
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HOGT: HIGH-ORDER GRAPH TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Inspired by the success of transformers on natural language processing (NLP) and
computer vision (CV) tasks, graph transformers (GTs) have recently been pro-
posed to boost the performance of graph learning. However, the attention mecha-
nisms used in existing GTs face certain limitations in capturing crucial topological
information or scaling to large graphs, due to their quadratic complexity. To ad-
dress these limitations, in this paper, we propose a high-order information prop-
agation strategy within the transformer architecture to simultaneously learn the
local, long-range, and higher-order relationships of the graph. We first propose
a flexible sampling method to extract communities from the graph, and create
new community nodes and in particular a learnable community sampling method
with reinforcement learning. We then propose a three-step message-passing strat-
egy dubbed HOGT to capture the local and higher-order information in the com-
munities and propagate long-range dependency information between the commu-
nity nodes to finally obtain comprehensive node representations. Note that as
structural information has been flexibly integrated into our designed community-
based message-passing scheme, HOGT discards the positional encoding which
was thought to be important for GT. We theoretically demonstrate that GTs with
effective substructures can achieve an approximate global attention. HOGT can
be viewed as a unified framework, taking many existing graph models as its spe-
cial cases. We empirically show that HOGT achieves highly competitive results
consistently across node and graph classification tasks.

1 INTRODUCTION

Learning from graph-structured data, such as social networks, biological networks, and brain net-
works, is critical for many real-world applications. Graph Neural Networks (GNNs) (Kipf & Welling
(2017); Veličković et al. (2018); Gasteiger et al. (2019); Hamilton et al. (2017)) are one type of
mainstream architecture that adopts a local Message-Passing (MP) scheme where the information is
propagated and aggregated between the connected nodes. However, traditional GNNs suffer from
the over-smoothing (NT & Maehara (2019)), over-squashing (Topping et al. (2022)), and limited ex-
pressiveness (Xu et al. (2019b)) problems because of this neighbourhood-dependent message pass-
ing strategy.

The transformer architecture (Vaswani et al. (2017)) has recently attracted great attention for graph
learning as its global attention mechanism provides a potential solution to the above problems. In
contrast to traditional GNNs, Graph Transformers (GTs) (Kreuzer et al. (2021); Mialon et al. (2021);
Ying et al. (2021)) enable information to pass between any two nodes, regardless of the original
graph connections. When applying transformers on graphs, the key is to properly incorporate graph
structural information. This motivates several studies (Kreuzer et al. (2021); Dwivedi & Bresson
(2021); Ying et al. (2021)) to focus on constituting good positional encoding or attention bias to
integrate graph structure. However, Müller et al. (2023) showed that current graph transformers
still suffer from limited expressivity, and no clear expressivity hierarchy exists for commonly used
positional or structural encodings. Moreover, when developing GTs on real graph tasks, especially
for node classification, existing models (Chen et al. (2021a); Kreuzer et al. (2021); Park et al. (2022))
suffer from high computational complexity due to dense connections. In conclusion, the current GT
models not only fail to fully capture useful topological information (e.g., intrinsic local structure,
implicit higher-order correlations) of the graph but also cannot effectively propagate long-range
information.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Inspired by the successful use of patches in the vision domain, some recent works (Gao et al.
(2022a); Zhao et al. (2023)) have incorporated patch/substructure representations into GTs. While
these introduced substructures can benefit graph representation in some cases, existing works
(Kuang et al. (2021); Zhu et al. (2023; 2024)) still face challenges in achieving flexible and suit-
able substructures for different graphs and theoretically demonstration for success of GTs with sub-
structures. Therefore, it is important to develop a new scheme to effectively capture the complex
structural relationships in the graph for different graphs and data types, while also providing theo-
retical support.

In this work, we develop a powerful architecture that can effectively propagate comprehensive in-
formation with a flexible sampling method and term it as HOGT. To better capture the intricate
relationships within a graph, we group graph nodes into multiple communities where all nodes
within the same community share similar properties (semantic or information). Notably, we design
a learnable community sampling method based on reinforcement learning (RL). When encoding
closer graph nodes into the same community, the challenge is how to capture the local high-order
information in the community and propagate it globally for effective and comprehensive representa-
tion learning. To tackle this challenge, we introduce a new node to represent each community which
serves as the bridge to allow the graph node information to propagate and aggregate along these
introduced nodes to establish global connections among all nodes. The generated communities can
encode more complex structural information as a substitute for positional encoding.

Based on community-structured data, we adopt a three-step message-passing strategy: 1) Graph
Node-to-Community Node (G2C-MP); 2) Community Node-to-Community Node (C2C-ATTN);
and 3) Community Node-to-Graph node (C2G-MP). In the first step, within each community, the
information of each node is propagated and aggregated to its corresponding community node to
capture local high-order information. Then, based on the community-level representations of the
community nodes, we apply a self-attention mechanism between them to allow each community
node to capture long-range information from other communities. Finally, we update the representa-
tions of the graph nodes by aggregating information from their respective communities. We can see
that the community nodes effectively connect to almost all nodes in the graph.

Our proposed HOGT is a general framework and several other existing graph models can be viewed
as special cases. At the level of message-passing strategy: if removing Community Node-to-
Community Node (C2C-ATTN), the framework simplifies to a Message-Passing Architecture. At
the level of community generation: if we view the whole graph as a community, our model simpli-
fies to a GT model Wu et al. (2021), which takes a special token to connect with all other nodes
to achieve global information, representing the lower bound of HOGT; if we view each node as a
community, our model essentially becomes the vanilla transformer, representing the upper bound
of HOGT. In comparison to the existing graph models, the advantage of our proposed HOGT in
processing various graph information and graph types is shown in Table 1.

Our proposed framework demonstrates its versatility by accommodating various graph types (graph
and hypergraph), data types (homophily and heterophily), data scales (same-scale and large-scale),
and different graph tasks. We mainly evaluate HOGT on node classification tasks in which GT
models have a performance gap, and also extend HOGT for graph classification. We find improve-
ments in accuracy on almost all datasets, especially on heterophilic datasets. In summary, our main
contributions are as follows:

• We propose a flexible sampling method followed by a three-step message-passing frame-
work in GTs to capture comprehensive information achieving high expressiveness for graph
representation learning.

• We unify message-passing and GTs by constructing communities and introducing new
community nodes. We demonstrate that our model can approximate any other message-
passing model and theoretically show that the three-step message-passing with newly in-
troduced community node can achieve global attention as general transformers do.

• We conduct extensive experiments on benchmark datasets to demonstrate the effectiveness
of the proposed method for node and graph classification. The experimental results also
verify the effectiveness of higher-order representations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: A summary of the capabilities of different graph models in processing graph information
and graph types. GNN is the vanilla graph neural network, HGNN is a hypergraph-based neural
network, and GT is the general Graph Transformer.

Model Local Information Global Information Higher-Order Information Graph Hypergraph
GNN ✓ ✗ ✗ ✓ ✗

HGNN ✓ ✗ ✓ ✓ ✓

GT ✓ ✓ ✗ ✓ ✗

HOGT (ours) ✓ ✓ ✓ ✓ ✓

2 RELATED WORK

General Graph Transformers. Recently, the transformer architecture has been successfully ap-
plied to the graph domain, showing competitive or even superior performance on many tasks when
compared to GNNs. The standard transformer was first extended to graphs (Dwivedi & Bresson
(2021)), with four special designs including the position encoding for nodes in a graph. Subse-
quently, many other GTs (Rong et al. (2020); Zhang et al. (2020); Chen et al. (2021b); Wu et al.
(2021); Hussain et al. (2022); Chen et al. (2022a); Nguyen et al. (2022); Kreuzer et al. (2021)) and
applications of GTs (Xu et al. (2019a); Zhu et al. (2021; 2022); Cai et al. (2022); Li et al. (2023);
Deng et al. (2024); Wu et al. (2024)) have been developed — Rampášek et al. (2022) and Min et al.
(2022) provide a more detailed introduction and review of different GTs. However, the above meth-
ods are mostly designed for graph-level tasks, as they impose great time and memory constraints due
to the self-attention layer. Therefore, several works (Zhao et al. (2021); Choromanski et al. (2022);
Guo et al. (2022); Park et al. (2022); Wu et al. (2023); Liu et al. (2023)) have been proposed to make
graph transformers more scalable and efficient, but they still suffer from various challenges such as
missing long-range and higher-order information or noise aggregation.

Graph Transformer Utilizing Substructures. Due to the exponentially increasing scale of graph
data, researchers have attempted to utilize substructures to scale up graph representation learning
through methods such as subgraph learning (Kim & Oh), and graph condensation (Wang et al.
(2024); Zheng et al. (2024); Zhou et al. (2023); Jin et al. (2021); Huang et al. (2021); Fey et al.
(2020)). In terms of GTs, substructures (Zhang et al. (2022b)) (such as hierarchical structure, clus-
ters, communities, and subgraphs) have been utilized for both graph and node classification. For
graph classification tasks, some methods (Gao et al. (2022a); Zhao et al. (2023)) segment the graph
into patches or subgraphs and use the substructural representations to learn topological high-level
information. For node classification, researchers have explored extracting substructures and utiliz-
ing these substructural representations to reduce the quadratic complexity of global self-attention,
while effectively capturing the global information of the graph. Specifically, Kuang et al. (2021) and
Zhu et al. (2023) employed coarsening techniques to obtain a coarser graph with fewer nodes to cap-
ture long-range information. With the obtained clusters, Xing et al. (2024) introduced inter-cluster
and intra-cluster Transformers to extract local information and long-range dependent information
from distant nodes. Zhu et al. (2024) and Jiang et al. (2023) selected several topologically important
nodes as anchors, allowing information to propagate over a large receptive field, where the anchor
nodes can be viewed as a substructure of the original graph. Furthermore, Fu et al. (2024) transferred
global and long-range information by establishing multiple virtual connections using personalized
PageRank.

While these introduced substructures can benefit graph representation in some cases, there are limita-
tions of existing works for achieving flexible and suitable substructures for different graphs. Specif-
ically, the anchor nodes in Zhu et al. (2024); Jiang et al. (2023) are derived from the original graph
nodes and therefore cannot introduce additional information, such as higher-order information. Sim-
ilarly, the supernodes in the coarse graphs in Kuang et al. (2021); Zhu et al. (2023) which are used to
propagate high-level information are also constrained by the original graph structure. Moreover, it
is not trivial to provide theoretical support for GTs with substructures in capturing global attention,
while ensuring adaptability across various graph datasets. In this work, we demonstrate that the
proposed HOGT offers a general and theoretically grounded framework. It shows significant advan-
tages in capturing comprehensive information through the flexible community sampling method and
demonstrates its versatility by its effectiveness across diverse graph datasets.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Community

G2
C-

M
P

C2
C-

A
TT

N

C2
G-

M
P

Community
Sampling Pred.

G2C-MP C2C-ATTN C2G-MP

(a)

(b) (c)

Figure 1: (a) The overall HOGT framework. (b) HOGT first adopts a community sampling method
to obtain multiple communities. (c) Then, it propagates and aggregates information following a
three-step operation: 1) G2C-MP which aggregates the high-order information of a community
into the community node; 2) C2C-MP which propagates community-level information in a self-
attention mechanism; 3) C2G-MP which gathers the updated community-level information for node
representation.

More related works about Higher-Order Representation Learning and Virtual Node in Message-
Passing can be found in Appendix A.1.

3 HIGH-ORDER GRAPH TRANSFORMER

Overview. As illustrated in Figure 1, our proposed HOGT framework is designed to effectively
aggregate and propagate all levels of information for comprehensive graph representation learning.
By dividing the whole graph into several communities and introducing a representative node for
each community, we achieve the local higher-order representation of each community and adopt
community-level attention to effectively propagate the long-range dependent information. In the
following, first we introduce the notations and provide a background on transformer architecture,
and then we describe in detail each component of the architecture. The complexity analysis of
HOGT can be found in Appendix A.2.

Notation. Given an graph G = (V, E) with node set V and edge set E . Suppose there are N nodes
in V , the set of edges E ⊆ V × V defines the connections among the N nodes, (vi, vj) ∈ E denotes
the edge between node vi and node vj . The graph topology is presented by the adjacency matrix A,
where Aij = 1 if there exists an edge (vi, vj), Aij = 0 otherwise. We denote X ∈ RN×d the node
features, where each node i has x ∈ Rd. Let yi denote the label of node i, in this work, we focus on
the node classification task which aims to predict the labels of the unknown nodes in the graph.

Transformer Architecture. The transformer architecture consists of a composition of transformer
layers. Each transformer layer has a self-attention module and a position-wise feed-forward network
(FFN). The self-attention mechanism calculates attention scores by taking the inner product of query
vectors (Q) and key vectors (K). It then uses these scores to aggregate value vectors (V) in a
weighted manner, resulting in contextualized representations, that is,

Q = HWQ,K = HWK ,V = HWV ; (1)

A =
QK⊤
√
d′

, Attn(H) = softmax(A)V (2)

where WQ ∈ Rd×d′
,WK ∈ Rd×d′

, and WV ∈ Rd×d′
are projection matrices, H =[

h⊤
1 , . . . ,h

⊤
n

]⊤ ∈ Rn×d denotes the input matrix of node embeddings, and d′ is the output hid-
den dimension. Generally, it is the global attention mechanism that allows everything to connect
to everything (e.g., every node to every node for graph). Instead of performing a single attention
function, it is standard to adopt multi-head attention.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 COMMUNITY SAMPLING

Effectively utilizing the structural information of the graph is the key challenge for graph repre-
sentation learning. We note that data correlations in practice can be complex and are often beyond
pairwise, for example, a community of friends shares their common interest in basketball in a social
network. To encode these higher-order correlations, we consider extracting meaningful communities
from the whole graph. Here, a community is introduced to collect multiple vertices sharing similar
properties (semantic or information), similar to how a hyperedge connects multiple objects.

We design the community sampling method tailored to different graph types: 1). For hypergraphs,
we intuitively view each hyperedge as a community; 2). For regular graphs, we explore a learnable
sampling method that employs reinforcement learning to determine the optimal communities.

Learnable sampling. For graph G = {A,X}, we learn a GNN-based encoder and obtain the
hidden representation of N nodes: H =

[
h⊤
1 , . . . ,h

⊤
N

]⊤ ∈ RN×d. Then, we employ a trainable
projection vector p to project all node features to 1D. Given node vi with feature hi, its scale
projection on p is yi = hip/∥p∥.. Here, yi measures how much information of node vi can be
retained when projected to the direction of p. After that, we adopt top-k sampling to select kN
nodes, where k ∈ (0, 1]. For each selected node i, we generate a community Ṽi with its neighbors.
To find the optimal k in top-k sampling, we present a reinforcement learning (RL) algorithm to
update the sampling ratio k adaptively. We model the updating process of k as a finite horizon
Markov Decision Process (MDP) and adopt Q-learning Watkins & Dayan (1992); Sun et al. (2021)
to learn the MDP. In the experiments, we also apply two general sampling approaches: random walk
Zeng et al. (2019) and spectral clustering Chiang et al. (2019). More details of these three sampling
methods can be found in Appendix A.3.

3.2 MODEL DESIGN

Operating on communities, HOGT leverages the following three steps to obtain local, high-order,
and long-range information. While achieving expressive representation with reduced computational
cost, the proposed community-based method can be viewed as a new structural encoding strategy.

(1) Graph Node-to-Community Node (G2C-MP). To capture the higher-order information in the
community, we introduce a representative community node (CN) for each community, and connect
it with other nodes in the community. The use of an additional node (virtual node) that connects to
all input graph nodes, has been observed to improve GNNs (Gilmer et al. (2017); Hu et al. (2021a);
Wu et al. (2021)) and has been justified theoretically (Cai et al. (2023)). Instead of aggregating the
whole information in the graph (as READOUT) (Wu et al. (2021)), we introduce the additional
node for each community to capture the higher-order structural information of a graph and support
the global information propagation as bridges.

Assume there are m communities
{
Ṽ1, . . . , Ṽm

}
, we then have m community nodes V =

{v1, . . . , vm}. We initialize the community node feature xi with a d-dimensional random vector.
Note that the number of community nodes is significantly smaller than the number of graph nodes.
For each community Ṽi, the community representation can be obtained by the community node
acting as the query qi with qi = xiW

Q:

hc
i = softmax

(
αqiK

⊤
Ṽi

)
VṼi

, (3)

where α is a constant scalar (α = 1√
d′), KṼi

and VṼi
are the key and value matrices of vi’s

community. The community node aggregates the community-level information.

(2) Community Node-to-Community Node (C2C-ATTN). To maintain the benefit of global atten-
tion in the transformer architecture, we enable information propagation between any two communi-
ties. Viewing each community node as a token, we adopt self-attention to refine the community-level
representations:

Attn(Hc) = softmax(
QcKc⊤
√
d′

)Vc, (4)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where Qc = HcWQ, Kc = HcWK , Vc = HcWV , with Hc =
[
hc
1
⊤, . . . ,hc

m
⊤
]⊤
∈ Rm×d′

.
By propagating information between communities, we obtain the updated community representation
Hc′ . The information passing from community to community helps to: 1) enhance the relationship
of communities, and 2) capture the long-range dependency at the community level.

(3) Community Node-to-Graph Node (C2G-MP). To finally obtain the representation of each
node, we aggregate the community representations to update node features. We define the query
vector of graph node vi as qi, while the key and value matrices from introduced community nodes
are Kc′ ∈ Rm×d′

and Vc′ ∈ Rm×d′
, respectively. For graph node vi, its representation can be

enhanced with community-level representations as:

hi = softmax
(
αqiK

c′

V (i)
⊤
)
Vc′

V (i), (5)

where Kc′

V (i) and Vc′

V (i) are the key and value matrices of vi’s communities.

Considering the importance of neighbors, it is also necessary to maintain local message-passing
(Zhao et al. (2021)) for the local-dependency graph data. Thus, the representation of graph node vi
can be updated as follows:

hi = softmax
(
αqiK

⊤
V (i)

)
VV (i), (6)

where KV (i) =

[
Kc′

V (i)

KN (i)

]
is the combination of Kc′

V (i) and KN (i) , and VV (i) is the combination

of Vc′

V (i) and VN (i), where KN (i), VN (i) are the key and value matrices of neighboring nodes of
vi, respectively.

Implementation Details of HOGT We have presented the individual attention mechanism in line
with general transformers. HOGT adopts multi-head attention (MHA) followed by feed-forward
blocks (FFN) and layer normalization (LN(·)) as:

h′(l) = LN
(
MHA

(
h(l−1)

))
+ h(l−1);h(l) = LN

(
FNN

(
h′(l)

))
+ h′(l). (7)

The positional encoding is an important component in transformers, and in the graph domain, re-
searchers have integrated the positional information into GTs by random walk positional encoding
Dwivedi & Bresson (2021), or Laplacian positional encoding Dwivedi et al. (2021). In HOGT, the
proposed community-based method can be viewed as a new structural encoding strategy.

4 THEORETICAL ANALYSIS

Here, we analyze several properties of HOGT including 1) the lower bound of HOGT, 2) the up-
per bound of HOGT, and 3) a general case of HOGT. We show that HOGT is a powerful model
that can approximate the GT model and achieve global attention, i.e., unifying MP and GT with
the community and newly introduced community nodes. We also analyze the role of community
nodes in capturing the high-order representation versus the function of hyperedges in hypergraph
convolutional networks in Appendix A.4.

Viewing the Whole Graph as a Community. In this case, GT can be simplified by Message-
Passing Neural Networks (MPNN) with an additional node that connects to all graph nodes. This
forms the lower bound of HOGT (number of communities m = 1). It has been demonstrated by Cai
et al. (2023) that MPNN with a virtual node can approximate a self-attention layer arbitrarily well.

Viewing Each Node as a Community. In this case, HOGT is the standard transformer. Specifi-
cally, the three-step MP in HOGT is reduced to one step: Community Node-to-Community Node.
Since a node is a community, HOGT is equivalent to propagating information between any two
nodes.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Multiple Communities With Multiple Nodes. In the general case, there are multiple commu-
nities with each containing multiple nodes. In this case, we demonstrate the power of HOGT by
showing that the information passing from graph nodes to community nodes back to graph nodes
can approximate global attention arbitrarily well.

Definition 4.1. A full self-attention layer is defined as:

x
(l+1)
i =

n∑
j=1

ϕ (qi)
T
ϕ (kj)∑n

k=1 ϕ (qi)
T
ϕ (kk)

· vj =

(
ϕ (qi)

T ∑n
j=1 ϕ (kj)⊗ vj

)T

ϕ (qi)
T ∑n

k=1 ϕ (kk)
, (8)

where ϕ(·) is a low-dimensional feature map with random transformation, qi, ki, vi are the query,
key, and value vector, respectively.

Proposition 4.1. The
∑n

k=1 ϕ (kk) and
∑n

j=1 ϕ (kj)⊗vj can be approximated by the virtual node,
and shared for all graph nodes, using only O(1) layers of MPNNs.

Proposition 4.1 asserts that Message-Passing Neural Networks with community nodes (MPNN+CN)
can function as the self-attention layer. Based on Proposition 4.1, we derive the following theorem
for our three-step message-passing framework.

Theorem 4.1. The combination of Message-Passing and self-attention: Message-Passing with an
introduced new node followed by a self-attention aggregation followed by another Message-Passing
can approximate self-attention arbitrarily well.

We briefly show how the approximation error can be bounded in Proposition 4.1 and provide the
proof of Theorem 4.1 in Appendix A.5.

5 EXPERIMENTS

In this section, we evaluate the effectiveness of HOGT in node classification tasks, a scenario where
GTs have yet to demonstrate state-of-the-art performance. We compare HOGT with standard GCN-
based models (graph and hypergraph-based), heterophilic-graph based models, and GT-based mod-
els. We also apply HOGT for graph classification task on datasets from TU database (Morris et al.
(2020)) and link prediction task on TEG-DB datasets (Li et al. (2024)) to further demonstrate its
superiority in Appendix A.9. Then, we evaluate the components of HOGT, including community
sampling; structural encoding; the necessity of message-passing between the communities, the local
connections in the graph. The detailed experiment settings can be found in Appendix A.6. The
analysis of community node initialization is included in the Appendix A.7. Additional analyses and
results for the HOGT model, including hyperparameter sensitivity and robustness evaluations, can
be found in Appendices A.10 and A.11, respectively.

Datasets We experiment on a range of graph benchmarks: (1) homophilic graph datasets (Cora,
Citeseer, Pubmed, and ogbn-arxiv) (Pei et al. (2020); Hu et al. (2020b)), (2) heterophilic graph
datasets (Cornell, Texas, Wisconsin, Actor, roman-empire, and amazon-ratings) (Zhu et al. (2020);
Platonov et al. (2023)), and (3) hypergraph datasets (Co-authorship Cora, DBLP, and News20) (Zhou
et al. (2006); Yadati et al. (2019); Chien et al. (2021a)), involving diverse domains and sizes (roman-
empire, amazon-ratings, Co-authorship DBLP, and ogbn-arxiv are large-scale datasets). The details
of these datasets are provided in Appendix A.8.

5.1 MAIN RESULTS

Performance on Homophilic Graphs. The homophilic datasets are graphs with high Homo. (in-
dicating the proportion of edges connecting nodes with the same label (Zhu et al. (2020))). The
prediction accuracies for node classification tasks are reported in Table 2. It can be observed that
our proposed HOGT method achieves the state-of-the-art or a competitive performance on most of
the datasets, regardless of the sampling method.

Compared with GCN-based methods, HOGT performs better on graphs with more nodes (e.g.,
Pubmed), specifically, HOGT improves upon popular GNN methods-APPNP by a margin of 3% on
Pubmed. This is likely because, based on local message-passing, GCN methods only capture local

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Node classification results on different datasets (mean accuracy (%) and standard deviation
over 10 different runs). Red: the best performance per dataset. Blue: the second best performance
per dataset. OOM denotes out-of-memory.

Cora Citeseer Pubmed ogbn-arxiv

GCN-based methods

GCN Kipf & Welling (2017) 86.92±1.33 76.13±1.51 87.01±0.62 70.40±0.10

APPNP Gasteiger et al. (2019) 87.75±1.30 76.53±1.61 86.52±0.61 70.20±0.16

GCNII Chen et al. (2020) 86.08±2.18 74.75±1.76 85.98±0.61 69.78±0.16

GAT Veličković et al. (2018) 87.34±1.14 75.75±1.86 85.37±0.56 67.56±0.12

GATv2 Brody et al. (2022) 87.25±0.89 75.72±1.30 85.75±0.55 68.84±0.13

HGNN Feng et al. (2019) 86.88±1.22 75.87±1.47 84.71±0.56 OOM
HGNN+ Gao et al. (2022b) 83.22±0.91 74.71±1.64 83.77±0.65 –

Graph Transformer-based methods

SAN Kreuzer et al. (2021) 81.91±3.42 69.63±3.76 81.79±0.98 69.17±0.15

Graphormer Ying et al. (2021) 67.71±0.78 73.30±1.21 OOM OOM
LiteGT Chen et al. (2021a) 80.62±2.69 69.09±2.03 85.45±0.69 OOM
UniMP Shi et al. (2020) 84.18±1.39 75.00±1.59 88.56±0.32 73.19±0.18

ANS-GT Zhang et al. (2022a) 86.71±1.45 74.57±1.51 89.76±0.46 –
NodeFormer Wu et al. (2022) 86.00±1.59 76.70±1.70 88.76±0.50 –
Gapformer Liu et al. (2023) 87.37±0.76 76.21±1.47 88.98±0.46 71.90±0.19

HOGT (randomwalk) 88.11±1.05 76.74±1.47 89.20±1.34 71.38±0.14

HOGT (clustering) 88.09±1.34 76.35±1.47 88.96±0.49 71.10±0.72

HOGT (learnable) 88.53±1.26 77.59±0.94 89.52±0.55 72.02±0.25

structural information. By contrast, HOGT enables the learning of more informative representations,
including community- and global-level information, which represents a significant advantage.

Compared to GT-based methods, there is an obvious advantage for HOGT on small-scale datasets
(e.g., Cora and Citeseer) with higher Homo., i.e., where the local-neighborhood information is more
important. Thus, the vanilla global attention on the whole graph adopted in existing GTs (such
as Graphormer) leads to massive unrelated information aggregation. Gapformer, a special case of
HOGT with one community, also achieves good performance.

In terms of efficiency, HOGT can be easily applied to large-scale graphs, ogbn-arxiv, while some
other GT methods cannot due to their poor scalability. Particularly, Graphformer and LiteGT en-
countered out-of-memory errors, even on small graphs. This highlights the need for a GT that can
scale effectively to large-scale graphs.

Performance on Heterophilic Graphs. These heterophilic datasets are of low Homo., thus can
be viewed as long-range dependency datasets. From the results in Table 3, we can observe that
specially designed heterophily-based methods can generally achieve improved performance, but not
on large-scale datasets (roman-empire, amazon-ratings). Except for Gapformer, most GT-based
models demonstrate a poor performance, which implies that GTs fail to propagate and aggregate
useful information. By contrast, our HOGT method can be easily extended to heterophilic graph
datasets. Specifically, for 4 small-scale datasets, HOGT improves upon the popular heterophily-
based GNN method GPRGNN by margins of 2.7%, 4.6%, 2.8% (absolute differences) on Cornell,
Wisconsin, and Actor. Compared to Gapformer, HOGT achieves performance gains of 2.1%, 3.1%,
3.7% on Cornell, Texas, and Wisconsin, respectively. On the 2 large-scale heterophilic datasets
(roman-empire and amazon-ratings), HOGT is significantly better than previous models. We further
evaluate the effectiveness of HGT by t-test in Appendix A.9 and find that the improvements of HGT
over baselines are all statistically significant (p-value≪0.05).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Node classification results on heterophilic datasets (mean accuracy (%) and standard de-
viation over 10 different runs). Red: the best performance per dataset. Blue: the second best
performance per dataset.

Cornell Texas Wisconsin Actor roman-empire amazon-ratings

GCN-based methods

GCN Kipf & Welling (2017) 45.67±7.96 60.81±8.03 52.55±4.27 28.73±1.17 73.69±0.74 48.70±0.63

APPNP Gasteiger et al. (2019) 41.35±7.15 61.62±5.37 55.29±3.90 29.42±0.81 72.73±0.44 45.62±0.52

GAT Veličković et al. (2018) 47.02±7.66 62.16±4.52 57.45±3.51 28.33±1.13 80.87±0.30 49.09±0.63

GATv2 Brody et al. (2022) 50.27±8.97 60.54±4.55 52.74±3.96 28.79±1.47 80.99±0.98 44.00±0.67

Heterophily-based methods

MLP LeCun et al. (2015) 71.62±5.57 77.83±5.24 82.15±6.93 33.26±0.91 64.45±0.61 42.44±0.70

MixHop Abu-El-Haija et al. (2019) 76.48±2.97 83.24±4.48 85.48±3.06 34.92±0.91 82.90±0.57 51.35±0.38

H2GCN Zhu et al. (2020) 75.40±4.09 79.73±3.25 77.57±4.11 36.18±0.45 60.11±0.52 36.47±0.23

FAGCN Bo et al. (2021) 67.56±5.26 75.67±4.68 75.29±3.06 32.13±1.33 65.22±0.56 44.12±0.30

GPRGNN Chien et al. (2021b) 76.76±2.16 81.08±4.35 82.66±5.62 35.30±0.80 64.85±0.27 44.88±0.34

Graph Transformer-based methods

SAN Kreuzer et al. (2021) 50.85±8.54 60.17±6.66 51.37±3.08 27.12±2.59 OOM OOM
UniMP Shi et al. (2020) 66.48±12.5 73.51±8.44 79.60±5.41 35.15±0.84 - -
NAGphormer Chen et al. (2022b) 56.22±8.08 63.51±6.53 62.55±6.22 34.33±0.94 76.12±0.22 49.44±0.54

Gapformer Liu et al. (2023) 77.57±3.43 80.27±4.01 83.53±3.42 36.90±0.82 87.65±0.47 46.38±0.58

HOGT (randomwalk) 79.46±2.16 83.44±1.87 87.25±2.67 38.11±0.87 88.74±0.52 53.94±0.43

HOGT (clustering) 78.65±2.82 82.63±4.97 86.47±2.97 37.44±0.68 88.47±0.53 53.59±0.59

HOGT (learnable) 79.73±3.25 81.62±4.49 85.10±2.00 38.62±1.02 88.94±0.52 54.32±0.44

Table 4: Analysis of positional encoding on different datasets (mean accuracy (%) and standard
deviation over 10 different runs).

Community Sampling Model Cora Citeseer Cornell Texas Wisconsin

Spectral Clustering
HOGT(lpe) 87.79±1.33 75.87±1.75 71.35±4.05 77.30±7.37 81.96±3.26

HOGT(rwpe) 87.52±1.53 75.65±1.78 73.78±3.83 78.38±4.01 84.71±2.11
HOGT(w/o pe) 88.09±1.34 76.35±1.47 78.65±2.82 82.63±4.97 86.47±2.97

More experimental results in Appendix 10 show that HOGT achieves better performance than pop-
ular hypergraph methods HGNN Feng et al. (2019) and HGNN+ Gao et al. (2022b) across all hy-
pergraph datasets. Compared to traditional HGCN methods, HOGT can propagate higher-order
information more flexibly based on attention architecture.

5.2 EFFICIENCY AND SCALABILITY

Table 5: Node classification results on large-scale
datasets (mean accuracy (%) and standard devia-
tion over 3 different runs).

Model ogbn-proteins ogbn-products
Graphormer OOM OOM
SAN OOM OOM
ANS-GT 74.67 ± 0.65 80.64 ± 0.29
HSGT 78.13 ± 0.25 81.15 ± 0.13
SGFormer 79.53 ± 0.38 81.61 ± 0.26
Polynormer 78.20 ± 0.44 82.97 ± 0.28
HOGT 80.39 ± 0.64 83.48 ± 0.32

We evaluate the scalability of the proposed
HOGT on two other large-scale datasets, ogbn-
proteins and ogbn-products Hu et al. (2020b).
As shown in Table 5, HOGT outperforms all
the baselines on these large graphs. Table 6
reports the training time per epoch, inference
time, and GPU memory costs for Cora and
ogbn-proteins. Since it is common practice to
use a fixed number of training epochs for model
training on these datasets, we report the train-
ing time per epoch to compare training effi-
ciency. We observe that HOGT is orders of
magnitude faster than popular GT models, in-
cluding Graphormer Ying et al. (2021), LiteGT
Chen et al. (2021a), and Polynormer Deng et al.
(2024). Compared to GAT, APPNP, and SG-
Former Wu et al. (2024), HOGT strikes a bal-
ance between performance and efficiency.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.3 ABLATION STUDIES

Here, we conduct a set of ablation studies to test different configurations of HOGT. The effect of
self-attention between communities and local information can be found in Appendix A.9.

Evaluation with Community Sampling. Here, we compare the performance of HOGT with
three different community sampling methods, i.e., learnable, random walk and spectral clus-
tering. The results have been included in Tables 2 and 3. It shows that HOGT with
proposed learnable sampling slightly outperforms random walk while random walk sampling
slightly outperforms spectral clustering. Intuitively, 1) random walk sampling constrains the
nodes in a community with k-hop walk length, while spectral clustering separates the graph
from a global view. Thus, random walk sampling captures more local structural informa-
tion than spectral clustering method; 2) Spectral clustering method is more sensitive to data
types (homogeneous or heterogeneous) than random walk, as it focuses on global connections.

Table 6: Efficiency comparison of HOGT and
graph Transformer competitors w.r.t. training time
per epoch, inference time and GPU memory (GB)
cost on a A100. The missing results are caused by
out-of-memory.

Method Cora ogbn-proteins
Tr (ms) Inf (ms) Mem (MB) Tr (s) Inf (s) Mem (MB)

GAT 3.18 1.68 166.35 - - -
APPNP 3.32 1.49 35.57 - - -
Graphormer 90.58 71.26 359.25 - - -
LiteGT 15.57 5.77 227.69 - - -
polynormer 218.23 5.13 264.06 1.60 0.127 6429.06
SGFormer 3.66 1.42 50.87 1.26 0.098 228.19
HOGT 7.40 2.69 109.22 1.12 0.087 1284.32

A larger difference between HOGT (ran-
domwalk) and HOGT (clustering) is observed
on heterophilic datasets compared to ho-
mophilic datasets. It is important to note that
the results of HOGT (clustering) on large-
scale heterophilic datasets (roman-empire and
amazon-ratings) are reported with a single
community. Increasing the number of com-
munities will result in a significant perfor-
mance decrease. While our proposed learnable
method can actively select optimal communi-
ties, HOGT (learnable) can achieve improved
performance. We further analyze the effect of
the number of communities on two unlearnable
sampling methods in Appendix A.9.

Effect of Position Encoding. Based on Spectral Clustering, we test the role of positional encoding
for the proposed HOGT. We compare two popular positional encoding methods including Laplacian-
based (lpe) and random walk positional encoding (rwpe) to HOGT without any positional encoding
(w/o pe). It can be seen from Table 4 that the gap in performance is minor with or without positional
encoding on homophilic datasets (Cora and Citeseer). While without positional encoding, HOGT
achieves obvious better performance on heterophilic datasets, such as, Cornell, Texas, and Wiscon-
sin. The positional encoding methods (such as lpe) usually encode the original graph connections,
thus, integrating positional encoding will lead to a negative effect for these heterophilic datasets
which contain massive noisy information in graph structure. A detailed analysis of the failure of
positional encoding can be found in Appendix A.9. Compared to popular positional encoding meth-
ods, community sampling in HOGT are able to integrate structural information in a more flexible
and effective way.

6 CONCLUSION

In this paper, we introduced a higher-order message-passing strategy within the Transformer archi-
tecture to learn long-range, higher-order relationships for graph representation. Initially, we extract
communities from the entire graph and introduce a new node for each community. Subsequently,
leveraging community-structured data, we adopt a three-step message-passing scheme to aggregate
information from the graph node to the community node, propagate information between commu-
nity nodes and send the community-level information back to the graph nodes. The introduced nodes
act like hyperedges in a hypergraph to effectively propagate information to other graph nodes. We
theoretically demonstrate the powerful expressiveness of HOGT and empirically show the effective-
ness of HOGT across diverse datasets on node classification. While HOGT is designed to capture
comprehensive information across various types of graphs, achieving an optimal balance between
different (local, global, and higher-order) information in complex graph structures remains a chal-
lenge. In the future, we will consider designing more flexible community sampling methods and
message-passing framework for different data types.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. MixHop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In ICML, 2019.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph
convolutional networks. In AAAI. AAAI Press, 2021.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In Interna-
tional Conference on Learning Representations, 2022.

Chen Cai, Truong Son Hy, Rose Yu, and Yusu Wang. On the connection between MPNN and
graph transformer. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning
Research, pp. 3408–3430. PMLR, 2023.

Weishan Cai, Wenjun Ma, Jieyu Zhan, and Yuncheng Jiang. Entity alignment with reliable path
reasoning and relation-aware heterogeneous graph transformer. In IJCAI, 2022.

Cong Chen, Chaofan Tao, and Ngai Wong. Litegt: Efficient and lightweight graph transformers.
2021a.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph rep-
resentation learning. In Proceedings of the 39th International Conference on Machine Learn-
ing (ICML), Proceedings of Machine Learning Research, 2022a.

Jianwen Chen, Shuangjia Zheng, Ying Song, Jiahua Rao, and Yuedong Yang. Learning attributed
graph representation with communicative message passing transformer. In Proceedings of the
Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 2242–2248, 8
2021b.

Jinsong Chen, Kai-Xin Gao, Gaichao Li, and Kun He. Nagphormer: Neighborhood aggregation
graph transformer for node classification in large graphs. ArXiv, abs/2206.04910, 2022b.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph con-
volutional networks. In International Conference on Machine Learning, pp. 1725–1735. PMLR,
2020.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:
An efficient algorithm for training deep and large graph convolutional networks. In Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
257–266, 2019.

Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset function
framework for hypergraph neural networks. arXiv preprint arXiv:2106.13264, 2021a.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In International Conference on Learning Representations, 2021b.

Krzysztof Choromanski, Han Lin, Haoxian Chen, Tianyi Zhang, Arijit Sehanobish, Valerii Likhosh-
erstov, Jack Parker-Holder, Tamas Sarlos, Adrian Weller, and Thomas Weingarten. From block-
toeplitz matrices to differential equations on graphs: towards a general theory for scalable masked
transformers. In International Conference on Machine Learning, pp. 3962–3983. PMLR, 2022.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Chenhui Deng, Zichao Yue, and Zhiru Zhang. Polynormer: Polynomial-expressive graph trans-
former in linear time. arXiv preprint arXiv:2403.01232, 2024.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. arXiv preprint
arXiv:2110.07875, 2021.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 3558–3565, 2019.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
Int. Conf. Learn. Representations Workshop Representation Learn. Graphs Manifolds, 2019.

Matthias Fey, Jan-Gin Yuen, and Frank Weichert. Hierarchical inter-message passing for learning
on molecular graphs. arXiv preprint arXiv:2006.12179, 2020.

Dongqi Fu, Zhigang Hua, Yan Xie, Jin Fang, Si Zhang, Kaan Sancak, Hao Wu, Andrey Malevich,
Jingrui He, and Bo Long. Vcr-graphormer: A mini-batch graph transformer via virtual connec-
tions. arXiv preprint arXiv:2403.16030, 2024.

Han Gao, Xu Han, Jiaoyang Huang, Jian-Xun Wang, and Liping Liu. Patchgt: Transformer over
non-trainable clusters for learning graph representations. In Learning on Graphs Conference, pp.
27–1. PMLR, 2022a.

Yue Gao, Yifan Feng, Shuyi Ji, and Rongrong Ji. Hgnn+: General hypergraph neural networks.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(3):3181–3199, 2022b.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Combining neural networks
with personalized pagerank for classification on graphs. In International Conference on Learning
Representations, 2019.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pp. 1263–1272, 2017.

Lingbing Guo, Qian Zhang, and Huajun Chen. Unleashing the power of transformer for graphs.
ArXiv, abs/2202.10581, 2022.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Advances Neural Inf. Process. Syst., volume 30, 2017.

Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer in
transformer. Advances in Neural Information Processing Systems, 34:15908–15919, 2021.

Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A
generalization of vit/mlp-mixer to graphs. In International Conference on Machine Learning,
ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pp. 12724–12745. PMLR, 2023.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020a.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv:2005.00687, 2020b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. OGB-
LSC: A large-scale challenge for machine learning on graphs. In Joaquin Vanschoren and Sai-Kit
Yeung (eds.), Proceedings of the Neural Information Processing Systems Track on Datasets and
Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021a.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-lsc:
A large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430, 2021b.

Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph neu-
ral networks via graph coarsening. In Proceedings of the 27th ACM SIGKDD conference on
knowledge discovery & data mining, pp. 675–684, 2021.

Md Shamim Hussain, Mohammed J. Zaki, and Dharmashankar Subramanian. Global self-attention
as a replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 655–665, 2022. doi: 10.1145/3534678.3539296.

EunJeong Hwang, Veronika Thost, Shib Sankar Dasgupta, and Tengfei Ma. An analysis of virtual
nodes in graph neural networks for link prediction. In The First Learning on Graphs Conference,
2022.

Bo Jiang, Fei Xu, Ziyan Zhang, Jin Tang, and Feiping Nie. Agformer: Efficient graph representation
with anchor-graph transformer. arXiv preprint arXiv:2305.07521, 2023.

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph conden-
sation for graph neural networks. arXiv preprint arXiv:2110.07580, 2021.

Dongkwan Kim and Alice Oh. Translating subgraphs to nodes makes simple gnns strong and ef-
ficient for subgraph representation learning. In Forty-first International Conference on Machine
Learning.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980,
2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In Proc. 5th Int. Conf. Learn. Representations, 2017.

Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio
Tossou. Rethinking graph transformers with spectral attention. In Advances in Neural Infor-
mation Processing Systems, 2021.

Weirui Kuang, Z WANG, Yaliang Li, Zhewei Wei, and Bolin Ding. Coarformer: Transformer for
large graph via graph coarsening, 2022. In URL https://openreview. net/forum, 2021.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Chaoliu Li, Lianghao Xia, Xubin Ren, Yaowen Ye, Yong Xu, and Chao Huang. Graph transformer
for recommendation. In SIGIR, pp. 1680–1689, 2023.

Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. Gated graph sequence neural
networks. In Proceedings of ICLR’16, 2016.

Zhuofeng Li, Zixing Gou, Xiangnan Zhang, Zhongyuan Liu, Sirui Li, Yuntong Hu, Chen Ling,
Zheng Zhang, and Liang Zhao. Teg-db: A comprehensive dataset and benchmark of textual-edge
graphs. arXiv preprint arXiv:2406.10310, 2024.

Chuang Liu, Yibing Zhan, Xueqi Ma, Liang Ding, Dapeng Tao, Jia Wu, and Wenbin Hu. Gapformer:
Graph transformer with graph pooling for node classification. In IJCAI, pp. 2196–2205, 2023.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers, 2021.

Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin Zhao,
Junzhou Huang, Sophia Ananiadou, and Yu Rong. Transformer for graphs: An overview from
architecture perspective. arXiv preprint arXiv:2202.08455, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neu-
mann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv:2007.08663,
2020.

Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampásek. Attending to graph
transformers. CoRR, abs/2302.04181, 2023.

Dai Quoc Nguyen, Tu Dinh Nguyen, and Dinh Phung. Universal graph transformer self-attention
networks. In Companion Proceedings of the Web Conference 2022, WWW ’22, pp. 193–196,
2022. doi: 10.1145/3487553.3524258.

Hoang NT and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.
CoRR, abs/1905.09550, 2019.

Jinyoung Park, Seongjun Yun, Hyeon ju Park, Jaewoo Kang, Jisu Jeong, KyungHyun Kim, Jung-
Woo Ha, and Hyunwoo J. Kim. Deformable graph transformer. ArXiv, abs/2206.14337, 2022.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In International Conference on Learning Representations, 2020.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of gnns under heterophily: Are we really making progress? In
ICLR, 2023.

Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. arXiv:2205.12454,
2022.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying WEI, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. In Advances in Neural Informa-
tion Processing Systems, volume 33, pp. 12559–12571, 2020.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020.

Qingyun Sun, Jianxin Li, Hao Peng, Jia Wu, Yuanxing Ning, Philip S. Yu, and Lifang He.
Sugar: Subgraph neural network with reinforcement pooling and self-supervised mutual infor-
mation mechanism. In Proc. 30th Int. Conf. World Wide Web, pp. 2081–2091, 2021. doi:
10.1145/3442381.3449822.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In The Tenth
International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In Proc. 6th Int. Conf. Learn. Representations, 2018.

Lin Wang, Wenqi Fan, Jiatong Li, Yao Ma, and Qing Li. Fast graph condensation with structure-
based neural tangent kernel. In Proceedings of the ACM on Web Conference 2024, pp. 4439–4448,
2024.

Peihao Wang, Shenghao Yang, Yunyu Liu, Zhangyang Wang, and Pan Li. Equivariant hypergraph
diffusion neural operators. arXiv preprint arXiv:2207.06680, 2022.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Qitian Wu, Wentao Zhao, Zenan Li, David P. Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. In NeurIPS, 2022.

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. Difformer:
Scalable (graph) transformers induced by energy constrained diffusion. In ICLR, 2023.

Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian, and
Junchi Yan. Simplifying and empowering transformers for large-graph representations. Advances
in Neural Information Processing Systems, 36, 2024.

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. In Advances in
Neural Information Processing Systems (NeurIPS), 2021.

Yujie Xing, Xiao Wang, Yibo Li, Hai Huang, and Chuan Shi. Less is more: on the over-globalizing
problem in graph transformers. arXiv preprint arXiv:2405.01102, 2024.

Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S. Sheng, Jiajie Xu, Fuzhen Zhuang, Junhua
Fang, and Xiaofang Zhou. Graph contextualized self-attention network for session-based recom-
mendation. In IJCAI, 2019a.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Proc. 7th Int. Conf. Learn. Representations, 2019b.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha
Talukdar. Hypergcn: A new method for training graph convolutional networks on hypergraphs.
Advances in neural information processing systems, 32, 2019.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In Thirty-Fifth
Conference on Neural Information Processing Systems, 2021.

Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks. Advances
in Neural Information Processing Systems, 33:17009–17021, 2020.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph trans-
former networks. Advances in neural information processing systems, 32, 2019.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for
learning graph representations. arXiv preprint arXiv:2001.05140, 2020.

Zaixi Zhang, Qi Liu, Qingyong Hu, and Chee-Kong Lee. Hierarchical graph transformer with
adaptive node sampling. arXiv preprint arXiv:2210.03930, 2022a.

Zaixi Zhang, Qi Liu, Qingyong Hu, and Chee-Kong Lee. Hierarchical graph transformer with
adaptive node sampling. Advances in Neural Information Processing Systems, 35:21171–21183,
2022b.

Haiteng Zhao, Shuming Ma, Dongdong Zhang, Zhi-Hong Deng, and Furu Wei. Are more layers
beneficial to graph transformers? arXiv preprint arXiv:2303.00579, 2023.

Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun, Xing Xie, and
Yanfang Ye. Gophormer: Ego-graph transformer for node classification. arXiv preprint
arXiv:2110.13094, 2021.

Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung Nguyen, Xingquan Zhu, and Shirui
Pan. Structure-free graph condensation: From large-scale graphs to condensed graph-free data.
Advances in Neural Information Processing Systems, 36, 2024.

Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hypergraphs: Clustering,
classification, and embedding. In NeurIPS, pp. 1601–1608, 2006.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Houquan Zhou, Shenghua Liu, Danai Koutra, Huawei Shen, and Xueqi Cheng. A provable frame-
work of learning graph embeddings via summarization. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pp. 4946–4953, 2023.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in
Neural Information Processing Systems, 33:7793–7804, 2020.

Wenhao Zhu, Tianyu Wen, Guojie Song, Xiaojun Ma, and Liang Wang. Hierarchical transformer
for scalable graph learning. arXiv preprint arXiv:2305.02866, 2023.

Wenhao Zhu, Guojie Song, Liang Wang, and Shaoguo Liu. Anchorgt: Efficient and flexible attention
architecture for scalable graph transformers. arXiv preprint arXiv:2405.03481, 2024.

Yangfu Zhu, Linmei Hu, Xinkai Ge, Wanrong Peng, and Bin Wu. Contrastive graph transformer
network for personality detection. In IJCAI, 2022.

Yiran Zhu, Xing Xu, Fumin Shen, Yanli Ji, Lianli Gao, and Heng Tao Shen. Posegtac: Graph
transformer encoder-decoder with atrous convolution for 3d human pose estimation. In IJCAI,
2021.

A APPENDIX

A.1 MORE RELATED WORKS

Higher-Order Representation learning. In computer vision, it is a common approach to divide
the whole image into multiple local patches. Vision Transformers (ViTs) Dosovitskiy et al. (2020)
then generate the image representation by aggregating high-level representations from these patches
rather than individual pixels. Following the transformer architecture, Han et al. Han et al. (2021)
further subdivide each local patch into smaller patches. This innovative approach enables the model
to capture more detailed representations, thus enhancing feature representations. The high-order,
or high-level representations derived from local patches, which often share similar content, play
a critical role in learning visual representations. In the graph domain, several studies Feng et al.
(2019); Wang et al. (2022) also consider encoding higher-order correlations for graph representation
learning. Typically, the hypergraph structure with a series of hyperedges is introduced to model
the complex higher-order relationship. Within the context of GTs, some recent studies Gao et al.
(2022a); Zhao et al. (2023) have attempted to extract substructures, treat them as patches, and utilize
the substructural representations for graph classification tasks. As graphs continue to grow rapidly
in size, the relationships among nodes become increasingly complex. Therefore, exploring and
exploiting higher-order representations is essential for graph representation learning.

Virtual Node in Message-Passing. The introduction of a virtual node expands the graph by
adding an extra node that facilitates information exchange among all pairs of nodes. Its effec-
tiveness in improving performance has been observed in various tasks Hu et al. (2021b). Recently,
there has been a significant focus on studying its theoretical properties. Hwang et al. Hwang et al.
(2022) analyzed the virtual node’s role in the context of link prediction. They found that virtual
nodes can help to add expressiveness of the learned link representation and decrease under-reaching
and over-smoothing. Cai et al. Cai et al. (2023) demonstrated the power of message-passing with
a virtual node, showing that it can approximate an arbitrary self-attention layer within GTs. While
the function of virtual node as READOUT has been explored in existing GNNs, the community
nodes in our HOGT have a slightly different function. In addition to aggregate information like
the READOUT, they act as bridges connecting the entire graph to propagate long-range dependent
information, while also saving computational costs, as the number of communities is significantly
smaller than the number of graph nodes.

A.2 COMPLEXITY ANALYSIS OF HOGT

We analyze the complexity of HOGT. The computational complexity of the first step Graph Node-to-
community Node is O (mN). Since m is the number of community and usually much smaller than

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

the number of graph nodes N , the computational complexity can be simplified asO(N). Moreover,
the computational complexity of the second step community Node-to-community Node is O

(
m2

)
,

it is a self-attention. The final step community Node-to-community Node is O (N). Therefore, the
overall complexity of HOGT is O(m2 +N).

A.3 THE COMMUNITY SAMPLING METHODS

Random walk sampling. To preserve the graph structural information as well as local or long-
range connectivity, random walk sampling is a simple but effective approach. We consider a regular
random walk sampler with m root nodes selected uniformly at random and each walker goes k hops.
As such, we can obtain the communities

{
Ṽ1, . . . , Ṽm

}
. Each community Ṽi has k+1 nodes which

are k-hop neighbours.

Spectral clustering. Spectral clustering methods segment the graph by minimum cuts such that
the number of within-cluster links is much higher than between-cluster links in order to better cap-
ture good community structure. However, these spectral clustering methods can just obtain non-
overlapping clusters. As we aim to achieve more communication between communities, we extend
each cluster with its 1-hop neighbourhood He et al. (2023). Thus, we can obtain m communities{
Ṽ1, . . . , Ṽm

}
, where Ṽi ← Ṽi ∪

{
N1(j) | j ∈ Ṽi

}
.

Learnable sampling. For regular graphs, we explore a learnable method that employs reinforce-
ment learning to determine the optimal number of clusters.

Given graph G = (V, E) with node set V and edge set E . Suppose there are N nodes in V . The
graph topology is presented by the adjacency matrix A. First, we learn a GNN-based encoder:

Hℓ = GNN(A,Hℓ−1) , ℓ = 1, . . . , L, (9)

and obtain the representation of N nodes H =
[
h⊤
1 , . . . ,h

⊤
N

]⊤ ∈ RN×d. Then, we employ a
trainable projection vector p to project all node features to 1D. Given node vi with feature hi, the
scale projection of xi on p is yi = hip/∥p∥. Here, yi measures how much information of node vi
can be retained when projected to the direction of p. After that, we adopt top-k sampling to select
kN nodes, here k ∈ (0, 1]. For each selected node i, we generate a community Ṽi with its neighbors.

To find the optimal k in top-k sampling, we present a reinforcement learning (RL) algorithm to
update the sampling ratio k adaptively. We model the updating process of k as a finite horizon
Markov Decision Process (MDP). Formally, the state, action, transition, reward and termination of
the MDP are defined as follows:

State. The state se at epoch e is represented by the indices of selected nodes with pooling ratio k:

Action. RL agent updates k by taking action ae based on reward. We define the action ae as add or
minus a fixed value ∆k ∈ [0, 1] from k.

Transition. After updating k, we use top-k sampling to select a new set of nodes and corresponding
communities in the next epoch.

Reward. Due to the black-box nature of GTs, it is hard to sense its state and cumulative reward.
So we define a discrete reward function reward (se, ae) for each se at ae directly based on the
classification results:

reward (se, ae) =


+1, if acce > acce−1

0, if acce = acce−1

−1, if acce < acce−1,

(10)

where acce is the classification accuracy at epoch e. Eq. (4) indicates if the classification accuracy
with ae is higher than the previous epoch, the reward for ae is positive, and vice versa.

Termination. If the change of k among 10 consecutive epochs is no more than ∆k, the RL algorithm
will stop and k will remain fixed during the next training process. This means that RL finds the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

optimal threshold that can retain the most striking nodes. The terminal condition is formulated as:

Range ({ke−10, · · · , ke}) ≤ ∆k. (11)

We adopt Q-learning Watkins & Dayan (1992); Sun et al. (2021) to learn the MDP. Q-learning is an
off-policy RL algorithm that seeks to find the best action to take given the current state. It fits the
Bellman optimality equation as follows:

Q∗ (se, ae) = reward (se, ae) + γargmax
a′

Q∗ (se+1, a
′) , (12)

where γ ∈ [0, 1] is a discount factor of future reward. We adopt a ε-greedy policy with an explore
probability ε:

π (ae | se;Q∗) =

{
random action, w.p. ε

argmax
ae

Q∗ (se, a) , otherwise (13)

This means that the RL agent explores new states by selecting an action at random with probability
ε instead of selecting actions based on the max future reward. We train the RL agent and node
classification model jointly in an end-to-end manner.

A.4 CONNECTION BETWEEN COMMUNITY NODE AND HYPEREDGE

We analyze the role of community nodes in capturing the high-order representation in HOGT versus
the function of hyperedges in hypergraph convolutional networks.

Encode complex relationship. To encode the high-order correlations in the complicated graph,
in hypergraph convolutional networks (HGCN), the hyperedges are introduced to connect multiple
nodes. In this work, we introduce a community node for each community which contains multiple
nodes sharing similar properties (semantic or information). Like the hyperedge, the community
node connects with every node in its community.

High-Order Message-Passing. Following the message-passing scheme, HGCN first propagates and
aggregates information along hyperedge eh to obtain the hyperedge presentation aeh , then updates
the node representation by aggregating the hyperedge representations. Formally, the layer-wise
message-passing is defined as:

a
(k)

eh
= Aggregate(k)

({
z(k−1)
u : u ∈ eh

})
, z(k)

v = Update(k)
({

a
(k)

eh
: v ∈ eh

})
, (14)

where z
(k)
v is the feature vector of node v at the kth layer. The hypergraph-based convomutional

networks design Aggregate(k)(·) and Combine(k)(·) operations based on hypergraph structure.

For example, in a spectral-based hypergraph convolutional network, the convolutional operation is
defined as:

∆ = D−1/2
v SWD−1

e S⊤D−1/2
v ,h(k) = σ

(
∆Z(k−1)Θ(k)

)
, (15)

where the diagonal matrices Dv and De denote the vertex and hyperedge degrees, respectively. W
indicate the relationship of hyperedges, the incidence matrix S denote the correlations of nodes and

hyperedges with S(v, e) =

{
1, if v ∈ e
0, if v /∈ e

, Θk is the weights of kth layer. Based on the hyper-

edge operation, we can refine the message-passing in Eq. 15 into three steps: node-to-hyperedge,
hyperedge-to-hyperedge, hyperedge-to-node with the approximate presentation:

a
(k)

eh
= S⊤z(k−1),a

(k)

eh
= Wa

(k)

eh
, z(k) = Sa

(k)

eh
. (16)

We can see that the three-step message-passing in HGCN is equivalent to the three-step operation in
HOGT. In HGCN, the relationship of hyperedges usually can be ignored, i.e., W = I. In HOGT,
the framework can also be simplified to two steps without Community Node-to-Community Node.
From a high level, graph convolutional neural networks can be viewed as special cases of hypergraph
convolutional networks. In comparison, our proposed HOGT framework can be simplified to other
existing GT models.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.5 PROOF

Proof of Proposition 4.1 Here, we briefly show how the approximation error can be bounded in
Proposition 4.1. The complete proof can be found in Cai et al. (2023).

Proof. We first make the following assumptions on the feature space X ⊂ Rn×d and the regularity
of layer L.

Assumption 1. ∀i ∈ [n], xi ∈ Xi, ∥xi∥ < C1. This implies X is compact.

Assumption 2. ∥WQ∥ < C2, ∥WK∥ < C2, ∥WV ∥ < C2 for target layer L. Combined with
Assumption 1 on X , this means the unnormalized attention α′ (xi,xj) = xi

TWQ (WK)
T
xj is

both upper and lower bounded, which further implies
∑

j e
α′(xi,xj) be both upper bounded and

lower bounded.

Under Assumptions 1 and 2, MPNN+CN ofO(1) width andO(1) depth can approximate LPerformer
and LLinear-Transformer arbitrarily well. Specifically, ϕ can be approximated arbitrarily well by MLP
with O(1) width and O(1) depth Cybenko (1989), ϕ (qi),

∑n
j=1 ϕ (kj) ⊗ vj lies in a compact

domain (n is fixed) as ϕ is continuous, ϕ (qi)
T ∑n

k=1 ϕ (kk) is uniformly lower bounded by a pos-
itive number for any node features in X . In Proposition 4.1, we consider Linear Transformer for
convenience.

Proof of Theorem 4.1 The ”full” self-attention can be approximated following: 1) Message-
Passing Neural Networks with community nodes (MPNN+CN) can act as the self-attention layer,
and 2) Under our three-step message-passing framework, the combination of MPNN+CN with the
self-attention can achieve the approximated full self-attention in graph. While point 1) has been
validated in Proposition 1, we mainly demonstrated point 2).

Proof. In the process of Graph Node-to-Community Node (G2C-MP), the message-passing in a
community is powerful to update community node (cn) by aggregate the information fom graph
nodes (gn) as:

h
(k)
i = τj∈C(i)ϕ

(k)
gn−cn

(
h
(k−1)
i , x

(k−1)
j , ej,i

)
, (17)

where ϕ is message function, and τ is aggregation function, C(i) is the graph nodes in the community
i. Based on Proposition 4.1, the message-passing with a new introduced node that connected to
every nodes in the community can be approximated by the following aggregation function τ :

h
(k)
i = τj∈C(i)ϕ

(k)
G2C−MP (·, {xi}i) =

 |C|∑
j=1

ϕ (kj) , f

 |C|∑
j=1

ϕ (kj)⊗ vj

 , (18)

where f(·) flattens a 2D matrix to a 1D vector in raster order, kj = W
(k)
K x

(k)
j , and vj = W

(k)
V x

(k)
j .

Then, in the process of Community Node-to-Community Node (C2C-ATTN), a self-attention mech-
anism (γC2C−ATTN) is adopted to propagate information between any two community nodes. The
updated community nodes can be represented as:

h
k

i = γC2C−ATTN

 m∑
j=1

ϕ (kj) , f

 m∑
j=1

ϕ (kj)⊗ vj

 , (19)

where m is the number of communities, kj = W
(k)
K h

(k)
j , and vj = W

(k)
V h

(k)
j .

Finally, the updated community node sends its message back to graph nodes in its community. Each
graph node vi applies the update function γgn:

x
(k)
i = γ(k)

gn

(
x
(k−1)
i , τj∈V(i)

ϕ
(k)
cn−gn

(
x
(k−1)
i , h

(k−1)

j , ej,i

))
, (20)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where V(i) is the the community set of graph node i. Based on Proposition 4.1, the message-passing
in the step Community Node-to-Graph Node (C2G-MP) can be formulated as:

x
(k)
i = γC2G−MP

xi,

|V(i)|∑
j=1

ϕ (kj) , f

|V(i)|∑
j=1

ϕ (kj)⊗ vj



 (21)

where kj = W
(k)
K h

(k)

j , and vj = W
(k)
V h

(k)

j .

Following the three-step architecture, the information of a graph node can be propagated to any
other nodes by the community nodes as the bridges. And the representations of graph nodes can be
approximated as:

xk
i =

(
ϕ (qi)

∑n
j=1 ϕ (kj)⊗ vj

)T

ϕ (qi)
T ∑n

k=1 ϕ (kk)
, (22)

where n is the number of graph nodes, qi = W
(k)
Q x

(k)
i , kj = W

(k)
K x

(k)
j , and vj = W

(k)
V x

(k)
j .

Therefore, the combination of Message-Passing with a new node followed by a self-attention fol-
lowed by another Message-Passing can approximate self-attention arbitrarily well.

A.6 EXPERIMENTAL PART

Settings. For Cora, Citeseer, and Pubmed datasets, we follow the same experimental procedure,
such as features and data splits in Pei et al. (2020). For heterophilic graph datasets (Cornell, Texas,
Wisconsin, and Actor), we adopt the same dataset splits used by Zhu et al. (2020). For roman-empire
and amazon-ratings, we follow the settings in Platonov et al. (2023). For hypergraphs, we adopt the
same setting as Yadati et al. (2019); Chien et al. (2021a). For other datasets, we randomly split them
into 60%/20%/20% as training/validation/test sets following Zhang et al. (2022a); Liu et al. (2023).
The dataset obgn-arxiv can be downloaded from Open Graph Benchmark (OGB) Hu et al. (2020a)
1, hypergraph datasets from 2, roman-empire and amazon-ratings from 3, all the other graph datasets
from PyTorch Geometric (PyG) Fey & Lenssen (2019) 4

For the general sampling methods-random walk Zeng et al. (2019) and spectral clustering Chi-
ang et al. (2019), we set the number of communities to 1 (the whole graph as a community) and
1%, 10%, 20%, 50% of the number of nodes in the graph. For the proposed learnable sampling
method, the optimal number of communities can be actively learned. The training utilizes Adam op-
timizer Kingma & Ba (2014) for GNN methods, while Adamw is adopted for all Graph Transformer-
based models. Each method runs for 200 epochs on all datasets, with the test accuracy reported based
on the epoch that achieves the highest validation accuracy. We set 3 layers HOGT for ogbn-arxiv,
5 layers for roman-empire and amazon-ratings, and 2 layers for other datasets. We search model
hyper-parameters including walk length of random walk, hidden dimension, and dropout. The re-
sults of HOGT are averaged over 10 runs with random weight initializations. Furthermore, all the
experiments are conducted on a Linux server equipped with NVIDIA A100.

A.7 INITIALIZING COMMUNITY NODES

Community nodes are crucial for the proposed HOGT method. In this section, we analyze the
strategies for initializing these nodes.

The community nodes can be initialized either with zero vectors or random values. Our experiments
show that both approaches lead to similar final performance after 200 epochs, suggesting that the
choice of initialization has minimal impact on the final outcomes. In our experiments, we use
random initialization and set the community node dimensionality to match the original node features.

1OGB: https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
2DHG: https://deephypergraph.readthedocs.io/en/latest/index.html
3DGL: https://docs.dgl.ai/
4PyG: https://github.com/pyg-team/pytorch_geometric

20

https://ogb.stanford.edu/docs/nodeprop/##ogbn-arxiv
https://deephypergraph.readthedocs.io/en/latest/index.html
https://docs.dgl.ai/
https://github.com/pyg-team/pytorch_geometric

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 10: Node classification results on hypergraph datasets (mean accuracy (%) and standard devi-
ation over 5 different runs). The complexity of information propagation can be found for different
models. The number of nodes, edges, and communities are |E|, N , and m, respectively.

Model Coauthor-Cora Coauthor-DBLP News20 Complexity
GCN 64.42±0.68 81.35±0.18 76.82±0.48 O(|E|)
HGNN 61.18±0.62 82.66±1.05 81.06±1.03 O(N2)
HGNN+ 60.40±0.77 82.86±0.85 81.24±0.75 O(N2)
HOGT (ours) 68.82±1.34 85.82 ±0.70 81.32±0.80 O(m2 +N)

Although random or zero initialization is effective, an alternative strategy—such as using max or
mean pooling of the features of graph nodes within a community to initialize the community node
features—could potentially accelerate convergence by providing a more informed starting point for
community node embeddings. However, this method introduces additional computational overhead,
which we have intentionally avoided in our current implementation to maintain efficiency.

A.8 DATASET STATISTIC.

Table 7: Statistics of graph benchmark datasets.
Cora Citeseer Pubmed ogbn-arxiv Cornell Texas Wisconsin Actor roman-empire amazon-ratings

Nodes 2,708 3,327 19,717 169,343 183 183 251 7,600 22,662 24,492
Edges 5,429 4,732 44,338 1,166,343 280 195 466 26,752 32,927 93,050
Homo. 0.83 0.72 0.79 0.63 0.30 0.11 0.21 0.22 0.05 0.38

Table 8: Statistics of hypergraph benchmark datasets.
Coauthorship-Cora Coathorship-DBLP News20

Nodes 2,708 41,302 16,342
Hyperedges 1,072 22,363 100
Classes 7 6 4

A.9 MORE RESULTS AND EXPLANATIONS.

Table 9: The p-values of the t-test between the performances of different methods.

Model Cornell Actor roman-empire
Mixhop/HGT 0.026 5.67e-07 8.36e-13
GPRGNN/HGT 0.016 1.36e-06 7.82e-27
Gapformer/HGT 0.037 0.006 0.0009

Performance on Hypergraphs. Theoretically, both hypergraph convolutional networks (HGCN)
and our HOGT can learn high-order correlations in complex datasets. Here, based on hypergraph
structure, we generate a community for each hyperedge. According to the results in Table 10,
HOGT achieves better performance than popular hypergraph methods HGNN Feng et al. (2019) and
HGNN+ Gao et al. (2022b) across all hypergraph datasets. Compared to traditional HGCN methods,
HOGT can propagate higher-order information more flexibly based on attention architecture.

The fail of positional encoding on heterophilic datasets. To better explain this phenomenon,
we first show how positional encoding is related to the theoretical properties of GTs, e.g., their
expressive power in capturing graph structure.

The implementation of PE, i.e., concatenated with input features, tends to influence the attention
scores, producing an attention bias. Considering that Q ∈ Rn×d, K ∈ Rn×d, and P ∈ Rn×d′

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

represent the query, key, and PE vectors, respectively, the attention score S ∈ Rn×n is calculated as:

S = QK⊤. (23)

After concatenating the PE vector, the refined attention score S′ is calculated as:

S′ = [Q,P]× [K,P]⊤

= [Q,P]×
[

K⊤

P⊤

]
= QK⊤ +PP⊤,

(24)

where [Q,P] denotes the concatenation of the query vector Q with the PE vector, and [K,P] denotes
the concatenation of the key vector K with the PE vector. The PP⊤ term can be interpreted as an
attention bias.

Inappropriate positional encoding can affect the attention matrix, leading to a negative impact on
performance. Muller et al. Müller et al. (2023) clarified that no clear expressivity hierarchy exists
for the popular positional or structural encodings, including Laplacian PE and RandomWalk PE. In
other words, the critical aspects of existing PEs in GT haven’t been demonstrated theoretically and
empirically.

From Table 4 in the paper, the performance gap is minor with or without positional encoding meth-
ods on homophilic datasets (Cora and Citeseer). Without positional encoding, HGT demonstrates a
better performance on heterophilic datasets, such as Cornell, Texas, and Wisconsin. This implies that
existing positional encoding methods cannot accurately capture the structural information from het-
erophilic datasets, which is consistent with the above analysis. This motivates researchers to design
more suitable positional encoding methods for different datasets or explore alternative approaches
to encode the graph structural information like our HGT framework.

Figure 2: The ablation study on the number of communities. We set the number of communities to
1 (the whole graph as a community) and 1%, 10%, 20%, 50% of the number of graph nodes.

Effect of the Number of Community. We analyze the effect of the number of communities with
the two unlearnable sampling methods for HOGT. From the results in Figure 2, we see that in-
creasing the number of communities in the early stage can enhance the performance of HOGT
(randomwalk) on Cora. This is because HOGT encodes more local higher-order information with
more communities extracted by random walk. As the number of communities increases, we can

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 11: Abalation study of different components of HOGT on different datasets (mean accuracy
(%) and standard deviation over 10 different runs).

Community Sampling Model Cora Citeseer Cornell Texas Wisconsin

Random Walk
HOGT(w/o C2C-ATTN)) 87.73±0.96 74.94±1.64 77.57±3.21 80.54±3.59 85.89±2.60

HOGT 88.11±1.05 76.74±1.47 76.49±2.72 80.00±4.22 87.25±2.67

Random Walk
HOGT(w/o local) 83.04±1.48 74.47±2.10 76.49±2.72 82.70±4.86 83.44±1.87
HOGT(w local) 88.11±1.05 76.74±1.47 70.27±2.34 74.90±2.78 78.19±2.67

observe a decreasing trend followed by an increase for HOGT with the spectral clustering method
on Cora. This illustrates that there likely exist some important substructures in the graph. We also
note the stable performance of HOGT on Wisconsin with different numbers of communities for both
methods. While Wisconsin is a small-scale dataset, the global information can be well encoded by
introducing a community.

The RL-based sampling method adaptively learns the optimal number of communities, eliminating
the need to predefine this hyperparameter. This approach adds flexibility to HOGT and ensures
robust performance without requiring extensive manual tuning of the number of communities.

Effect of Self-Attention Between Communities. As we analyzed in Appendix A.4, if dropping
out the second step (C2C-ATTN), in terms of message-passing, HOGT behaves similarly to popular
hypergraph-based neural networks. In this case, we are not taking into account the relationships
between communities and we can see that in Table 11, HOGT (w/o C2C-ATTN)) exhibits a perfor-
mance degradation compared to HOGT on datasets which have complex structure (like more nodes
and edges). Without C2C-ATTN, the node representation is still limited in the local neighbourhood,
i.e., community. Propagating information between communities can help the node finally capture
the higher-order long-range dependency in the whole graph.

Effect of Local Information for Different Datasets. Given one of the major advantages of Trans-
former is capturing the long-range dependency in objects, we examine the importance of local in-
formation for some of the benchmarks. From Table 11, we note that it can improve the performance
if we consider the local neighbours in the third step (G2V-MP) for Cora and Citeseer as they are
small-scale datasets with high Homo.. In contrast, it is more beneficial to disregard the original
graph connections for Cornell, Texas, and Wisconsin with low Homo..

Performance on Graph Classification. We utilize several commonly-used real-world datasets
from TU database Morris et al. (2020) to evaluate the performance of HOGT on graph classifica-
tion task. NCI1 consists of 4,110 molecule graphs from TUDataset, which represent two balanced
subsets of datasets for chemical compounds screened for activity against non-small cell lung can-
cer and ovarian cancer cell lines, respectively. PROTEINS consists of 1,113 protein graphs from
TUDataset, where each graph corresponds to a protein molecule, nodes represent amino acids, and
edges capture the interactions between amino acids. From Table 12, we can observe that HOGT
can achieve state-of-the-art performance on all datasets. Compared to GT models like GraphGPS,
HOGT can encode more comprehensive information in the graph.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 12: Experimental results on two datasets (the mean accuracy (Acc.) and standard deviation
over 10 different runs).

NCI1 PROTEINS

GCN-based methods

GCN Kipf & Welling (2017) 79.68±2.05 71.7±4.7

GAT Veličković et al. (2018) 79.88±0.88 72.0±3.3

GIN Xu et al. (2019b) 81.7±1.7 73.76±4.61

GatedGCN Li et al. (2016) 81.17±0.79 74.65±1.13

Graph Transformer-based methods

GT Dwivedi & Bresson (2021) 80.15±2.04 73.94±3.78

SAN Kreuzer et al. (2021) 80.50±1.30 74.11±3.07

Graphormer Ying et al. (2021) 81.44±0.57 75.29±3.10

GraphTrans Wu et al. (2021) 82.60±1.20 75.18±3.36

SAT Chen et al. (2022a) 80.69±1.55 73.32±2.36

GraphGPS Rampášek et al. (2022) 84.21±2.25 75.77±2.19

GT(a whole graph as a community) 84.67±1.32 76.78±1.84

Performance on Link Prediction. We have conducted experiments on the TEG-DB datasets (Li
et al. (2024)) to further evaluate the performance of HOGT on link prediction, specifically on the
Goodreads-Children and Goodreads-Crime datasets. These datasets are Textual-Edge Graphs (TEG)
with rich textual descriptions for nodes and edges. Models like BERT-Large (Devlin (2018)) and
BERT-Base (Devlin (2018)) were used to obtain node and edge embeddings. The results in Table 13
demonstrate that HOGT achieves performance that is either better than or comparable to General-
Conv (You et al. (2020)) and GraphTransformer (Yun et al. (2019)). In these experiments, we treated
the data in each batch as a community and introduced a community node for each batch, effectively
extending the HOGT framework to these diverse domains.

Table 13: Performance Comparison Across Datasets and Methods (w/o edge text indicates that edge
embeddings are not used).

Methods
Goodreads-Children Goodreads-Crime

BERT-Large BERT-Base w/o edge text BERT-Large BERT-Base w/o edge text

AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

GeneralConv 0.9810 0.9179 0.9821 0.9187 0.9825 0.9189 0.9772 0.9079 0.9774 0.9077 0.9752 0.9101
GraphTransformer 0.9807 0.9200 0.9811 0.9160 0.9776 0.9066 0.9738 0.9079 0.9737 0.9079 0.9716 0.8983
HOGT 0.9821 0.9216 0.9837 0.9208 0.9825 0.9289 0.9776 0.9110 0.9776 0.9110 0.9768 0.9130

A.10 HYPERPARAMETER ANALYSIS

We conducted an analysis of HOGT’s sensitivity to various hyperparameters, including walk length,
hidden dimension, dropout rate, and optimizer. The results are summarized in Table 14. From
the findings, we observe that HOGT, when using the random walk sampling method, demonstrates
low sensitivity to walk length and dropout rate. However, on the Cora dataset, the model shows
higher sensitivity to the hidden dimension and optimizer, indicating their importance in influencing
performance. In our experiments, we adopted AdamW as the optimizer for HOGT and other GT
models.

Table 14: The performances of HOGT with different hyperparameters.

Hyperparameters Cora Citeseer Pubmed

Hidden dimension 128 85.45 76.63 88.42
256 88.13 76.76 89.20

Dropout
0 87.73 76.98 88.40

0.2 86.92 76.76 88.40
0.5 87.05 76.93 89.02

walk length
3 86.59 76.68 88.39
5 87.59 76.73 88.41
10 87.45 76.98 88.45

Optimizer
Adam 86.91 76.08 88.24

Adamw 88.11 76.74 89.20

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.11 ROBUSTNESS ANALYSIS

To further evaluate the robustness of the proposed HOGT in handling graphs with sparse structure,
we conducted additional experiments by randomly removing 10% and 20% of the edges from Cite-
seer and Pubmed. The results in Table 15, demonstrate that HOGT maintains strong performance
even under these conditions. This highlights the robustness of HOGT in processing graphs with
irregular or sparse structures.

Table 15: The performance of HOGT (randomwalk) with sparse structure on Citeseer and Pubmed.
The edge ratio means the reserving ratio of original edges.

Method Edge Ratio Citeseer Pubmed

HOGT
80% 74.52 85.96
90% 75.07 86.71

100% 76.74 89.20

25

	Introduction
	Related Work
	High-order Graph Transformer
	Community Sampling
	Model Design

	Theoretical Analysis
	Experiments
	Main Results
	Efficiency and Scalability
	Ablation Studies

	Conclusion
	Appendix
	More Related Works
	Complexity Analysis of HOGT
	The community sampling methods
	Connection between Community Node and Hyperedge
	Proof
	Experimental part
	Initializing community nodes
	Dataset Statistic.
	More Results and Explanations.
	Hyperparameter Analysis
	Robustness Analysis

