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Abstract001

Process Reward Models (PRMs) are crucial in002
complex reasoning and problem-solving tasks003
(e.g., LLM agents with long-horizon decision-004
making) by verifying the correctness of each005
intermediate reasoning step. In real-world sce-006
narios, LLMs may apply various reasoning pat-007
terns (e.g., decomposition) to solve a problem,008
potentially suffering from errors under vari-009
ous reasoning patterns. Therefore, PRMs are010
required to identify errors under various rea-011
soning patterns during the reasoning process.012
However, existing benchmarks mainly focus on013
evaluating PRMs with stepwise correctness, ig-014
noring a systematic evaluation of PRMs under015
various reasoning patterns. To mitigate this gap,016
we introduce SOCRATIC-PRMBENCH, a new017
benchmark to evaluate PRMs systematically018
under six reasoning patterns, including Trans-019
formation, Decomposition, Regather, Deduc-020
tion, Verification, and Integration. SOCRATIC-021
PRMBENCH comprises 2995 reasoning paths022
with flaws within the aforementioned six rea-023
soning patterns. Through our experiments on024
both PRMs and LLMs prompted as critic mod-025
els, we identify notable deficiencies in existing026
PRMs. These observations underscore the sig-027
nificant weakness of current PRMs in conduct-028
ing evaluations on reasoning steps under vari-029
ous reasoning patterns. We hope SOCRATIC-030
PRMBENCH can serve as a comprehensive031
testbed for systematic evaluation of PRMs un-032
der diverse reasoning patterns and pave the way033
for future development of PRMs.034

1 Introduction035

Large Language Models (LLMs) (OpenAI, 2024b;036

DeepSeek-AI, 2025; Team, 2024b) augmented by037

methodologies like Reinforcement Learning with038

Verifialble Rewards (RLVR) (Trung et al., 2024;039

Shao et al., 2024) and Test-Time Scaling (Snell040

et al., 2025; Bansal et al., 2025), have demonstrated041

significant capabilities in complex reasoning and042

decision-making tasks. Process Reward Models043

Question: Let be a solution of the differential equation 
 such that  when . What is

the value of ?

Step 1. The question requires us to find  that is a
solution to the differential equation 
with the initial condition  when , 

Step 2. So we need to: Rewrite the differential equation in a
standard form. Solve the differential equation using an
integrating factor. Substitude  into the equationi and
evaluate 

Step 3. Rewrite the differential equation in standard form to 

Step 4. Solve the differential equation using an integrating factor:

Step 5. Evaluate ,Substitute  into the solution: 
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Figure 1: (Left): Given a question, the reasoning step
2 and 5 contain errors. (Medium): Each step applys a
specific reasoning pattern. (Right): The process reward
model successfully detects the error of Deduction pat-
tern but fails with the Decomposition reasoning pattern.

(PRMs) (Lightman et al., 2024; Wang et al., 2023; 044

Zhang et al., 2025) play a crucial role in these ad- 045

vancements, especially for LLM agents which in- 046

volve long-horizon decision-making steps (Choud- 047

hury, 2025; Ma et al., 2025; Xiong et al., 2025). By 048

providing step-level rewards during the reasoning 049

process, PRMs offer more accurate and denser re- 050

ward signals, which in turn guide the optimization 051

of LLMs and the exploration of reasoning trajecto- 052

ries (Tie et al., 2025; Ji et al., 2025). 053

However, the diverse reasoning patterns applied 054

by LLMs during reasoning process (Dong et al., 055

2023; Li et al., 2024) pose a challenge for PRMs in 056

consistently providing accurate rewards. Figure 1 057

illustrates such a scenario: according to the thoery 058

of ancient Greek philosopher Socrate (Dong et al., 059

2023; Qi et al., 2023), the reasoning pattern for 060

Step 1 is ‘Transformation’, for Step 2 ‘Decompo- 061

sition’, and for Steps 3-5 ‘Deduction’. Although 062

the existing PRM identifies the error in Step 5 (De- 063

duction pattern), it does not detect the fundamental 064

cause of this error from the Decomposition pattern. 065

Specifically, in Step 2, the omission of substituting 066

a point in the solution of the differential equation 067

to calculate the constant C, causes C to remain 068
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PRM
Benchmarks?

Error Type
Detection?

Fine-grained
Classes

Reasoning
Patterns† Annotator Test Case

Size
Average

Steps

RMBench (Liu et al., 2025) ✗ ✗ 1 1 Synthetic + Human 1,327 -
CriticBench (Lin et al., 2024) ✗ ✗ 1 1 - - -
MathCheck-GSM (Zhou et al., 2025) ✗ ✗ 1 1 Synthetic 516 -
ProcessBench (Zheng et al., 2024) ✓ ✗ 1 1 Human 3,400 7.1
PRMBench (Song et al., 2025) ✓ ✓ 9 1 Synthetic + Human 6,216 13.4

SOCRATIC-PRMBENCH ✓ ✓ 20 6 Synthetic + Human 2995 8.7

Table 1: Comparison between our proposed SOCRATIC-PRMBENCH and other benchmarks or datasets for reward
model evaluation. †: the number of reasoning patterns covered within the benchmark.

undetermined throughout the subsequent reasoning069

process, resulting in a flawed final answer. This070

observation indicates the unreliability of current071

PRMs towards diverse reasoning patterns.072

For a comprehensive assessment of PRMs’ er-073

ror detection capabilities across various reasoning074

patterns, we introduce SOCRATIC-PRMBENCH,075

a systematic and fine-grained benchmark. In con-076

trast to prior benchmarks with limited systematic077

evaluation (Zheng et al., 2024; Song et al., 2025),078

inspired by the ancient Greek philosopher Socrates,079

we design to evaluate PRMs’ proficiency in detect-080

ing errors across 6 reasoning patterns: Transforma-081

tion, Decomposition, Regather, Deduction, Verifi-082

cation, and Integration. Specifically, SOCRATIC-083

PRMBENCH comprises 2995 reasoning paths,084

with flaws categorized into six primary categories085

by reasoning pattern and 20 sub-categories of fine-086

grained error types. The data annotation process087

for SOCRATIC-PRMBENCH is fully automated us-088

ing LLMs, thereby obviating the need for extensive089

human labor. We ensure the difficulty of the data090

through rule-based filtering and guarantee its qual-091

ity through manual expert review.092

We conducted extensive experiments on a093

wide range of models, including open-source094

PRMs, and a series of general-purpose and095

reasoning-specialized LLMs. The findings re-096

veal considerable scope for improvement in cur-097

rent PRMs. Notably, Qwen2.5-Math-PRM, the098

highest-performing PRM, attained a mere 68.0099

overall score. Through detailed analytical experi-100

ments, we identified substantial disparities in the101

error detection capabilities of current PRMs across102

different reasoning patterns, alongside evident la-103

tency in indentifying error steps and significant bias104

of reward generation. By leveraging SOCRATIC-105

PRMBENCH for evaluation, we offer a pathway to106

comprehensively assess PRMs from the perspec-107

tive of reasoning patterns. This can be potentially108

helpful for mitigating the risk of reward hacking in109

future PRM development. In general, our contribu-110

tions are summarized as follows: 111

• We propose SOCRATIC-PRMBENCH, the first 112

systematic PRM benchmark from reasoning 113

pattern perspective, comprising 2995 samples 114

for a comprehensive and fine-grained evalua- 115

tion on process reward models. 116

• Based on ancient Greek logic theory (Qi 117

et al., 2023), SOCRATIC-PRMBENCH cov- 118

ers 6 carefully designed reasoning patterns, 119

including Transformation, Decomposition, Re- 120

gather, Deduction, Verification, and Integra- 121

tion, with 20 sub-categories of fine-grained 122

error types. This systematic and granular eval- 123

uation framework enables a comprehensive 124

assessment of PRMs and facilitates the identi- 125

fication of their potential shortcomings. 126

• We perform extensive experiments on a 127

wide range of SOTA PRMs and LLMs with 128

SOCRATIC-PRMBENCH. Our results reveal 129

essential limitations in current PRMs and offer 130

insights for future progress in this area. 131

2 Related Work 132

Process Reward Models Process reward mod- 133

els (PRMs) have demonstrated their superiority 134

over outcome reward models (ORMs) (Zhang et al., 135

2024; Ankner et al., 2024) by providing more accu- 136

rate and dense reward signals for intermediate rea- 137

soning steps. As a result, the development of PRMs 138

is gaining increasing attention. Lightman et al. 139

(2024) contributes a manually annoted dataset for 140

PRM training, Wang et al. (2024) propose an auto- 141

matic step-level labeling method with Monte Carlo 142

estimation. Moreover, Dong et al. (2024); Zhao 143

et al. (2025) forms process reward modeling as gen- 144

eration task and improve generative capabilities of 145

PRMs using CoT reasoning. In contrast to the flour- 146

ish of PRMs’ training, PRMs’ evaluation remaines 147

comparatively underdeveloped. To remedy this im- 148

balance, we present SCORATIC-PRMBENCH, a 149

novel benchmark for PRMs’ evaluation. 150
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Reward Model Benchmarks Reward bench-151

marks are crucial for evaluating reward models,152

as they provide a direct and quantifiable measure.153

Despite the emergence of numerous benchmarks154

(Liu et al., 2025; Lin et al., 2024; Lambert et al.,155

2024), they are are primarily designed to evaluate156

ORMs, without any step-level annotations. Zheng157

et al. (2024); Song et al. (2025) annotate step-level158

labels using LLMs and human experts to create159

benchmarks for PRMs. However, their evaluation160

are not systematic and ignore the need to eval-161

uate PRMs’ error detection capabilities towards162

diverse reasoning patterns (Dong et al., 2023; Li163

et al., 2024). To address this gap, we propose164

SOCRATIC-PRMBENCH, a systematic and granu-165

lar benchmark to provide a comprehensive assess-166

ment of PRMs from the perspective of reasoning167

patterns. A comparison between our SOCRATIC-168

PRMBENCH and existing reward model bench-169

marks is summarized in Table 1.170

3 Socratic-PRMBench171

3.1 Reasoning Patterns172

The design of the reasoning patterns in SOCRATIC-173

PRMBENCHMARK is inspired by the logical the-174

ories of the ancient Greek philosopher Socrates.175

As Socrates once stated, "I cannot teach anybody176

anything. I can only make them think." Following177

this philosophical wisdom, we categorize reason-178

ing into six atomic reasoning patterns, within these179

six reasoning patterns, we systematically design a180

total of 20 types of reasoning errors. The atomic181

reasoning patterns and the fine-grained categories182

of error types under Socrates’ logical framework183

are illustrated in Figure 2.184

Transformation transforms the problem into a185

homogeneous or similar problem, or abstract the186

problem. It usually explains the problem from187

a problem-solving perspective, aiming at gain-188

ing a more comprehensive and clear understand-189

ing of the problem. Specifically, the Transforma-190

tion evaluation category can be divided into two191

sub-categories: Transformation Inconsistency and192

Transformation Counter-Factuality. For a Trans-193

formation step P → P ′, Transformation Incon-194

sistency refers that P ′ lacks consistency in logic,195

semantics, or understanding with P . Transforma-196

tion Counter-Factuality refers to including factual197

error that against ground truth G in P ′.198

Decomposition breaks the problem into manage-199

able subproblems, or makes a plan for reason-200

ing steps, resolving the main problem by tack- 201

ling each sub-problem. Specifically, the Decom- 202

position evaluation category can be divided into 203

three sub-categories: Decomposition Unsound- 204

ness, Decomposition Redundancy, and Decom- 205

position Incompleteness. For a Decomposition 206

step P → {P1, P2, ..., Pn}, each of the three sub- 207

categories represents a distinct type of error in sub- 208

problem Pi, which can be incorrect caused by logi- 209

cal inequality, missing important sub-problems and 210

conditions, or including redundant sub-problems 211

and constrains. 212

Regather collects key information from the in- 213

put relevant to solving the problem and identifies 214

crucial principles, and other concepts related to 215

solving the problem. Specifically, the Regather 216

evaluation category can be divided into three sub- 217

categories: Regather Imprecision, Regather Re- 218

dundancy, and Regather Incompleteness. For a 219

Regather step P → {Q1, Q2, ..., Qn}, Regather 220

imprecision refers to collecting a Qi with misinfor- 221

mation, misusing definations that are not suitable 222

for solving the problem P . Regather Redundancy 223

gathers redundant or unrelevant information not 224

related with P . Regather Incompleteness refers to 225

the absence of core definations, critical principles 226

and concepts. 227

Deduction derives a conclusion for a given premise 228

directly. Specifically, the Deduction evaluation 229

category can be divided into six sub-categories: 230

Premise Unsoundness, Premise Incompleteness, 231

Premise Redundancy, Conclusion Invalidity, Con- 232

clusion Inconsistency and Conclusion Counter- 233

Factuality. For a Deduction step P → C, the first 234

three sub-categories arise from the premise and 235

include: (1) starting deduction resoning from an 236

unreasonable or incorrect premise, (2) introduc- 237

ing redundant assumptions into the premise, and 238

(3) omitting key conditions and constraints. The 239

remaining three sub-categories originate from the 240

conclusion and include: (1) deriving an invalid 241

conclusion from correct premises, (2) deriving a 242

conclusion that contradicts a previous conclusion, 243

and (3) deriving a conclusion that is inconsistent 244

with known ground truth. 245

Verification examines reasoning steps in terms of 246

factual accuracy, logical consistency, etc, detect- 247

ing potential errors and refining them iteratively. 248

Specifically, the Verification evaluation category 249

can be divided into two sub-categories: Detection 250

Error and Correction Error. The former refers 251

to failing to identify an incorrect conclusion C, 252
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Figure 2: An overview of our SOCRATIC-PRMBENCH. The left part illustrates our dataset constuction procedure.
The right part illustrates the 6 reasoning patterns and 20 sub-categories of fine-grained error types. We use P and
C to represent (sub)problems and conclusions, respectively. We use Q, R, G to represent gathered information,
redundant contents, and ground truth.

The latter, however, involves recognizing the initial253

error in C but introducing a new error during the at-254

tempted correction, leading to a different, incorrect255

conclusion C ′.256

Integration summarizes concluded conclusions257

to derive a new conclusion, integrating all cur-258

rent reasoning processes to form the final con-259

clusion. Specifically, the Integration evaluation260

category can be divided into four sub-categories:261

Integration Inconsistency, Integration Incom-262

pleteness, Integration Redundancy, and Inte-263

gration Unsoundness. For an integration step264

{C1, C2, ..., Cn} → C, the first three error types265

originate from a intermediate conclusion Ci, in-266

cluding the presence of conclusions that contradicts267

prior findings,the absence of crucial conclusions,268

and the introduction of unnecessary or redundant269

conclusions. The final error type, namely Inte-270

gration Unsoundness, refers to concluding a final271

conlusion C that is incorrect or unreasonable, even272

when integrated conclusions all satisfy soundness273

an completeness.274

3.2 Benchmark Construction275

The dataset construction pipeline comprises two276

core stages: Socratic Reasoning Generation and277

Test Case Construction.278

3.2.1 Socratic Reasoning Generation279

This stage aims to create a data pool of Socratic280

reasoning process, represented as a sequence of281

atomic Socratic reasoning actions. As illustrated282

in left part of Figure 2, each reasoning step is en-283

closed with a start tag <[Pattern]> and an end tag284

</[Pattern]>. The content within the [Pattern] place- 285

holder indicates the specific reasoning pattern that 286

characterizes this particular step. 287

Socratic Reasoning Model Training Given the 288

scarcity of available Socratic reasoning data, we 289

initially trained a specialized Socratic reasoning 290

model to facilitate data generation. To achieve this, 291

we sampled 19k instances from the MATH-Hard 292

(Hendrycks et al., 2021) and Open-o1 (OpenO1, 293

2024) datasets and transformed their existing 294

Chain-of-Thought (CoT) annotations into Socratic 295

reasoning processes. We then fine-tune Qwen2.5- 296

72b-instruct (Team, 2024a) on these Socratic rea- 297

soning processes, yielding our Socratic reasoning 298

model, denoted as MSocratic. 299

Socratic Reasoning Generation Subsequently, 300

we leverage MSocratic to generate new Socratic rea- 301

soning processes from metadata. To this end, we 302

first collect samples from GSM8k (Cobbe et al., 303

2021), Omni-Math (Gao et al., 2024), MathBench 304

(Liu et al., 2024), and OlympiadBench (He et al., 305

2024a). In order to ensure that our problems are 306

adequately challenging, we carefully curated the 307

Omni-Math and MathBench datasets. Specifically, 308

we excluded any Omni-Math samples with a dif- 309

ficulty rating lower than 4.0. For MathBench, we 310

focused solely on MathBench-A, as this subset em- 311

phasizes theoretical application rather than con- 312

ceptual understanding. Furthermore, we only re- 313

tained instances from MathBench-A that are des- 314

ignated as high school or university level. This 315

procedure finally results in a pool D. For each 316
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Overall Transformation Decomposition Regather Deduction Integration Verification
Avg. Steps 8.7 8.5 8.7 8.6 8.5 8.5 10.8
Avg. Error Steps 3.0 4.2 3.3 2.9 3.0 2.0 3.8
Avg. First Error Step 4.7 1.5 3.0 3.1 5.4 7.2 6.9
Avg. Question Length 209.6 224.4 220.7 207.5 221.7 191.3 169.4
# of Instances 2995 313 463 463 926 615 215

Table 2: Statistics of SOCRATIC-PRMBENCH.

question-answer pair (qi, ai) in D, MSocratic gen-317

erates a Socratic reasoning process ri, resulting in318

a (qi, ri, âi) triplet.319

Socratic Reasoning Curation Finally, each320

(qi, ri, âi) tuple undergos a rigorous dual verifica-321

tion process: answer correctness was first assessed,322

followed by LLM-based verification of each indi-323

vidual step. Only tuples that pass both verifica-324

tions are retained, resulting in our metadata set D′.325

For answer verification, we follow Qwen2.5-Math326

(Yang et al., 2024), requiring that the predicted327

answer âi satisfies both numerical and symbolic328

equivalence with the ground truth answer a. For329

step verification, we leverage GPT-4o (OpenAI,330

2024a) to assess the correctness of each individ-331

ual step in the reasoning process, with the detailed332

prompt in Appendix B.333

3.2.2 Test Case Constuction334

In the stage, we generate test sets for each error335

type C (as classified in Section 3.1) by employing336

a controlled error injection procedure. For each er-337

ror type C (e.g., Repeat Inconsistency), we create338

a test set TC . This is achieved by first randomly se-339

lect N samples from the metadata set D′. And then340

for each sample (qi, ri, ai), including a problem qi,341

a Socraitc reasoning path r guaranteed completely342

correct through our dual verification process, we343

prompt gpt-4o to modify the originally correct rea-344

soning process r,intentionally introducing an error345

consistent with error type C:346

r̃j = LLM(I, [qj , rj , aj ], C)

TC = {tj = (qj , r̃j , ãj)}Nj=1

(1)347

where r̃j is the modified socratic reasoning process348

with the type of error C and I is the instruction349

prompt for GPT-4o to modify original process rj350

to r̃j , with detailed prompt in Appendix B.351

3.3 Quality Control352

To ensure the high quality and reliability of353

SOCRATIC-PRMBENCH, we utilize both rule-354

based and LLM-based method to filter out any un-355

suitable samples, thereby ultimately creating our 356

SOCRATIC-PRMBENCH. 357

Rule-based Fitering Despite providing detailed 358

task descriptions and output format requirements 359

in the instruction T , GPT-4o may still occasional 360

fail to follow the instruction T strictly. Therefore, 361

we implement a rule-based filtering method. First, 362

we use string matching to identify and remove any 363

sample that fails to produce output in JSON format, 364

which is required in T . Second, we used regular 365

expression to discard any sample that fail to suc- 366

cessfully output the final answer. 367

LLM-based Filtering To ensure the quality of 368

our generated test cases, we employ Gemini2.5-pro 369

to evaluate each sample (qj , r̃j , ãj) , within a test 370

set TC for a given error type C. Specifically, we in- 371

struct Gemini2.5-pro to assess the sample based on 372

two criteria: (1) that the reasoning path r̃j appears 373

superficially plausible yet contains an underlying 374

reasoning error, and (2) that the identified error 375

should definitively belong to the targeted error type 376

C, with detailed prompt shown in Appendix B. Af- 377

ter filtering by Gemini2.5-pro, the acceptance rate 378

of samples reached 92.7%, and 2995 samples were 379

retained to form the final Socratic-PRMBench. The 380

statistics of Socratic-PRMBench are shown in Ta- 381

ble 2. 382

LLM’s Consistency with Human Annotators 383

To demonstrate Gemini2.5-pro’s ability to perform 384

this quality filtering task, we measure its agreement 385

with human annotators. We recruit three volunteer 386

annotators, each holding at least a bachelor’s de- 387

gree, and ask them to verify a randomly sampled 388

10% subset of our data using the exact same criteria 389

with Gemini2.5-pro. We then calculate the agree- 390

ment rate between Gemini2.5-pro and the human 391

annotators. As a result, Gemini2.5-pro shows a 392

high degree of consistency with the human annota- 393

tors, achieving an average agreement rate of 93.3%. 394

This high level of consistency provides strong ev- 395

idence that Gemini2.5-pro can effectively replace 396

human annotators in performing quality filtering 397
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Model Transformation Decomposition Regather Verification
TT. TF. DC. DR DS. GP. GC. GR. CE. DE.

Process Reward Models (PRMs)
Skywork-PRM-7B 38.7 38.4 42.7 42.5 38.0 42.8 44.8 41.3 47.9 46.7
ReasonEval-7B 50.9 50.9 59.3 50.1 53.7 52.4 59.6 49.7 66.7 59.2
RLHFlow-PRM-Mistral-8B 50.6 52.7 46.6 47.3 42.7 38.0 44.6 48.7 53.1 49.5
RLHFlow-PRM-Deepseek-8B 47.5 50.8 50.6 50.9 44.0 41.6 48.6 55.4 45.9 47.6
MathShepherd-Mistral-7B 54.5 50.9 59.4 57.4 56.7 60.9 59.4 54.6 72.7 72.1
Qwen2.5-Math-PRM-7B 55.8 64.3 61.7 51.6 58.4 57.5 61.8 58.2 67.4 64.1

LLMs, Prompted as Critic Models
GPT-4o 62.4 60.5 69.9 60.0 66.1 64.9 74.1 57.9 74.4 75.8
Deepseek-R1 51.9 72.6 63.4 64.4 67.1 70.9 64.6 54.8 75.0 77.1
QwQ-32B 60.2 68.6 70.0 67.9 59.8 73.7 65.8 55.4 75.8 75.7
Gemini-2.5-Pro 62.3 64.4 67.3 61.4 68.5 70.2 69.2 58.6 78.3 78.0
o3-mini 62.4 67.4 70.4 57.3 68.0 77.3 71.3 53.0 77.2 72.6

Model Overall Deduction Integration
CF. CT. CV. PC. PR. PS. IC. IT. IR. IS.

Process Reward Models (PRMs)
Skywork-PRM-7B 43.6 42.5 41.2 40.0 41.8 42.8 39.8 38.7 42.6 39.4 44.2
ReasonEval-7B 61.9 63.6 63.6 66.3 61.9 65.2 63.5 69.7 78.2 68.7 76.1
RLHFlow-PRM-Mistral-8B 48.8 50.4 46.2 45.2 46.1 44.5 43.3 51.2 58.1 46.6 56.3
RLHFlow-PRM-Deepseek-8B 51.5 51.5 52.4 52.0 47.6 51.4 45.2 55.3 63.7 53.3 66.7
MathShepherd-Mistral-7B 64.4 68.0 65.9 66.5 62.4 65.9 65.4 63.1 74.2 60.1 72.3
Qwen2.5-Math-PRM-7B 68.0 74.7 73.1 72.2 66.6 72.4 67.2 75.0 85.2 69.6 86.9

LLMs, Prompted as Critic Models
GPT-4o 70.8 63.6 62.7 74.5 73.2 60.1 76.1 73.4 80.8 52.7 88.7
Deepseek-R1 73.0 80.8 72.6 77.2 68.6 72.0 76.9 75.9 78.9 59.9 88.6
QwQ-32B 73.8 70.3 75.0 85.2 74.0 69.5 77.5 81.8 83.5 58.7 96.7
Gemini-2.5-Pro 73.5 72.8 77.7 83.5 69.0 65.9 73.5 73.2 88.9 56.9 96.9
o3-mini 75.7 83.3 81.0 81.4 73.9 75.3 78.6 78.7 87.3 72.0 87.0

Table 3: Evaluation results on SOCRATIC-PRMBENCH. (Up): The PRM-Score of Transformation, Decomposition,
Regather, and Verification. (Down): The PRM-Score of Deduction, Integration and Overall performance. The best
performance for each category and task is in bold. The full names of abbreviations are shown in Appendix A

across the entire dataset, reducing the burden of398

extensive manual work.399

4 Experiments400

4.1 Models401

In our setting, we consider two types of model: Pro-402

cess Reward Models (PRMs) and Large Language403

Models (LLMs) prompted as critic models.404

Process Reward Models (PRMs) are trained405

with annotations of intermediate reasoning steps406

to evaluate and supervise intermediate reasoning407

process of language models.408

Our evaluation includes state-of-the-art open-409

source PRMs, such as: (1) MathShepherd (Wang410

et al., 2023), which obtains the process label for411

each step by estimating the empirical probability412

of that step leading to the correct final answer. (2)413

Two LLaMA-3.1-based Generative PRMs (Dong414

et al., 2024) that determine correctness based on415

the output probabilities of "Yes/No" tokens. (3)416

ReasonEval (Mondorf and Plank, 2024), which ass-417

eses redundancy in addition to validity of reasoning418

steps. (4) Two PRMs trained on the popular math- 419

ematical model Qwen2.5-Math, namely Skywork- 420

PRM (He et al., 2024b) and Qwen2.5-Math-PRM 421

(Zhang et al., 2025). 422

Large Language Models (LLMs) Prompted as 423

Critic Models Critic models aim to provide feed- 424

back and critique directly on model-generated 425

texts, harnessing the generative power of Large 426

Language Models. Our evaluation includes both 427

general-purpose models, including GPT-4o (Ope- 428

nAI, 2024a), Gemini2.5-Pro (Deepmind, 2025), 429

and models specilized on reasoning, including 430

Deepseek-R1 (DeepSeek-AI, 2025), QwQ-32B 431

(Team, 2024b), and o3-mini (OpenAI, 2025). 432

4.2 Evaluation Metrics 433

Given that the evaluation of PRM centers on the 434

detection of flawed reasoning steps, a straightfor- 435

ward application of Accuracy or F1-score may be 436

affected by inherent biases of models. To address 437

this concern, we follow (Song et al., 2025; Zheng 438

et al., 2024) and employ the PRM-score as our 439
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evlauation metric, defined formally as:440

PRM-Score = w1 × F1neg + w2 × F1 (2)441

where F1 and F1neg refer to F1 scores and nega-442

tive F1 scores. w1 and w2 are weights that bal-443

ance the contributions of the F1-score and negative444

F1-score. Following previous studies (Song et al.,445

2025; Zheng et al., 2024), we set w1 = w2 = 0.5.446

4.3 Main Results447

Our evluation results are exhibited in Table 3. Our448

findings are as follow:449

Comparision between PRMs and LLMs The450

performance of PRMs is demonstrably inferior to451

that of LLMs. The top-performing PRM, Qwen2.5-452

Math-PRM-7B, achieves a score of only 68.0,453

which is lower than even the least effective LLM,454

gpt-4o. Furthermore, some PRMs perform below455

the level of random guess, highlighting their limi-456

tations in handling reasoning errors across diverse457

reasoning patterns. This suggests a considerable458

gap between PRMs and LLMs, indicating a need459

for substantial improvement. The challenges of460

PRM data annotation and the difficulty in ensuring461

the quality of synthetic data likely contribute to this462

disparity. For instance, Math-shepherd leverages463

synthetic data where step correctness is measured464

based on the estimated probability of arriving at the465

correct final answer, whereas Qwen2.5-Math-PRM-466

7B uses the manually labeled PRM800k dataset.467

Comparision among LLMs In contrast to468

PRMs, LLMs exhibit the potential to provide more469

robust and reliable rewards in critique, owing to470

their sophisticated language and reasoning skills.471

Consistent with this, we observe that reasoning-472

specialized LLMs outperforms general-purpose473

LLMs. Notably, QWQ-32B performs best among474

the open-source models and even outperforms GPT-475

4o. While QWQ -32B demonstrates impressive476

performance, it still underperforms o3-mini, indi-477

cating that although the gap in problem-solving478

performance is getting closer between open-source479

and proprietary models, a significant gap persists480

in their capabilities as critic models.481

Redundant errors are more challenging We ob-482

served notable performance variations across fine-483

grained error types, even within the same reason-484

ing pattern. Redundant errors, such as decompo-485

sition redundancy, regather redundancy, and inte-486

gration redundancy within the Decomposition, Re-487

Transformation

Decomposition

Regather

Deduction

Integration

Verification

20

40

60

80

100

RLHFlow-Deepseek-8B
Qwen2.5-PRM-7B

MathShepherd-7B
o3-mini

Deepseek-R1
Gemini2.5-Pro

Figure 3: Average PRM-Score of representative PRMs
and LLMs across 6 reasoning patterns. Both PRMs and
LLMs shows imbalanced performance.

gather, and Integration patterns, consistently posed 488

a greater challenge for both PRMs and LLMs com- 489

pared to other error types within the same reasoning 490

pattern. This may be attributted that redundant er- 491

ror steps often appear more "normal" or plausible 492

than other types of erroneous steps, hindering the 493

models’ ability to identify them based on surface- 494

level textual cues. This suggests that current PRMs 495

may be limited by their reliance on surface-level 496

pattern recognition for error detection, highlighting 497

the need for more profound reasoning and analyti- 498

cal capabilities. 499

4.4 Detailed Analysis 500

This section delves into a more nuanced analysis 501

of our proposed SOCRATIC-PRMBENCH, aiming 502

to identify current models’ limitations in providing 503

process-level rewards and provide insights to guide 504

the future development of PRMs. 505

Disparities in performance across reasoning pat- 506

terns As shown in Figure 3, we present the av- 507

erage PRM-Scores of representative PRMs and 508

LLMs across the six reasoning patterns. A notable 509

finding is the imbalanced performance exhibited by 510

both PRMs and LLMs across different reasoning 511

patterns. The performance of almost all models 512

was consistently weaker on Transformation, De- 513

composition, and Regather patterns compared to 514

Deduction, Integration, and Verification. This is- 515

sue is more pronounced for PRMs, for example, 516
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Figure 4: Error position distribution (truncated to 12) of
SOCRATIC-PRMBENCH and the predicted error posi-
tion distribution of several PRMs and LLMs.

Qwen2.5-Math-PRM-7B achieved a PRM-Score517

close to 80.0 on the Integration pattern but strug-518

gles to reach 60.0 on the Decomposition pattern.519

This finding highlights a potential bias in the cur-520

rent PRM training data construction process. Ex-521

isting PRM datasets, regardless of whether they’re522

manually annotated or synthetically generated, ap-523

pear to lack adequate representation of different524

reasoning patterns. Due to the greater frequency of525

certain patterns like Deduction, these datasets tend526

to be dominated by those patterns, resulting in sig-527

nificantly worse performance on rarer patterns such528

as Decomposition. This observation underscores529

the importance of considering the distribution of530

different reasoning patterns in future PRM training531

data construction, as early detection of reasoning532

errors is critical to mitigate error propagation.533

Models show latency in indentifying error steps534

To investigate the ability of models to detect reason-535

ing errors in time, we compared the distribution of536

the ground truth error step positions in SOCRATIC-537

PRMBENCH with the distributions of predicted538

error positions for representative PRMs and LLMs.539

As evidenced by Figure 4, Qwen2.5-Math-PRM540

and o3-mini show a marked shift towards later541

steps compared to the ground truth distribution,542

indicating a delay in detecting early errors. This543

implies a limited ability to detect errors early on,544

allowing them to propagate. On the other hand,545

MathShepherd exhibits an opposite trend, with its546

predicted distribution shifts toward the beginning547

of the reasoning chain, suggesting that MathShep-548

herd is prone to falsely identifying correct steps549

as errors, especially in the early stages of reason-550

ing. This inspires us that both early detection and551

avoidance of excessive false positives are crucial.552

Model Accuracy PRM
ScoreCorr. Err. All.

Random † 50.0 50.0 50.0 50.0
Process Reward Models (PRMs)

ReasonEval-7B 87.3 35.7 69.6 61.9
Skywork-PRM-7B 22.7 93.0 44.5 43.6
MathShepherd 73.3 56.0 67.4 64.4
Qwen2.5-Math-PRM-7B 90.8 42.9 74.5 68.0

LLMs, Prompted as Critic Models
GPT-4o 83.0 57.5 74.6 70.8
QwQ-32B 83.9 63.1 76.8 73.8
o3-mini 82.6 69.0 78.0 75.7
Gemini-2.5-Pro 83.6 62.8 76.5 73.5

Table 4: Comparison of model performance on positive
and negative test cases.† represents performance of Ran-
dom Guess.

Although propagation of errors will waste computa- 553

tional resources and reduces sampling efficiencys, 554

overly aggressive error detection can prematurely 555

terminate correct reasoning paths, hindering the 556

exploration of potentially optimal solutions. 557

Reward Bias of PRMs Table 3 reveals that some 558

PRMs perform even worse than random guessing, 559

suggesting a substantial bias in their predictions. 560

To further quantify this bias, we calculated accu- 561

racy for correct and error reasoning steps for each 562

model. As shown in Table 4, the results reveal a 563

clear reward bias within PRMs, with some mod- 564

els heavily favoring positive rewards and others 565

tending to provide negative rewards. For instance, 566

Qwen2.5-Math-PRM-7B displays a 90.8% accu- 567

racy on correct steps but only a 42.9% accuracy on 568

error steps. In stark contrast, Skywork-PRM-7B 569

shows a 93.0% accuracy on error steps but only 570

a 22.7% accuracy on correct steps. While LLMs 571

exhibits less pronounced bias than PRMs, however, 572

a considerable gap remained in accuracy between 573

correct and error steps. Moreover, all the evaluated 574

LLMs tended to favor positive rewards, which may 575

limit their reliability in identifying subtle errors 576

when serve as critic models. 577

5 Conclusion 578

In this work, we propose SOCRATIC-PRMBENCH, 579

a systematic and fine-grained benchmark for 580

PRMs. SOCRATIC-PRMBENCH comprises 2995 581

instances, categorized into six primary reasoning 582

patterns and 20 sub-categories of fine-grained error 583

types. Through a systematic and comprehensive 584

evaluations of existing PRMs and LLMs prompted 585

as critic models, we observe potential shortcomings 586

in existing models and provide valuable insights 587

for future efforts on upgrading PRMs. 588
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Limitations589

Although our work can provide a systematic and590

comprehensive evaluationg for PRMs, the current591

version of our benchmark primarily focuses on rea-592

soning tasks with objectively verifiable answers,593

such as mathematical problem. Applying our exist-594

ing data construction methods to tasks in domains595

like literature, medicine, or law, where definitive596

ground truth is often absent, needs further explo-597

ration. We intend to expand our benchmark to en-598

compass a broader range of tasks in future versions599

of our benchmark.600
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A Experimental Details813

Abbreviation of Sub-Categories The full names814

of abbreviations used in our experiments are shown815

in Table 5.816

Abbr. Full Name Reasoning Pattern

TT. Transformation Inconsistency Tansformation
TF. Transformation Counter-Factuality Transformation
DC. Decomposition Incompleteness Decomposition
DR. Decomposition Redundancy Decomposition
DS. Decomposition Unsoundness Decomposition
GP. Regather Imprecision Regather
GC. Regather Incompleteness Regather
GR. Regather Redundancy Regather
CE. Correction Error Verification
DE. Detection Error Verification
CF. Conclusion Counter-Factuality Deduction
CT. Conclusion Inconsistency Deduction
CV. Conclusion Invalidity Deduction
PC. Premise Incompleteness Deduction
PR. Premise Redundancy Deduction
PS. Premise Unsoundness Deduction
IC. Integration Incompleteness Integration
IT. Integration Inconsistency Integration
IR. Integration Redundancy Integration
IS. Integration Unsoundness Integration

Table 5: The abbreviation of sub-ategorie impact of ICL
few-shot numbers on models’ final performance. The
number reported here is PRMScore.

Implementation Details For Socratic reasoning817

model, we use LoRA tuning (Hu et al., 2021) to818

fine-tune a Qwen2.5-72B-Instruct with LLaMA-819

Factory library1. For the evaluation of open-source820

PRMs, we utilize PRM Eval ToolKit2 for imple-821

mentation. For the evalutation of LLMs prompted822

as critic models, we prompt LLMs with the prompt823

template in Table 6. During the test case con-824

struction procedure, we select N = 150 sam-825

ples from metadata set D′, including 10 from826

GSM8k and 50 each from Omni-Math, Math-827

Bench, and OlympiadBench. We release our828

dataset in https://anonymous.4open.science/829

r/Socratic-PRMBench-B8EF.830

B Prompts831

As described in Section 3, LLMs play a crutial role832

in our method. In the socratic reasoning generation833

stage, the prompt for socratic reasoning curation is834

illustrated in Table 7. In the test case construction835

stage, we follow (Song et al., 2025) and design task836

prompt and output format prompt seperately, as837

shown in Table 8 and Table 9 respectively. For the838

LLM-based filering procedure, we use the prompt839

template in Table 10.840

1https://github.com/hiyouga/LLaMA-Factory
2https://github.com/ssmisya/PRMBench
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Prompt Template for Evaluation of LLMs prompted as critic models
[System Prompt]
You are a mathematical reasoning evaluator. Your task is to analyze mathematical problem-solving
steps and provide structured assessments in JSON format.

For each solution step, you need to evaluate its Validity Score (-1 to +1):
* +1: Completely correct mathematical reasoning
* 0: Partially correct with some mistakes
* -1: Completely incorrect
* Use any value in between to indicate varying degrees of correctness

Requirements:
- Evaluate each step independently
- Provide scores as floating-point numbers
- Return results in strict JSON format: {"validity ": [scores]}
- Ensure the array have the same length as the number of steps
- Maintain mathematical rigor in your evaluation
- Consider mathematical accuracy, logical coherence, and solution efficiency

Example output format:

{"validity ": [0.8, -0.5, 1.0]}

You will be presented with a mathematical problem and its step-by-step solution. Please analyze each
step and provide your evaluation in the specified JSON format.

[User]
Question: {question}

Solutions: {solution}

Table 6: Prompt template for evaluation of LLMs prompted as critic models

Prompt Template for Step Verification
You are an expert on reasoning process verification, you will be given a question, a solution(split into
paragraphs, enclosed with tags and indexed from 1, and a reference answer.

[Question]
{question}

[Solution]
{solution}

[Reference Answer]
{answer}

Your task is to review and critique the solution paragraph by paragraph. Once you identify an error in a
paragraph, return the index of the paragraph where the earliest error occurs. Otherwise, return the index
of -1 (which typically denotes "not found"). Please put your final answer (i.e., the index) in \boxed{}.

Table 7: Prompt template for step verification.
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Task Prompt for Test Case Construction
You are a helpful AI assistant that is very good at reasoning and data construction. Now I want to
test the ability of process-level reward models to judge whether a step within reasoning process is
correct. To do this, please help me build flawed cases by introducing specific types of errors into a
given reasoning process.
You will be provided with:
1. A mathematical problem.
2. A correct step-by-step reasoning process used to solve it. Each step is in a form of Action, posssibly
including [Transformation], [Decomposition], [Regather], [Deduction], [Verification], [Integration],
[Answer], [LVerification] and [GVerification].

The description of Actions are as follows:

## [Transformation] (Identifier: <Repeat>xxx</Repeat>)
- Explain the problem from a problem-solving perspective
- Gain a more comprehensive and clear understanding of the problem through rephrasing

## [Decomposition] (Identifier: <Decomposition>xxx</Decomposition>)
- Break down the problem into several core sub-problems; resolve the main problem by tackling each
sub-problem
- If no breakdown is necessary, provide the solution approach

## [Regather] (Identifier: <Regather>xxx</Regather>)
- Collect key information from the input relevant to solving the problem
- Output definitions, principles, and other concepts related to solving the problem, and provide
explanations

## [Deduction] (Identifier: <Deduction>xxx</Deduction>)
- Observe existing information and extract key parts
- Identify explicit and implicit requirements, considering constraints and limitations
- Propose concrete ideas for solving the problem
- Execute reasoning according to the ideas

## [Verification]&[Verification] (Identifier: <Verification>xxx</Verification>)
- Verify the logical consistency of the reasoning process
- Check the reasoning process against existing evidence
- Look for potential flaws in the reasoning process and refine them
- Review the completeness of understanding
- Question your assumptions and consider alternative viewpoints

## [Integration] (Identifier: <Integration>xxx</Integration>)
- Integrate all current reasoning processes to form the current conclusion

## [Answer] (Identifier: <Answer>xxx</Answer>)
- Output the final answer to the original problem

Your task is to modify the question, adjust original steps, or introduce additional steps into the original
process chain to create a reasoning process that appears plausible but is incorrect, which leads to a
wrong answer. The objective is to simulate flawed solutions by incorporating the specified error detailed
after ’### Error Type to Introduce’.

### Error Type to Introduce
{Error type}

Table 8: Task prompt for test case construction.
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Output Foramt Prompt for Test Case Construction
### Formatting Instructions:

After making the modifications, provide the following structured output:
{

"original_question": "The original mathematical problem.",
"modified_question ": "The modified problem or original problem, "
"original_process": ["original_step 1 ", "original_step 2", . . . ],
"modified_process": ["modified_step 1", "modified_step 2 ", . . . ],
"modified_steps": [1, 5, 7, . . . ],
"error_steps": [5, 6, . . . ],
"reason": "Explanation for the changes."

}

Detailed Requirements:
1. original_question: A string representing the original mathematical problem as provided.
2. modified_question: A string representing the modified problem after your changes. If the problem
remains the same, you can copy the original question.
3. original_process: A non-empty list of strings representing the original reasoning steps provided as
input.
4. modified_process: A non-empty list of strings representing the reasoning process after your
modifications.
5. modified_steps: A non-empty list of integers indicating the indexes of all modified steps. Indexing
starts at 1.
6. error_steps: A non-empty list of integers representing the steps that contain hallucinations or errors.
These should also be part of modified_steps.
7. reason: A clear explanation of the modifications made, why they were introduced, and how they
align with the specified error types.

### Notes:
1. Ensure all lists are non-empty.
2. Use LaTeX format for all mathematical symbols (e.g., x2 for x squared). Do not use Unicode
symbols such as \u2248 or \u00f7.
3. Ensure the JSON object is well-formed, with proper escaping for special characters like backslash n
(e.g., use backslash backslash n for newlines).
4. All indexes start from 1, that is, the first step’s index is 1, not 0.
5. You can choose to modify the question or not, if the question remains the same, you can copy the
original question. But if the question is modified, ensure that the steps is judged based on the
modified question.
6. Please give original process as provided by the prompt, do not modify it.

Table 9: Output prompt for test case construction.
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Prompt Template for LLM-based Filtering
You are an expert on reasoning process verification, you will be given a question, a solution(split into
paragraphs, enclosed with tags.

Your task is to decide whether the step-by-step solution generated by LLMs satisfies:
1. The process generated by LLMs seems like a possible solution path that could happen.
2. The process generated by LLMs is exactly wrong and the type of error is suitable for the description
of [classification]

[Classification]
{classification}

[Question]
{question}

[Solution]
{Solution}

Please answer a “Yes” if both of the two aspects are satisfied, otherwise answer ’No’.
Please put your final answer (Yes or No) in \boxed {}.

Table 10: Prompt template for LLM-based Filtering
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