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ABSTRACT

Inspired by the success of transformers on natural language processing (NLP) and
computer vision (CV) tasks, graph transformers (GTs) have recently been pro-
posed to boost the performance of graph learning. However, the attention mecha-
nisms used in existing GTs face certain limitations in capturing crucial topological
information or scaling to large graphs, due to their quadratic complexity. To ad-
dress these limitations, in this paper, we propose a high-order information prop-
agation strategy within the transformer architecture to simultaneously learn the
local, long-range, and higher-order relationships of the graph. We first propose
a flexible sampling method to extract communities from the graph, and create
new community nodes and in particular a learnable community sampling method
with reinforcement learning. We then propose a three-step message-passing strat-
egy dubbed HOGT to capture the local and higher-order information in the com-
munities and propagate long-range dependency information between the commu-
nity nodes to finally obtain comprehensive node representations. Note that as
structural information has been flexibly integrated into our designed community-
based message-passing scheme, HOGT discards the positional encoding which
was thought to be important for GT. We theoretically demonstrate that GTs with
effective substructures can achieve an approximate global attention. HOGT can
be viewed as a unified framework, taking many existing graph models as its spe-
cial cases. We empirically show that HOGT achieves highly competitive results
consistently across node and graph classification tasks.

1 INTRODUCTION

Learning from graph-structured data, such as social networks, biological networks, and brain net-
works, is critical for many real-world applications. Graph Neural Networks (GNNs) (Kipf & Welling
(2017); Veličković et al. (2018); Gasteiger et al. (2019); Hamilton et al. (2017)) are one type of
mainstream architecture that adopts a local Message-Passing (MP) scheme where the information is
propagated and aggregated between the connected nodes. However, traditional GNNs suffer from
the over-smoothing (NT & Maehara (2019)), over-squashing (Topping et al. (2022)), and limited ex-
pressiveness (Xu et al. (2019b)) problems because of this neighbourhood-dependent message pass-
ing strategy.

The transformer architecture (Vaswani et al. (2017)) has recently attracted great attention for graph
learning as its global attention mechanism provides a potential solution to the above problems. In
contrast to traditional GNNs, Graph Transformers (GTs) (Kreuzer et al. (2021); Mialon et al. (2021);
Ying et al. (2021)) enable information to pass between any two nodes, regardless of the original
graph connections. When applying transformers on graphs, the key is to properly incorporate graph
structural information. This motivates several studies (Kreuzer et al. (2021); Dwivedi & Bresson
(2021); Ying et al. (2021)) to focus on constituting good positional encoding or attention bias to
integrate graph structure. However, Müller et al. (2023) showed that current graph transformers
still suffer from limited expressivity, and no clear expressivity hierarchy exists for commonly used
positional or structural encodings. Moreover, when developing GTs on real graph tasks, especially
for node classification, existing models (Chen et al. (2021a); Kreuzer et al. (2021); Park et al. (2022))
suffer from high computational complexity due to dense connections. In conclusion, the current GT
models not only fail to fully capture useful topological information (e.g., intrinsic local structure,
implicit higher-order correlations) of the graph but also cannot effectively propagate long-range
information.
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Inspired by the successful use of patches in the vision domain, some recent works (Gao et al.
(2022a); Zhao et al. (2023)) have incorporated patch/substructure representations into GTs. While
these introduced substructures can benefit graph representation in some cases, existing works
(Kuang et al. (2021); Zhu et al. (2023; 2024)) still face challenges in achieving flexible and suit-
able substructures for different graphs and theoretically demonstration for success of GTs with sub-
structures. Therefore, it is important to develop a new scheme to effectively capture the complex
structural relationships in the graph for different graphs and data types, while also providing theo-
retical support.

In this work, we develop a powerful architecture that can effectively propagate comprehensive in-
formation with a flexible sampling method and term it as HOGT. To better capture the intricate
relationships within a graph, we group graph nodes into multiple communities where all nodes
within the same community share similar properties (semantic or information). Notably, we design
a learnable community sampling method based on reinforcement learning (RL). When encoding
closer graph nodes into the same community, the challenge is how to capture the local high-order
information in the community and propagate it globally for effective and comprehensive representa-
tion learning. To tackle this challenge, we introduce a new node to represent each community which
serves as the bridge to allow the graph node information to propagate and aggregate along these
introduced nodes to establish global connections among all nodes. The generated communities can
encode more complex structural information as a substitute for positional encoding.

Based on community-structured data, we adopt a three-step message-passing strategy: 1) Graph
Node-to-Community Node (G2C-MP); 2) Community Node-to-Community Node (C2C-ATTN);
and 3) Community Node-to-Graph node (C2G-MP). In the first step, within each community, the
information of each node is propagated and aggregated to its corresponding community node to
capture local high-order information. Then, based on the community-level representations of the
community nodes, we apply a self-attention mechanism between them to allow each community
node to capture long-range information from other communities. Finally, we update the representa-
tions of the graph nodes by aggregating information from their respective communities. We can see
that the community nodes effectively connect to almost all nodes in the graph.

Our proposed HOGT is a general framework and several other existing graph models can be viewed
as special cases. At the level of message-passing strategy: if removing Community Node-to-
Community Node (C2C-ATTN), the framework simplifies to a Message-Passing Architecture. At
the level of community generation: if we view the whole graph as a community, our model simpli-
fies to a GT model Wu et al. (2021), which takes a special token to connect with all other nodes
to achieve global information, representing the lower bound of HOGT; if we view each node as a
community, our model essentially becomes the vanilla transformer, representing the upper bound
of HOGT. In comparison to the existing graph models, the advantage of our proposed HOGT in
processing various graph information and graph types is shown in Table 1.

Our proposed framework demonstrates its versatility by accommodating various graph types (graph
and hypergraph), data types (homophily and heterophily), data scales (same-scale and large-scale),
and different graph tasks. We mainly evaluate HOGT on node classification tasks in which GT
models have a performance gap, and also extend HOGT for graph classification. We find improve-
ments in accuracy on almost all datasets, especially on heterophilic datasets. In summary, our main
contributions are as follows:

• We propose a flexible sampling method followed by a three-step message-passing frame-
work in GTs to capture comprehensive information achieving high expressiveness for graph
representation learning.

• We unify message-passing and GTs by constructing communities and introducing new
community nodes. We demonstrate that our model can approximate any other message-
passing model and theoretically show that the three-step message-passing with newly in-
troduced community node can achieve global attention as general transformers do.

• We conduct extensive experiments on benchmark datasets to demonstrate the effectiveness
of the proposed method for node and graph classification. The experimental results also
verify the effectiveness of higher-order representations.
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Table 1: A summary of the capabilities of different graph models in processing graph information
and graph types. GNN is the vanilla graph neural network, HGNN is a hypergraph-based neural
network, and GT is the general Graph Transformer.

Model Local Information Global Information Higher-Order Information Graph Hypergraph
GNN ✓ ✗ ✗ ✓ ✗

HGNN ✓ ✗ ✓ ✓ ✓

GT ✓ ✓ ✗ ✓ ✗

HOGT (ours) ✓ ✓ ✓ ✓ ✓

2 RELATED WORK

General Graph Transformers. Recently, the transformer architecture has been successfully ap-
plied to the graph domain, showing competitive or even superior performance on many tasks when
compared to GNNs. The standard transformer was first extended to graphs (Dwivedi & Bresson
(2021)), with four special designs including the position encoding for nodes in a graph. Subse-
quently, many other GTs (Rong et al. (2020); Zhang et al. (2020); Chen et al. (2021b); Wu et al.
(2021); Hussain et al. (2022); Chen et al. (2022a); Nguyen et al. (2022); Kreuzer et al. (2021)) and
applications of GTs (Xu et al. (2019a); Zhu et al. (2021; 2022); Cai et al. (2022); Li et al. (2023);
Deng et al. (2024); Wu et al. (2024)) have been developed — Rampášek et al. (2022) and Min et al.
(2022) provide a more detailed introduction and review of different GTs. However, the above meth-
ods are mostly designed for graph-level tasks, as they impose great time and memory constraints due
to the self-attention layer. Therefore, several works (Zhao et al. (2021); Choromanski et al. (2022);
Guo et al. (2022); Park et al. (2022); Wu et al. (2023); Liu et al. (2023)) have been proposed to make
graph transformers more scalable and efficient, but they still suffer from various challenges such as
missing long-range and higher-order information or noise aggregation.

Graph Transformer Utilizing Substructures. Due to the exponentially increasing scale of graph
data, researchers have attempted to utilize substructures to scale up graph representation learning
through methods such as subgraph learning (Kim & Oh), and graph condensation (Wang et al.
(2024); Zheng et al. (2024); Zhou et al. (2023); Jin et al. (2021); Huang et al. (2021); Fey et al.
(2020)). In terms of GTs, substructures (Zhang et al. (2022b)) (such as hierarchical structure, clus-
ters, communities, and subgraphs) have been utilized for both graph and node classification. For
graph classification tasks, some methods (Gao et al. (2022a); Zhao et al. (2023)) segment the graph
into patches or subgraphs and use the substructural representations to learn topological high-level
information. For node classification, researchers have explored extracting substructures and utiliz-
ing these substructural representations to reduce the quadratic complexity of global self-attention,
while effectively capturing the global information of the graph. Specifically, Kuang et al. (2021) and
Zhu et al. (2023) employed coarsening techniques to obtain a coarser graph with fewer nodes to cap-
ture long-range information. With the obtained clusters, Xing et al. (2024) introduced inter-cluster
and intra-cluster Transformers to extract local information and long-range dependent information
from distant nodes. Zhu et al. (2024) and Jiang et al. (2023) selected several topologically important
nodes as anchors, allowing information to propagate over a large receptive field, where the anchor
nodes can be viewed as a substructure of the original graph. Furthermore, Fu et al. (2024) transferred
global and long-range information by establishing multiple virtual connections using personalized
PageRank.

While these introduced substructures can benefit graph representation in some cases, there are limita-
tions of existing works for achieving flexible and suitable substructures for different graphs. Specif-
ically, the anchor nodes in Zhu et al. (2024); Jiang et al. (2023) are derived from the original graph
nodes and therefore cannot introduce additional information, such as higher-order information. Sim-
ilarly, the supernodes in the coarse graphs in Kuang et al. (2021); Zhu et al. (2023) which are used to
propagate high-level information are also constrained by the original graph structure. Moreover, it
is not trivial to provide theoretical support for GTs with substructures in capturing global attention,
while ensuring adaptability across various graph datasets. In this work, we demonstrate that the
proposed HOGT offers a general and theoretically grounded framework. It shows significant advan-
tages in capturing comprehensive information through the flexible community sampling method and
demonstrates its versatility by its effectiveness across diverse graph datasets.
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Figure 1: (a) The overall HOGT framework. (b) HOGT first adopts a community sampling method
to obtain multiple communities. (c) Then, it propagates and aggregates information following a
three-step operation: 1) G2C-MP which aggregates the high-order information of a community
into the community node; 2) C2C-MP which propagates community-level information in a self-
attention mechanism; 3) C2G-MP which gathers the updated community-level information for node
representation.

More related works about Higher-Order Representation Learning and Virtual Node in Message-
Passing can be found in Appendix A.1.

3 HIGH-ORDER GRAPH TRANSFORMER

Overview. As illustrated in Figure 1, our proposed HOGT framework is designed to effectively
aggregate and propagate all levels of information for comprehensive graph representation learning.
By dividing the whole graph into several communities and introducing a representative node for
each community, we achieve the local higher-order representation of each community and adopt
community-level attention to effectively propagate the long-range dependent information. In the
following, first we introduce the notations and provide a background on transformer architecture,
and then we describe in detail each component of the architecture. The complexity analysis of
HOGT can be found in Appendix A.2.

Notation. Given an graph G = (V, E) with node set V and edge set E . Suppose there are N nodes
in V , the set of edges E ⊆ V × V defines the connections among the N nodes, (vi, vj) ∈ E denotes
the edge between node vi and node vj . The graph topology is presented by the adjacency matrix A,
where Aij = 1 if there exists an edge (vi, vj), Aij = 0 otherwise. We denote X ∈ RN×d the node
features, where each node i has x ∈ Rd. Let yi denote the label of node i, in this work, we focus on
the node classification task which aims to predict the labels of the unknown nodes in the graph.

Transformer Architecture. The transformer architecture consists of a composition of transformer
layers. Each transformer layer has a self-attention module and a position-wise feed-forward network
(FFN). The self-attention mechanism calculates attention scores by taking the inner product of query
vectors (Q) and key vectors (K). It then uses these scores to aggregate value vectors (V) in a
weighted manner, resulting in contextualized representations, that is,

Q = HWQ,K = HWK ,V = HWV ; (1)

A =
QK⊤
√
d′

, Attn(H) = softmax(A)V (2)

where WQ ∈ Rd×d′
,WK ∈ Rd×d′

, and WV ∈ Rd×d′
are projection matrices, H =[

h⊤
1 , . . . ,h

⊤
n

]⊤ ∈ Rn×d denotes the input matrix of node embeddings, and d′ is the output hid-
den dimension. Generally, it is the global attention mechanism that allows everything to connect
to everything (e.g., every node to every node for graph). Instead of performing a single attention
function, it is standard to adopt multi-head attention.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 COMMUNITY SAMPLING

Effectively utilizing the structural information of the graph is the key challenge for graph repre-
sentation learning. We note that data correlations in practice can be complex and are often beyond
pairwise, for example, a community of friends shares their common interest in basketball in a social
network. To encode these higher-order correlations, we consider extracting meaningful communities
from the whole graph. Here, a community is introduced to collect multiple vertices sharing similar
properties (semantic or information), similar to how a hyperedge connects multiple objects.

We design the community sampling method tailored to different graph types: 1). For hypergraphs,
we intuitively view each hyperedge as a community; 2). For regular graphs, we explore a learnable
sampling method that employs reinforcement learning to determine the optimal communities.

Learnable sampling. For graph G = {A,X}, we learn a GNN-based encoder and obtain the
hidden representation of N nodes: H =

[
h⊤
1 , . . . ,h

⊤
N

]⊤ ∈ RN×d. Then, we employ a trainable
projection vector p to project all node features to 1D. Given node vi with feature hi, its scale
projection on p is yi = hip/∥p∥.. Here, yi measures how much information of node vi can be
retained when projected to the direction of p. After that, we adopt top-k sampling to select kN
nodes, where k ∈ (0, 1]. For each selected node i, we generate a community Ṽi with its neighbors.
To find the optimal k in top-k sampling, we present a reinforcement learning (RL) algorithm to
update the sampling ratio k adaptively. We model the updating process of k as a finite horizon
Markov Decision Process (MDP) and adopt Q-learning Watkins & Dayan (1992); Sun et al. (2021)
to learn the MDP. In the experiments, we also apply two general sampling approaches: random walk
Zeng et al. (2019) and spectral clustering Chiang et al. (2019). More details of these three sampling
methods can be found in Appendix A.3.

3.2 MODEL DESIGN

Operating on communities, HOGT leverages the following three steps to obtain local, high-order,
and long-range information. While achieving expressive representation with reduced computational
cost, the proposed community-based method can be viewed as a new structural encoding strategy.

(1) Graph Node-to-Community Node (G2C-MP). To capture the higher-order information in the
community, we introduce a representative community node (CN) for each community, and connect
it with other nodes in the community. The use of an additional node (virtual node) that connects to
all input graph nodes, has been observed to improve GNNs (Gilmer et al. (2017); Hu et al. (2021a);
Wu et al. (2021)) and has been justified theoretically (Cai et al. (2023)). Instead of aggregating the
whole information in the graph (as READOUT) (Wu et al. (2021)), we introduce the additional
node for each community to capture the higher-order structural information of a graph and support
the global information propagation as bridges.

Assume there are m communities
{
Ṽ1, . . . , Ṽm

}
, we then have m community nodes V =

{v1, . . . , vm}. We initialize the community node feature xi with a d-dimensional random vector.
Note that the number of community nodes is significantly smaller than the number of graph nodes.
For each community Ṽi, the community representation can be obtained by the community node
acting as the query qi with qi = xiW

Q:

hc
i = softmax

(
αqiK

⊤
Ṽi

)
VṼi

, (3)

where α is a constant scalar (α = 1√
d′ ), KṼi

and VṼi
are the key and value matrices of vi’s

community. The community node aggregates the community-level information.

(2) Community Node-to-Community Node (C2C-ATTN). To maintain the benefit of global atten-
tion in the transformer architecture, we enable information propagation between any two communi-
ties. Viewing each community node as a token, we adopt self-attention to refine the community-level
representations:

Attn(Hc) = softmax(
QcKc⊤
√
d′

)Vc, (4)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where Qc = HcWQ, Kc = HcWK , Vc = HcWV , with Hc =
[
hc
1
⊤, . . . ,hc

m
⊤
]⊤
∈ Rm×d′

.
By propagating information between communities, we obtain the updated community representation
Hc′ . The information passing from community to community helps to: 1) enhance the relationship
of communities, and 2) capture the long-range dependency at the community level.

(3) Community Node-to-Graph Node (C2G-MP). To finally obtain the representation of each
node, we aggregate the community representations to update node features. We define the query
vector of graph node vi as qi, while the key and value matrices from introduced community nodes
are Kc′ ∈ Rm×d′

and Vc′ ∈ Rm×d′
, respectively. For graph node vi, its representation can be

enhanced with community-level representations as:

hi = softmax
(
αqiK

c′

V (i)
⊤
)
Vc′

V (i), (5)

where Kc′

V (i) and Vc′

V (i) are the key and value matrices of vi’s communities.

Considering the importance of neighbors, it is also necessary to maintain local message-passing
(Zhao et al. (2021)) for the local-dependency graph data. Thus, the representation of graph node vi
can be updated as follows:

hi = softmax
(
αqiK

⊤
V (i)

)
VV (i), (6)

where KV (i) =

[
Kc′

V (i)

KN (i)

]
is the combination of Kc′

V (i) and KN (i) , and VV (i) is the combination

of Vc′

V (i) and VN (i), where KN (i), VN (i) are the key and value matrices of neighboring nodes of
vi, respectively.

Implementation Details of HOGT We have presented the individual attention mechanism in line
with general transformers. HOGT adopts multi-head attention (MHA) followed by feed-forward
blocks (FFN) and layer normalization (LN(·)) as:

h′(l) = LN
(
MHA

(
h(l−1)

))
+ h(l−1);h(l) = LN

(
FNN

(
h′(l)

))
+ h′(l). (7)

The positional encoding is an important component in transformers, and in the graph domain, re-
searchers have integrated the positional information into GTs by random walk positional encoding
Dwivedi & Bresson (2021), or Laplacian positional encoding Dwivedi et al. (2021). In HOGT, the
proposed community-based method can be viewed as a new structural encoding strategy.

4 THEORETICAL ANALYSIS

Here, we analyze several properties of HOGT including 1) the lower bound of HOGT, 2) the up-
per bound of HOGT, and 3) a general case of HOGT. We show that HOGT is a powerful model
that can approximate the GT model and achieve global attention, i.e., unifying MP and GT with
the community and newly introduced community nodes. We also analyze the role of community
nodes in capturing the high-order representation versus the function of hyperedges in hypergraph
convolutional networks in Appendix A.4.

Viewing the Whole Graph as a Community. In this case, GT can be simplified by Message-
Passing Neural Networks (MPNN) with an additional node that connects to all graph nodes. This
forms the lower bound of HOGT (number of communities m = 1). It has been demonstrated by Cai
et al. (2023) that MPNN with a virtual node can approximate a self-attention layer arbitrarily well.

Viewing Each Node as a Community. In this case, HOGT is the standard transformer. Specifi-
cally, the three-step MP in HOGT is reduced to one step: Community Node-to-Community Node.
Since a node is a community, HOGT is equivalent to propagating information between any two
nodes.

6
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Multiple Communities With Multiple Nodes. In the general case, there are multiple commu-
nities with each containing multiple nodes. In this case, we demonstrate the power of HOGT by
showing that the information passing from graph nodes to community nodes back to graph nodes
can approximate global attention arbitrarily well.

Definition 4.1. A full self-attention layer is defined as:

x
(l+1)
i =

n∑
j=1

ϕ (qi)
T
ϕ (kj)∑n

k=1 ϕ (qi)
T
ϕ (kk)

· vj =

(
ϕ (qi)

T ∑n
j=1 ϕ (kj)⊗ vj

)T

ϕ (qi)
T ∑n

k=1 ϕ (kk)
, (8)

where ϕ(·) is a low-dimensional feature map with random transformation, qi, ki, vi are the query,
key, and value vector, respectively.

Proposition 4.1. The
∑n

k=1 ϕ (kk) and
∑n

j=1 ϕ (kj)⊗vj can be approximated by the virtual node,
and shared for all graph nodes, using only O(1) layers of MPNNs.

Proposition 4.1 asserts that Message-Passing Neural Networks with community nodes (MPNN+CN)
can function as the self-attention layer. Based on Proposition 4.1, we derive the following theorem
for our three-step message-passing framework.

Theorem 4.1. The combination of Message-Passing and self-attention: Message-Passing with an
introduced new node followed by a self-attention aggregation followed by another Message-Passing
can approximate self-attention arbitrarily well.

We briefly show how the approximation error can be bounded in Proposition 4.1 and provide the
proof of Theorem 4.1 in Appendix A.5.

5 EXPERIMENTS

In this section, we evaluate the effectiveness of HOGT in node classification tasks, a scenario where
GTs have yet to demonstrate state-of-the-art performance. We compare HOGT with standard GCN-
based models (graph and hypergraph-based), heterophilic-graph based models, and GT-based mod-
els. We also apply HOGT for graph classification task on datasets from TU database (Morris et al.
(2020)) and link prediction task on TEG-DB datasets (Li et al. (2024)) to further demonstrate its
superiority in Appendix A.9. Then, we evaluate the components of HOGT, including community
sampling; structural encoding; the necessity of message-passing between the communities, the local
connections in the graph. The detailed experiment settings can be found in Appendix A.6. The
analysis of community node initialization is included in the Appendix A.7. Additional analyses and
results for the HOGT model, including hyperparameter sensitivity and robustness evaluations, can
be found in Appendices A.10 and A.11, respectively.

Datasets We experiment on a range of graph benchmarks: (1) homophilic graph datasets (Cora,
Citeseer, Pubmed, and ogbn-arxiv) (Pei et al. (2020); Hu et al. (2020b)), (2) heterophilic graph
datasets (Cornell, Texas, Wisconsin, Actor, roman-empire, and amazon-ratings) (Zhu et al. (2020);
Platonov et al. (2023)), and (3) hypergraph datasets (Co-authorship Cora, DBLP, and News20) (Zhou
et al. (2006); Yadati et al. (2019); Chien et al. (2021a)), involving diverse domains and sizes (roman-
empire, amazon-ratings, Co-authorship DBLP, and ogbn-arxiv are large-scale datasets). The details
of these datasets are provided in Appendix A.8.

5.1 MAIN RESULTS

Performance on Homophilic Graphs. The homophilic datasets are graphs with high Homo. (in-
dicating the proportion of edges connecting nodes with the same label (Zhu et al. (2020))). The
prediction accuracies for node classification tasks are reported in Table 2. It can be observed that
our proposed HOGT method achieves the state-of-the-art or a competitive performance on most of
the datasets, regardless of the sampling method.

Compared with GCN-based methods, HOGT performs better on graphs with more nodes (e.g.,
Pubmed), specifically, HOGT improves upon popular GNN methods-APPNP by a margin of 3% on
Pubmed. This is likely because, based on local message-passing, GCN methods only capture local
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Table 2: Node classification results on different datasets (mean accuracy (%) and standard deviation
over 10 different runs). Red: the best performance per dataset. Blue: the second best performance
per dataset. OOM denotes out-of-memory.

Cora Citeseer Pubmed ogbn-arxiv

GCN-based methods

GCN Kipf & Welling (2017) 86.92±1.33 76.13±1.51 87.01±0.62 70.40±0.10

APPNP Gasteiger et al. (2019) 87.75±1.30 76.53±1.61 86.52±0.61 70.20±0.16

GCNII Chen et al. (2020) 86.08±2.18 74.75±1.76 85.98±0.61 69.78±0.16

GAT Veličković et al. (2018) 87.34±1.14 75.75±1.86 85.37±0.56 67.56±0.12

GATv2 Brody et al. (2022) 87.25±0.89 75.72±1.30 85.75±0.55 68.84±0.13

HGNN Feng et al. (2019) 86.88±1.22 75.87±1.47 84.71±0.56 OOM
HGNN+ Gao et al. (2022b) 83.22±0.91 74.71±1.64 83.77±0.65 –

Graph Transformer-based methods

SAN Kreuzer et al. (2021) 81.91±3.42 69.63±3.76 81.79±0.98 69.17±0.15

Graphormer Ying et al. (2021) 67.71±0.78 73.30±1.21 OOM OOM
LiteGT Chen et al. (2021a) 80.62±2.69 69.09±2.03 85.45±0.69 OOM
UniMP Shi et al. (2020) 84.18±1.39 75.00±1.59 88.56±0.32 73.19±0.18

ANS-GT Zhang et al. (2022a) 86.71±1.45 74.57±1.51 89.76±0.46 –
NodeFormer Wu et al. (2022) 86.00±1.59 76.70±1.70 88.76±0.50 –
Gapformer Liu et al. (2023) 87.37±0.76 76.21±1.47 88.98±0.46 71.90±0.19

HOGT (randomwalk) 88.11±1.05 76.74±1.47 89.20±1.34 71.38±0.14

HOGT (clustering) 88.09±1.34 76.35±1.47 88.96±0.49 71.10±0.72

HOGT (learnable) 88.53±1.26 77.59±0.94 89.52±0.55 72.02±0.25

structural information. By contrast, HOGT enables the learning of more informative representations,
including community- and global-level information, which represents a significant advantage.

Compared to GT-based methods, there is an obvious advantage for HOGT on small-scale datasets
(e.g., Cora and Citeseer) with higher Homo., i.e., where the local-neighborhood information is more
important. Thus, the vanilla global attention on the whole graph adopted in existing GTs (such
as Graphormer) leads to massive unrelated information aggregation. Gapformer, a special case of
HOGT with one community, also achieves good performance.

In terms of efficiency, HOGT can be easily applied to large-scale graphs, ogbn-arxiv, while some
other GT methods cannot due to their poor scalability. Particularly, Graphformer and LiteGT en-
countered out-of-memory errors, even on small graphs. This highlights the need for a GT that can
scale effectively to large-scale graphs.

Performance on Heterophilic Graphs. These heterophilic datasets are of low Homo., thus can
be viewed as long-range dependency datasets. From the results in Table 3, we can observe that
specially designed heterophily-based methods can generally achieve improved performance, but not
on large-scale datasets (roman-empire, amazon-ratings). Except for Gapformer, most GT-based
models demonstrate a poor performance, which implies that GTs fail to propagate and aggregate
useful information. By contrast, our HOGT method can be easily extended to heterophilic graph
datasets. Specifically, for 4 small-scale datasets, HOGT improves upon the popular heterophily-
based GNN method GPRGNN by margins of 2.7%, 4.6%, 2.8% (absolute differences) on Cornell,
Wisconsin, and Actor. Compared to Gapformer, HOGT achieves performance gains of 2.1%, 3.1%,
3.7% on Cornell, Texas, and Wisconsin, respectively. On the 2 large-scale heterophilic datasets
(roman-empire and amazon-ratings), HOGT is significantly better than previous models. We further
evaluate the effectiveness of HGT by t-test in Appendix A.9 and find that the improvements of HGT
over baselines are all statistically significant (p-value≪0.05).
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Table 3: Node classification results on heterophilic datasets (mean accuracy (%) and standard de-
viation over 10 different runs). Red: the best performance per dataset. Blue: the second best
performance per dataset.

Cornell Texas Wisconsin Actor roman-empire amazon-ratings

GCN-based methods

GCN Kipf & Welling (2017) 45.67±7.96 60.81±8.03 52.55±4.27 28.73±1.17 73.69±0.74 48.70±0.63

APPNP Gasteiger et al. (2019) 41.35±7.15 61.62±5.37 55.29±3.90 29.42±0.81 72.73±0.44 45.62±0.52

GAT Veličković et al. (2018) 47.02±7.66 62.16±4.52 57.45±3.51 28.33±1.13 80.87±0.30 49.09±0.63

GATv2 Brody et al. (2022) 50.27±8.97 60.54±4.55 52.74±3.96 28.79±1.47 80.99±0.98 44.00±0.67

Heterophily-based methods

MLP LeCun et al. (2015) 71.62±5.57 77.83±5.24 82.15±6.93 33.26±0.91 64.45±0.61 42.44±0.70

MixHop Abu-El-Haija et al. (2019) 76.48±2.97 83.24±4.48 85.48±3.06 34.92±0.91 82.90±0.57 51.35±0.38

H2GCN Zhu et al. (2020) 75.40±4.09 79.73±3.25 77.57±4.11 36.18±0.45 60.11±0.52 36.47±0.23

FAGCN Bo et al. (2021) 67.56±5.26 75.67±4.68 75.29±3.06 32.13±1.33 65.22±0.56 44.12±0.30

GPRGNN Chien et al. (2021b) 76.76±2.16 81.08±4.35 82.66±5.62 35.30±0.80 64.85±0.27 44.88±0.34

Graph Transformer-based methods

SAN Kreuzer et al. (2021) 50.85±8.54 60.17±6.66 51.37±3.08 27.12±2.59 OOM OOM
UniMP Shi et al. (2020) 66.48±12.5 73.51±8.44 79.60±5.41 35.15±0.84 - -
NAGphormer Chen et al. (2022b) 56.22±8.08 63.51±6.53 62.55±6.22 34.33±0.94 76.12±0.22 49.44±0.54

Gapformer Liu et al. (2023) 77.57±3.43 80.27±4.01 83.53±3.42 36.90±0.82 87.65±0.47 46.38±0.58

HOGT (randomwalk) 79.46±2.16 83.44±1.87 87.25±2.67 38.11±0.87 88.74±0.52 53.94±0.43

HOGT (clustering) 78.65±2.82 82.63±4.97 86.47±2.97 37.44±0.68 88.47±0.53 53.59±0.59

HOGT (learnable) 79.73±3.25 81.62±4.49 85.10±2.00 38.62±1.02 88.94±0.52 54.32±0.44

Table 4: Analysis of positional encoding on different datasets (mean accuracy (%) and standard
deviation over 10 different runs).

Community Sampling Model Cora Citeseer Cornell Texas Wisconsin

Spectral Clustering
HOGT(lpe) 87.79±1.33 75.87±1.75 71.35±4.05 77.30±7.37 81.96±3.26

HOGT(rwpe) 87.52±1.53 75.65±1.78 73.78±3.83 78.38±4.01 84.71±2.11
HOGT(w/o pe) 88.09±1.34 76.35±1.47 78.65±2.82 82.63±4.97 86.47±2.97

More experimental results in Appendix 10 show that HOGT achieves better performance than pop-
ular hypergraph methods HGNN Feng et al. (2019) and HGNN+ Gao et al. (2022b) across all hy-
pergraph datasets. Compared to traditional HGCN methods, HOGT can propagate higher-order
information more flexibly based on attention architecture.

5.2 EFFICIENCY AND SCALABILITY

Table 5: Node classification results on large-scale
datasets (mean accuracy (%) and standard devia-
tion over 3 different runs).

Model ogbn-proteins ogbn-products
Graphormer OOM OOM
SAN OOM OOM
ANS-GT 74.67 ± 0.65 80.64 ± 0.29
HSGT 78.13 ± 0.25 81.15 ± 0.13
SGFormer 79.53 ± 0.38 81.61 ± 0.26
Polynormer 78.20 ± 0.44 82.97 ± 0.28
HOGT 80.39 ± 0.64 83.48 ± 0.32

We evaluate the scalability of the proposed
HOGT on two other large-scale datasets, ogbn-
proteins and ogbn-products Hu et al. (2020b).
As shown in Table 5, HOGT outperforms all
the baselines on these large graphs. Table 6
reports the training time per epoch, inference
time, and GPU memory costs for Cora and
ogbn-proteins. Since it is common practice to
use a fixed number of training epochs for model
training on these datasets, we report the train-
ing time per epoch to compare training effi-
ciency. We observe that HOGT is orders of
magnitude faster than popular GT models, in-
cluding Graphormer Ying et al. (2021), LiteGT
Chen et al. (2021a), and Polynormer Deng et al.
(2024). Compared to GAT, APPNP, and SG-
Former Wu et al. (2024), HOGT strikes a bal-
ance between performance and efficiency.
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5.3 ABLATION STUDIES

Here, we conduct a set of ablation studies to test different configurations of HOGT. The effect of
self-attention between communities and local information can be found in Appendix A.9.

Evaluation with Community Sampling. Here, we compare the performance of HOGT with
three different community sampling methods, i.e., learnable, random walk and spectral clus-
tering. The results have been included in Tables 2 and 3. It shows that HOGT with
proposed learnable sampling slightly outperforms random walk while random walk sampling
slightly outperforms spectral clustering. Intuitively, 1) random walk sampling constrains the
nodes in a community with k-hop walk length, while spectral clustering separates the graph
from a global view. Thus, random walk sampling captures more local structural informa-
tion than spectral clustering method; 2) Spectral clustering method is more sensitive to data
types (homogeneous or heterogeneous) than random walk, as it focuses on global connections.

Table 6: Efficiency comparison of HOGT and
graph Transformer competitors w.r.t. training time
per epoch, inference time and GPU memory (GB)
cost on a A100. The missing results are caused by
out-of-memory.

Method Cora ogbn-proteins
Tr (ms) Inf (ms) Mem (MB) Tr (s) Inf (s) Mem (MB)

GAT 3.18 1.68 166.35 - - -
APPNP 3.32 1.49 35.57 - - -
Graphormer 90.58 71.26 359.25 - - -
LiteGT 15.57 5.77 227.69 - - -
polynormer 218.23 5.13 264.06 1.60 0.127 6429.06
SGFormer 3.66 1.42 50.87 1.26 0.098 228.19
HOGT 7.40 2.69 109.22 1.12 0.087 1284.32

A larger difference between HOGT (ran-
domwalk) and HOGT (clustering) is observed
on heterophilic datasets compared to ho-
mophilic datasets. It is important to note that
the results of HOGT (clustering) on large-
scale heterophilic datasets (roman-empire and
amazon-ratings) are reported with a single
community. Increasing the number of com-
munities will result in a significant perfor-
mance decrease. While our proposed learnable
method can actively select optimal communi-
ties, HOGT (learnable) can achieve improved
performance. We further analyze the effect of
the number of communities on two unlearnable
sampling methods in Appendix A.9.

Effect of Position Encoding. Based on Spectral Clustering, we test the role of positional encoding
for the proposed HOGT. We compare two popular positional encoding methods including Laplacian-
based (lpe) and random walk positional encoding (rwpe) to HOGT without any positional encoding
(w/o pe). It can be seen from Table 4 that the gap in performance is minor with or without positional
encoding on homophilic datasets (Cora and Citeseer). While without positional encoding, HOGT
achieves obvious better performance on heterophilic datasets, such as, Cornell, Texas, and Wiscon-
sin. The positional encoding methods (such as lpe) usually encode the original graph connections,
thus, integrating positional encoding will lead to a negative effect for these heterophilic datasets
which contain massive noisy information in graph structure. A detailed analysis of the failure of
positional encoding can be found in Appendix A.9. Compared to popular positional encoding meth-
ods, community sampling in HOGT are able to integrate structural information in a more flexible
and effective way.

6 CONCLUSION

In this paper, we introduced a higher-order message-passing strategy within the Transformer archi-
tecture to learn long-range, higher-order relationships for graph representation. Initially, we extract
communities from the entire graph and introduce a new node for each community. Subsequently,
leveraging community-structured data, we adopt a three-step message-passing scheme to aggregate
information from the graph node to the community node, propagate information between commu-
nity nodes and send the community-level information back to the graph nodes. The introduced nodes
act like hyperedges in a hypergraph to effectively propagate information to other graph nodes. We
theoretically demonstrate the powerful expressiveness of HOGT and empirically show the effective-
ness of HOGT across diverse datasets on node classification. While HOGT is designed to capture
comprehensive information across various types of graphs, achieving an optimal balance between
different (local, global, and higher-order) information in complex graph structures remains a chal-
lenge. In the future, we will consider designing more flexible community sampling methods and
message-passing framework for different data types.
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A APPENDIX

A.1 MORE RELATED WORKS

Higher-Order Representation learning. In computer vision, it is a common approach to divide
the whole image into multiple local patches. Vision Transformers (ViTs) Dosovitskiy et al. (2020)
then generate the image representation by aggregating high-level representations from these patches
rather than individual pixels. Following the transformer architecture, Han et al. Han et al. (2021)
further subdivide each local patch into smaller patches. This innovative approach enables the model
to capture more detailed representations, thus enhancing feature representations. The high-order,
or high-level representations derived from local patches, which often share similar content, play
a critical role in learning visual representations. In the graph domain, several studies Feng et al.
(2019); Wang et al. (2022) also consider encoding higher-order correlations for graph representation
learning. Typically, the hypergraph structure with a series of hyperedges is introduced to model
the complex higher-order relationship. Within the context of GTs, some recent studies Gao et al.
(2022a); Zhao et al. (2023) have attempted to extract substructures, treat them as patches, and utilize
the substructural representations for graph classification tasks. As graphs continue to grow rapidly
in size, the relationships among nodes become increasingly complex. Therefore, exploring and
exploiting higher-order representations is essential for graph representation learning.

Virtual Node in Message-Passing. The introduction of a virtual node expands the graph by
adding an extra node that facilitates information exchange among all pairs of nodes. Its effec-
tiveness in improving performance has been observed in various tasks Hu et al. (2021b). Recently,
there has been a significant focus on studying its theoretical properties. Hwang et al. Hwang et al.
(2022) analyzed the virtual node’s role in the context of link prediction. They found that virtual
nodes can help to add expressiveness of the learned link representation and decrease under-reaching
and over-smoothing. Cai et al. Cai et al. (2023) demonstrated the power of message-passing with
a virtual node, showing that it can approximate an arbitrary self-attention layer within GTs. While
the function of virtual node as READOUT has been explored in existing GNNs, the community
nodes in our HOGT have a slightly different function. In addition to aggregate information like
the READOUT, they act as bridges connecting the entire graph to propagate long-range dependent
information, while also saving computational costs, as the number of communities is significantly
smaller than the number of graph nodes.

A.2 COMPLEXITY ANALYSIS OF HOGT

We analyze the complexity of HOGT. The computational complexity of the first step Graph Node-to-
community Node is O (mN). Since m is the number of community and usually much smaller than
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the number of graph nodes N , the computational complexity can be simplified asO(N). Moreover,
the computational complexity of the second step community Node-to-community Node is O

(
m2

)
,

it is a self-attention. The final step community Node-to-community Node is O (N). Therefore, the
overall complexity of HOGT is O(m2 +N).

A.3 THE COMMUNITY SAMPLING METHODS

Random walk sampling. To preserve the graph structural information as well as local or long-
range connectivity, random walk sampling is a simple but effective approach. We consider a regular
random walk sampler with m root nodes selected uniformly at random and each walker goes k hops.
As such, we can obtain the communities

{
Ṽ1, . . . , Ṽm

}
. Each community Ṽi has k+1 nodes which

are k-hop neighbours.

Spectral clustering. Spectral clustering methods segment the graph by minimum cuts such that
the number of within-cluster links is much higher than between-cluster links in order to better cap-
ture good community structure. However, these spectral clustering methods can just obtain non-
overlapping clusters. As we aim to achieve more communication between communities, we extend
each cluster with its 1-hop neighbourhood He et al. (2023). Thus, we can obtain m communities{
Ṽ1, . . . , Ṽm

}
, where Ṽi ← Ṽi ∪

{
N1(j) | j ∈ Ṽi

}
.

Learnable sampling. For regular graphs, we explore a learnable method that employs reinforce-
ment learning to determine the optimal number of clusters.

Given graph G = (V, E) with node set V and edge set E . Suppose there are N nodes in V . The
graph topology is presented by the adjacency matrix A. First, we learn a GNN-based encoder:

Hℓ = GNN(A,Hℓ−1) , ℓ = 1, . . . , L, (9)

and obtain the representation of N nodes H =
[
h⊤
1 , . . . ,h

⊤
N

]⊤ ∈ RN×d. Then, we employ a
trainable projection vector p to project all node features to 1D. Given node vi with feature hi, the
scale projection of xi on p is yi = hip/∥p∥. Here, yi measures how much information of node vi
can be retained when projected to the direction of p. After that, we adopt top-k sampling to select
kN nodes, here k ∈ (0, 1]. For each selected node i, we generate a community Ṽi with its neighbors.

To find the optimal k in top-k sampling, we present a reinforcement learning (RL) algorithm to
update the sampling ratio k adaptively. We model the updating process of k as a finite horizon
Markov Decision Process (MDP). Formally, the state, action, transition, reward and termination of
the MDP are defined as follows:

State. The state se at epoch e is represented by the indices of selected nodes with pooling ratio k:

Action. RL agent updates k by taking action ae based on reward. We define the action ae as add or
minus a fixed value ∆k ∈ [0, 1] from k.

Transition. After updating k, we use top-k sampling to select a new set of nodes and corresponding
communities in the next epoch.

Reward. Due to the black-box nature of GTs, it is hard to sense its state and cumulative reward.
So we define a discrete reward function reward (se, ae) for each se at ae directly based on the
classification results:

reward (se, ae) =


+1, if acce > acce−1

0, if acce = acce−1

−1, if acce < acce−1,

(10)

where acce is the classification accuracy at epoch e. Eq. (4) indicates if the classification accuracy
with ae is higher than the previous epoch, the reward for ae is positive, and vice versa.

Termination. If the change of k among 10 consecutive epochs is no more than ∆k, the RL algorithm
will stop and k will remain fixed during the next training process. This means that RL finds the
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optimal threshold that can retain the most striking nodes. The terminal condition is formulated as:

Range ({ke−10, · · · , ke}) ≤ ∆k. (11)

We adopt Q-learning Watkins & Dayan (1992); Sun et al. (2021) to learn the MDP. Q-learning is an
off-policy RL algorithm that seeks to find the best action to take given the current state. It fits the
Bellman optimality equation as follows:

Q∗ (se, ae) = reward (se, ae) + γargmax
a′

Q∗ (se+1, a
′) , (12)

where γ ∈ [0, 1] is a discount factor of future reward. We adopt a ε-greedy policy with an explore
probability ε:

π (ae | se;Q∗) =

{
random action, w.p. ε

argmax
ae

Q∗ (se, a) , otherwise (13)

This means that the RL agent explores new states by selecting an action at random with probability
ε instead of selecting actions based on the max future reward. We train the RL agent and node
classification model jointly in an end-to-end manner.

A.4 CONNECTION BETWEEN COMMUNITY NODE AND HYPEREDGE

We analyze the role of community nodes in capturing the high-order representation in HOGT versus
the function of hyperedges in hypergraph convolutional networks.

Encode complex relationship. To encode the high-order correlations in the complicated graph,
in hypergraph convolutional networks (HGCN), the hyperedges are introduced to connect multiple
nodes. In this work, we introduce a community node for each community which contains multiple
nodes sharing similar properties (semantic or information). Like the hyperedge, the community
node connects with every node in its community.

High-Order Message-Passing. Following the message-passing scheme, HGCN first propagates and
aggregates information along hyperedge eh to obtain the hyperedge presentation aeh , then updates
the node representation by aggregating the hyperedge representations. Formally, the layer-wise
message-passing is defined as:

a
(k)

eh
= Aggregate(k)

({
z(k−1)
u : u ∈ eh

})
, z(k)

v = Update(k)
({

a
(k)

eh
: v ∈ eh

})
, (14)

where z
(k)
v is the feature vector of node v at the kth layer. The hypergraph-based convomutional

networks design Aggregate(k)(·) and Combine(k)(·) operations based on hypergraph structure.

For example, in a spectral-based hypergraph convolutional network, the convolutional operation is
defined as:

∆ = D−1/2
v SWD−1

e S⊤D−1/2
v ,h(k) = σ

(
∆Z(k−1)Θ(k)

)
, (15)

where the diagonal matrices Dv and De denote the vertex and hyperedge degrees, respectively. W
indicate the relationship of hyperedges, the incidence matrix S denote the correlations of nodes and

hyperedges with S(v, e) =

{
1, if v ∈ e
0, if v /∈ e

, Θk is the weights of kth layer. Based on the hyper-

edge operation, we can refine the message-passing in Eq. 15 into three steps: node-to-hyperedge,
hyperedge-to-hyperedge, hyperedge-to-node with the approximate presentation:

a
(k)

eh
= S⊤z(k−1),a

(k)

eh
= Wa

(k)

eh
, z(k) = Sa

(k)

eh
. (16)

We can see that the three-step message-passing in HGCN is equivalent to the three-step operation in
HOGT. In HGCN, the relationship of hyperedges usually can be ignored, i.e., W = I. In HOGT,
the framework can also be simplified to two steps without Community Node-to-Community Node.
From a high level, graph convolutional neural networks can be viewed as special cases of hypergraph
convolutional networks. In comparison, our proposed HOGT framework can be simplified to other
existing GT models.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.5 PROOF

Proof of Proposition 4.1 Here, we briefly show how the approximation error can be bounded in
Proposition 4.1. The complete proof can be found in Cai et al. (2023).

Proof. We first make the following assumptions on the feature space X ⊂ Rn×d and the regularity
of layer L.

Assumption 1. ∀i ∈ [n], xi ∈ Xi, ∥xi∥ < C1. This implies X is compact.

Assumption 2. ∥WQ∥ < C2, ∥WK∥ < C2, ∥WV ∥ < C2 for target layer L. Combined with
Assumption 1 on X , this means the unnormalized attention α′ (xi,xj) = xi

TWQ (WK)
T
xj is

both upper and lower bounded, which further implies
∑

j e
α′(xi,xj) be both upper bounded and

lower bounded.

Under Assumptions 1 and 2, MPNN+CN ofO(1) width andO(1) depth can approximate LPerformer
and LLinear-Transformer arbitrarily well. Specifically, ϕ can be approximated arbitrarily well by MLP
with O(1) width and O(1) depth Cybenko (1989), ϕ (qi),

∑n
j=1 ϕ (kj) ⊗ vj lies in a compact

domain (n is fixed) as ϕ is continuous, ϕ (qi)
T ∑n

k=1 ϕ (kk) is uniformly lower bounded by a pos-
itive number for any node features in X . In Proposition 4.1, we consider Linear Transformer for
convenience.

Proof of Theorem 4.1 The ”full” self-attention can be approximated following: 1) Message-
Passing Neural Networks with community nodes (MPNN+CN) can act as the self-attention layer,
and 2) Under our three-step message-passing framework, the combination of MPNN+CN with the
self-attention can achieve the approximated full self-attention in graph. While point 1) has been
validated in Proposition 1, we mainly demonstrated point 2).

Proof. In the process of Graph Node-to-Community Node (G2C-MP), the message-passing in a
community is powerful to update community node (cn) by aggregate the information fom graph
nodes (gn) as:

h
(k)
i = τj∈C(i)ϕ

(k)
gn−cn

(
h
(k−1)
i , x

(k−1)
j , ej,i

)
, (17)

where ϕ is message function, and τ is aggregation function, C(i) is the graph nodes in the community
i. Based on Proposition 4.1, the message-passing with a new introduced node that connected to
every nodes in the community can be approximated by the following aggregation function τ :

h
(k)
i = τj∈C(i)ϕ

(k)
G2C−MP (·, {xi}i) =

 |C|∑
j=1

ϕ (kj) , f

 |C|∑
j=1

ϕ (kj)⊗ vj

 , (18)

where f(·) flattens a 2D matrix to a 1D vector in raster order, kj = W
(k)
K x

(k)
j , and vj = W

(k)
V x

(k)
j .

Then, in the process of Community Node-to-Community Node (C2C-ATTN), a self-attention mech-
anism (γC2C−ATTN) is adopted to propagate information between any two community nodes. The
updated community nodes can be represented as:

h
k

i = γC2C−ATTN

 m∑
j=1

ϕ (kj) , f

 m∑
j=1

ϕ (kj)⊗ vj

 , (19)

where m is the number of communities, kj = W
(k)
K h

(k)
j , and vj = W

(k)
V h

(k)
j .

Finally, the updated community node sends its message back to graph nodes in its community. Each
graph node vi applies the update function γgn:

x
(k)
i = γ(k)

gn

(
x
(k−1)
i , τj∈V(i)

ϕ
(k)
cn−gn

(
x
(k−1)
i , h

(k−1)

j , ej,i

))
, (20)
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where V(i) is the the community set of graph node i. Based on Proposition 4.1, the message-passing
in the step Community Node-to-Graph Node (C2G-MP) can be formulated as:

x
(k)
i = γC2G−MP

xi,

|V(i)|∑
j=1

ϕ (kj) , f

|V(i)|∑
j=1

ϕ (kj)⊗ vj



 (21)

where kj = W
(k)
K h

(k)

j , and vj = W
(k)
V h

(k)

j .

Following the three-step architecture, the information of a graph node can be propagated to any
other nodes by the community nodes as the bridges. And the representations of graph nodes can be
approximated as:

xk
i =

(
ϕ (qi)

∑n
j=1 ϕ (kj)⊗ vj

)T

ϕ (qi)
T ∑n

k=1 ϕ (kk)
, (22)

where n is the number of graph nodes, qi = W
(k)
Q x

(k)
i , kj = W

(k)
K x

(k)
j , and vj = W

(k)
V x

(k)
j .

Therefore, the combination of Message-Passing with a new node followed by a self-attention fol-
lowed by another Message-Passing can approximate self-attention arbitrarily well.

A.6 EXPERIMENTAL PART

Settings. For Cora, Citeseer, and Pubmed datasets, we follow the same experimental procedure,
such as features and data splits in Pei et al. (2020). For heterophilic graph datasets (Cornell, Texas,
Wisconsin, and Actor), we adopt the same dataset splits used by Zhu et al. (2020). For roman-empire
and amazon-ratings, we follow the settings in Platonov et al. (2023). For hypergraphs, we adopt the
same setting as Yadati et al. (2019); Chien et al. (2021a). For other datasets, we randomly split them
into 60%/20%/20% as training/validation/test sets following Zhang et al. (2022a); Liu et al. (2023).
The dataset obgn-arxiv can be downloaded from Open Graph Benchmark (OGB) Hu et al. (2020a)
1, hypergraph datasets from 2, roman-empire and amazon-ratings from 3, all the other graph datasets
from PyTorch Geometric (PyG) Fey & Lenssen (2019) 4

For the general sampling methods-random walk Zeng et al. (2019) and spectral clustering Chi-
ang et al. (2019), we set the number of communities to 1 (the whole graph as a community) and
1%, 10%, 20%, 50% of the number of nodes in the graph. For the proposed learnable sampling
method, the optimal number of communities can be actively learned. The training utilizes Adam op-
timizer Kingma & Ba (2014) for GNN methods, while Adamw is adopted for all Graph Transformer-
based models. Each method runs for 200 epochs on all datasets, with the test accuracy reported based
on the epoch that achieves the highest validation accuracy. We set 3 layers HOGT for ogbn-arxiv,
5 layers for roman-empire and amazon-ratings, and 2 layers for other datasets. We search model
hyper-parameters including walk length of random walk, hidden dimension, and dropout. The re-
sults of HOGT are averaged over 10 runs with random weight initializations. Furthermore, all the
experiments are conducted on a Linux server equipped with NVIDIA A100.

A.7 INITIALIZING COMMUNITY NODES

Community nodes are crucial for the proposed HOGT method. In this section, we analyze the
strategies for initializing these nodes.

The community nodes can be initialized either with zero vectors or random values. Our experiments
show that both approaches lead to similar final performance after 200 epochs, suggesting that the
choice of initialization has minimal impact on the final outcomes. In our experiments, we use
random initialization and set the community node dimensionality to match the original node features.

1OGB: https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
2DHG: https://deephypergraph.readthedocs.io/en/latest/index.html
3DGL: https://docs.dgl.ai/
4PyG: https://github.com/pyg-team/pytorch_geometric
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Table 10: Node classification results on hypergraph datasets (mean accuracy (%) and standard devi-
ation over 5 different runs). The complexity of information propagation can be found for different
models. The number of nodes, edges, and communities are |E|, N , and m, respectively.

Model Coauthor-Cora Coauthor-DBLP News20 Complexity
GCN 64.42±0.68 81.35±0.18 76.82±0.48 O(|E|)
HGNN 61.18±0.62 82.66±1.05 81.06±1.03 O(N2)
HGNN+ 60.40±0.77 82.86±0.85 81.24±0.75 O(N2)
HOGT (ours) 68.82±1.34 85.82 ±0.70 81.32±0.80 O(m2 +N)

Although random or zero initialization is effective, an alternative strategy—such as using max or
mean pooling of the features of graph nodes within a community to initialize the community node
features—could potentially accelerate convergence by providing a more informed starting point for
community node embeddings. However, this method introduces additional computational overhead,
which we have intentionally avoided in our current implementation to maintain efficiency.

A.8 DATASET STATISTIC.

Table 7: Statistics of graph benchmark datasets.
Cora Citeseer Pubmed ogbn-arxiv Cornell Texas Wisconsin Actor roman-empire amazon-ratings

# Nodes 2,708 3,327 19,717 169,343 183 183 251 7,600 22,662 24,492
# Edges 5,429 4,732 44,338 1,166,343 280 195 466 26,752 32,927 93,050
Homo. 0.83 0.72 0.79 0.63 0.30 0.11 0.21 0.22 0.05 0.38

Table 8: Statistics of hypergraph benchmark datasets.
Coauthorship-Cora Coathorship-DBLP News20

# Nodes 2,708 41,302 16,342
# Hyperedges 1,072 22,363 100
# Classes 7 6 4

A.9 MORE RESULTS AND EXPLANATIONS.

Table 9: The p-values of the t-test between the performances of different methods.

Model Cornell Actor roman-empire
Mixhop/HGT 0.026 5.67e-07 8.36e-13
GPRGNN/HGT 0.016 1.36e-06 7.82e-27
Gapformer/HGT 0.037 0.006 0.0009

Performance on Hypergraphs. Theoretically, both hypergraph convolutional networks (HGCN)
and our HOGT can learn high-order correlations in complex datasets. Here, based on hypergraph
structure, we generate a community for each hyperedge. According to the results in Table 10,
HOGT achieves better performance than popular hypergraph methods HGNN Feng et al. (2019) and
HGNN+ Gao et al. (2022b) across all hypergraph datasets. Compared to traditional HGCN methods,
HOGT can propagate higher-order information more flexibly based on attention architecture.

The fail of positional encoding on heterophilic datasets. To better explain this phenomenon,
we first show how positional encoding is related to the theoretical properties of GTs, e.g., their
expressive power in capturing graph structure.

The implementation of PE, i.e., concatenated with input features, tends to influence the attention
scores, producing an attention bias. Considering that Q ∈ Rn×d, K ∈ Rn×d, and P ∈ Rn×d′
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represent the query, key, and PE vectors, respectively, the attention score S ∈ Rn×n is calculated as:

S = QK⊤. (23)

After concatenating the PE vector, the refined attention score S′ is calculated as:

S′ = [Q,P]× [K,P]⊤

= [Q,P]×
[

K⊤

P⊤

]
= QK⊤ +PP⊤,

(24)

where [Q,P] denotes the concatenation of the query vector Q with the PE vector, and [K,P] denotes
the concatenation of the key vector K with the PE vector. The PP⊤ term can be interpreted as an
attention bias.

Inappropriate positional encoding can affect the attention matrix, leading to a negative impact on
performance. Muller et al. Müller et al. (2023) clarified that no clear expressivity hierarchy exists
for the popular positional or structural encodings, including Laplacian PE and RandomWalk PE. In
other words, the critical aspects of existing PEs in GT haven’t been demonstrated theoretically and
empirically.

From Table 4 in the paper, the performance gap is minor with or without positional encoding meth-
ods on homophilic datasets (Cora and Citeseer). Without positional encoding, HGT demonstrates a
better performance on heterophilic datasets, such as Cornell, Texas, and Wisconsin. This implies that
existing positional encoding methods cannot accurately capture the structural information from het-
erophilic datasets, which is consistent with the above analysis. This motivates researchers to design
more suitable positional encoding methods for different datasets or explore alternative approaches
to encode the graph structural information like our HGT framework.

Figure 2: The ablation study on the number of communities. We set the number of communities to
1 (the whole graph as a community) and 1%, 10%, 20%, 50% of the number of graph nodes.

Effect of the Number of Community. We analyze the effect of the number of communities with
the two unlearnable sampling methods for HOGT. From the results in Figure 2, we see that in-
creasing the number of communities in the early stage can enhance the performance of HOGT
(randomwalk) on Cora. This is because HOGT encodes more local higher-order information with
more communities extracted by random walk. As the number of communities increases, we can
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Table 11: Abalation study of different components of HOGT on different datasets (mean accuracy
(%) and standard deviation over 10 different runs).

Community Sampling Model Cora Citeseer Cornell Texas Wisconsin

Random Walk
HOGT(w/o C2C-ATTN)) 87.73±0.96 74.94±1.64 77.57±3.21 80.54±3.59 85.89±2.60

HOGT 88.11±1.05 76.74±1.47 76.49±2.72 80.00±4.22 87.25±2.67

Random Walk
HOGT(w/o local) 83.04±1.48 74.47±2.10 76.49±2.72 82.70±4.86 83.44±1.87
HOGT(w local) 88.11±1.05 76.74±1.47 70.27±2.34 74.90±2.78 78.19±2.67

observe a decreasing trend followed by an increase for HOGT with the spectral clustering method
on Cora. This illustrates that there likely exist some important substructures in the graph. We also
note the stable performance of HOGT on Wisconsin with different numbers of communities for both
methods. While Wisconsin is a small-scale dataset, the global information can be well encoded by
introducing a community.

The RL-based sampling method adaptively learns the optimal number of communities, eliminating
the need to predefine this hyperparameter. This approach adds flexibility to HOGT and ensures
robust performance without requiring extensive manual tuning of the number of communities.

Effect of Self-Attention Between Communities. As we analyzed in Appendix A.4, if dropping
out the second step (C2C-ATTN), in terms of message-passing, HOGT behaves similarly to popular
hypergraph-based neural networks. In this case, we are not taking into account the relationships
between communities and we can see that in Table 11, HOGT (w/o C2C-ATTN)) exhibits a perfor-
mance degradation compared to HOGT on datasets which have complex structure (like more nodes
and edges). Without C2C-ATTN, the node representation is still limited in the local neighbourhood,
i.e., community. Propagating information between communities can help the node finally capture
the higher-order long-range dependency in the whole graph.

Effect of Local Information for Different Datasets. Given one of the major advantages of Trans-
former is capturing the long-range dependency in objects, we examine the importance of local in-
formation for some of the benchmarks. From Table 11, we note that it can improve the performance
if we consider the local neighbours in the third step (G2V-MP) for Cora and Citeseer as they are
small-scale datasets with high Homo.. In contrast, it is more beneficial to disregard the original
graph connections for Cornell, Texas, and Wisconsin with low Homo..

Performance on Graph Classification. We utilize several commonly-used real-world datasets
from TU database Morris et al. (2020) to evaluate the performance of HOGT on graph classifica-
tion task. NCI1 consists of 4,110 molecule graphs from TUDataset, which represent two balanced
subsets of datasets for chemical compounds screened for activity against non-small cell lung can-
cer and ovarian cancer cell lines, respectively. PROTEINS consists of 1,113 protein graphs from
TUDataset, where each graph corresponds to a protein molecule, nodes represent amino acids, and
edges capture the interactions between amino acids. From Table 12, we can observe that HOGT
can achieve state-of-the-art performance on all datasets. Compared to GT models like GraphGPS,
HOGT can encode more comprehensive information in the graph.
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Table 12: Experimental results on two datasets (the mean accuracy (Acc.) and standard deviation
over 10 different runs).

NCI1 PROTEINS

GCN-based methods

GCN Kipf & Welling (2017) 79.68±2.05 71.7±4.7

GAT Veličković et al. (2018) 79.88±0.88 72.0±3.3

GIN Xu et al. (2019b) 81.7±1.7 73.76±4.61

GatedGCN Li et al. (2016) 81.17±0.79 74.65±1.13

Graph Transformer-based methods

GT Dwivedi & Bresson (2021) 80.15±2.04 73.94±3.78

SAN Kreuzer et al. (2021) 80.50±1.30 74.11±3.07

Graphormer Ying et al. (2021) 81.44±0.57 75.29±3.10

GraphTrans Wu et al. (2021) 82.60±1.20 75.18±3.36

SAT Chen et al. (2022a) 80.69±1.55 73.32±2.36

GraphGPS Rampášek et al. (2022) 84.21±2.25 75.77±2.19

GT(a whole graph as a community) 84.67±1.32 76.78±1.84

Performance on Link Prediction. We have conducted experiments on the TEG-DB datasets (Li
et al. (2024)) to further evaluate the performance of HOGT on link prediction, specifically on the
Goodreads-Children and Goodreads-Crime datasets. These datasets are Textual-Edge Graphs (TEG)
with rich textual descriptions for nodes and edges. Models like BERT-Large (Devlin (2018)) and
BERT-Base (Devlin (2018)) were used to obtain node and edge embeddings. The results in Table 13
demonstrate that HOGT achieves performance that is either better than or comparable to General-
Conv (You et al. (2020)) and GraphTransformer (Yun et al. (2019)). In these experiments, we treated
the data in each batch as a community and introduced a community node for each batch, effectively
extending the HOGT framework to these diverse domains.

Table 13: Performance Comparison Across Datasets and Methods (w/o edge text indicates that edge
embeddings are not used).

Methods
Goodreads-Children Goodreads-Crime

BERT-Large BERT-Base w/o edge text BERT-Large BERT-Base w/o edge text

AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

GeneralConv 0.9810 0.9179 0.9821 0.9187 0.9825 0.9189 0.9772 0.9079 0.9774 0.9077 0.9752 0.9101
GraphTransformer 0.9807 0.9200 0.9811 0.9160 0.9776 0.9066 0.9738 0.9079 0.9737 0.9079 0.9716 0.8983
HOGT 0.9821 0.9216 0.9837 0.9208 0.9825 0.9289 0.9776 0.9110 0.9776 0.9110 0.9768 0.9130

A.10 HYPERPARAMETER ANALYSIS

We conducted an analysis of HOGT’s sensitivity to various hyperparameters, including walk length,
hidden dimension, dropout rate, and optimizer. The results are summarized in Table 14. From
the findings, we observe that HOGT, when using the random walk sampling method, demonstrates
low sensitivity to walk length and dropout rate. However, on the Cora dataset, the model shows
higher sensitivity to the hidden dimension and optimizer, indicating their importance in influencing
performance. In our experiments, we adopted AdamW as the optimizer for HOGT and other GT
models.

Table 14: The performances of HOGT with different hyperparameters.

Hyperparameters Cora Citeseer Pubmed

Hidden dimension 128 85.45 76.63 88.42
256 88.13 76.76 89.20

Dropout
0 87.73 76.98 88.40

0.2 86.92 76.76 88.40
0.5 87.05 76.93 89.02

walk length
3 86.59 76.68 88.39
5 87.59 76.73 88.41
10 87.45 76.98 88.45

Optimizer
Adam 86.91 76.08 88.24

Adamw 88.11 76.74 89.20
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A.11 ROBUSTNESS ANALYSIS

To further evaluate the robustness of the proposed HOGT in handling graphs with sparse structure,
we conducted additional experiments by randomly removing 10% and 20% of the edges from Cite-
seer and Pubmed. The results in Table 15, demonstrate that HOGT maintains strong performance
even under these conditions. This highlights the robustness of HOGT in processing graphs with
irregular or sparse structures.

Table 15: The performance of HOGT (randomwalk) with sparse structure on Citeseer and Pubmed.
The edge ratio means the reserving ratio of original edges.

Method Edge Ratio Citeseer Pubmed

HOGT
80% 74.52 85.96
90% 75.07 86.71

100% 76.74 89.20
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