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Abstract

Handling varying computational resources is a critical issue in mod-
ern Al applications. Adaptive deep networks, featuring the dynamic
employment of multiple classifier heads among different layers,
have been proposed to address classification tasks under varying
computing resources. Existing approaches typically utilize the last
classifier supported by the available resources for inference, as
they believe that the last classifier always performs better across
all classes. However, our findings indicate that earlier classifier
heads can outperform the last head for certain classes. Based on
this observation, we introduce the Collaborative Decision Making
(CDM) module, which fuses the multiple classifier heads to enhance
the inference performance of adaptive deep networks. CDM incor-
porates an uncertainty-aware fusion method based on evidential
deep learning (EDL), that utilizes the reliability (uncertainty values)
from the first c-1 classifiers to improve the c-th classifier’ accuracy.
We also design a balance term that reduces fusion saturation and
unfairness issues caused by EDL constraints to improve the fusion
quality of CDM. Finally, a regularized training strategy that uses
the last classifier to guide the learning process of early classifiers
is proposed to further enhance the CDM module’s effect, called
the Guided Collaborative Decision Making (GCDM) framework.
The experimental evaluation demonstrates the effectiveness of our
approaches. Results on ImageNet datasets show CDM and GCDM
obtain 0.4% to 2.8% accuracy improvement (under varying comput-
ing resources) on popular adaptive networks. The code is available
at the link https://github.com/Meteor-Stars/GCDM_AdaptiveNet.
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1 Introduction

Deep convolutional neural networks (CNN) include the traditional
architecture of ResNet [11] and DenseNet [15] or the light-weight
architecture of MobileNet [12] and CondenseNet [14]. They have
promoted the development of many fields such as object detection
[4]. The above deep networks that contain only one classifier at the
end of the network architecture, and they need to work on high
computational costs and will become ineffective when computa-
tional resources are insufficient.

A popular solution is to transform deep networks into a multi-
classifier network, where each classifier works based on different
computational resources [13]. As shown in Figure 3, a deep network
consists of ¢ blocks, each consisting of different CNNs. Different
classifiers are attached to the exits of different blocks. The compu-
tational resources required for the c-th classifier are the sum of all
the preceding ¢ — 1 blocks. This enables different classifiers to work
under varying computational resources and if it’s insufficient to
support the c-th classifier, we can select a classifier from the first
¢ — 1 classifiers that meet the requirements. Deep networks with
multi-classifiers can be seen as Adaptive Deep Networks. The sim-
plest implementation of it is to add multiple classifiers at different
depths in traditional CNN architectures like ResNet [11]. However,
traditional architectures may suffer from optimization conflicts be-
tween classifiers, leading to poor performance. Encouragingly, a
new architecture called MSDNet [13] is proposed and successfully
addresses the optimization conflicts among multiple classifiers, sub-
sequently leading to the emergence of a more effective architecture
like RANet [28] and their improved versions [1, 20, 29]. Meanwhile,
IMTA [19] proposes improved techniques for enhancing adaptive
deep networks, which is a gradient equilibrium-based two-stage
training algorithm to further enhance the performance of adaptive
deep networks like MSDNet and RANet.
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Figure 1: Motivation analysis: (a) Accuracy of different classi-
fiers of MSDNet on randomly sampled classes with CIFAR100
dataset. (b) Agreement measurement on 10 classifiers of MSD-
Net on ImageNet100 with regularized training. A lower value
represents higher diversity. The values in bold denote that
the agreement value decreases after regularized training,.

However, current adaptive deep networks have a common limita-
tion: they assume the last classifier always has the best performance
on all classes. Consequently, they only use the last C-th classifier
that computing resources can support (the previous all C — 1 clas-
sifiers are unused). This raises a question: when there are enough
computational resources for the c-th classifier, it is also sufficient to
support all ¢ — 1 classifiers. Can we utilize all the previous c — 1 clas-
sifiers to enhance the performance of the c-th classifier? The answer
is affirmative because we find there is good diversity among the
first c classifiers in Adaptive Deep Networks, and their decisions can
complement each other.

As shown in Figure 1(a), we visualize the accuracy of randomly
sampled classes (C5, C53,...) on different classifiers. CF1 and CF10
represent classifiers attached to the 1-th and 10-th block, and they
are allocated with the minimal and maximum computational re-
sources. We can observe that the overall performance of CF10 is the
best among all classifiers because it utilizes the maximum resources
to extract the highest-quality features for classification. However,
the accuracy of CF10 in some classes (e.g., C53 and C65) is not the
best and is even worse than other classifiers. This suggests that
different classifiers have their own advantages (more qualitative
analysis refers to the full version paper shown in our code link), and
¢ — 1 classifiers can provide better decisions for the c-th classifier
to enhance its performance.

Based on the above observations, this paper proposes CDM,
called Collaborative Decision Making, which fuses the decision
information of all ¢ — 1 classifiers to enhance the performance of
the c-th classifier. CDM works only during the inference stage with
no extra model parameters and without obviously increasing infer-
ence time. For the design of CDM, we propose a classifier fusion
method based on evidential deep learning (EDL) [25] framework
and uncertainty. Specifically, classifiers with higher uncertainty
are considered to have less reliability, and vice versa. To this end,
we first propose an uncertainty-aware attention mechanism-based
fusion method to weight and integrate the decision information
from different classifiers based on their reliability. However, we
find that the prior design in the EDL framework may bring fusion
saturation and fusion unfairness issues for the uncertainty-aware
fusion, which harms its fusion quality. Hence, a balance term to
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slow down the changing trend of fusion values is further intro-
duced to alleviate the fusion saturation and fusion unfairness issues,
enhancing the fusion quality of CDM.

Finally, we make efforts to enhance the performance of the CDM
module. The fusion performance of multiple classifiers depends
on the accuracy and diversity of them [2, 3, 23]. For accuracy, as
described in Figure 1(a), the overall performance on all classes of
the last classifier is better than the early classifiers. Hence, we can
increase the accuracy of early classifiers by exerting regulariza-
tion between the last classifier and early ones (called regularized
training). To this end, we propose the Guided Collaborative Deci-
sion Making (GCDM) framework to use the last classifier to guide
the learning process of early classifiers. For diversity, intuitively,
regularized training may decrease the diversity of early classifiers.
However, we observe that regularized training doesn’t obviously
harm and can even improve the diversity among classifiers in ex-
periments. Specifically, we calculate the agreement table [27]) of 10
classifiers of MSDNet after regularized training on the ImageNet100
dataset, as shown in Figure 1(b). Therefore, we can enhance the
performance of CDM by regularized training, i.e., increasing the
accuracy of early classifiers, not obviously harming and even im-
proving their diversity. Our contributions are as follows:

(1) A Collaborative Decision Making (CDM) idea is proposed to
improve the performance of popular adaptive deep networks.

(2) An uncertainty-aware fusion method is proposed to realize
CDM, which weights and integrates the decision information from
different classifiers based on their reliability (uncertainty values).

(3) A Guided Collaborative Decision Making (GCDM) framework
is further proposed to enhance CDM, which uses regularized train-
ing to increase the accuracy of early classifiers and not obviously
harm their diversity.

(4) Empirical study on the large scale ImageNet1000, ImageNet100,
Cifar100, and Cifar10 datasets shows the good performance of CDM
and GCDM, e.g., our method can improve the accuracy of SOTA
MSDNet, RANet, and IMTA by approximately 0.8% to 2.8% under
various computing resource constraints on the ImageNet datasets.

2 Related Work

Adaptive deep networks. Works can be divided into two cate-
gories: focusing on designing effective architectures and training
strategies. For the former one, MSDNet [13] creates an innovative
multi-scale convolutional network featuring multi-classifiers with
different computational budgets. These classifiers can be dynam-
ically chosen during the inference stage. RANet [28] proposes a
resolution adaptive network by designing an architecture that can
feed features with a suitable resolution for different samples. Then,
[1] uses concatenation and strided convolutions to further improve
MSDNet. [20] proposes an adaptive router to predict the difficulty
scores of the images and achieve automatic classification. [29] re-
gards adaptive deep networks as an additive model, and train it in
a boosting manner to address the distribution mismatch problem
in the train-test stages. For designing effective training strategies,
IMTA [19] proposes improved techniques, such as the gradient
equilibrium and forward-backward knowledge transfer based two-
stage training algorithms (introducing extra model parameters) for
improving the performance of adaptive deep networks. However,
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there is a limitation for current methods: they all assume the last
classifier always has the best performance and multi-classifiers
work independently during the testing stage. In other words, when
computational resources are sufficient to support the c-th classifier,
all ¢ — 1 classifiers can also be used to improve the performance.
However, they ignore the decision information of the ¢ — 1 classi-
fiers, resulting in computational resource waste and performance
limitations. This paper proposes one-stage (end-to-end training)
methods to address this limitation, making full use of computational
resources and enhancing the accuracy of each classifier.

Evidential Deep Learning (EDL). Traditional softmax-based
neural networks for single-point estimation of class probability dis-
tributions cannot effectively estimate classification uncertainty and
are prone to overconfidence in wrong predictions [8]. In contrast,
EDL targets knowing “what they don’t know” based on a prior be-
lief [21, 26]. Through the Dempster Shafer Theory of Evidence (DST)
[6] and Subjective Logic [16], EDL realizes uncertainty estimation
in a single forward pass by collecting evidence for each category
and modeling the distribution of class probabilities. In recent years,
EDL has successfully been adopted in various tasks, including out-
of-distribution detection [7, 30], multiview classification [9, 10]
and domain adaptation learning [5]. However, to our knowledge,
EDL hasn’t been explored in the field of adaptive deep networks.
This paper uses evidential uncertainty to quantify the reliability of
different classifiers and further develops an uncertainty-aware at-
tention mechanism to fuse the decision information from different
classifiers with an emphasis on their reliability.

3 Methods

Our method is shown in Figure 3. Unlike traditional adaptive deep
networks, our proposed approach CDM differs in that during the
inference stage, the c-th classifier and all c—1 classifiers are not inde-
pendent, thereby making full use of computational resources. Specif-
ically, we enhance the performance of the c-th classifier through
the proposed CDM module and GCDM framework. In CDM, an
uncertainty-aware attention mechanism is designed to weight and
fuse the decision information from different classifiers based on
their reliability (uncertainty values). Further, through regularized
training, GCDM enhances the performance of CDM by increasing
the accuracy of early classifiers and not obviously harming or even
improving their diversity. We will proceed to introduce the details
of CDM and GCDM.

3.1 Problem Definition

The adaptive deep network can be seen as a network with C classi-
fiers, where these classifiers are attached at varying depths of the
network. Given the input image x and corresponding true class
label y, the output of the c-th classifier (1 < ¢ < C) is:

PE=folxi0c) = [p5, -+ pi] € RE )

where K is the number of class labels and 0. denotes the model
parameters of the c-th classifier and each value p; is the logit of
the k-th class on c-th classifier.

The adaptive deep network can realize computationally efficient
inference in two forms: anytime prediction (Figure 2(a)) and bud-
geted batch prediction (Figure 2(b)). As shown in Figure 2, consider
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Figure 2: Comparison between anytime prediciton and bud-
geted batch prediction settings.

the computational resource is only sufficient for the c-th classi-
fier. In anytime prediction, all test samples will be classified by the
c-th classifier. In contrast, budgeted batch prediction dynamically
selects the suitable classifier for different test samples based on their
difficulty. Concretely, early classifiers with fewer computational
resource costs are used for the classification of easy images, while
classifiers with higher computational demands are used for the clas-
sification of harder images. To measure the difficulty of images, we
follow [13, 19, 28] to use the classifier confidence of validation set.
Hence, the frequency of using classifiers with higher computational
resource will be reduced, thereby achieving a further reduction in
overall computational resource consumption. We recommend to
see [13, 28] for more details about budgeted batch prediction.

3.2 Collaborative Decision Making (CDM)

CDM is proposed to enhance the performance of c-th classifier by
reusing the ¢ — 1 available classifiers under limited computational
resources where 1 < ¢ < C and C is the total number of classi-
fiers. CDM first quantifies the uncertainty (reliability) of different
classifiers and uses the uncertainty-aware attention mechanism for

collaborative decision-making fusion. We will further discuss them.

3.2.1 Quantify the Uncertainty of Classifiers (QUC). Evidential un-
certainty is derived from the Dempster—Shafer Theory of Evidence
(DST) and is further developed by Subjective Logic (SL) [17] based
on Dirichlet distribution. SL defines a theoretical framework for
obtaining the belief masses of different classes and the uncertainty
measurement of the samples based on the evidence collected from
them. For the c-th classifier, K + 1 mass values are all non-negative
and their sum is one:

u€ + Zb; =1 @)



MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

Depth

Xu Zhang, Zhipeng Xie, Haiyang Yu, Qitong Wang, Peng Wang, and Wei Wang

Increased Computational Cost

Scale
i

LN
JLd

i
Block 1 Block 2

Deep Network with Multiple Classifiers Called Adaptive Deep Networks

T

3
| %

i
Initial I l I I
Layer Block 3
Y . ! Block4 | l
Classifier |  Classifier2 (Classifier3  Classifier 4 Block 5 Classifier 5 Block
ock ¢
lj Current inference stage: classifiers are independent of each other
Feature map Classifier QuC QUC: Quantify the Uncertainty of Classifiers
QUC + UAMF = CDM | QuUC UAMF: Uncertainty-aware Attention Mechanism for Fusion
(Fusion during inferring stage only) l QuC
Classifier l
Regularization4+ CDM=GCDM Classnﬁer 2 ' ! QUC
(Training [§YNYi3 Classifier 3 :
stage only) Cla551ﬁer 4

Our inference stage:
classifiers are united to
generate Collaborative

Decision Making (CDM) | L

Regularization Regularization

" Classifier 5
SQSK

Regularization

Regularization Regularization

Figure 3: Overview of our methods for adaptive deep network. Our proposed CDM fusion is suitable for both anytime prediction

and budgeted batch prediction settings as shown in Figure 2.

where blcc represents belief mass (the probability of the k-th class on
the c-th classifier) and u° is uncertainty. The Dirichlet parameters
a®, evidence €€, belief mass blcc and uncertainty u€ are defined as:
er K
(xkzek+1—SoftPlus(pk)+1bc—sc, C=S—C 3)

where p;’ is the output of these classifiers, as described in Eq. 1 and

= Zlk(:l (ez + 1) is Dirichlet strength. SoftPlus(-) is a smoothed
ReLU activation function.

We can quantify the uncertainty u® by optimizing the Dirichlet
distributions [30] of different classifiers:

Ly =35, (0 - y)? + Var(fe(x;6c))) 4
where Var(fz(x;0c)) denotes the variance of the Dirichlet distri-
bution.

3.2.2  Uncertainty-aware Attention Mechanism for Fusion (UAMF).
The obtained uncertainty u¢ can measure the reliability of c-th
classifier. Then, we design an uncertainty-aware attention mech-
anism to weight and fuse the decisions from different classifiers
based on their reliability (uncertainty values). The key design is to
focus more on classifiers with higher reliability (lower uncertainty)
during decision fusion. For simplicity, we take the fusion of the two
classifiers for instance and the proposed uncertainty-aware fusion
process is formulated by:

0= ucuc+l (5)
b = bEBET + b (1 - u) + bET (1 - uH) ()
= K/ic, & = $° - by ()

We first fuse uncertainty u and belief mass b through element-
wise multiplication. Such form (uu¢*!) and bib]c:l) has the ad-
vantage of enhancing compatible information while suppressing
conflicting portions, helping gather information where the two

classifiers reach a consensus. Then, we use 1 — u€ and 1 — u*! as

attention weights (also called attention term) to weight the decision
information from b¢ and b*!. When the uncertainty value is high,
we reduce the contribution of this classifier to the fusion because it
shows low reliability, and vice versa. Further, the fused evidence élcc
is used for final classification.

However, the accumulative multiplication form in Eq. 5 and 6
will cause two issues. First, in Eq. 2, it holds that u¢ < 1 and bz < 1.
If one of them approaches 1 prematurely (e.g., it approaches 1 only
in the first 3 classifiers after fusion), the fusion value will change
very slowly, which means the fusion between classifiers will be
invalid prematurely and the c-th classifier cannot obtain useful
knowledge from the (¢ — 1) classifiers. We call this issue as fusion
saturation, as shown in Figure 6 (a). If it appears earlier, the accuracy
of the c-th classifier will decrease after fusion with (¢ —1) classifiers
and even be worse than a single c-th classifier without fusion.

Second, before the appearance of the fusion saturation, the fusion
values will change sharply due to the accumulative multiplication
form of fusion. In Eq. 5- 7, taking b¢ for instance here, it will in-
crease sharply after fusion if the classifier to be fused shows the
high confidence of the k-th class (presents high blz’l). Moreover,

bg, bf, e blcc where k! = k will decrease sharply after fusion at the
same time. we call this issue as fusion unfairness. Hence, if the
(¢ — 1)-th classifier presents the fake high confidence towards the
k-th class during fusion, the current sample almost cannot be clas-
sified correctly in the latter fusion. One reason is that the belief
mass of k class is too high to be adjusted. Another reason is the
fusion saturation issue mentioned above, which leads to invalid
fusion because the fusion value changes very slowly. Hence, fusion
saturation and fusion unfairness issues may result in generating an
overconfident fusion result, leading to wrong classification.
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To relieve the fusion saturation and fusion unfairness issues, we
introduce the balance term into Eq. 6 and Eq. 5. Specifically, we
introduce weighting and sum operation into the fusion process
for the purpose of slowing down the changing trend of fusion
parameters uncertainty and belief mass:

T= §+ucuc+1 (8)
by = (y +bE6ET) - 0.5+ b8 (1 - u®) +bEF (1 - ut)  (9)

y = (b5 + b5 0.5, ¢ =uf +ut! (10)

where newly added Eq. 10, coefficient 0.5 in Eq. 5 and Eq. 6 is the
balance term to improve the fusion quality. For obtaining the fused
decision of c-th classifier, all ¢ — 1 classifiers will be sent to the
CDM for fusion based on uncertainty-aware attention mechanism,
where ¢ > 2. Finally, the fused evidence €% based on balance term
can be obtained through Eq. 7 for final classification. The algorithm
pseudocode of uncertainty-aware fusion is shown in Algorithm 1.

3.3 Guided Collaborative Decision Making

The fusion performance of multiple classifiers depends on the accu-
racy and diversity of them [2, 3, 23]. Hence, if we can improve the
accuracy of early classifiers and their diversity, the performance of
CDM can be enhanced. Considering that the overall performance
of the last classifier across all classes is better than early classifiers,
we exert regularization between the last classifier and others (called
regularized training), using the last one to guide the learning process
of early classifiers. Specifically, the Jensen-Shannon divergence [22]
is used to pull close the distribution of the last classifier and early
ones. We name the CDM based on regularized training as Guided
Collaborative Decision Making (GCDM). To make the distribution
of the last classifier and the early one more distinguishable, we use
temperature-scaled distribution[8] of the classifier logits f. (x, 6.; 7)
instead of original distribution fz(x;0.):

JS(xie,1) = JS (fo(x, 0c; )l fe(x, 0c; 7)) (11)

Je(x,6c;1) = SoftPlus(pc)/t = ec/t (12)
where ¢ # C and JS (-||-) denotes the Jensen-Shannon divergence.
We minimize the Jensen-Shannon divergence between the last clas-
sifier (fo(x, O¢c; 7)) and early classifiers.

The final loss function to optimize GCDM is:

Lu=Lys+ T S0 -9 +Var(fe(x:6))  (13)

Lys = X US(xie,m1) +JS(xs¢,72)) /2 (14)

where C denotes the number of classifiers in adaptive deep networks.
71 and 77 are designed to alleviate the performance instability issue
in training due to the distance being too long or too short between
early classifiers and the last classifier. Hence, this is a Stable Training
Strategy (STS) and we calculate the regularization loss twice based
on 71 and 7 instead of using only one 7.

Note that model optimization during training doesn’t involve the
fusion of classifiers (CDM). CDM only works during the inference
stage. The overview of the proposed method is shown in Figure 3.
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Algorithm 1: Algorithm for our uncertainty-aware fusion.

Input: C classifier outputs P = {p?, ..., p°, ..., pC}.

Output: C — 1 fused decisions E={¢?,....",....eC}

1 forc=1toC-1do

2 if c=1then

3 obtain (b', %), (u!,u?) through Eq. 3

4 obtain fused %% based on (u!, u?) and Eq. 8

5 obtain fused b? based on (b',b?) and Eq. 9

6 obtain 2 based on (%2, 52) and Eq. 7

7 else

8 obtain b(¢*D 4(¢+1) through Eq. 3

9 obtain fused 7¢*! based on (%€, u(c“)) and Eq. 8
10 obtain fused b°*! based on (b¢, b(¢*1)) and Eq.9
11 obtain 2(“*1) based on (@*!,b*!) and Eq. 7

12 end
13 end

=

4 Use €° to obtain fused c-th classifier accuracy (¢ > 2)

4 Experiments

4.1 Experimental Setup

Datasets. We use large-scale ImageNet1000, ImageNet100, CIFAR10,
and CIFAR100 datasets in experiments. Following [13, 19, 28], all
datasets are divided into training, validation, and testing sets. The
batch size for the ImageNet100 dataset is fixed at 64 for all methods.
Other settings about datasets are as same as in previous work based
on their public source codes.

Baselines. For adaptive deep networks, we use advanced MS-
DNet [13], RANet [28] and IMTA [19] to create strong baselines.
IMTA is an advanced improved technique for adaptive deep networks.
For MSDNet, according to the number of blocks between classi-
fiers, there exist two different structures: “E” structure MSDNet?
(the number of blocks between classifiers is equidistant) and “LG”
structure MSDNet=C (the number of blocks between classifiers is
linearly growing). For RANet, similarly, if the number of layers in
each ConoBlock is the same or linearly growing, called RANet or
RANetEC respectively. Detailed model structures refer to the ap-
pendix. We don’t compare with ensembling multiple independent
networks because it performs worse than MSDNet and RANet, as
proved in their papers. For fusion methods baselines, we select
averaging fusion, weighted averaging fusion, voting fusion, neural
network fusion, and multiview fusion [10] based on EDL.

Hyperparameters. CDM doesn’t involve hyperparameters. For
GCDM, the hyperparameters 71 and 72 in Eq. 14 are set to 0.5 and 1,
respectively. Overall, our method involves only a few hyperparam-
eters. For hyperparameters of baselines, we directly use the setting
in their public source codes. To ensure a fair comparison, our
method is used with the same hyperparameters when com-
bined with other methods. The only difference is whether
applying our CDM or GCDM to them. All experiments in this
study are conducted on NVIDIA GeForce RTX 3090 GPU based on
PyTorch. More experimental details, results, and discussion can be
seen in the full version paper (can be found in our code link).
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Table 1: Results of combining our GCDM with MSDNet (MSD) and RANet (RAN) on the anytime prediction setting. CFc
represents the c-th classifier. Our means the corresponding adaptive network equipped with our proposed GCDM. The network
of MSD and RAN both adopt a “LG” structure. “-” indicates that there is no c-th classifier in the current network. “FLOPs”
denotes Floating Point Operations Per Second and we show the average FLOPs of MSD and RAN for each classifier.

Methods/ CIFAR10 CIFAR100 ImageNet100 ImageNet1000
Classifier(FLOPs) | MSD = Our | RAN Our | RAN Our | RAN Our | RAN  Our
CF1(0.15x10%) |87.77 88.32|89.73 90.4 ||60.21 60.64|65.18 65.18 | 64.41 66.05|66.33 67.45|| 5449 55.184|56.468 56.945
CF2 (0.26x10%) |90.25 90.88|91.13 91.93 || 63.33 66.61|68.57 71.14|68.44 70.07|69.25 70.57| 61.11 61.396|63.274 63.558
CF3(0.39x10%) | 91.7 92.01|91.85 92.89 ||67.82 70.36|69.27 73.26 | 72.26 73.53|70.67 73.06|| 66.85 66.986|65.99 66.893
CF4 (0.56x10%) |92.88 92.99|92.31 93.0 ||69.63 73.19| 70.6 74.43||74.51 76.46|71.48 74.31| 70382 71.048|68.018 69.162
CF5 (0.75x10%) |93.31 93.75|93.02 93.28(72.94 75.06| 73.6 76.0 || 76.3 78.25|72.68 75.21|72.324 73.413|68.576 70.04
CF6 (0.88x10%) |93.58 93.84|93.02 93.43 || 74.17 76.14|74.11 76.67 | 76.56 78.78| 733 75.5 || 73.018 74.28869.614 70.756
CF7 (0.94x10%) |93.69 93.92|93.68 93.6 ||75.28 76.81|75.02 77.24| - - |75.86 77.01| - - |72.492 73.069
CF8 (1.1x10%) | - - |93.61 93.65| - |7548 7739 - - |7614 7752 - - \73.006 73.722

Increased 0.316 (Avg.) | 0.479 (Avg.) || 1.93 (Avg) | 2.44 (Avg) || 1.33 (Avg) | 1.86 (Avg) || 0.52 (A 0.84 (Avg.)

Accuracy 0.630 (Max) | 1.04 (Max) || 3.56 (Max) | 3.99 (Max) || 2.22 (Max) | 2.83 (Max) 1.27 (M 1.46 (Max)

80
. . R T e R B L 74t == |
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Budgeted Batch Prediction Settings o g 72
We combine our GCDM with popular adaptive deep networks on £72 i iy § 0
) ) X 370 --- MSDNet®-GCDM S8 MSDNet'6-GCDM |
various datasets and two settings. The results of anytime pre- < gl — RANetlS | 2 RANetG
diction setting are shown in Table 1. Our method brings a sta- 66/ --= RANet'>-GCDM | 66 -~ RANet'6-GCDM

ble performance improvement to the current popular networks,
whether on large-scale datasets ImageNet1000, or other datasets
(CIFAR10, CAIFR100, and ImageNet100). For RANet, the average
improvement in accuracy on CIFAR10, CIFAR100, ImageNet100,
and ImageNet1000 is 0.479%, 2.44%, 1.86%, and 0.84%, respectively.
The maximum accuracy improvement is 1.04%, 3.99%, 2.83%, and
1.46%, respectively. Moreover, the results of budgeted batch
prediction setting in Figure 4 (ImageNet100 and ImageNet) and
Figure 5 (CIFAR10 and CIFAR100) also prove that our GCDM consis-
tently improves the classification accuracy of popular adaptive deep
networks such as MSDNet and RANet by a large margin under the
same computational resources (measured by FLOPs). The consistent
improvements in the above two settings demonstrate the effective-
ness of GCDM. Besides, although the experiments were conducted
on the “LG” network structures, we still observed consistent perfor-
mance improvements with our GCDM on the “E” structures, which
can be found in the full version paper in our code link.

4.3 Ablation Study

Ablation of each component. We conduct the ablation study on
MSDNet with CIFAR100 and ImageNet100 datasets to explore the ef-
fectiveness of the proposed CDM and GCDM. The results are shown
in Table 2. The proposed CDM significantly improves the perfor-
mance of the baseline method MSDNet. Moreover, most classifiers
among MSDNet equipped with regularized training (G*) perform
better than the original one (0%), denoting G* improves the accu-
racy of early classifiers. Furthermore, because regularized training
doesn’t obviously reduce the diversity of the early classifiers, it can
further enhance the fusion performance of CDM. Consequently, we

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Average FLOPs x 10

(a) ImageNet100

02 0.4 0.6 0.8 1.0 1.2 1.4 1.6, 1¢0
Average FLOPs

(b) ImageNet

Figure 4: Accuracy (top-1) of budgeted batch prediction on
ImageNet100 and ImageNet1000. With the same computa-
tional resources, existing methods equipped with the pro-
posed GCDM can achieve better performance.

——————- 715 T SETTm e ———
94.0 I/,_“ _______ _ 150 Pey
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(a) CIFAR10 (b) CIFAR100

Figure 5: Accuracy (top-1) of budgeted batch prediction on
CIFAR10 and CIFAR100.

observe that MSDNet equipped with GCDM (G* + CDM™) obtains
better accuracy than Gt and CDM?*. The above results validate the
effectiveness of the design of CDM and GCDM.

Diversity of early classifiers after regularization (Eq. 14).
We have proved that regularized training can raise the accuracy of
early classifiers. Whether it can improve CDM critically depends on
whether it would harm the diversity of early classifiers. Hence, we
calculate the diversity metrics of all classifiers of MSDNet? on CI-
FAR100 and ImageNet100. The results shown in Table 3 demonstrate
that regularized training even can slightly increase the diversity
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Table 2: Ablation study on MSDNet” with 10 classifiers. 0* denotes the original MSDNet with no fusion for c-th classifier. G*
denotes using regularized training. CDM* denotes using our uncertainty for fusing c-th classifier. Gt +CDM™ denotes conducting
our fusion for a classifier based on regularized training. The best results are in bold while the second best are underlined.

Dataset CF1 CF2 CF3 CF4 CF5 CF6 CF7 CF8 CF9 CF10
ImageNet100 (0%) 64.36 7039 7299 7593 77.0 77.09 77.37 77.65 7801 77.93
ImageNet100 (CDM™*) 6436 70.1 73.61 7635 77.51 78.61 78.69 78.83 79.16 78.84
ImageNet100 (G*) 67.32 7132 7343 7578 77.38 77.84 78.2 78.16 78.55 78.69
ImageNet100 (Gt*+CDM*) 67.32 71.98 74.62 76.56 78.25 79.2 79.22 79.64 79.49 79.74
Cifar100 (0%) 63.71 66.57 68.12 7042 720 7259 73.04 74.03 74.27 74.8
Cifar100 (CDM™) 63.71 68.73 71.07 73.12 74.24 75.13 75.51 76.11 76.22 76.38
Cifar100 (G™) 63.1 6639 6853 7044 72.12 7337 73.46 7438 7439 74.74
Cifar100 (G*+CDM) 63.1 68.56 71.55 73.41 74.65 75.48 76.05 76.44 76.79 77.03

Table 3: Diversity metrics of correlation coefficient (Cor.),
Q-statistic(Q-sta.), Kohavi-Wolpert variance (Var.) [18] and
agreement value(Agr.) [27] on MSDNet? (equipped with 10
classifiers). G* denotes regularized training; 0" is the opposite.
| means lower is better and vice versa.

Dataset Cor.(]) Q-sta.(]) Var(T) Agr.(l)
Cifar100 (0%) 0.694 0.927 0.071  0.9006
Cifar100 (G*) 0.688 0.923 0.072 0.8988

Mi-ImageNet (07) 0.737 0.957  0.0555 0.9249
Mi-ImageNet (G*) 0.733  0.955 0.0561 0.9243

among multi-classifiers, ensuring performance improvement for
CDM. Figure 1(b) also can prove this point.

Stable Training Strategy (STS) in loss function Eq. 14. Re-
sults in Figure 8(b) reveal an interesting observation. When using
either r = 1 or 7 = 0.5, individually, RANetf cannot consistently
achieve better performance. For example, RANet? trained with
7 = 1 performs better for the first four classifiers while it trained
with 7 = 0.5 performs better for the latter four classifiers. This
shows performance instability issues. However, after introducing
STS (using both 7 = 1 and 7 = 0.5 for weighted JS loss) during
training, RANetf exhibits better performance in most classifiers.
This suggests that the introduced STS is effective in relieving the
performance instability issue.

4.4 Effectiveness of Uncertainty-aware Fusion

Table 4: Comparison with other fusion methods. The best
results are in bold and the second best is underlined.

Method CF5 CF6 CF7  CF8

RANet (without fusion) 69.072 70.016 72.55 72.95
RANet-average 68.37 69.274 70.792 71.814
RANet-average.eighted 69.174 69.87 71.536 72.528
RANet-vote 68.052 69.088 70.294 71.32
RANet-NN,,ighred 68498 69.418 70.95 71.84
RANet-multiview (EDL) 68.674 69.594 71.09 72.26
RANet-CDM (no balance term) 68.76 69.728 71.748 72.894

RANet-CDM (no attention term) 64.824 68.294 67.268  8.82
RANet-CDM (our fusion) 70.04 70.756 73.069 73.722

Compared with different decision fusion methods. To eval-
uate the effectiveness of the proposed uncertainty-aware fusion,

2.001 p* The ratio between two increments
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Figure 6: Analysis for the value changing trend between our
fusion with balance term and the original one.

we compare our method with different decision fusion methods
on large-scale ImageNet1000 dataset, including traditional average,
weighted average, voting, neural network fusion method, as well
as multi-view fusion method [9] based on evidential learning. For
the weighted average fusion, we normalize the accuracy of the clas-
sifiers on the validation set to obtain the weights for each classifier.
For Neural Network (NN) weighted fusion, we allocate an MLP
for c-th (¢ > 2) classifier for fine-tuning based on the well-trained
adaptive deep networks. The comparison results are shown in Ta-
ble 4. We observe that traditional and multi-view fusion methods
are even poorer than the original RANet while our fusion is better
than all other methods. This is because traditional fusion methods
don’t take into account uncertainty, and multi-view fusion doesn’t
consider the issues of fusion saturation and fusion unfairness.
Effectiveness of designed balance term and attention term.
We conduct the fusion experiment on ImageNet1000 for CDM with
balance term (abbreviation is GCDM®¢*) and without balance term
(abbreviation is GCDM¢). We visualize the changing trend of the
believe mass 5k under different times of fusion, as shown in Fig-
ure 6(a). We find that GCDM®* successfully slows down the chang-
ing trend of the fusion process, relieving the fusion saturation and
fusion unfairness issues. In other words, GCDM®* won’t lead to
prematurely fusion saturation. The high belief mass of a certain
class (e.g., 1) won’t lead to a sharp decrease in the belief mass of
other classes (e.g., 0 and 2), which means that the fusion unfairness
issue is relieved. We also record the belief mass increment between
c-th and (¢ — 1)-th fusion for both GCDM®* and GCDM®. Finally,
we calculate the increment ratio between GCDM¢* and GCDM¢,
as shown in Figure 6(b). We find that the belief mass increment
ratio is larger than GCDM¢ with the increase of fusion times, which
ensures the effectiveness in the following fusion operations. Hence,
GCDM®" can obtain better performance than GCDM¢, proving the
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CF1

Figure 7: Interested regions visualization based on classifiers
in MSDNet”.

CF6-Fusion

effectiveness of our designed balance term. As shown in Table 4, we
also can observe that the performance of RANet-CDM decreases
after removing the balance term, further proving the effectiveness
of designed balance term. Moreover, performance sharply declines
after further removing the attention term, especially for the last
classifier CF8. This indicates that the basic attention term is crucial
in the uncertainty-aware fusion.

Interested regions visualization of different blocks in MS-
DNet. As shown in Figure 7, based on the cat and dog dataset,
we visualize the interested regions of different blocks in the well-
trained MSDNet. The top row is visualized on Grad-CAM and the
bottom row is on Guided Grad-CAM[24] for pixel-level visualiza-
tion. We can find that different classifiers capture different regions.
Even more interesting is that we use the fusion result of the total 6
classifiers to finish the Guided Grad-CAM visualization and find
that the final classifier after fusion can capture more features of the
input image. It means that the c-th classifier can fuse the knowl-
edge of (¢ — 1) classifiers by using CDM and hence improve the
performance of the c-th classifier.

4.5 Combined with Improved Techniques

To further validate the effectiveness of CDM and GCDM, we con-
duct experiments by combining them with improved techniques.
IMTA [19] is advanced two-stage improved techniques, which pro-
poses the Gradient Equilibrium, and Forward-backward Knowledge
Transfer (FKT) algorithms for improving training of adaptive deep
networks. We name the model that uses only Gradient Equilibrium
as GE, and both GE and FKT (whole two-stage training) as IMTA.
The results of budgeted batch prediction on ImageNet100 shown in
Figure 8(a) can be analyzed as follows: (1) MSDNetE ~IMTA js better
than MSDNetE~GE | proving the two-stage training method further
enhancing the performance of MSDNetf?~CE  (2) MSDNetE~TMTA_
CDM is better than MSDNetf~"MT4 and MSDNetf~“E-CDM is
better than MSDNetE~GE, demonstrating CDM is effective and
can be combined with current techniques for better performance.
(3) MSDNetE~CGE_GCDM outperforms both MSDNetE~TMTA a4pnd
MSDNetE~/MTA_CDM and obtains the best performance, indicat-
ing the combination of GCDM and GE algorithm can form a good
single-stage method to replace existing two-stage training IMTA.

4.6 Loss Functions and Calculation Costs
Discussions on different loss functions. We use £, = Ljs +

ZCC:1 ML (p% y) (cross-entropy loss) to replace the loss func-
tion (Eq. 13) and observe the accuracy changes. The results are

Xu Zhang, Zhipeng Xie, Haiyang Yu, Qitong Wang, Peng Wang, and Wei Wang
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Figure 8: (a) The performance of combining CDM and GCDM
with improved techniques. (b) The performance of using
Stable Training Strategy (STS) in GCDM (values of 7 or 7;
are 1 and 0.5).

shown in Figure 9. The conclusion is our CDM isn’t sensitive to the
choice of loss function, as it consistently yields stable performance
improvements when using other loss functions, e.g., cross-entropy
loss. This further proves our ideas’ effectiveness.
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Figure 9: Exploring the influence of loss function on our
proposed method (Budgeted batch prediction on CIFAR100
and ImageNet100 datasets).
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Discussions on Calculation Costs. During the training stage,
the additional cost is the added loss function Eq. 14, which can
be negligible. During the inference stage, the extra computation
cost comes from our uncertainty-aware fusion scheme between
two adjacent classifiers. In fact, such extra computation costs also
are negligible. Specifically, for inferring 50,000 images on the Ima-
geNet1000 dataset, MSDNet with no fusion (MSD) requires 330.16
seconds, while our method MSDNet-CDM with fusion (MSD-CDM)
takes 330.37 seconds. Similarly, RANet with no fusion (RAN) re-
quires 342.15 seconds, while our method RANet-CDM with fusion
(RAN-CDM) takes 342.53 seconds.

5 Conclusion

In this paper, we propose Collaborative Decision Making (CDM)
and Guided Collaborative Decision Making (GCDM) to improve
the classification performance of adaptive deep networks. CDM in-
corporates an uncertainty-aware fusion method to fuse decisions
of different classifiers based on their reliability (uncertainty values).
We also introduce a balance term to alleviate the fusion saturation
and unfairness issues caused by the evidential deep learning frame-
work, hence enhancing CDM’s fusion quality. GCDM is designed to
further improve CDM’s performance through regularized training
over earlier classifiers using the last classifier. Extensive experi-
ments on CIFAR10, CIFAR100, ImageNet100 and ImageNet1000
show that our proposed CDM module and GCDM framework can
consistently improve the performance of adaptive networks.
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