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Abstract

In this paper, we explore the discovery of latent symmetries of data in a self-supervised
manner. By considering sequences of observations undergoing uniform motion, we can
extract a shared group transformation from the latent observations. In contrast to previous
work, we utilize a latent space in which the group and orbit component are decomposed.
We show that this construction facilitates more accurate identification of the properties of
the underlying group, which consequently results in an improved performance on a set of
sequential prediction tasks.

Keywords: Representation Theory, Representation Learning, Group Theory, Symmetry
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1. Introduction

Symmetry discovery poses a fundamental challenge in geometric deep learning and has
been explored in a range of previous work (Rao and Ruderman (1998); Cohen and Welling
(2014); Yang et al. (2023); Dehmamy et al. (2021)). In this paper, we consider the problem
of discovering latent symmetries from high-dimensional data. This entails both finding a
representation, and the group acting upon it in a simultaneous manner. Learning latent
representations naturally induces a problem of identifiability, as there can be a possibly
infinite set of representations that are equally valid. We ask the question to what extent
one can identify the single ground-truth underlying group structure from high-dimensional
observations.

In Meta-Sequential Prediction (MSP) (Miyato et al. (2022)), latent symmetries are
learned by considering a self-supervised forward prediction task on sequences arising from
uniform motion. An example would be predicting the next frame from a video of objects
undergoing 3D rotation and translation. The assumption of uniform motion leads to a prob-
lem setup where you have a shared group action across distinct pairs of data points. From
this, a latent transformation can be learnt in a self-supervised manner that can accurately
depict the latent transitions. MSP learns accurate transitions, but suffer on long-term pre-
diction, as their latent representation entangles the pose of an object and its class, resulting
in redundancy in the group representation. This has consequences on both the predictive
performance, but also on the identification of the correct group. In this work, we expand
upon this setting by inducing the latent representation with a structure that distinguishes
the pose of the object from its class. Such a representation has previously been considered
by Marchetti et al. (2023), although we extend it to the case where the group structure
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is unknown. We show that under certain conditions, this leads to a representation that is
conjugate to the true group, entailing that spectral properties such as its eigenvalues are
preserved. Furthermore, we showcase our proposed method on a sequential prediction task
for a number of groups, achieving more accurate long-term predictions compared to MSP.

2. Background

We consider a space X which on which a group G acts via the map (g, x) = g ◦ x. The set
of elements that are connected by a group action induces an equivalence class X \G which
we denote as the orbits of G on X . As an example, the space X could consist of images
of a set of objects under different orientations. An objects pose can be expressed by its
orientation from a fixed reference point. Similarly, a rotated object remains the same object,
which is to say that the orbits remain invariant to group actions. Given a high-dimensional
dataset such as images, we wish to discover the group of symmetries acting upon it, or
which transformations the objects in the images are undergoing. These transformations
can be non-linear in the image plane, such as 3D rotations of the underlying object itself.
This distinguishes latent symmetries from the symmetries incorporated into G-equivariant
neural networks, which consider symmetries on the pixel grid (Cohen and Welling (2016)).
As shown in Marchetti et al. (2023), there exists an equivariant isomorphism X ∼= G×X \G.
This implies that a possibly high-dimensional space X can be completely encoded with a
low-dimensional group structure, without loss of information. Learning the group then
entails finding a representation of X and G that induces this isomorphism.

2.1. Meta-Sequential Prediction

Meta-Sequential Prediction (Miyato et al. (2022)) presents a method to extract symmetries
by considering time-series of objects undergoing motion of constant velocity. To this end,
they consider trajectories xg = {xt = gt−1◦x1 ∈ X , t ∈ [1, n]} constructed through repeated
application of the same group action to an initial state x1. Different actions induce different
sequences and they consider the collection of this, {xg, g ∈ G}, as their dataset. They
introduce a representation learner φ : X → Z parameterized as a neural network with
Z = Rm×d. The group is assumed as a subgroup G ≤ GL(m) of the group of m × m
invertible matrices, acting upon the latent space through matrix multiplication. For each
sequence, MSP aims to learn the latent group action M such that it is equivariant w.r.t.
the representation φ:

Mφ(x) = φ(g ◦ x). (1)

Thus, acting in the data space should correspond to an equivalent action in the latent space.

2.2. Learning Equivariance

To learn the equivariant map, MSP utilizes an equivariance loss defined over a trajectory x
as:

Lequiv(φ,M,x) =
1

n− 1

n∑
t=2

d(Mφ(xt−1), φ(xt)) (2)
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where d is some appropriate metric, in this case the L2 metric. The key observation in
learning the equivariance is that a subsequence xS = (x1, . . . , xns) shares the same trans-
formation as the subsequent observations xQ = (xns , . . . , xns+nq) with n = ns+nq. Denote
xS and xQ as the support and query-set respectively, borrowing notions from meta-learning
literature (Finn et al. (2017)). This setup lends itself to a bi-level optimization scheme
where the group transformation is learnt from the support-set, while the representations
are learnt on the query-set. To this end, the optimization objective can be expressed as

argmin
φ

ExS,xQ∼X [Lequiv(φ,M
∗,xQ)] (3)

subject to M∗ = argmin
M

Lequiv(φ,M,xS) (4)

Since M∗ is the solution to a linear system of equations, it can be found in closed form.
In addition, to ensure injectivity, a further reconstruction loss is implemented through a
decoder ψ : Z → X .

3. Method

In this section we introduce a simple extension to MSP to ensure better identifiability of
the group components. MSP embeds X = G × X \ G into a latent space Z = Rm×d. As
M ∈ Rm×m acts linearly on this representation, the orbit must remain an invariant. To
enable this, MSP encodes the orbit into a subspace that is invariant to transformations of
M . This is only possible if M is reducible, i.e. there exists a G-invariant subspace that is
non-trivial. To enable this, the dimension ofM must be strictly greater than the dimension
of the group. Encoding into higher dimensions, however, entails identifying more spurious
representations.

To circumvent this entanglement, we propose a representation that decomposes class
(orbit) from pose (group). To this end, we propose to set the latent space as Z = G × E
which represents a decomposition of the latent space into the group and orbit. We represent
G as a subgroup of GL(m) and the orbit component as E ⊆ Rd. We decompose our
encoder φ = (φG, φE) as the group and orbit encoder respectively. To train φG, we consider
the objective as defined in Equation 3. Similarly φE is trained to be invariant within a
sequence by enforcing all its encodings to be equal. Similarly to MSP, we also train a
decoder ψ for reconstruction. As M is implicitly dependent on the group action g, we can
consider it a map from M : G → GL(m). As proven in Miyato et al. (2022), M is a group
homomorphism and thus a representation of G. As φ is injective, it follows that M is a
faithful representation of G. Thus, when restricted to its orbits, it induces an isomorphism
between G and its image M(G). In certain cases, this image is isomorphic to a unique
group representation. For simple and semi-simple groups, any faithful representation of
minimal dimension is irreducible (Joyce, 2000, chapter 3). In example, embedding SO(3) in
GL(3) represents an embedding of minimal dimension and thus, the representation will be
irreducible. Furthermore, for SO(3), there exists a unique irreducible representation (Hall
and Hall, 2013, chapter 4). Thus we can make a stronger claim, that the representation
learnt will be conjugate to SO(3), and preserve its spectral properties.
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4. Experiments

We demonstrate our proposed method on a set of synthetic regressions tasks. We construct
sequences (xt) by sampling an initial condition and group action uniformly from G and
letting xt = gt−1 ◦ x1 for t ∈ [1, T ]. We construct orbits by sampling a projection vector
Po ∈ Rm2×D and projecting each x into RD. We consider the rotational groups SO(n) for
n ∈ {2, 3}. For each group, we generate a dataset of 1000 different initial conditions and
group actions and generate sequences of length T = ns + nq with ns = 10 and nq = 1.

4.1. Experimental Details

We implement our model as a 3-layer neural network with 64 hidden units and ReLU
activations. We utilize Batch Normalization (Ioffe and Szegedy (2015)) applied after each
activation function as this significantly reduced the training time. We train the models
for 200 epochs using the Adam Optimizer (Kingma and Ba (2014)) and a learning rate of
0.001. The results are presented as the average over 5 random seeds evaluated on a test
dataset representing 10% of the data. Our orbit encoder φE encodes to a 16 dimensional
latent space, which is the same dimension we use for dimension d in MSP.

4.2. Results

Figure 1: Determinant ofM∗ in SO(3) con-
sidering 5 orbits.

In Table 1 we present results of the average
rollout error over 20 time-steps. This exem-
plifies the generalization performance of the
learnt transition beyond the 1-step training
objective. When considering a single orbit,
the models performances match, as they dif-
fer only in the number of extra dimensions
in the encoding. However, as we increase the
number of orbits, the rollout prediction error
drastically increases for MSP. We can relate
this to the fact that the representational ca-
pacity of MSP under a limited amount of di-
mensions is inadequate to encode both group
and orbit. In Figure 4.2, we present measure-
ments of the determinant ofM∗ during train-
ing with 5 orbits. As is shown, our method
preserves the determinant while MSP fails to
capture the properties of the group. Additionally, utilizing a higher-dimensional latent
space fails to capture this inherent property of the group.

5. Future Work

In this work, we have learnt non-linear symmetries by considering data undergoing uniform
motion. Another form of symmetry emerges when the motion is possibly non-linear, but
is ultimately equivariant to a group G. An example would be the dynamics of a particle
system which remains equivariant to the Euclidean group (Satorras et al. (2021)). As the
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SO(2) SO(3)

Model / Orbits 1 10 20 1 10 20

MSP, m = dim(G) 0.96±0.04 11.63±5.21 60.73±17.19 6.74±0.75 61.88±7.46 83.00±2.40

Ours, m = dim(G) 0.71±0.06 1.87±0.36 4.16±0.71 5.44±0.75 7.59±0.39 24.80±4.28

MSP, m = 8 0.64±0.09 3.50±0.40 7.27±0.14 8.80±0.61 22.02±0.43 31.05±2.86

Ours, m = 8 0.67±0.06 2.37±0.29 3.18±0.22 5.23±1.24 11.54±0.29 20.30±2.22

Table 1: MSE (×10−2) for rollouts of length 20 for a different number of orbits. As we
increase the number of orbits, MSP gradually loses its ability to model the correct
transformations.

dynamics and symmetry have to be learnt simultaneously, it naturally lends itself to the
framework we have studied and provides an avenue for future work. Furthermore, we have
shown that identifiability is possible on the simple groups we have considered. Future work
could consider more complex groups, which however, may require further restrictions on
the group representation.
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SO(2) SO(3)

Model / Orbits 1 3 5 1 3 5

MSP m = dim(G) 1.01±0.06 21.12±1.94 19.73±12.05 1.66±0.05 19.40±11.76 18.10±7.18

Ours = dim(G) 0.95±0.06 7.58±4.35 1.73±0.36 1.84±0.06 11.41±12.88 4.14±1.67

MSP m = 8 0.65±0.04 24.03±8.01 20.86±5.18 1.56±0.06 26.74±7.59 34.25±3.39

Ours m = 8 0.71±0.05 23.83±3.80 18.28±2.68 1.82±0.03 23.65±8.75 39.79±6.04

Table 2: MSE (×10−2) of next-state prediction using the learnt transformation from a dif-
ferent orbit.

Appendix A. Appendix

A.1. Additional Experiments

We consider a simplified version of the dataset where orbits are generated by adding an
integer zo ∈ {0, . . . , Norbits} to the sequences. In this setting, we find that we can achieve
full equivariance implying that the learnt M transfers across different orbits. We measure
this by finding M∗ for one orbit, and using it to evaluate the equivariance loss in Equation
2 on a sequence from another orbit. We present the results in Table 2. For one orbit,
the results are mostly equivalent, with MSP showing a slight advantage. However, as
the number of orbits increase, our learnt transitions showcase stronger generalization across
orbits. The results imply that a complete disentanglement between class and pose is possible
in certain conditions, although there is nothing explicit in the method that encourages this.
Disentanglement, in this case, remains a consequence of the implicit regularization of neural
networks, where a structured latent space may encourage it, but not explicitly impose it.
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