 2018) in terms of exploration and
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further enhances it by incorporating a new double match-
ing technique to find a stable solution for CMCPR, shown
in Section 4.2. Unlike the upper confidence bound (UCB)
algorithm, the TS method can achieve sufficient exploration
by incorporating a deterministic, non-negative bias inversely
proportional to the number of matches into the observed em-
pirical means. Furthermore, the introduced double matching
technique uses two stages of matching to satisfy both the
type quota and total quota requirements. These two stages’
matching mainly consists of using the deferred-acceptance
(DA) algorithm from Gale & Shapley (1962).

Secondly, we provide the theoretical analysis of the pro-
posed MMTS algorithm. Our analysis shows that MMTS
achieves stability and enjoys incentive compatibility (IC).
The proof of stability is obtained through a two-stage design
of the double matching technique, and the proof of incentive
compatibility is obtained through the regret lower bound. To
the best of our knowledge, MMTS is the first algorithm to
achieve stability and incentive compatibility in the CMCPR.

Finally, our theoretical results indicate that MMTS achieves
a Bayesian regret that scales Õ(

√
T ) and is near linear in

terms of the total quota of all firms (Q). Besides, we find
that the Bayesian regret only depends on the square root
of the maximum number of workers (Kmax) in one type
rather than the square root of the total number of workers
(
∑

m Km) in all types, which is important for the large mar-
ket. This is a more challenging setting than that considered
in previous works such as Liu et al. (2020) and Jagadeesan
et al. (2021), which only considers a single type of worker
and a quota of one for each firm. To address these chal-
lenges, we use the eluder dimension (Russo & Van Roy,
2013) to measure the uncertainty set widths and bound the
instantaneous regret for each firm, and use the concentration
results to measure the probability of bad events occurring to
get the final regret. Bounding the uncertainty set width is
the key step for deriving the regret upper bound of MMTS.

The rest of this paper is organized as follows. Section 2
introduces basic concepts of CMCPR. Section 3 presents
the challenges of this problem. Section 4 provides MMTS
algorithm, its comparison with UCB-family algorithms,
and shows the incapable exploration of the UCB algorithm
in CMCPR. Section 5 provides the stability, regret upper
bound, and the incentive-compatibility of MMTS. Section
6 shows the application of MMTS in simulations, including
the distribution of learning parameters, and demonstrates
the robustness of MMTS in large markets. Finally, Section
7 discusses related works.

2. Problem
We now describe the problem formulation of the
Competing Matching under Complementary Preferences

Firm Preference 
  { ̂r m

i (t)}N,M
i=1,m=1

Talent Pool 
{Km}M

m=1

Firm N
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Worker Preference 
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Sample Fitness 
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Figure 1. MMTS Algorithm for CMCPR with its application in
the job market, including five stages: preference learning, ranking
construction, matching, recommendation, feedback collection.

Recommendation problem (CMCPR).

Notations. We define T as the time horizon and assume it
is known in advance1. We denote [N ] = [1, 2, ..., N ] where
N ∈ N+. Define the bold x ∈ Rd be a d-dimensional
vector.

2.1. Environment

The matching of workers and firms will be our running ex-
ample throughout the paper. The organizer is the centralized
platform, and the overall goal of the platform is to recom-
mend the best-fit worker and match two-sided participants
with their ideal objects over time. We first introduce seven
elements in CMCPR.

(I) Participants. In the centralized platform, there are
N firms (agents), denoted by N = {p1, p2, ..., pN},
and M types of workers (arms), represented Km =
{am1 , am2 , ...amKm

},m ∈ [M ], where Km is the number of
m-th type workers and M is the total types.

(II) Quota. Agent pi has a minimum quota qmi for m-type
workers, and a maximum total quota Qi (e.g., seasonal
headcount in a company) and we assume

∑M
i=1 q

m
i ≤ Qi.

Define the total market quota for all companies as Q =∑N
i=1 Qi and the total number of available workers in the

market as K =
∑M

m=1 Km. We assume that Q ≪ K and
T is relatively large.

(III) Two-sided Complementary Preferences. There are
two kinds of preferences: workers to firms’ preferences and
firms to workers’ preferences.

a. Preferences of m-type workers towards firms πm :
Km 7→ N . We assume that there exist fixed preferences
from workers to firms, and these preferences are known
for the platform. For instance, workers submit their prefer-

1The unknown T can be handled with the doubling trick (Auer
et al., 1995).
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ences for different firms on the platform. πm
j,i represents the

rank for pi from the view of amj , and we assume that there
are no ties in the rank orders, πm

j ⊆ {πm
j,1, ..., π

m
j,N}. In

other words, πm
j is a subset of the permutation of [N ]. And

πm
j,i < πm

j,i′ implies that m− type worker amj prefers firm pi
over firm pi′ and as a shorthand, denoted as pi <m

j pi′ . This
known worker-to-firm preference is a mild and common
assumption in matching market literature (Liu et al., 2020;
2021; Li et al., 2022).

b. Preferences of firms towards m−type workers rm : N 7→
Km. The preferences of firms towards workers are fixed,
but unknown. The goal of the platform is to infer these
unknown preferences through historical matching data. We
denote rmi,j as the true rank of worker amj in the preference
list of firm pi, and assume there are no ties. pi’s preferences
towards workers is represented by rmi , which is a subset of
the permutation of [Km]. rmi,j < rmi,j′ implies that firm pi
prefers worker amj over worker amj′ .

2.2. Policy

(IV) Matching Policy. um
t (pi) : N 7→ Km is a recommen-

dation mapping function from pi to m − type workers at
time t.

(V) Stable Matching and Optimal Matching. We intro-
duce key concepts in matching fields (Roth, 2008).
Definition 1 (Blocking pair). A matching u is blocked by
firm pi if pi prefers being single to being matched with
u(pi), i.e. pi >i u(pi). A matching u is blocked by a
pair of firm and worker (pi, aj) if they each prefer each
other to the partner they receive at u, i.e. aj >i u(pi) and
pi >j u

−1(aj).

Definition 2 (Stable Matching). A matching u is stable if it
isn’t blocked by any individual or pair of workers and firms.
Definition 3 (Valid Match). With true preferences from both
sides, arm aj is called a valid match of agent pi if there
exists a stable matching according to those rankings such
that ai and pj are matched.
Definition 4 (Agent Optimal Match). Arm aj is an optimal
match of agent pi if it is the most preferred valid match.

Given two-sided true preferences, the deferred-acceptance
(DA) algorithm (Gale & Shapley, 1962) will provide a stable
matching outcome. The matching result by the DA algo-
rithm is always optimal for members of the proposing side,
and we denote the agent-optimal policy as {um

i }Mm=1.

In CMCPR, it is worth mentioning that each firm has a
minimum quota constraint qi = [q1i , ..., q

M
i ] for all type

workers to fill and total quota cap is Qi. Therefore, we
define the concept of stability as the absence of “blocking
pairs" across all types of workers and firms.2

2The discussion of the feasibility of the stable matching in

(VI) Matching Score. If pi is matched with amj at time t,
pi provides a noisy reward ymi,j(t) which is assumed to be
the true matching score µm

i,j plus a noise term ϵmi,j(t),

ymi,j(t) = µm
i,j + ϵmi,j(t), (1)

∀i, j,m, t ∈ [N ], [Km], [M ], [T ], where we assume that
ϵmi,j(t)’s are independently drawn from a sub-Gaussian ran-
dom variable with parameter σ. That is, for every α ∈ R, it
is satisfied that E[exp(αϵmi,j(t))] ≤ exp(α2σ2/2).

(VII) Regret. Based on model (1), we denote the matching
score for pi as ym

i (t) := yi,um
t (pi)(t) in short. Define the

firm-optimal regret with m-type worker for pi as

Rm
i (T, θ) :=

T∑
t=1

[µi,um
i
− µi,um

t (pi)(t)| θ], (2)

where denote θ as the sampled problem instance from the
distribution Θ. Rm

i (T, θ) represents the total expected score
difference between the policy um

i := {um
t (pi)}Tt=1 and the

optimal policy um
i in hindsight.

As each firm have to recruit M types workers with total
quota Qi, the total firm-optimal stable regret for pi is de-
fined as

Ri(T, θ) :=

M∑
m=1

Rm
i (T, θ). (3)

Finally, define the Bayesian social welfare gap (BSWG)
R(T ) as the expected regret over all firms and problem
instance,

R(T ) := Eθ∈Θ

[
N∑
i=1

Ri(T, θ)

]
. (4)

The goal of the centralized platform is to design a learning
algorithm that achieves stable matchings through learning
the firms’ complementary preferences for multiple types
of workers preciously from the previous matchings for a
better recommendation. This is equivalent to designing an
algorithm that minimizes BSWG R(T ).

3. Challenges and Solutions
When preferences are unknown a priori in matching markets,
the stability issue while satisfying complementary prefer-
ences and quota requirements is a challenging problem due
to the interplay of multiple factors.

Challenge 1: How to design a stable matching algorithm
to solve complementary preferences? This is a preva-
lent issue in real-world applications such as hiring workers
with complementary skills in hospitals and high-tech firms
or admitting students with diverse backgrounds in college

CMCPR is in Appendix A.
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admissions. Despite its importance, no implementable algo-
rithm is currently available to solve this challenge. In this
paper, we propose a novel approach to resolving this issue
by utilizing a novel designed double matching (Algorithm 3)
to marginalize complementary preferences and achieve sta-
bility. Our algorithm can efficiently learn a stable matching
result using historical matching data, providing a practical
solution to CMCPR.

Challenge 2: How to balance exploration and exploita-
tion to achieve the sublinear regret? The platform must
find a way to recommend the most suitable workers to firms
to establish credibility among workers and firms to stay at
the platform towards achieving optimal matching. Com-
pared to traditional matching algorithms, the CMCPR is
not a one-time recommendation algorithm but a recycled
online recommendation matching algorithm with supply
and demand consideration (workers and firms), which is
more challenging as it requires more time to balance this
trade-off. In addition, the classic UCB bandit methods could
not function well in exploration and suffer sublinear regret
demonstrated in Section 4.2. To overcome this challenge,
we propose the use of a sampling algorithm, which allows
for better exploration and achieves sublinear regret.

4. Algorithms
In this section, we propose the Multi-agent Multi-type
Thompson Sampling algorithm (MMTS), which aims to
learn the true preferences of all firms over all types of work-
ers, achieve stable matchings, and minimize firms’ Bayesian
regret. We provide a description of MMTS and demonstrate
the benefits of using the sampling method. The overall
MMTS algorithm procedure is in Figure 1. The computa-
tional complexity of MMTS is in Appendix B.

4.1. Algorithm Description

The MMTS (Algorithm 1) is composed of five stages, pref-
erence learning stage, ranking construction stage, double
matching stage, collecting feedback stage, and updating
belief stage. At each matching step t, MMTS iterates these
five steps.

Step 1: Preference Learning Stage. (Algorithm 2). For
agent pi, platform samples the mean feedback (reward)
µ̂i,j(t) of arm amj from distribution Pm

j with estimated
parameters (αm,t−1

i,j , βm,t−1
i,j ) from the historical matching

data.

Step 2: Ranking Construction Stage. Then the platform
sorts these workers within each type according {µ̂i,j(t)}
in descending order and gets the estimated rank r̂m(t) =

{r̂mi (t)}N,M
i=1,m=1 where we denote r̂mi (t) = {r̂mi,j(t)}

Km
j=1.

Step 3: Double Matching Stage. (Algorithm 3). With sam-

Algorithm 1 Multi-agent Multi-type Thompson Sampling
Algorithm (MMTS)
Input : Time horizon T ; firms’ priors

(αm,0
i ,βm,0

i ),∀i,m ∈ [N ], [M ]; workers’
preference πm,∀m ∈ [M ].

for t ∈ {1, ..., T} do
STEP 1: PREFERENCE LEARNING STAGE
Sample estimated mean reward µ̂m

i (t) over all types
of workers (Algo. 2)
STEP 2: RANKING CONSTRUCTION STAGE
Construct all firms’ estimated rankings
{r̂mi (t)}N,M

i=1,m=1 according µ̂m
i (t).

STEP 3: DOUBLE MATCHING STAGE
Get the matching result um

t (pi),∀i ∈ [N ],m ∈ [M ]
from the double matching in Algo 3.
STEP 4: RECOMMENDING AND COLLECTING
FEEDBACK STAGE
Each firm receives its corresponding rewards from
recommended all types of workers ym

i (t).
STEP 5: UPDATING BELIEF STAGE
Based on received rewards, the platform updates firms’
posterior belief.

end

pled mean reward µ̂(t) := {µ̂m
i,j(t)}

N,Km,M
i=1,j=1,m=1, estimated

ranks {r̂m(t)}Mm=1, quota constraints {Qi}Ni=1, the double
matching algorithm provides the final matching result with
two-stage matchings.

The goal of the first match is to allow all firms to satisfy their
minimum type-specific quota qmi first followed by sanitizing
the status quo as a priori. The second match is to fill the
left-over positions Q̃i (defined below) for each firm and
match firms and workers without type consideration.

a). First Match: The platform implements the type-
specific DA (Algo. 4 in Appendix) given quota constraints
{qmi }

N,M
i=1,m=1. The matching road map starts from match-

ing all firms with type from 1 to M and returns the matching
result {ũm

t (pi)}m∈[M ]. This step can be implemented in
parallel.

b). Sanitize Quota: After the first match, the centralized
platform sanitizes each firm’s left-over quota Q̃i = Qi −∑M

m=1 q
m
i . If there exists a firm pi, s.t., Q̃i > 0, then the

platform will step into the second match. For those firms
like pi whose leftover quota is zero Q̃i = 0, they and their
matched workers will skip the second match.

c). Second Match: When rest firms and workers con-
tinue to join in the second match, the centralized platform
implements the standard DA in Algorithm 5 without type
consideration. That is, the platform re-ranks the rest M
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Algorithm 2 Preference Learning Stage

Input :Time horizon T ; firms’ priors (αm,0
i ,βm,0

i ),∀i ∈
[N ],∀m ∈ [M ].

Sample: Sample mean reward µ̂m
i,j(t) ∼

P(αm,t−1
i,j , βm,t−1

i,j ), ∀i,m, j ∈ [N ], [M ], [Km].
Sort: Sort estimated mean feedback µ̂m

i,j(t) in descending
order and get the estimated rank r̂mi (t).
Output: The estimated rank r̂mi (t) and the estimated
mean feedback µ̂m

i (t), ∀i,m ∈ [N ], [M ].

Algorithm 3 Double Matching
Input :Estimated rank r̂(t), estimated mean µ̂m

i (t), type
quota qmi ,∀m ∈ [M ], i ∈ [N ] and total quota
Qi,∀i ∈ [N ]; workers’ preference {πm}m∈[M ].

STEP 1: FIRST MATCH
Given estimated ranks r̂(t) and all workers’ preferences
πm, the platform operates the firm-propose DA Algo and
return the matching {ũm

t (pi)}N,M
i=1,m.

STEP 2: SANITIZE QUOTA
Sanitize whether all firms’ positions have been filled. For
each company pi, if Qi−

∑M
m=1 q

m
i > 0, set the left quota

as Q̃i ← Qi −
∑M

m=1 q
m
i for firm pi.

STEP 3: SECOND MATCH
if Q̃ ̸= 0 then

Given left quota {Q̃i}i∈[N ], estimated means µ̂(t), and
workers’ preferences {πm}m∈[M ], the platform runs
the firm-propose DA and return the matching ŭt(pi).

else
Set the matching ŭt(pi) = ∅.

Output :The matching um
t (pi) ← Merge(ũm

t (pi), ŭt(pi))
for all firms.

types of workers who do not have a match in the first match
for firms, and fill available vacant positions. It is worth
noting that in Algorithm 5, each firm will not propose to the
previous workers who rejected him/her already or matched
in Step 1. Then firm pi gets the corresponding matched
workers ŭt(pi) in the second match. Finally, the platform
merges the first and second results to obtain a final matching
um
t (pi) = Merge(ũm

t (pi), ŭt(pi)),∀i,m ∈ [N ], [M ].

Step 4: Recommending and Collecting Feedback Stage.
When the platform broadcasts the matching result um

t (pi) to
all firms, each firm then receives its corresponding stochastic
reward ym

i (t),∀i ∈ [N ],m ∈ [M ].

Step 5: Updating Belief Stage. After receiving
these noisy rewards, the platform updates firms’ be-
lief (posterior) parameters as follows: (αm,t

i ,βm,t
i ) =

Update(αm,t−1
i ,βm,t−1

i ,ym
i (t)),∀i ∈ [N ],∀m ∈ [M ].
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Figure 2. A comparison of centralized UCB and TS that demon-
strates the incapable exploration of UCB.

4.2. Incapable Exploration

We show why the sampling method has an advantage over
the UCB method in estimating worker ranks. We find that
centralized UCB suffers linear firm-optimal stable regret
in some cases and show it in Appendix C with detailed
experimental setting and analysis.

Why sampling method is capable of avoiding the curse of
linear regret? By the property of sampling shown in Algo-
rithm 2. Firm pi’s initial prior over worker ai is a uniform
random variable, and thus rj(t) > ri(t) with probability
µ̂j ≈ µj , rather than zero! This differs from the UCB
style method, which cannot update ai’s upper bound due
to lacking exploration over ai. The benefit of TS is that it
can occasionally explore different ranking patterns, espe-
cially when there exists such a previous example. In Figure
2, we show a quick comparison of centralized UCB (Liu
et al., 2020) in the settings shown above and MMTS when
M = 1, Q = 1, N = 3,K = 3. The UCB method pro-
duces a linear regret for firm 1 and firm 2. However, the TS
method achieves a sublinear regret in firm 1 and firm 2.

5. Properties of MMTS: Stability and Regret
Section 5.1 demonstrates the double matching algorithm
can provide the stability property for CMCPR. Section 5.2
establishes the Bayesian regret upper bound for all firms
when they follow the MMTS. Section 5.3 discusses the
incentive-compatibility property of the MMTS.

5.1. Stability

In the following theorem, we show the double matching
algorithm (Algo.3) provides a stable matching solution in
the following theorem.
Theorem 5.1. Given two sides’ preferences from firms and
M types of workers. The double-matching procedure can
provide a firm-optimal stable matching solution ∀t ∈ [T ].
Proof. The sketch proof of the stability property of MMTS
is two steps, naturally following the design of MMTS. The
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first match is conducted in parallel, and the output is stable
and guaranteed by (Gale & Shapley, 1962). As the need
of MMTS, before the second match, firms without leftover
quotas (Q̃ = 0) will quit the second round of matching,
which will not affect the stability. After the quota sanitizing
stage, firms and leftover workers will continue to join in
the second matching stage, where firms do not need to
consider the type of workers designed by double matching.
And the DA algorithm still provides a stable result based
on each firm’s sub-preference list. The reason is that for
firm pi, all previous possible favorite workers have been
proposed in the first match. If they are matched in the first
match, they quit together, which won’t affect the stability
property; otherwise, the worker has a better candidate (firm)
and has already rejected the firm pi. So for each firm pi, it
only needs to consider a sub-preference list excluding the
already matched workers in the first match and the proposed
workers in the first match. It will provide a stable match in
the second match and won’t be affected by the first match.
So, the overall double matching is a stable algorithm. The
detailed proof can be found in Appendix Section E.

5.2. Bayesian Regret Upper Bound

Next, we provide MMTS’s Bayesian total firm-optimal re-
gret upper bound.

Theorem 5.2. Assume Kmax = max{K1, ...,KM},K =∑M
m=1 Km, with probability 1 − 1/QT , when all firms

follow the MMTS algorithm, firms together will suffer the
Bayesian expected regret

R(T ) ≤ 8Q log(QT )
√

KmaxT +NK/Q.

Proof. The detailed proof can be found in Appendix F.
Remark. The derived Bayesian regret bound, which is depen-
dent on the square root of the time horizon T and a logarith-
mic term, is nearly rate-optimal. Additionally, we examine
the dependence of this regret bound on other key parame-
ters. The first of which is a near-linear dependency on the
total quota Q. Secondly, the regret bound is dependent only
on the square root of the maximum worker Kmax of one
type, as opposed to the total number of workers,

∑M
m=1 Km

in previous literature (Liu et al., 2020; Jagadeesan et al.,
2021). This highlights the ability of our algorithm, MMTS,
to effectively capture the interactions of multiple types of
matching in CMCPR for the adaptation to the large market
(K). The second term in the regret is a constant, which is
only dependent on constants N,K, and the total quota Q.
Notably, if we assume that each qi = 1 and Qi = M , then
NK/Q will be reduced to NK/(NM) = K/M , which is
an unavoidable regret term due to the exploration in bandits
(Lattimore & Szepesvári, 2020). This also demonstrates
that the Bayesian total cumulative firm-optimal exploration
regret is only dependent on the average number of workers

of each type available in the market, as opposed to the total
number of workers or the maximum number of workers
available of all types. Additionally, if one Qi is dominant
over other firms’ Qi, then the regret will mainly be deter-
mined by that dominant quota Qi and Kmax, highlighting
the inter-dependence of this complementary matching prob-
lem.

5.3. Incentive-Compatibility

In this section, we discuss the incentive-compatibility prop-
erty of MMTS. That is if one firm does not match the
worker that MMTS (platform) recommended when all other
firms follow MMTS recommended matching objects, which
is equivalent to that firm submitting ranking preferences
different from the sampled ranking list from MMTS, and
we know that firm cannot benefit (matched with a better
worker than his optimal stable matching worker) over a
sublinear order. As we know, (Dubins & Freedman, 1981)
discussed the Machiavelli firm could not benefit from in-
correctly stating their true preference when there exists a
unique stable matching. However, when one side’s prefer-
ences are unknown and need to be learned through data, this
result no longer holds. Thus, the maximum benefits that can
be gained by the Machiavelli firm are under-explored in the
setting of learning in matching. (Liu et al., 2020) discussed
the benefits that can be obtained by Machiavelli firms when
other firms follow the centralized-UCB algorithm with the
problem setting of one type of worker and quota equal one
in the market.

We now show in CMCPR, when all firms except one pi
accept their MMTS recommended workers from the match-
ing platform, the firm pi has an incentive also to follow the
sampling rankings in a long horizon, so long as the match-
ing result do not have multiple stable solutions. Now we
establish the following lemma, which is an upper bound of
the expected number of pulls that a firm pi can match with
a m-type worker that is better than their optimal m-type
workers, regardless of what workers they want to match.

Let’s useHm
i,l to define the achievable sub-matching set of

um when all firms follow the MMTS, which represents firm
pi and m− type worker aml is matched such that aml ∈ um

i .
Let Υum(T ) be the number of times sub-matching um is
played by time t. We also provide the blocking triplet in a
matching definition as follows.

Definition 5 (Blocking triplet). A blocking triplet
(pi, ak, ak′) for a matching u is that there must exist a firm
pi and worker aj that they both prefer to match with each
other than their current match. That is, if ak′ ∈ ui, µi,k′ <
µi,k and worker ak is either unmatched or πk,i < πk,u−1(k).

The following lemma presents the upper bound of the num-
ber of matching times of pi and aml by time T , where aml is

6
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a super optimal m− type worker (preferred than all stable
optimal m− type workers under true preferences), when all
firms follow the MMTS.

Lemma 5.1. Let Υm
i,l(T ) be the number of times a firm pi

matched with a m-type worker such that the mean reward
of aml for firm pi is greater than pi’s optimal match um

i ,
which is µm

i,am
l
> max

am
j ∈um

i

µm
i,j . Then the expected number of

matches between pi and aml is upper bounded by

E[Υm
i,l(T )] ≤ min

Sm∈C(Hm
i,l)∑

(pj ,am
k ,am

k′ )∈Sm

(
Cm

i,j,k′(T ) +
log(T )

d(µj,um
i,min

, µj,k′)

)
,

where um
i,min = argmin

am
k ∈um

j

µm
i,k, and Cm

i,j,k′ =

O((log(T ))−1/3).

Then we show the benefit (lower bound of the regret) of
Machiavelli firm pi can gain by not following the MMTS
recommended workers. Let’s define the super reward gap
as ∆

m

i,l = max
am
j ∈um

i

µm
i,j − µm

i,l, where aml /∈ um
i .

Theorem 5.3. Suppose all firms other than firm pi follow
the preferences according to the MMTS to the centralized
platform. Then the following upper bound on firm pi’s
optimal regret for m-type workers holds:

Rm
i (T, θ) ≥

∑
l:∆

m
i,l<0

∆
m

i,l

[
min

Sm∈C(Hm
i,l)

∑
(pj ,am

k ,am
k′ )∈Sm

(
Cm

i,j,k′ +
log(T )

d(µj,um
i,min

, µj,k′)

)]
.

This result can be directly derived from Lemma 5.1. The-
orem 5.3 demonstrates that there is no sequence of pref-
erences that a firm can manipulate and does not follow
MMTS recommended workers that would achieve negative
optimal regret and its absolute value greater than O(log T ).
Considering M types together for firm pi, this magnitude re-
mains O(M log T ). Theorem 5.3 confirms that when there
is a unique stable matching, firms cannot gain a signifi-
cant advantage in terms of firm-optimal stable regret due to
incorrect estimated preferences if others follow MMTS.

An example is provided in Section 6.1 to illustrate this
incentive compatibility property. Figure 3(a) illustrates the
total regret, with solid lines representing the aggregate regret
over all types for each firm and dashed lines representing
each type’s regret. It is observed that the type I regret of
p1 is negative, owing to the inaccuracies in the rankings
estimated for both p1 and p2. A detailed analysis of this
negative regret pattern is given in Appendix Section I.1.

6. Experiments
In this section, we present simulation results to demonstrate
the effectiveness of MMTS in learning firms’ unknown pref-
erences. The detailed experiment setup and the result can
be found in Appendix Section I. Section 6.1 presents two
examples to analyze the underlying causes of the novel phe-
nomenon of negative regret (gain benefit by matching with
over-optimal workers) and large market effect. Appendix
Section I.1 showcases the distribution of learning parame-
ters and provides insight into reasons for non-optimal stable
matchings. Additionally, we demonstrate the robustness of
MMTS in large markets in Appendix I.2. All simulation
results are run in 100 trials.

6.1. Two Examples

Example 1. There are N = 2 firms, M = 2 types of work-
ers, and there are Km = 5,∀m ∈ [M ]. The quota qmi for
each type and each firm pi is 2, and the total quota/capacity
for each firm is Qi = 5. The time horizon is T = 2000.

Preferences. True preferences from workers to firms and
from firms to workers are all randomly generated. Pref-
erences from workers to firms’ {πm}Mm=1 are fixed and
known. We use the data scientist (D or DS) and software
developer engineer (S or SDE) as our example. The follow-
ing are true preferences: D1 : p1 ≻ p2, D2 : p1 ≻ p2, D3 :
p2 ≻ p1, D4 : p1 ≻ p2, D5 : p2 ≻ p1, S1 : p1 ≻ p2, S2 :
p1 ≻ p2, S3 : p2 ≻ p1, S4 : p2 ≻ p1, S5 : p1 ≻ p2, and

π1
1 : D4 ≻ D2 ≻ D3 ≻ D5 ≻ D1,

π2
1 : S1 ≻ S4 ≻ S5 ≻ S2 ≻ S3,

π1
2 : D2 ≻ D3 ≻ D1 ≻ D5 ≻ D4,

π2
2 : S4 ≻ S2 ≻ S5 ≻ S1 ≻ S3.

The true matching scores of each worker for firms are sam-
pled from U([0, 1]) and are available in Appendix Table 1.
In addition, feedback ymi,j(t) (0 or 1) provided by firms
is generated by Bernoulli(µm

i,j(t)). If two sides’ prefer-
ences are known, the firm optimal stable matching is ū1 =
{[D2, D4], [S5, S1, S3]}, ū2 = {[D3, D1, D5], [S4, S2]} by
the double matching algorithm. However, if firms’ prefer-
ences are unknown, MMTS can learn these unknown prefer-
ences and attain the optimal stable matching while achieving
a sublinear regret for each firm.

MMTS Parameters. We set priors αm,0
i,j = βm,0

i,j =
0.1,∀i ∈ [N ],∀j ∈ [Km],∀m ∈ [M ] to limit the strong im-
pact of the prior belief. The update formula for each firm pi
at time t of the m-type worker amj : αm,t+1

i,j = αm,t
i,j + 1

if the worker amj is matched with the firm pi, that is
amj ∈ um

t (pi), and the provided score is ymi,j(t) = 1; other-
wise αm,t+1

i,j = αm,t
i,j ; βm,t+1

i,j = βm,t
i,j + 1 if the provided

score is ymi,j(t) = 0, otherwise βm,t+1
i,j = βm,t

i,j . For other
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unmatched pairs (firm, m − type worker), parameters are
retained.

Results. In Figure 3(a), we find that firms 1 and 2 achieve
a total negative sublinear regret and a total positive sublin-
ear regret separately (solid lines). However, we find that
due to the incorrect rankings estimated for firms, firm 1
benefits from this non-optimal matching result to achieve
negative sublinear regret specifically for matching with type
1 workers often (blue dashed line).

The occurrence of negative regret in multi-agent matching
schemes presents an interesting phenomenon, contrasting
the single-agent bandit problem wherein negative regret is
non-existent. In the context of the single-agent bandit prob-
lem, it is known that the best arm can be pulled, resulting in
instantaneous regret that can attain zero but not take nega-
tive values. Conversely, in the multi-agent competing bandit
problem, the oracle firm-optimal arm is determined by the
true expected reward/utility, assuming knowledge of the true
parameter µ∗. However, due to the imprecise estimation of
rankings/parameters at each time step, an exact match with
the oracle policy cannot be guaranteed. This discrepancy
leads to varied outcomes for firms in terms of benefits (neg-
ative instantaneous regret) or losses (positive instantaneous
regret) from the matching process. Instances arise where
firms may strategically submit inaccurate rankings to exploit
these matches, a phenomenon termed Machiavelli/strategic
behaviors. Nevertheless, over the long term, strategic ac-
tions do not yield utility gains in accordance with our policy.

Example 2. We enlarge the market by expanding the DS
market, particularly wanting to explore interactions between
two types of workers. N = 2 firms, M = 2 types, K1 = 20
(DS) and K2 = 6 (SDE). The DS quota for two firms is
q11 = q12 = 1 and the SDE quota for two firms is q21 = q22 =
3, and the total quota is Qi = 6 for both firms. Preferences
from firms to workers and workers to firms are still randomly
generated. Therefore, the optimal matching result for each
firm should consist of three workers for each type, and type
II workers will be fully allocated in the first match, and
the rest workers are all type II workers. All MMTS initial
parameters are set in the same procedure as in Example 1.

Results. In Figure 3(b), we show when excessive type II
workers exist, and type I workers are just right. Both firms
can achieve positive sublinear regret. We find that since
type II worker K2 = q21 + q22 = 6, which means in the first
match stage, those type II workers are fully allocated into
two firms. Thus, in the second match stage, the remaining
quota would be all allocated to the type I workers for two
firms. Two dotted lines represent type II regret suffered by
two firms. Both firms can quickly find the type II optimal
matching since finding the optimal type II match just needs
the first stage of the match. However, the type I workers’
matching takes a longer time to find the optimal matching
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Figure 3. Firms and their sub-types regret for Example 1 and, firms
and their sub-types regret for Example 2.

(take two stages), represented by dashed lines, and both
are positive sublinear regret. Therefore, these two types
of matching are fully independent, which is different from
Example 1.

7. Related Works
This section reviews two-sided matching markets with un-
known preferences, multi-agent systems, assortment opti-
mization, and matching markets.

Two-sided Matching Market with Unknown Preferences.
Liu et al. (2020) considers the multi-agent multi-armed
competing problem in the centralized platform with explore-
then-commit (ETC) and upper confidence bound (UCB)
style algorithms where preferences from agents to arms are
unknown and need to be learned through streaming interac-
tive data. Jagadeesan et al. (2021) considers the two-sided
matching problem where preferences from both sides are de-
fined through dynamic utilities rather than fixed preferences
and provide regret upper bounds over different contexts
settings, and Min et al. (2022) applies it to the Markov
matching market. Cen & Shah (2022) shows that if there is
a transfer between agents, then the three desiderata (stability,
low regret, and fairness) can be simultaneously achieved.
Li et al. (2022) discusses the two-sided matching problem
when the arm side has dynamic contextual information and
preference is fixed from the arm side and proposes a central-
ized contextual ETC algorithm to obtain the near-optimal
regret bound. Besides, there are a plethora of works dis-
cussing the two-sided matching problem in the decentralized
markets (Liu et al., 2021; Basu et al., 2021; Sankararaman
et al., 2021; Dai & Jordan, 2021a;b; Dai et al., 2022; Kong
et al., 2022; Kong & Li, 2023; Jagadeesan et al., 2022). In
particular, Dai & Jordan (2021b) studies the college admis-
sion problem, provides an optimal strategy for agents, and
shows its incentive-compatible property.

Multi-Agent Systems and Game theory. There are some
papers considering the multi-agent in sequential decision-
making systems including the cooperative setting (Littman,
2001; González-Sánchez & Hernández-Lerma, 2013; Zhang

8



Two-sided Competing Matching Recommendation Markets With Quota and Complementary Preferences Constraints

et al., 2018; Perolat et al., 2018; Shi et al., 2022) and compet-
ing setting (Littman, 1994; Auer & Ortner, 2006; Zinkevich
et al., 2007; Wei et al., 2017; Fiez et al., 2019; Jin et al.,
2020). Zhong et al. (2021) studies the multi-player general-
sum Markov games with one of the players designated as
the leader and the other players regarded as followers and
proposes efficient RL algorithms to achieve the Stackelberg-
Nash equilibrium.

Assortment Optimization. To maximize the number of
matches between the two sides (customers and suppliers),
the platform must balance the inherent tension between rec-
ommending customers more potential suppliers to match
with and avoiding potential collisions. Ashlagi et al. (2022)
introduces a stylized model to study the above trade-off.
Motivated by online labor markets Aouad & Saban (2022)
considers the online assortment optimization problem faced
by a two-sided matching platform that hosts a set of sup-
pliers waiting to match with a customer. Immorlica et al.
(2021) considers a two-sided matching assortment optimiza-
tion under the continuum model to achieve the optimized
meeting rates and maximize the equilibrium social welfare.
Rios et al. (2022) discusses the application of assortment
optimization in dating markets. Shi (2022) studies the mini-
mum communication needed for a two-sided marketplace to
reach an approximately stable outcome with the transaction
price.

Two-sided Matching Markets with Known Preferences.
One strand of related literature is two-sided matching, which
is a stream of papers that started in Gale & Shapley (1962).
They proposed the DA algorithm with its application in the
marriage problem and college admission problem. A series
of works (Knuth, 1976; Roth, 1982; Roth & Sotomayor,
1992; Roth, 2008) discuss the theories of the DA algorithm
such as stability, optimality, and incentive compatibility,
and provide the practical use. In particular, Roth (1985) and
Sönmez (1997) propose that the college admissions problem
is not equivalent to the marriage problem, especially when a
college can manipulate its capacity and preference. Notably,
in the hospital doctor matching example, since hospitals
want diversity of specializations and demographic diversity,
they care about the combination (group of doctors) they get.
Roth (1986) shows that if all preferences are strict, and hos-
pitals (firms) have responsive preferences, the set of doctors
(workers) employed and positions filled is the same at every
stable match. However, when there exists couples in the
preference list (not responsive preference (Klaus & Klijn,
2005)), it might make the set of stable matchings empty.
Even when stable matchings exist, there need not be an
optimal stable matching for either side. Later, Ashlagi et al.
(2011) revisits this couple matching problem and provides
the sorted deferred acceptance algorithm that can find a sta-
ble matching with high probability in large random markets.
Biró et al. (2014) provides an integer programming model

for hospital/resident problems with couples (HRC) and ties
(HRCT). Manlove et al. (2017) releases the HRC with mini-
mal blocking pairs and shows that if the preference list of
every single resident and hospital is of length at most 2, their
method can find a polynomial-time algorithm. Nguyen &
Vohra (2018; 2022) find the stable matching in the nearby
NRC problem, which is that the quota constraints are soft.
Azevedo & Hatfield (2018); Che et al. (2019); Greinecker &
Kah (2021) discuss the existence and uniqueness of stable
matching with complementaries and its relationship with
substitutable preferences in large economies. Besides, there
are also papers considering stability and optimality of the
refugee allocation matching (Aziz et al., 2018; Hadad &
Teytelboym, 2022). Tomoeda (2018); Boehmer & Heeger
(2022) consider that firms have hard constraints both on the
minimum and maximum type-specific quotas.

8. Conclusion and Future Work
In this paper, we proposed a new algorithm, MMTS to
solve the CMCPR. MMTS builds on the strengths of TS
for exploration and employs a double matching method to
find a stable solution for complementary preferences and
quota constraints. Through theoretical analysis, we show
the effectiveness of the algorithm in achieving stability at
every matching step under these constraints, achieving a
Õ(Q

√
KmaxT )-Bayesian regret over time, and exhibiting

the incentive compatibility property.

There are several directions for future research. One is to
investigate more efficient exploration strategies to reduce
the time required to learn the agents’ unknown preferences.
Another is to study scenarios where agents have indifferent
preferences, and explore the optimal strategy for breaking
ties. Additionally, it is of interest to incorporate real-world
constraints such as budget or physical locations into the
matching process, which could be studied using techniques
from constrained optimization. Moreover, it is interesting
to incorporate side information, such as background infor-
mation of agents, into the matching process. This can be
approached using techniques from recommendation systems
or other machine learning algorithms that incorporate side
information. Finally, it would be interesting to extend the
algorithm to handle time-varying matching markets where
preferences and the number of agents may change over time.
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SUPPLEMENT TO TWO-SIDED COMPETING MATCHING RECOMMENDATION
MARKETS WITH QUOTA AND COMPLEMENTARY PREFERENCES CONSTRAINTS

This supplement is organized as follows. In Section A, we discuss the feasibility of the matching problem with complementary
preference and its corresponding assumption to secure a stable matching solution. In Section B, we show the computational
complexity of MMTS. In Section C, we exhibit why the centralized UCB suffers insufficient exploration through a toy
example. In Section D, we provide the fundamental Hoeffding concentration lemma for main theorems in this paper. In
Section E, we provide the stability property of MMTS. In Section F, we give the detailed proof of the regret upper bound
of MMTS and decompose its proof into three parts, regret decomposition (F.1), bound for confidence width (F.2), and
bad events’ probabilities’ upper bound (F.3). In Section G.1, we prove MMTS’s strategy-proof property. Besides, as a
reference, we append the DA with type and without type algorithms in Section H. Finally, in Section I, we provide details of
experiments and demonstrate the robustness of MMTS in large markets.

A. Feasibility of the Stable Matching
Assumption for the feasibility: For the two-sided finite market matching problem with complementary preferences,
marginal preference is a sufficient condition for the feasibility. But for the large market, it requires more assumptions such
as the substitutability and indifferences, etc,. The key difference between the finite and infinite market matching problem
(Azevedo & Hatfield, 2018; Greinecker & Kah, 2021) lies in the agents availability. In the infinite market, we assume that
there is an uncountable number of agents on both sides of the market. This essentially means that the number of agents
is so large that it can be treated as continuous, and you can’t assign a specific numerical value to it. An example of an
infinite market could be the matching of agents is extremely large and cannot be practically counted. In the finite market,
the number of agents on both sides is limited and countable. You can assign a specific numerical value to the number of
agents. An example could be the matching of agents where there is a definite small number of agents. In our case, in the
finite market, if the complementary preference can be marginalized (or referred as the responsive preference (Roth, 1985),
(a1, b1) > (a1, b2) as long as b1 > b2, verse visa for (a1, b1) > (a2, b1) as long as a1 > a2), then based on our proposed
double matching algorithm and Theory 1, it exists such a stable matching solution. However, as discussed in the related
works in Section 7, if there exists couples in the preference list that cannot be marginalized, which could potentially lead to
an empty set of stable matchings. Che et al. (2019) discussed that if there exists couples in the preference list in a infinite
market (large) with a continuum of workers, provided that each firm’s choice is convex and changes continuously as the set
of available workers changes. They proved the existence and structure of stable matchings under preferences exhibiting
substitutability and indifferences in a large market.

B. Complexity
Based on (Gale & Shapley, 1962; Knuth, 1997), the stable marriage problem’s DA algorithm’s worst total proposal number
is N2− 2N +2 = O(N2) when the number of participants on both sides is equal (N = K). The computational complexity
of the college admission matching problem with quota consideration is also O(NK). MMTS algorithm consists of two
steps of matching. The computational complexity of the first step matching is O(

∑M
m=1 NKm) if we virtually consider

each type’s matching process is organized in parallel. The second step’s computation cost is also O(
∑M

m=1 NKm). That is,
in the first match, if all firms are matched with their best workers, this step meets the lower bound quota constraints. Then the
second match will be reduced to the standard college admission problem without type consideration and the computational
complexity is O(N

∑M
m=1 Km). So the total computational complexity is still O(

∑M
m=1 NKm), which is polynomial in

the number of firm (N ) and the number of workers
∑M

m=1 Km.

C. Incapable Exploration
In this section, we show why the TS strategy has an advantage over the vanilla UCB method in estimating the ranks of
workers. We even find that centralized UCB does achieve linear firm-optimal stable regret in some cases. In the following
example (Example 6 from (Liu et al., 2020)), we show the firm achieves linear optimal stable regret if follow the UCB
algorithm.3

3Here we only consider one type of worker, and the firm’s quota is one.
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Let N = {p1, p2, p3}, Km = {a1, a2, a3}, and M = 1, with true preferences given below:

p1 : a1 ≻ a2 ≻ a3 a1 : p2 ≻ p3 ≻ p1

p2 : a2 ≻ a1 ≻ a3 a2 : p1 ≻ p2 ≻ p3

p3 : a3 ≻ a1 ≻ a2 a3 : p3 ≻ p1 ≻ p2

The firm optimal stable matching is (p1, a1), (p2, a2), (p3, a3). However, due to incorrect ranking from firm p3, a1 ≻ a3 ≻
a2, and the output stable matching is (p1, a2), (p2, a1), (p3, a3) based on the DA algorithm. In this case, p3 will never have
a chance to correct its mistake because p3 will never be matched with a1 again and cause the upper confidence bound for a1
will never shrink and result in this rank a1 ≻ a3. Thus, it causes that p1 and p2 suffer linear regret. However, the TS is
capable of avoiding this situation. By the property of sampling showed in Algorithm 2, firm p1’s initial prior over worker
a1 is a uniform random variable, and thus r3(t) > r1(t) (if we omit a2) with probability µ̂3 ≈ µ3, rather than zero! This
differs from the UCB style method, which cannot update a1’s upper bound due to lacking exploration over a1. The benefit
of TS is that it can occasionally explore different ranking patterns, especially when there exists such a previous example. In
Figure 2, we show a quick comparison of centralized UCB (Liu et al., 2020) in the settings shown above and MMTS when
M = 1, Q = 1, N = 3,K = 3. The UCB method occurs a linear regret in firm 1 and firm 2 and achieves a low matching
rate (0.031)4. However, the TS method suffers a sublinear regret in firm 1 and firm 2 and achieves a high matching rate
(0.741). All results are averaged over 100 trials. See Section C.1 for the experimental details.

C.1. Section 4.2 Example - Insufficient Exploration

We set the true matching score for three firms to (0.8, 0.4, 0.2), (0.5, 0.7, 0.2), (0.6, 0.3, 0.65). All preferences from
companies over workers can be derived from the true matching score. As we can view, company p3 has a similar preference
over a1 (0.6) and a3 (0.65). Thus, the small difference can lead the incapable exploration as described in Section 4.2 by the
UCB algorithm.

D. Hoeffding Lemma
Lemma D.1. For any δ > 0, with probability 1 − δ, the confidence width for a m − type worker amj ∈ Am

i,t at time t is
upper bounded by

wm
i,Fm

i,t
(amj ) ≤ min

(
2

√
log( 2δ )

nm
i,j(t)

, 1

)
(C.1)

where nm
i,j(t) is the number of times that the pair (pi, amj ) has been matched at the start of round t.

Proof. Let µ̂m,LS
i,j,t =

∑t
s=1 1(am

j ∈Am
i,s)y

m
i,j(s)

nm
i,j(t)

denote the empirical mean reward from matching firm pi and m− type worker
amj up to time t. Define upper and lower confidence bounds as follows:

Um
i,t(a

m
j ) = min

{
µ̂m,LS
i,j,t +

√
log( 2δ )

nm
i,j(t)

, 1

}
, Lm

i,t(a
m
j ) = max

{
µ̂m,LS
i,j,t −

√
log( 2δ )

nm
i,j(t)

, 0

}
. (C.2)

Then the confidence width is upper bounded by min

(
2

√
log( 2

δ )

nm
i,j(t)

, 1

)
.

E. Proof of the stability of MMTS
Proof. We shall prove existence by giving an iterative procedure to find a stable matching.

Part I To start, in the first match loop, based on the double matching procedure, we can discuss M types of matching in
parallel. So we will only discuss the path for seeking the type-m company-worker stable matching.

4We count 1 if the matching at time t is fully equal to the optimal match when two sides’ preferences are known. Then we take an
average over the time horizon T .
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Suppose firm pi has qmi quota for m-type workers. We replace each firm pi by qmi copies of pi denoted by
{pi,1, pi,2, ..., pi,qmi }. Each of these pi,h has preferences identical with those of pi but with a quota of 1. Further, each m-type
worker who has pi on his/her preference list now replace pi by the set {pi,1, pi,2, ..., pi,qmi } in that order of preference. It
is now easy to verify that the stable matchings for the firm m-type worker matching problem are in natural one-to-one
correspondence with the stable matchings of this modified version problem. Then in the following, we only need to prove
that stable matching exists in this transformed problem where each firm has quota 1, which is the standard stable marriage
problem (Gale & Shapley, 1962). The existence of stable matching has been given in (Gale & Shapley, 1962). Here we
reiterate it to help us to find the stable matching in the second match.

Let each firm propose to his favorite m-type worker. Each worker who receives more than one offer rejects all but her
favorite from among those who have proposed to her. However, the worker does not fully accept the firm, but keeps the firm
on a string to allow for the possibility that some better firm come along later.

Now we are in the second stage. Those firms who were rejected in the first stage propose to their second choices. Each
m-type worker receiving offers chooses her favorite from the group of new firms and the firm on her string, if any. The
worker rejects all the rest and again keeps the favorite in suspense. We proceed in the same manner. Those firms who are
rejected at the second stage propose to their next choices, and the m-type workers again reject all but the best offer they
have had so far.

Eventually, every m-type worker will have rejected a proposal, for as long as any worker has not been proposed to there will
be rejections and new offers5, but since no firm can propose the same m-type worker more than once, every worker is sure
to get a proposal in due time. As soon as the last worker gets her offer, the “recruiting" is declared over, and each m-type
worker is now required to accept the firm on her string.

We asset that this set of matching is stable. Suppose firm pi and m-type worker aj are not matched to each other but firm pi
prefers aj to his current matching m-type worker aj′ . Then pi must have proposed to aj at some stage (since the proposal is
ordered by the preference list) and subsequently been rejected in favor of some firm pi′ that aj liked better. It is clear that aj
must prefer her current matching firm pi′ and there is no instability/blocking pair.

Thus, each m-type firm-worker matching established on the first match is stable. Then each firm pi’s matching object in the
first match with quota qmi can be recovered as grouping all matching objects of firm {pi,h}

qmi
h=1.

Part II To start the second match, we first check the left quota Q̃i for each firm. If the left quota is zero for firm pi, then
firm pi and its matching workers will quit the matching market and get its stable matching object. Otherwise, the left firm
will continue to participate in the second match.

In the second match, preferences from firms to workers are un-categorized. Based on line 19 in Algorithm 3, all types of
workers will be ranked to fill the left quota. Thus, it reduces to the problem in part I, and the result matching in the second
match is also stable. What is left to prove is that the overall double matching algorithm can provide stable matching. In the
second match, each firm proposes to workers in his left concatenate ordered preference list, and all previous workers not in
the second match preference list have already been matched or rejected. So it cannot form a blocking pair between the firm
pi with leftover workers.

F. MMTS Regret Upper Bound
F.1. Regret Decomposition

In this part, we provide the roadmap of the regret decomposition and key steps to get Theorem 5.2. First, we define
the history for firm pi up to time t of type m as Hm

i,t := {Am
i,1,y

m
i,Am

i,1
(1),Am

i,2,y
m
i,Am

i,2
(2), ...,Am

i,t−1,y
m
i,Am

i,t−1
(t − 1)},

composed by actions (matched workers) and rewards, whereAm
i,t := um

t (pi) is a set of workers (based on quota requirement
qmi and Qi) belong to m-type which is matched with firm pi at time t, ym

i,Am
i,t−1

(t− 1) are realized rewards when firm pi

matched with m− type workers Am
i,t. Define H̃i,t := {H1

i,t, H
2
i,t, ...,H

M
i,t} as the aggregated interaction history between

firm pi and all types of workers up to time t.

5Here we assume the number of firms is less than or equal to the number workers, and those workers unmatched finally will be
matched to themselves and assume their matching object is on the firm side.
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Next, we define the good event for firm pi when matching with m− type worker at time t and the true mean matching score
falls in the uncertainty set as Em

i,t = {µm
i,Am

i,t
∈ Fm

i,t}, where µm
i,Am

i,t
is the true mean reward vector of actually pulled arms

(matched with m− type workers) at time t for firm pi, and Fm
i,t is the uncertainty set for m− type worker at time t for firm

pi. Similarly, the good event for firm pi when matching with all types of workers at time t is Ei,t =
⋂M

m=1 E
m
i,t, over all

firms Et =
⋂N

i=1 Ei,t. And the corresponding bad event is defined as E
m

i,t, Ei,t, Et respectively. That represents the true
mean vector/tensor reward of the pulled arms is not in the uncertainty set.

Lemma F.1. Fix any sequence {F̃i,t : i ∈ [N ], t ∈ N}, where F̃i,t ⊂ F is measurable with respect to σ(H̃i,t). Then for
any T ∈ N, with probability 1,

R(T ) ≤ E
T∑

t=1

[ N∑
i=1

M∑
m=1

W̃m
i,Fm

i,t
(Am

i,t) + C1(Et)

]
(C.3)

where W̃m
i,F̃m

i,t

(·) =
∑

am
j ∈Am

i,t
wm

i,F̃m
i,t

(amj ) represents the sum of the element-wise value of uncertainty width at m −
type worker amj . The uncertainty width wm

i,F̃m
i,t

(amj ) = sup
µ̄m
i ,µm

i
∈F̃m

i,t

(µ̄m
i (amj ) − µm

i
(amj )) is a worst-case measure of the

uncertain about the mean reward of m− type worker amj . Here C is a constant less than 1.

Proof. The key step of regret decomposition is to split the instantaneous regret by firms, types, and quotas. Then we
categorize regret by the happening of good events and bad events. The good events’ regret is measured by the uncertainty
width, and the bad events’ regret is measured by the probability of happening it.

To reduce notation, define element-wise upper and lower bounds Um
i,t(a) = sup{µm

i (a) : µm
i ∈ Fm

i,t, a ∈ Km} and
Lm
i,t(a) = inf{µm

i (a) : µm
i ∈ Fm

i,t, a ∈ Km}, where µm
i is the mean reward function µm

i ∈ Fm
i,t : R 7→ R,∀i ∈ [N ],∀m ∈

[M ]. Whenever µm
i,Ãm

i

∈ Fm
i,t, the bounds Lm

i,t(a) ≤ µm
i,Ãm

i

(a) ≤ Um
i,t(a) hold for all types of workers. Here we define

Am
i,t = um

i (t) as the matched m − type workers for firm pi at time t and Am,∗
i,t = um

i (t) as the firm pi’s optimal stable
matching result of m − type workers at time t. Since the firm-optimal stable matching result is fixed, given both sides’
preferences, we can omit time t here. The firm-optimal stable matching result set is also denoted as Am,∗

i = Am,∗
i,t .

As for type-m workers’ matching for the firm pi at time t, the instantaneous regret with a given instance θ can be implied as
follows, here for simplicity, we omit the instance conditional notation

Imi,t = µm
i (Am,∗

i )− µm
i (Am

i,t) ≤
∑

a∈Am,∗
i

Um
i,t(a)−

∑
a∈Am

i,t

Lm
i,t(a) + C1(µm

i,Ãi
/∈ Fm

i,t)

= Ũm
i,t(A

m,∗
i )− L̃m

i,t(Am
i,t) + C1(µm

i,Ãi
/∈ Fm

i,t)

= W̃i,Fm
i,t
(Am

i,t) + [Ũm
i,t(A

m,∗
i )− Ũm

i,t(Am
i,t)] + C1(µm

i,Ãi
/∈ Fm

i,t),

(C.4)

where C ≤ 1 is a constant, and we let Ũm
i,t(·) =

∑
a U

m
i,t(a) and W̃i,Fm

i,t
(·) =

∑
a w

m
i,Ft

(a) represent the sum of the
element-wise value of Um

i,t(·), wm
i,Fi,t

(·), respectively. Define the good event for firm pi, matching with m− type worker at

time t is Em
i,t = {µm

i,Ãi
∈ Fm

i,t}, over all types Ei,t =
⋂M

m=1 E
m
i,t, over all firms Et =

⋂N
i=1 Ei,t. And the corresponding

bad event is defined as E
m

i,t, Ei,t, Et respectively.

Now consider Eq. (C.3), summing over the previous equation over time t, firms pi, and workers’ type m, we get

R(T ) ≤ E
N∑
i=1

T∑
t=1

M∑
m=1

[W̃i,Fm
i,t
(Am

i,t) + C1(Et)] +

N∑
i=1

EMi,T

= E
T∑

t=1

[C1(Et) +

N∑
i=1

M∑
m=1

W̃i,Fm
i,t
(Am

i,t)] +

N∑
i=1

EMi,T

(C.5)

where Mi,T =
∑T

t=1

∑M
m=1[Ũ

m
i,t(A

m,∗
i ) − Ũm

i,t(Am
i,t)]. Now by the definition of TS, Pm(Am

i,t ∈ ·|Hm
i,t) = Pm(Am,∗

i ∈
·|Hm

i,t) for all types, where Pm(·|Hm
i,t) represents this probability is conditional on history Hm

i,t and the selected action
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(worker) belongs in m-type workers for firm pi. That is Am
i,t and Am,∗

i within type-m is identically distributed under the
posterior. Besides, since the confidence set Fm

i,t is σ(Hm
i,t)-measurable, so is the induced upper confidence bound Um

i,t(·).
This implies Em[Um

i,t(Am
i,t)|Hm

t ] = Em[Um
i,t(A

m,∗
i )|Hm

t ], and there for E[Mi,T ] = 0 and
∑N

i=1 EMi,T = 0. Then we can
obtain the desired result.

F.2. Uncertainty Widths

In this part, we provide the upper bound of the accumulated uncertainty widths over all types of workers and all firms, which
is the first part in Eq. (C.3).

Lemma F.2. If (βm
i,j,t ≥ 0|t ∈ N) is a non-decreasing sequence and Fm

i,j,t := {µm
i,j ∈ Fm

i,j :
∥∥∥µm

i,j − µ̂m,LS
i,j,t

∥∥∥
1
≤
√
βm
i,j,t},

then with probability 1,
T∑

t=1

N∑
i=1

M∑
m=1

W̃m
i,Fm

i,t
(Am

i,t) ≤ 8Q log(QT )
√

KmaxT .

The proof of this lemma builds upon Lemma F.3, which establishes the number of instances where the widths of uncertainty
sets for a chosen set of m − type workers Am

i,t greater than ϵ. We show that this number is determined by the Eluder
dimension (Russo & Van Roy, 2014).

Proof. By Lemma F.1, the instantaneous regret It over all firms and all types, can be decomposed by types and by firms and
shown as

It =
M∑

m=1

Imt =

N∑
i=1

M∑
m=1

Imi,t

≤
N∑
i=1

M∑
m=1

W̃i,Fm
i,t
(Am

i,t), if Et holds.

≤ 2
∑

i∈[N ],m∈[M ],am
j ∈Km

√
log(

∑N
i=1 QiT )

nm
i,j(t)

, with prob 1− δ

(C.6)

where the first inequality is based on Lemma F.1 and if Et holds for t ∈ N,m ∈ M, i ∈ [N ], nm
i,j(t) is the number of

times that the pair (pi, amj ) has been matched at the start of round t. The second inequality is constructed from a union
concentration inequality based on Lemma D.1, and we set δ = 2/

∑
i=1 QiT . We denote zmi,j(t) =

1√
nm
i,j(t)

as the size of

the scaled confidence set (without the log factor) for the pair (pi, amj ) at the time t.

At each time step t, let’s consider the list consisting of zmi,j(t) and reorder the overall list consisting of concatenating all
those scaled confidence sets over all rounds and all types in decreasing order. Then we obtain a list z̃1 ≥ z̃2 ≥ ...,≥ z̃L,
where L =

∑T
t=1

∑N
i=1 Qi = T

∑N
i=1 Qi. We reorganize the Eq. (C.6) to get

T∑
t=1

It ≤
T∑

t=1

M∑
m=1

N∑
i=1

W̃i,Fm
i,t
(Am

i,t) ≤ 2 log(

N∑
i=1

QiT )

L∑
l=1

z̃l. (C.7)

By Lemma F.3, the number of rounds that a pair of a firm and any m− type worker can have it confidence set have size at
least z̃l is upper bounded by (1 + 4

z̃2
l
)Km when we set ϵ = z̃l and know βm

i,j,t ≤ 1. Thus, the total number of times that any

confidence set can have size at least z̃l is upper bounded by
(
1 + 4

z̃2
l

)∑N
i=1

∑M
m=1 |Am

i,t|Km. To determine the minimum

condition for z̃l, which is equivalent to determine the maximum of l, we have l ≤
(
1 + 4

z̃2
l

)∑N
i=1

∑M
m=1 |Am

i,t|Km. So we
claim that

z̃l ≤ min

(
1,

2√
l∑N

i=1

∑M
m=1 |Am

i,t|Km
− 1

)
≤ min

(
1,

2√
l∑N

i=1 QiKmax
− 1

)
, (C.8)

where the second inequality above is by
∑N

i=1

∑M
m=1 |Am

i,t|Km ≤ Kmax

∑N
i=1

∑M
m=1 |Am

i,t| ≤ Kmax

∑N
i=1 Qi = QKmax
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and Kmax = max{K1, ...,KM}, Q =
∑N

i=1 Qi. Putting all these together, we have

2 log(

N∑
i=1

QiT )

L∑
l=1

z̃l ≤ 2 log(QT )

L∑
l=1

min(1,
2√
l

QKmax
− 1

)

= 4 log(QT )

QT∑
l=1

1√
l

QKmax
− 1

≤ 8 log(QT )
√
QKmax

√
QT

(C.9)

where the last inequality is by intergral inequality

QT∑
l=1

1√
l

QKmax
− 1
≤
√
QKmax

QT∑
l=1

1√
l
≤
√
QKmax

∫ QT

x=0

1√
x
dx = 2

√
QKmax

√
QT.

Based on Eq. (C.7) and the above result, we can get the regret

T∑
t=1

It ≤ 8Q log(QT )
√

KmaxT , (C.10)

if Et holds.

Lemma F.3. If (βm
i,j,t ≥ 0|t ∈ N) is a nondecreasing sequence for i ∈ [N ], amj ∈ Km,m ∈ [M ] and Fm

i,j,t := {µm
i,j ∈

Fm
i,j :

∥∥∥µm
i,j − µ̂m,LS

i,j,t

∥∥∥
1
≤
√
βm
i,j,t}, for all T ∈ N and ϵ > 0, then

T∑
t=1

M∑
m=1

∑
am
j ∈Am

i,t

1
(
wm

i,Fm
i,t
(amj ) > ϵ

)
≤
(4β̃i,T

ϵ2
+ 1
) M∑
m=1

|Am
i,t|Km.

Here µ̂m,LS
i,j,t =

∑t
s=1 1(am

j ∈Am
i,s)y

m
i,j(s)

nm
i,j(t)

is the estimated average reward for m− type worker amj from the view point of firm

pi at time t, and nm
i,j(t) is the number of matched times up to time t of firm pi with m− type worker amj . Besides, we define

β̃i,T = max
am
j ∈Km,m∈[M ]

βm
i,j,T as the maximum uncertainty bound over all types of workers at time T for firm pi.

The proof of this result is based on techniques from (Russo & Van Roy, 2013; 2014). This result demonstrates that the
upper bound of the number of times the widths of uncertainty sets exceeds ϵ is dependent on the error O(ϵ−2) and linearly
proportional to the product of the number of m− type worker and the type quota size qmi .

Proof. Based on the Proposition 3 from (Russo & Van Roy, 2013), we can use the eluder dimension dimE(Fm
i , ϵ) to bound

the number of times the widths of confidence intervals for a selection of set of m− type workers Am
i,t greater than ϵ.

T∑
t=1

M∑
m=1

∑
am
j ∈Am

i,t

1

(
wm

i,Fm
i,t
(amj ) > ϵ

)
≤

M∑
m=1

∑
am
j ∈Am

i,t

(
4βm

i,j,T

ϵ2
+ 1

)
dimE(Fm

i , ϵ)

≤

(4 max
am
j ∈Km,m∈[M ]

βm
i,j,T

ϵ2
+ 1

)
M∑

m=1

|Am
i,t|dimE(Fm

i , ϵ),

(C.11)

where the eluder dimension of a multi-arm bandit problem is the number of arms, we get

T∑
t=1

M∑
m=1

∑
am
j ∈Am

i,t

1

(
wm

i,Ft
(amj ) > ϵ

)
≤

(
4β̃i,T

ϵ2
+ 1

)
M∑

m=1

|Am
i,t|Km ≤

(
4β̃i,T

ϵ2
+ 1

)
QiKmax (C.12)

where β̃i,T = max
am
j ∈Km,m∈[M ]

βm
i,j,T . Besides, we know that Qi =

∑M
m=1 |Am

i,t| and define Kmax = max
m∈[M ]

Km, so we can

get the second inequality.
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F.3. Bad Event Upper Bound

In this part, we provide an upper bound of the second part of Eq. (C.3). The regret caused by the happening of the bad event
at each time step is quantified by the following lemma.

Lemma F.4. If Fm
i,j,t := {µm

i,j ∈ Fm
i,j :

∥∥∥µm
i,j − µ̂m,LS

i,j,t

∥∥∥
1
≤
√
βm
i,j,t} holds with probability 1− δ, then the bad event Et

happening’s probability is upper bounded by E1(Et) ≤ NKδ. In particular, if δ = 1/QT , the accumulated bad events’
probability is upper bounded by

∑T
t=1 E1(Et) ≤ NK/Q.

To bound the probability of bad events, we use a union bound to obtain the desired result. Specifically, if Qi = 1, which
means each firm has a total quota of 1 and only considers one type of worker, then

∑T
t=1 E1(Et) ≤ NK/(N×1) = K. This

shows that each firm needs to explore a single type of worker, and the worst total regret is less than K. If Qi = 1,M = 1,
which means all firms have the same recruiting requirements, the result reduces to the general competitive matching scenario,
and the worst regret is the number of workers of type KM in the market.

Proof. If Et does not hold, the probability of the true matching score is not in the confidence interval we constructed is
upper bounded by

E1(Et) = P(Et) = P

(( ⋂
i∈[N ]

⋂
m∈[M ]

⋂
am
j ∈Km

{µm
i,j ∈ Fm

i,j,t}
)c)

= P
( ⋃

i∈[N ]

⋃
am
j ∈Km

⋃
m∈[M ]

{µm
i,j /∈ Fm

i,j,t}
)

= P
( ⋃

i∈[N ]

⋃
am
j ∈Km

⋃
m∈[M ]

{∥∥∥µm
i,j − µ̂m,LS

i,j,t

∥∥∥
2,Et

≥
√
βm
i,j,t

})

= P
( ⋃

i∈[N ]

⋃
am
j ∈Km

⋃
m∈[M ]

{∥∥∥µm
i,j − µ̂m,LS

i,j,t

∥∥∥
1
≥

√
log( 2δ )

nm
i,j(t)

})

≤
∑
i∈[N ]

∑
am
j ∈Km

∑
m∈[M ]

P
(∥∥∥µm

i,j − µ̂m,LS
i,j,t

∥∥∥
1
≥

√
log( 2δ )

nm
i,j(t)

)

(C.13)

where the third equality is by De-Morgan’s Law of sets. In the last inequality, we use the union bound to control the
probability. Since each µ̂m,LS

i,j − µm
i,j is a mean zero and 1

2nm
i,j

-sub-Gaussian random variable, based on Lemma D.1, have

P(
∥∥∥µm

i,j − µ̂m,LS
i,j,t

∥∥∥
1
≥
√

log( 2
δ )

nm
i,j(t)

) ≤ δ. The overall bad event’s probability’s upper bound is

P(Et) ≤ NKδ (C.14)

Based on our confidence width is less than 1, so C = 1,∀i ∈ [N ]. The expected regret from this bad event is not in the
confidence interval at most

NKδ · CT ≤ NK
1∑N

i=1 QiT
T =

NK

Q
(C.15)

This part’s regret is negligible compared with the regret from Lemma F.2. In particular, if there is only one type and each
firm has only one position to be filled. Thus, Q = N , the bad event’s upper bounded probability will shrink to K, the
number of workers to be explored.

In this part, we provide the proof of MMTS’s Bayesian regret upper bound.

F.4. Proof of Theorem 5.2

Theorem F.1. When all firms follow the MMTS algorithm, the platform will incur the Bayesian total expected regret

R(T ) ≤ 8 log(QT )
√
QKmax

√
QT +NK/Q (C.16)

where Kmax = max{K1, ...,KM},K =
∑M

m=1 Km .
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Proof. We decompose the Bayesian Social Welfare Gap for all firms by

R(T ) = Eθ∈Θ

[ N∑
i=1

Ri(T, θ)

]
= Eθ∈Θ

[ N∑
i=1

M∑
m=1

T∑
t=1

µi,um
i (t)(t)−

N∑
i=1

M∑
m=1

T∑
t=1

µi,um
i
(t)|θ

]

=

N∑
i=1

T∑
t=1

Eθ∈Θ

[ M∑
m=1

(µi,um
i (t)(t)− µi,um

i
(t))|θ

]

= Eθ∈Θ

[ T∑
t=1

N∑
i=1

M∑
m=1

Imi,t|θ
]

= Eθ∈Θ

[ T∑
t=1

It|θ
]

(C.17)

where we define Imi,t = µm
i,θ(A

m,∗
i )− µm

i,θ(Am
i,t) and It =

∑N
i=1

∑M
m=1 Imi,t. Here Am,∗

i is the optimal matched workers
for firm pi of type m and Am

i,t is the actual matched workers for firm pi of type m at time t under the instance θ.

Based Lemma F.1, R(T ) is upper bounded by E
∑T

t=1

[
C1(Et) +

∑N
i=1

∑M
m=1 W̃i,Fm

i,t
(Am

i,t)
]
. The first term, the sum of

the bad event probability E
∑T

t=1 C1(Et) = C
∑T

t=1 P(Et), which is upper bounded by NK/Q based on Lemma F.4 and
C ≤ 1. The second term, the sum of confidence widths is upper bounded by 8Q log(QT )

√
TKmax based on Lemma F.2.

Thus the Bayesian regret is upper bounded by 8Q log(QT )
√
TKmax +NK/Q.

G. Incentive-Compatibility
In this section, we discuss the incentive-compatibility property of MMTS. That is, if one firm does not follow the MMTS
when all other firms submit their MMTS preferences, that firm cannot benefit (matched with a better worker than his optimal
stable matching worker) over a sublinear order. As we know, Dubins & Freedman (1981) discussed the Machiavelli firm
could not benefit from incorrectly stating their true preference when there exists a unique stable matching. However, when
one side’s preferences are unknown and need to be learned through data, this result no longer holds. Thus, the maximum
benefits that can be gained by the Machiavelli firm are under-explored in the setting of learning in matching. Liu et al. (2020)
discussed the benefits that can be obtained by Machiavelli firm when other firms follow the centralized-UCB algorithm with
the problem setting of one type of worker and quota equal one in the market.

We now show in CMCPR, when all firms except one pi submit their MMTS-based preferences to the matching platform,
the firm pi has an incentive also to submit preferences based on their sampling rankings in a long horizon, so long as the
matching result do not have multiple stable solutions. Now we establish the following lemma, which is an upper bound of
the expected number of pulls that a firm pi can match with a m-type worker that is better than their optimal m-type workers,
regardless of what preferences they submit to the platform.

Let’s useHm
i,l to define the achievable sub-matching set of um when all firms follow the MMTS, which represents firm pi

and m− type worker aml is matched such that aml ∈ um
i . Let Υum(T ) be the number of times sub-matching um is played

by time t. We also provide the blocking triplet in a matching definition as follows.
Definition 6 (Blocking triplet). A blocking triplet (pi, ak, ak′) for a matching u is that there must exist a firm pi and worker
aj that they both prefer to match with each other than their current match. That is, if ak′ ∈ ui, µi,k′ < µi,k and worker ak
is either unmatched or πk,i < πk,u−1(k).

The following lemma presents the upper bound of the number of matching times of pi and aml by time T , where aml is a
super optimal m− type worker (preferred than all stable optimal m− type workers under true preferences), when all firms
follow the MMTS.
Lemma G.1. Let Υm

i,l(T ) be the number of times a firm pi matched with a m-type worker such that the mean reward of
aml for firm pi is greater than pi’s optimal match um

i , which is µm
i,am

l
> max

am
j ∈um

i

µm
i,j . Then the expected number of matches

between pi and aml is upper bounded by

E[Υm
i,l(T )] ≤ min

Sm∈C(Hm
i,l)

∑
(pj ,am

k ,am
k′ )∈Sm

(
Cm

i,j,k′(T ) +
log(T )

d(µj,um
i,min

, µj,k′)

)
,
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where um
i,min = argmin

am
k ∈um

j

µm
i,k, and Cm

i,j,k′ = O((log(T ))−1/3).

Then we provide the benefit (lower bound of the regret) of Machiavelli firm pi can gain by not following the MMTS from
matching with m-type workers. Let’s define the super worker reward gap as ∆

m

i,l = max
am
j ∈um

i

µm
i,j − µm

i,l, where aml /∈ um
i .

Theorem G.1. Suppose all firms other than firm pi submit preferences according to the MMTS to the centralized platform.
Then the following upper bound on firm pi’s optimal regret for m-type workers holds:

Rm
i (T, θ) ≥

∑
l:∆

m
i,l<0

∆
m

i,l

[
min

Sm∈C(Hm
i,l)

∑
(pj ,am

k ,am
k′ )∈Sm

(
Cm

i,j,k′ +
log(T )

d(µj,um
i,min

, µj,k′)

)]
(C.18)

where um
i,min = argmin

am
k ∈um

j

µm
i,k, and Cm

i,j,k′ = O((log(T ))−1/3).

This result can be directly derived from Lemma 5.1. Theorem 5.3 demonstrates that there is no sequence of preferences that
a firm can submit to the centralized platform that would result in negative optimal regret greater than O(log T ) in magnitude
within type m. When considering multiple types together for firm pi, this magnitude remains O(log T ) in total. Theorem
5.3 confirms that, when there is a unique stable matching in type m, firms cannot gain significant advantage in terms of
firm-optimal stable regret by submitting preferences other than those generated by the MMTS algorithm. An example is
provided in Section 6.1 to illustrate this incentive compatibility property. Figure 3(a) illustrates the total regret, with solid
lines representing the aggregate regret over all types for each firm, and dashed lines representing the regret for each type. It
is observed that the type 1 regret of firm 1 is negative, owing to the inaccuracies in the rankings submitted by both firm 1
and firm 2. A detailed analysis of this negative regret pattern is given in Section I.1.

G.1. Proof of Incentive Compatibility

Lemma G.2. Let Υm
i,l(T ) be the number of times a firm pi matched with a m-type worker such that the mean reward of aml

for firm pi is greater than pi’s optimal match um
i , which is µm

i,am
l
> max

am
j ∈um

i

µm
i,j . Then

E[Υm
i,l(T )] ≤ min

Sm∈C(Hm
i,l)

∑
(pj ,am

k ,am
k′ )∈Sm

(
Cm

i,j,k′(T ) +
log(T )

d(µj,um
i,min

, µj,k′)

)
(C.19)

where um
i,min = argmin

am
k ∈um

j

µm
i,k, Cm

i,j,k′ = O((log(T ))−1/3).

Proof. We claim that if firm pi is matched with a super optimal m− type worker aml in any round, the matching um must
be unstable according to true preferences from both sides. We then state that there must exist a m-type blocking triplet
(pj , a

m
k , amk′) where pj ̸= pi.

We prove it by contradiction. Suppose all blocking triplets in matching u only involve firm pi within m− type worker. By
Theorem 4.2 in (Abeledo & Rothblum, 1995), we can start from any matching u to a stable matching by iteratively satisfying
blocking pairs in a gender consistent order, which means that we can provide a well-defined order to determine which
blocking triplet should be satisfied (matched) first within preferences from firm pi

6. Doing so, firm pi can never get a worse
match than aml since a blocking pair will let firm pi match with a better m− type worker than aml , or become unmatched as
the algorithm proceeds, so the matching will remain unstable. The matching will continue, which is a contradiction.

Hence there must exist a firm pj ̸= pi such that pj is part of a blocking triplet in u when firm pi is matched with
m− type worker aml under the matching u. In particular, based on the Theorem 9 (Dubins-Freedman Theorem), firm pj
must submit its TS preference.

Let Lm
j,k,k′(T ) be the number of times firm pj matched with m− type worker amk′ when the triplet (pj , amk , amk′) is blocking

6This gender consistent requirement is to satisfy a blocking pair (pj , am
k ) and those blocking pairs can be ordered before we break

their current matches if any, and then match pj and am
k to get a new matching.
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the matching provided by the centralized platform. Then by the definition∑
um∈Bm

j,k,k′

Υum(T ) = Lm
j,k,k′(T ) (C.20)

By the definition of a blocking triplet, we know that if pj is matched with m− type worker amk′ when the blocking triplet
(pj , a

m
k , amk′) is blocking, the TS sample must have a higher mean reward for amk′ than amk . In other words, we need to bound

the expected number of times that the TS mean reward for m− type worker amk′ is greater than amk . From (Komiyama et al.,
2015), we know that the number of times that (pj , amk , amk′) forms a blocking pair in Thompson sampling, is upper bounded
by

ELm
j,k,k′ ≤ Cm

i,j,k′(T ) +
log(T )

d(µj,um
i,min

, µj,k′)
(C.21)

where um
i,min = argmin

am
k ∈um

j

µm
i,k and Cm

i,j,k′ = O((log(T ))−1/3). The d(x, y) = x log(x/y) + (1 − x) log((1 − x)/(1 − y))

is the KL divergence between two Bernoulli distributions with expectation x and y.

The expected number of times Υm
i,l(T ) a firm pi matched with a m − type worker such that the mean reward of aml for

firm pi is greater than pi’s optimal match um
i , which is equivalent to the expected number of times viat the achievable

sub-matching set Υum(T ) where um ∈ Hm
i,l. So the result then follows from the identity

E[Υm
i,l(T )] =

∑
um∈Hm

i,l

EΥum(T ) (C.22)

Given a setHm
i,l of matchings, we say a set Sm of triplets (pj , amk , amk′) is a cover ofHm

i,l if⋃
(pj ,am

k ,am
k′ )∈Sm

Bm
j,k,k′ ⊇ Hm

i,l (C.23)

Let C(Hm
i,l) denote the set of covers of Hm

i,l. Then
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≤ E min
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(C.24)

where the first inequality is from the property of cover and we select the minimum cover Sm from C(Hm
i,l). And summation

in the third line is equivalent to
∑

um∈Bm
j,k,k′

. Based on Eq. (C.20), the third equality is obvious. From (Komiyama et al.,
2015), we know the expected number of times of matching with the sub-optimal m − type worker is upper bounded by
Eq. (C.21).

H. Firm DA Algorithm with type and without type consideration
In this section, we present the DA algorithm with type consideration and without type consideration.
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Algorithm 4 Firm-Proposing DA Algorithm with Type Consideration.
Input :Type. firms set N , workers set Km,∀m ∈ [M ]; firms to workers’ preferences rmi ,∀i ∈ [N ],∀m ∈ [M ], workers

to firms’ preferences πm,∀m ∈ [M ]; firms’ type-specific quota qmi ,∀i ∈ [N ],∀m ∈ [M ], firms’ total quota
Qi,∀i ∈ [N ].

Initialize :Empty set S = {}, empty sets Sm = ∅,∀m ∈ [M ].
for m = 1, ...,M do

while ∃ A firm p who is not fully filled with the quota qm and has not contacted every m− type worker do
Let a be the highest-ranking worker in firm p’s preference, to whom firm p has not yet contacted.
Now firm p contacts the worker a.
if Worker a is free then
(p, a) become matched (add (p, a) to Sm).

else
Worker a is matched to firm p′ (add (p′, a) to Sm).

if Worker a prefers firm p′ to firm p then
firm p filled number minus 1 (remove (p, a) from Sm).

else
Worker a prefers firm p to firm p′.

firm p′ filled number minus 1 (remove (p′, a) from Sm).
(p, a) are paired (add (p, a) to Sm).

end
Update: Add Sm to S.

end
Output :Matching result S.

Algorithm 5 Firm-Proposing DA Algorithm without Type Consideration (Gale & Shapley, 1962).
Input :Worker Types, firms set N , workers set Km,∀m ∈ [M ]; firms to workers’ preferences rmi ,∀i ∈ [N ],∀m ∈ [M ],

workers to firms’ preferences πm,∀m ∈ [M ]; firms’ type-specific quota qmi ,∀i ∈ [N ],∀m ∈ [M ], firms’ total
quota Qi,∀i ∈ [N ].

Initialize :Empty set S.
while ∃ A firm p who is not fully filled with the quota Q̃ and has not contacted every worker do

Let a be the highest-ranking worker in firm p’s preference over all types of workers, to whom firm p has not yet
contacted.
Now firm p contacts the worker a.
if Worker a is free then
(p, a) become matched (add (p, a) to S).

else
Worker a is matched to firm p′ (add (p′, a) to S).

if Worker a prefers firm p′ to firm p then
firm p filled number minus 1 (remove (p, a) from S).

else
Worker a prefers firm p to firm p′.

firm p′ filled number minus 1 (remove (p′, a) from S).
(p, a) are paired (add (p, a) to S).

end
Output :Matching result S.
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Table 1. True Matching Scores of two types of workers from two firms.

Mean ID Type 1 2 3 4 5

µ1
1 0.406 0.956 0.738 0.970 0.695
2 0.932 0.241 0.040 0.657 0.289

µ2
1 0.682 0.909 0.823 0.204 0.218
2 0.303 0.849 0.131 0.886 0.428
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Figure 4. Posterior distribution of learning parameters for two firms in Example 1.

I. Experimental Details
In this section, we provide more details about the learned parameters and large market.

I.1. Learning Parameters

In this section, we present the learning parameters of (α,β) of Example 1. Besides, we analyze which kind of pattern
causes the non-optimal stable matching of Examples 1 and 2.

We show the posterior distribution of (α,β) in Figure 4. The first and second row represents the posterior distributions of
firm 1 and firm 2 over two types of workers after T rounds interaction. The first and second columns in Figure 4 represent
two firms’ posterior distributions over type I and type II workers.

We find that the posterior distributions of the workers that firms most frequently match with exhibit a relatively sharp shape,
indicating that firms can easily construct uncertainty sets over these workers. However, in some instances, the distributions
are relatively flat, indicating a lack of exploration. This can be attributed to two possible reasons: (1) the workers in question
are not optimal stable matches for the firms, and are thus abandoned early on in the matching process, such as firm 1’s DS 1
and DS 5, or (2) the workers are optimal, but are erroneously ranked by the firms and subsequently blocked, such as firm 2’s
SDE 3. To further illustrate this, we present the posterior mean and variance in Table 2. The optimal stable matches for each
firm are represented in bold, and the variance of the distributions is denoted by small font. Additionally, we use the dagger
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Table 2. Estimated mean reward and variance of each type of worker in view of two firms. The bold font is to represent the firm’s optimal
stable matching. † represents the difference between the estimated mean and the true mean less than 1%. ‡ represents the difference is
less than 1.5%.

Mean & Var Type 1 2 3 4 5

µ̂1
1 (DS) 0.5330.015 0.943‡

0.000 0.9170.035 0.968†
0.000 0.682‡0.003

2 (SDE) 0.9500.000 0.2230.000 0.041†
0.000 0.5000.208 0.303‡0.000

µ̂2
1 (DS) 0.683†

0.000 0.5000.035 0.823†
0.000 0.2620.037 0.210†0.000

2 (SDE) 0.0830.035 0.851†
0.000 0.124†0.001 0.887†

0.000 0.415‡0.001

symbol to indicate when the difference between the posterior mean reward and true matching score is less than 1% and
1.5%.

Pattern Analysis. We find that firm 1’s type I matching in Figure 3(a), achieves a negative regret due to the high-frequency
matching pattern of u1 = {[D4, D2, D5], [S1, S5]}, and u2 = {[D3, D1], [S4, S2, S3]}. That means firm 1 and firm 2 have a
correct (stable) matching in the first match ũ1 = {[D4, D2], [S1, S5]}, ũ2 = {[D3, D1], [S4, S2]}. In the second match, they
both need to compare worker D5 and worker S3, because all other workers are matched with firms or have been proposed in
the first match. In Table 1, we find that two workers’ true mean rewards for firm 1 are µ1

1,5 = 0.695, µ2
1,3 = 0.040 and two

workers’ estimated rewards for firm 1 are µ̂1
1,5 = 0.682, µ̂2

1,3 = 0.041. These two workers are pretty different and can be
easily detected. So firm 1 has a high chance of ranking them correctly. However, two workers’ true rewards for firm 2 are
µ1
2,5 = 0.218, µ2

2,3 = 0.131, and two workers’ estimated rewards for firm 2 are µ̂1
1,5 = 0.210, µ̂2

1,3 = 0.124. These workers
are close to each other, where these two posteriors’ distributions overlap a lot and can be checked in Figure 4. So firm 2 has
a non-negligible probability to incorrectly rank S3 ahead of D5. Therefore, based on the true preference, firm 2 could match
with S3 and firm 1 matches with D5 with a non-negligible probability rather than the optimal stable matching (p1, S3) and
(p2, D5) by D5 preferring firm 2.

The above pattern links to Section 4.2, incapable exploration, and Section 5.3, incentive compatibility. Due to the insufficient
exploration of S3 and D5, firm 2 may rank them incorrectly to get a match with S3 rather than optimal D3 and the regret gap
is µ1

2,3 − µ2
2,3 = 0.823− 0.131 = 0.692, which is a positive instantaneous regret. Due to the incorrect ranking from firm 2,

firm 1 gets a final match with D5 rather than optimal S3, and suffers a regret gap µ2
1,3 − µ1

1,5 = 0.040− 0.695 = −0.655,
which is a negative instantaneous regret. Thus firm 1 benefits from firm 2’s incorrect ranking and can achieve a total negative
regret, as shown in Figure 3(a).

Findings from Example 2. In our analysis of the non-optimal stable matching in Example 2, we observed that both firms
incurred positive total regret, shown in Figure 3(b). We find that the quota setting resulted in all workers of type II being
assigned to firms in the first match. As a result, in the second match, the ranking submitted by firm 1 to the centralized
platform did not affect firm 2’s matching result for type II workers. This can be thought of as an analogy where firms
are schools and workers are students. In the second stage of the admission process, school 2 would not participate in the
competition for type II students, and its matching outcome would not be affected by the strategic behavior of other schools
in the second stage, but rather by the strategic behavior of other schools in the first stage.

I.2. Large markets

In this part, we provide two large market examples to demonstrate the robustness of our algorithm. All preferences are
randomly generated and all results are over 50 trials to take the average.

Example 3. We consider a large market composed of many firms (N = 100) and many workers (K1 = K2 = 300).
Besides, we have Q1 = Q2 = 3, q11 = q12 = q12 = q22 = 1.

Example 4. We also consider a large market consisting of many workers, and each firm has a large, specified quota and an
unspecified type quota. In this setting, N = 10,M = 2,K1 = K2 = 500, Q1 = Q2 = 30, q11 = q12 = q12 = q22 = 10.

Results. In Figure 5(a), we randomly select 10 out of 100 to present firms’ total regret, and all those firms suffer sublinear
regret. In Figure 5(b), we also show all 10 firms’ total regret. Comparing Examples 3 and 4, we find that firms’ regret in
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Figure 5. Left: 10 out of 100 randomly selected firms’ total regret in Examples 3. Right: all firms’ total regret in Example 4.

Example 3 is less than firms’ regret from Example 4 because in Example 4, each firm has more quotas (30 versus 3), which
demonstrates our findings from Theorem 5.2. In addition, we find there is a sudden exchange in Figure 5(a) nearby time
t = 1500. We speculate this phenomenon is due to the small gap between different workers and the shifting of the explored
workers.
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