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Abstract

Oriented object detection predicts oriented bounding boxes. Precisely predicting their ori-
entation remains challenging due to angular periodicity, which introduces boundary discon-
tinuity issues and symmetry ambiguities. In this paper, we introduce Relaxed Structure
Tensor Bounding Boxes (RST-BB), a representation inspired by classical image structure
tensors encoding object orientation in addition to height and width. RST-BB provides a
simple yet efficient angle-coder approach that is robust to angular issues, effectively ad-
dresses square objects, and requires no additional hyperparameters. Extensive evaluations
across five datasets demonstrate that RST-BB achieves state-of-the-art results with high
angular prediction precision, establishing relaxed structure tensors as a robust and modular
alternative for encoding orientation in oriented object detection. We make our code publicly
available for seamless integration into existing detectors.

1 Introduction

Object detection is one of the classical problems in computer vision and traditionally localizes objects with
horizontal bounding boxes (HBB) (Zhao et al.,2019). Nevertheless, certain areas such as aerial imagery (Xia
et all [2018} [Sun et al. [2022; [Yang & Yan| [2022; [Yang et al. [2023a; Yu et al., 2024b) and scene text
detection (Liao et al.,|2018; [Liu et al., [2018; Ma et al., 2018} [Wang et al. [2020) require information on object
orientation for more accurate identification (Zhou et al., [2022). Hence, oriented object detection extends
object detection by predicting oriented bounding boxes (OBBs) that better align with object boundaries.

Despite progress in recent years, angular periodicity still poses challenges when predicting object orientation.
In the first place, small variations between the prediction and ground truth at the angular boundary will
cause a sharp loss increase. This phenomenon, known as the boundary problem (Xiao et all 2024} |Yang
& Yan, [2020; Xu et al., 2024), can penalize the network while comparing mathematically similar values.
In addition, objects with axial symmetry can cause the network to penalize equivalent angle predictions.
For example, § and —7 radians are equivalent orientations for rectangular objects, but their loss would be
significantly high (Xiao et al., 2024} [Yu & Dal, 2023).

Previous works have addressed these discontinuity problems in different ways. Some approaches propose
angle-coder solutions (Yang & Yanl, 2020; [Yang et al., [2021a; [Yu & Day, [2023), which transform orientation
into representations that circumvent angular periodicity issues. However, their performance can be greatly
affected by hyper parameters (Yu & Dal 2023} [Xiao et al., [2024)). Other methods mitigate these issues by
representing OBBs as 2D Gaussian distributions (Yang et al., |2021c{d; |2023b), and compare the distance
between these representations using distribution-based computations. They elegantly provide a continuous
orientation representation, though they still introduce hyperparameters, which can make their loss unstable
and difficult to tune across datasets (Yu & Dal [2023; [Yang et al., 2023b|), and struggle to handle square-
like objects. Furthermore, the improvements reported focus on mean average precision (mAP), without
specifically evaluating the precision of orientation predictions.

Traditional image analysis methods, particularly for edge and corner detection (Harris et al., 1988} [Forstner
& Giilchl (1987 [Lindeberg), [1998; |Brox & Weickert), [2006; [Scharr] |2004)), have investigated the representation
of orientation, shape, and symmetry through the concept of structure tensor (Bigun et al[1991). A structure
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a) Traditional format for OBB b) Classical structure tensor OBB c) Relaxed structure tensor OBB

Figure 1: Relaxed Structure Tensor Bounding Boxes (RST-BB). Comparison of traditional OBBs
(blue), classical structure tensors (red), and relaxed structure tensors (green) for square-like objects. a) The
traditional (z,y,w, h,#) OBB format suffers from boundary issues and ambiguity, with four possible solutions
for squares. b) Modeling OBBs with classical structure tensors, similar to Gaussian-based approaches, avoids
this but yields no clear principal direction for square-like objects. ¢) To address this, we propose relaxed
structure tensors, leveraging the fact that w > h and ensuring a unique solution with a strong principal
orientation.

tensor is a 2 X 2 symmetric matrix that encodes information of the orientation and anisotropy of a local
structure. Structure tensors offer two key advantages: 1) they are inherently continuous over the angular
space, and thus are robust to boundary discontinuities, and 2) their flexibility to model different symmetries
through their eigenvalues. Moreover, calculating structure tensors is straightforward and computationally
efficient, which can be done in an angle-coder fashion. Thus, as illustrated in Figure [I, we propose to
represent the orientations of objects as symmetric 2 x 2 matrices, which adapt classical structure tensors to
encode orientation and width and height of objects. Since we will not require the positive semi-definitiveness
property of classical structure tensors, we refer to the resulting bounding boxes as Relaxed Structure Tensor
Bounding Boxes (RST-BB), which combine the simplicity and modularity of angle-coder methods with the
performance of Gaussian-based approaches. Our representation is robust to boundary issues, symmetric
ambiguities, and square objects, requiring no additional hyperparameters.

We perform extensive experiments and compare the performance of our approach with previous work. We
show that the Relaxed structure tensor representation can considerably reduce the orientation prediction
error while achieving mAP state-of-the-art (SOTA) performance across five different datasets. Our contri-
butions can be summarized as follows.

e To the best of our knowledge, this is the first work to propose a representation of orientation in
OBBs as relaxed structure tensors. A simple and modular implementation is made publicly available,
enabling its integration into any detector.

e Through extensive experimentation, we show that our approach is able to decrease the orientation
prediction error, while maintaining SOTA performance. In addition, we effectively handle square
objects, unlike previous methods.

e We combine angle-coder and Gaussian-based strengths into a robust and modular solution that
elegantly addresses boundary problems. Without requiring additional parameters, our solution can
be easily integrated into existing detectors.
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2 Related works

Object Detection is a classical computer vision task that aims to identify instances of visual objects in
images and accurately estimate their location, providing an important piece of information: What objects
are where? (Zou et al., |2023} |Zhao et al. 2019). Like in other fields, deep neural networks (DNN) have
brought about large improvements in object detection, and DNN-based approaches have become the state of
the art over classical approaches (Xiao et all [2020). Modern object detectors can be grouped into one-stage
detectors and two-stage detectors. One-stage detectors localize potential objects over a grid of locations
and determine their category in one single step (Redmon et all 2016; [Lin et al., [2017; Howard et all
. Instead, two-stage detectors first extract a number of class-agnostic bounding box proposals using
a region proposal network. Then, a sub-network classifies these region proposals among all possible object
categories (Girshick et al. 2014; Ren et al., 2015; He et al., |2017). While one-stage detectors provide a
more time-efficient solution by merging regression and classification into one single step, two-stage detectors
generally achieve higher performance. Regardless of their type, early DNN-based detectors considered dense
sampling of locations, known as anchors, to predict bounding boxes in the image. However, later works
have proposed anchor-free approaches in order to match the performance of two-stage detectors without
the computational cost of anchor-based regression (Law & Deng [2018} [Duan et all [2019; |Tian et al. [2019;
[Yang et al., 2019b)). More recently, (Carion et al| (2020 introduced DETR, a transformer-based method
that detects objects using a fixed set of learnable queries. The concept of query-based detection has had
considerable impact in the field, inspiring a progression of recent works (Chen et all [2023} |Gao et all [2022}
[Jia et al., 2023; Li et al.| 2022; Meng et al., |2021}; |Zhang et al., 2023).

Oriented Object Detection. Traditional object detection localizes objects via horizontal bounding boxes,
that is, boxes aligned with the (z,y) axes. However, in applications such as aerial imagery
Sun et al., |2022; [Yang & Yan, 2022; Yang et al,, 2023a; Yu et al. 2024b) or scene text detection
et al} 2018 Liu et al., 2018; Ma et al., 2018; Wang et al., [2020), extracting the orientation of objects is
preferred (Zhou et al,|2022). Thus, oriented object detection predicts an oriented bounding box (z, y, w, h, 0)
instead of the horizontal bounding box (x,y,w, h), where (z,y) corresponds to the center position, (w, h) is
the width and height, and € indicates the rotation angle . To achieve this, several works
have adapted popular object detection architectures to handle the additional angle prediction
2021} [Ding et all [2019; [Yang et all,[2021b} [Han et all, 2021} [Li et all 2023} [Xu et all, [2021} [Y1 et al., [2021}
et al.|, . More recently, [Yang et al.| (2023a)) have developed an approach that learns to detect oriented
objects via horizontal bounding box supervision, thus considerably decreasing the annotation cost. Their
method, coined H2RBox, leverages rotational covariance to find the minimum circumscribed rectangle inside
the HBB. An improved version H2RBox-v2 (Yu et al., 2024b) addresses angular periodicity and achieves
OBB-supervised SOTA performance. Moreover, some works have proposed to learn oriented object detection
via single point supervision, where only a point is provided for each object. However, the performance of
these methods lags far behind HBB and OBB-supervised approaches (Yu et al. [2024a; Luo et al., 2024]).

Boundary and Symmetry Problems. The angle regression task in oriented object detection introduces
two well-known challenges:

1) The boundary problem (Xiao et al., 2024; Yang & Yan| 2020; Xu et al., 2024) refers the rotation
discontinuities that occur due to angular periodicity. Small differences between prediction and ground
truth at the angular boundary will cause a sharp loss increase during training, despite both values being
mathematically similar.

2) Symmetry issues (Xiao et al} [2024; [Yu & Dal, 2023), caused by rectangular and squared-like objects,
can also negatively impact the learning process. In the case of rectangular objects, a rotation of % or —%
radians yields equivalent bounding boxes. However, training will penalize a network that correctly predicts
—7 if the ground truth is 5. Squared objects behave similarly with a 7 periodicity instead of w. This

incoherence between loss and box alignment is a source of confusion for the network during training.

Three main strategies have been proposed to mitigate these problems:
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a) Smoothing losses: These works smooth the loss discontinuities at the angular boundary. SCRDet (Yang
et al,[2019a)) uses smooth L1-loss, while RSDet (Qian et al., [2021) uses a modulated loss. SCRDet++ (Yang
et al.l |2022)) introduced an IoU factor into the loss term to further address boundary issues.

b) Angle-coder methods transform object orientations into representations that are robust to angular
periodicity issues. |[Yang & Yan| (2020) have re-framed angle prediction as a classification task, representing
orientation using a Circular Smooth Label (CSL) to address the error between adjacent angles. Densely
Coded Labels (DCL) (Yang et al. [2021al) later improved performance and speed with a new re-weighting
loss based on aspect ratio and angle distance, and addressed symmetric ambiguities of square objects. [Yu &
Da (2023)) transformed rotational periodicity of different cycles into the phase of different frequencies. Their
approach, Phase-Shifting Coder (PSC), surpassed previous angle representations as a regression task.

¢) Gaussian-Based Methods: These approaches model OBBs as 2D Gaussian distributions to solve
boundary and symmetry challenges. The Gaussian Wasserstein Distance (GWD) (Yang et al. [2021c) com-
pares predicted and ground-truth distributions, offering an approximation to the non-differentiable IoU loss.
Yang et al.| (2021d) further refined this with the Kullback-Leibler Divergence (KLD) and later introduced
KFIoU (Yang et al.,[2023b)), a fully differentiable method that approximates the Skew Intersection over Union
(SkewloU) and handles non-overlapping cases without parameters. Gaussian-based approaches provide an
elegant solution to boundary discontinuities and symmetric ambiguities. Recently GauCho (Murrugarra-
Llerena et al., [2025) proposed to directly regress Gaussian parameters. They enforce positive-definiteness,
required by Gaussian definition, by regressing the Cholesky decomposition parameters of the covariance
matrix X.

3 Motivation

Previous works have attempted to circumvent angular discontinuity issues in different manners. Gaussian-
based techniques offer a continuous representation of orientation, while angle-coder methods provide a
modular and simple solution via an encoding-decoding mechanism. Nevertheless, current approaches have
shown several drawbacks. [Yu & Dal (2023)) state that CSL’s performance could be greatly affected by hyper-
parameters; GWD and KLD solve both problems elegantly, but their prediction is relatively inaccurate. They
then add: without tuning hyper-parameters, CSL and KLD produce rather limited effects. Moreover, [Yang
et al.| (2023b) state that the introduction of hyper-parameters makes KLD loss and GWD loss less stable than
KFIoU loss, and that hyper-parameter tuning may vary across datasets and detectors. | Xu et al.|(2024) find
that CSL relies on relatively long encoding, while the choice of coding length for PSC is challenging. Lastly,
Xiao et al.| (2024)) highlight that PSC struggles to sustain aspect ratio continuity, particularly when dealing
with square-shaped OBBs.

The Structure Tensor is a classic concept in image processing and computer vision introduced by [Bigun
et al.| (1991). It consists of a low-level feature represented as a 2D symmetric matrix that captures the
magnitude and direction of local image structures, and has been extensively used in corner and edge detec-
tion (Harris et al. {1988 [Forstner & Gulch, [1987; [Lindeberg) [1998; Brox & Weickert) 2006; Scharr, 2004).
Built on the first-order image gradients, structure tensors are inherently continuous over the angular space,
and its components transition smoothly and periodically under image rotation. The structure tensor J at
each pixel (z,y) is defined as
[ X Xy

J(m,y) - ZJwa 2J3 ’ (1)
where the sums are taken on a neighborhood of (z,y), J, and J, are the gradients of the image in the x
and y directions, respectively. Let A1, Ao be the eigenvalues of J with Ay > A3, and vy, vs corresponding
eigenvectors. The eigenvectors of J represent the principal directions of the local gradients, where v; points
in the direction of the main orientation of the local intensity pattern, and v, is orthogonal to it. Moreover, the
eigenvalues represent the level of intensity variation in the principal directions, and their relative difference
encapsulates the anisotropy of the structure, such that:

e If Ay > Ao, the local structure is highly anisotropic, thus the gradients are much stronger in one
direction.



Under review as submission to TMLR

f
—  head,, — gecls
— backbone ——» — head,, — Eﬂb D (x,y, T)
(1).¢
[ ae
headang Tpred_[ ¢ch ]
N
\ OBB,,
\ % T = ac z
E (W! h! e) gt c b ang
a) training stage b) inference stage

Figure 2: Relaxed Structure tensor representation in a neural network. (a) During training, the
backbone extracts image features f, which are used for classification and regression. The angle head predicts
orientation as a structure tensor Tj,.q, and the ground truth OBBy; is encoded into T, for angle loss
computation. (b) At inference, Tpreq is decoded into the standard OBB format (x,y,w, h,6). Blue denotes
standard detector components, while green highlights our method.

o If Ay & Ao, the local structure is isotropic, i.e. the gradients are similar in all directions.

o If Ay &0 and Ay = 0, the structure is homogeneous.

Structure tensors combine the advantages of Gaussian-based and angle-coder approaches. Like Gaussian-
based methods, they offer a continuous orientation representation that adapts to different symmetries through
the relation between their eigenvalues. Moreover, structure tensors enable a computationally efficient repre-
sentation that can be implemented in an angle-coder fashion. By predicting orientation similarly to structure
tensors, angle regression operates in a space where angular periodicity and boundary discontinuities are nat-
urally avoided. In addition, it requires no hyper-parameters, whereas tuning them is a common challenge in
existing solutions, as discussed above. To this end, we introduce the relaxed structure tensor in the following
section.

4 Method

Let opp, be an oriented bounding box characterized by the usual 5-parameter format (z,y, w, h, 0), where (x,y)
are the center coordinates, (w, h) are the width and height, and @ is the rotation angle. Moreover, we assume
the bounding box format takes the longest side of the bounding box as the width, i.e. w > h, similarly to
previous implementations (Zhou et al., |2022). We introduce the encoding and decoding functions, £ and D,
which map the orientation of the OBB into a structure tensor T and recover the OBB from T, respectively:

b E(w,h,0) T D(x,y,T) b (2)
Thus, we propose to directly predict orientation in the structure tensor space to circumvent angular peri-
odicity issues in an angle-coder manner. Figure [2| provides an overview of our approach integrated into a
oriented object detector. While the proposed representation adopts the symmetric 2 x 2 matrix form of a
classical structure tensor, it does not encode the magnitude of image gradients. Instead, we replace gradient
magnitudes with the geometric dimensions of the object, i.e. its width and height, alongside its orientation.
Although our approach is inspired by structure tensors, we will see that in our context the positive defini-
tiveness can be dropped. We therefore refer to this formulation as a relaxed structure tensor, and to the
resulting oriented bounding boxes as Relaxed Structure Tensor Bounding Boxes (RST-BB).
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The relaxed structure tensor. The proposed relaxed structure tensor is a variation of the traditional
structure tensor that enables a continuous representation of orientation in the angular space and reduces
ambiguities for redundant cases, such as square-like objects. To this end, we first define the rotation matrix
Ry, denoting a rotation by # radians, and the diagonal matrix A, which depends on the width and height of

the bounding box:
cosf —sinf w 0
Ry = [Sinﬁ cos 6 } y A= {0 h] ’ (3)

2
Then, the relaxed structure tensor 7' is then computed as

o T __ |4 C
r—roarg = |t ). @)
where T is parameterized by three values a, b, and c. The eigenvalues A; and Ay of T represent the height
and width of the OBB, respectively, and their eigenvectors v; = [v11,v12] and vy = [va1,v22] depict the
orientation of the object 6.

Furthermore, we highlight two crucial properties of this formulation:

e Continuity of orientation: classical structure tensors require positive semi-definiteness, i.e., being
symmetric with non-negative eigenvalues. In our case, T is symmetric by construction. Moreover,
Weyl’s theorem (Weyll [1946) guarantees the continuity of the eigenvalues of a 2 x 2 symmetric
matrix, while the Davis—Kahan theorem ensures that the eigenvectors vary continuously with respect
to the matrix coefficients (Davis & Kahan) [1970). Hence, we do not directly enforce positive semi-
definiteness, but instead leverage these properties to model orientation in a continuous manner.

o Handling square-objects: as shown in Equation 3| the height of the bounding box is encoded in
A as half of its value, unlike the width. This avoids the degenerate case where A; &~ Ay (i.e., w = h),
which lacks a clear principal direction and would lead the loss to learn an arbitrary orientation.
Since w > h in our OBB format (z,y,w, h,0), the two eigenvalues are guaranteed to maintain a
minimum ratio of % Consequently, the relaxed structure tensor yields a clear principal orientation
and a unique solution even for square-like objects. This reflects reality in most remote sensing
contexts; for example, an airplane localized with a square-like OBB still has a unique orientation,
corresponding to the direction it is facing. A visual comparison is provided in Figure [I} showing
the difference between the traditional OBB format, classical structure tensors, and relaxed structure
tensors.

Lastly, given a relaxed structure tensor 7' and the center coordinates (z,y) of the object, we can decode T
back to the original op,. First, we compute the eigenvalues A; and Ao and eigenvectors v; and vy of T. As
mentioned earlier, the eigenvalues of T' characterize the width and height of the bounding box. Furthermore,
the orientation of the object is depicted by the direction of the strongest eigenvalue. All in all, we can extract
the w, h and 0 as

w=[\], h=2[Xs], §=arctan({2), (5)

where v1; and vy2 are elements of the eigenvector vy associated with the larger eigenvalue \;. With known
(x,y) values, we can just provide the decoded oy as (z,y,w, h,0).

Training. Similarly to |Yu & Da (2023, we propose an angle-coder approach where the regression of the
angle 6 is learned by the network in the relaxed structure tensor space. In the traditional two-stage detector
architecture, a backbone F extracts high-dimensional features f from an image I € R3*H>xW.

]:(I) =fe RH/><W/><D7 (6)

where H and W are the image height and width, H’ and W’ are the height and width of f with the usual
decrease in spatial resolution in DNNs, and D is the feature dimensionality. Then, different heads are applied
to f for the regression and classification of objects, where typically head.s is tasked with classification,
headyyoq regresses a horizontal bounding box, and head,,q predicts the orientation.
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Figure 3: Comparison between relaxed structure tensors with negative and non-negative eigen-
values. As seen, the two tensors represent the same orientation, despite the negative eigenvalues of the
tensor on the right does not hold positive semi-definiteness. Notice the bounding box will keep the longest
side as the width, yielding the same box in both cases.

In this context, we integrate the proposed representation into network training by letting headqsng predict
the three parameters @, b, ¢ that characterize the predicted relaxed structure tensor T),.q. During training,
the ground truth oriented bounding boxes are encoded into relaxed structure tensor bounding boxes via
the encoder E. Let OBB; represent the ground truth bounding box and T its corresponding relaxed
structure tensor, the angle loss L4y4 is then computed by the L1-Loss between the predicted and ground
truth relaxed structure tensor: N
1 . 4
»Cang = N Z |T;t - T;red| ) (7)
i=1
where NNV is the total number of bounding boxes in the training batch. Then, the overall loss is computed as
the traditional three-term loss (Xie et al., [2021)):

L= wclsﬂcls + wbboz‘cbboz + wangﬁangv (8)

where Weis, Wpbor, and weng are the weights for the classification, bounding box regression, and angle
regression losses, respectively. While the width and height of the bounding box is encoded in the relaxed
structure tensor alongside the orientation, we keep the original (w, h) regression head and only use the tensor
as a representation of angular prediction.

Positive semi-definiteness. Classical structure tensors are constrained to be positive semi-definite so
their eigenvalues are non-negative. In our relazed representation we do not enforce positive semi-definiteness
during training: the loss is applied in the encoded space (no eigen-decomposition), allowing the network to
learn appropriate value ranges from the ground truth examples. At decoding, we map eigenvalues to the
non-negative orthant by taking their absolute values. This produces a valid structure tensor while preserving
the orientation carried by the eigenvectors, so explicit positive semi-definiteness constraints are unnecessary.
Figure [3] illustrates that tensors differing only by the signs of their eigenvalues retain the same eigenvectors
(orientation).

Differences with Gaussian-based approaches. Gaussian methods (i.e.. GWD, KLD, KFIoU) build
probability density functions (PDF) from predicted and ground truth (z,y,h,w,8), and compare them
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Figure 4: Loss behavior for square-like objects. Rectangular objects exhibit 7 periodicity, with loss in-

creasing as angle error grows, which is the desired behavior in order to penalize wrong orientation predictions.

However, square-like objects yield consistently low loss values regardless of angle error due to their isotropic

nature. Introducing anisotropy by modeling the relaxed structure tensor such that (A\; = w, Ay = %) results

in a loss with 7 periodicity that achieves high values as prediction error increases.

using probability density distances such as the KL divergence (Yang et al., |2021d) or the Wasserstein dis-
tance (Yang et al., |2021c). Hence, during training, they first predict 6 in the angular space and then build
the Gaussian distribution. Consequently, their angular prediction occurs in a space suffering from boundary
issues. Instead, we treat orientation as a relaxed structure tensor, which does not define a PDF. Thus, our
method introduces two key differences:

e Orientation prediction occurs in the relaxed structure tensor space, which is robust to boundary
issues.

o We compare relaxed structure tensors directly through L1 Loss, which avoids decoding the RST-BB
onto # during training. Since we do not use a Gaussian loss, we do not need to enforce the positive
definiteness either.

Moreover, recently proposed GauCho (Murrugarra-Llerena et al., [2025), requires 3 to be positive definite,
as required by Gaussian definition, which is non-trivial for neural networks. Not fulfilling this property
will lead to training instabilities and NaN values at the beginning of the training due to the network’s
random initialization. To address this, they regress the Cholesky decomposition parameters of ¥ and then
compute Gaussian distribution-based losses. In contrast, our method directly regresses parameters a,b
and ¢ of a symmetric matrix, and applies L1 loss directly in the proposed representation. This avoids
eigendecomposition during training, preventing issues such as torch.eig() collapse (NaNs). At inference,
only the eigenvectors (which encode the angle) are used; eigenvalues are ignored as (w, h) are predicted by
a separate branch, so them being possibly negative is not a source of instability and thus not a concern.
Consequently, the novelty of our work lies in its simplicity: no hyperparameters, no eigenvalue decomposition
during training, prediction robust to boundary issues and square objects; all while achieving SOTA results.
Table[T]illustrates the difference between the proposed approach, Gaucho, and other Gaussian-based methods.

Pseudo-code. To highlight the simplicity of our method, we emphasize that with only a few lines of code,
one can easily integrate the relaxed structure tensor representation into their own architectures. We illustrate
this in Algorithm [1| and Algorithm [2| showing the pseudo-code of the encoding and decoding functions FE
and D, respectively.



Under review as submission to TMLR

Gaussian GauCho Ours
Predicts orientation in a space that is robust to boundary issues X v v
Doesn’t build a PDF (thus no positive-definiteness nor addi- X X v
tional hyperparameters)
No eigenvalue decomposition at training v X v
Handles squared objects X X 4

Table 1: Comparison of Gaussian methods, GauCho and Ours.

Algorithm 1: Encoding Relaxed Structure Tensor Function:

Require: angle 0, width w and height h.
1: Build rotation matrix Ry with 6.
2: Build diagonal matrix A with width and height (w,h).
3: Apply rotation Ry to A.
4: return parameters a, b, c.

5 Experiments

5.1 Benchmarks and implementation details

We evaluate the proposed approach on different domains. Firstly, we select two extensively used satellite
imagery datasets, namely DOTA (Xia et al., 2018) and HRSC2016 (Liu et al. |2017). Then, we evaluate
on ICDAR2015 (Karatzas et all) [2015) and MSRA-TD500 (Yao et al., 2012), two scene text detection
benchmarks. Moreover, we introduce a novel dataset containing SARS-CoV-2 (COVID-19) tests.

DOTA (Xia et al}[2018): DOTAv1.0 is a popular remote sensing benchmark with 2,806 images that contain
188,282 object annotations. Instances are classified into 15 categories, some of which include plane, tennis
court and small vehicle.

HRSC2016 (Liu et al.l [2017)): The HRSC2016 dataset contains instances of ships in different orientations,
both at sea and near land. The training, validation and test sets include 436, 181 and 444 images of different
sizes.

ICDAR2015 (Karatzas et al.,|2015)): The ICDAR2015 dataset is an oriented scene text detection benchmark
that contains 1,000 training images and 500 testing images.

MSRA-TD500 (Yao et al.,|2012): The MSRA-TD500 is an oriented scene text detection dataset with 300
training images and 200 testing images. It contains English and Chinese text annotated at the sentence
level.

C19TD: We introduce the COVID-19 Test Dataset (C19TD), which contains cellphone-made images of
tests to diagnose SARS-CoV-2 (COVID-19). The goal of the dataset is to localize two test landmarks that
are essential to determine the outcome and validity of the test: the well, i.e. the region where the reactive
chemical is applied, and the result area, which indicates the outcome of the test. We highlight the significance
of this data as it contains noticeably symmetric objects that do not belong to the remote sensing domain.
The training, validation and test splits contain 800, 100 and 102 images of COVID tests, respectively. For

Algorithm 2: Decoding Relaxed Structure Tensor Function:

Require: relaxed structure tensor S7T'.
1: Compute eigenvalues A1, Ao and eigenvectors vy, vs.
2: Compute the arctan of the elements of v; to extract 6.
3: return angle 0, alongside w and h.
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Figure 5: Qualitative results of the proposed approach on several datasets. On the top, from
left to right, detection examples from HRSC2016, DOTA, and ICDAR2015 are shown. On the bottom, the
left image corresponds to the MSRA-TD500 dataset, while the one on the right belongs to the C19TD test
dataset. More visualizations and comparisons with other methods can be found in the supplementary.

robustness, we randomly add unrelated natural images without annotations, expanding the train, val and
test sets to 1199, 150 and 150, respectively.

Experimental setup. We evaluate and compare the structure tensor representation against other SOTA
methods. To this aim, we implement our method as an angle-coder object in MMRotate
, and train several architectures using structure tensors. To make comparisons fair, we compare SOTA
methods with the same network architectures and conduct all experiments ourselves via a unified framework.
We also implement our method into Gaussian-based models by predicting orientation as a relaxed structure
tensor instead of in radians, and then we apply the corresponding Gaussian-based loss. In addition, we train
and compare HBB-supervised methods using FCOS with ResNet-50 using different angle representations.
HBB-supervised approaches are weakly supervised with horizontal bounding boxes and lack orientation
ground truth. All models are trained on a NVIDIA RTX 6000 with a batch size of 2. For the DOTA
dataset, we apply the standard pre-processing as per MMRotate (Zhou et al.,[2022)), generating image crops
of 1024x1024 with an overlap of 200 pixels. The remaining datasets are pre-processed by resizing images
to 800x512 resolution and augmented with random flips and random rotations. We respect the default
hyperparameters of each method in MMRotate and train DOTA over 12 epochs, C19TD over 36 epochs,
and HRSC2016, ICDAR2015 and MSRA-TD500 over 72 epochs.

5.2 Results
Qualitative detection examples of the proposed relaxed structure tensor representation (RST) on the different
evaluation datasets are provided in Figure[5] In this section, we discuss the obtained quantitative results on

traditional mAP and the precision of orientation predictions.

Results on Average Precision. We compute the standard mean average precision metrics, mAP50 and
mAP50:95, on the remote sensing datasets DOTA and HRSC2016 for all methods and report the results in
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Architecture Method DOTAv1.0 HRSC2016 ICDAR15 MSRA C19TD
mAP50 mAP50:95 mAP50 mAP50:95 mAP50 mAP50 mAP50

Rotated RetinaNet 69.6 40.9 83.7 52.8 65.7 64.6 95.2
= RetinaNet GWD 60.3 33.9 85.7 54.4 65.5 64.8 93.7
o KFIoU 69.5 37.6 84.6 48.5 65.3 64.4 95.3
Q- RST KFIoU 69.7 37.3 85.9 48.8 62.6 64.9 95.5

g g 7 TRotated FCOS 711 406 89.0 640 60.4 679 949
2 CSL 71.4 40.5 89.5 58.4 55.7 68.2 90.5
FCOS KLD 71.6 39.6 89.8 63.6 64.4 68.5 95.4
PSC 70.2 39.2 90.0 67.6 64.2 68.7 94.2
RST KLD 717 39.3 90.1 63.3 62.5 67.6 94.5
RST Rotated FCOS 71.3 39.5 90.3 67.7 66.8 69.0 95.5

ROl Trans 76.14 a7 90.2 628 69.8 702 9.9
ViT ROI Trans KFIoU 75.6 42.4 90.2 62.6 70.6 70.5 95.1
RST ROI Trans 75.7 45.8 90.3 68.6 65.7 70.0 95.1
RST ROI Trans KFIoU 75.6 41.6 90.4 68.2 70.3 70.4 95.5
3 H2RBox-v2 w/ CSL 43.9 15.5 0.80 0.37 41.4 9.1 81.4
as] E FCOS H2RBox-v2 w/ PSC 71.5 39.4 89.1 57.1 41.0 24.0 95.2
g E H2RBox-v2 w/ RST 72.6 39.2 89.5 59.0 46.2 32.0 95.0

=1

Table 2: Results on the remote sensing datasets DOTAv1.0 and HRSC, showing mAP50 and
mAP50:95 for the proposed structure tensor representation and compared to SOTA methods. Both OBB-
supervised and HBB-supervised approaches are reported. For each metric, the best score and the second
best score are shown in green and blue, respectively.

Table 2} Additionally, we include mAP50 results for the oriented scene text detection datasets, ICDAR15
and MSRA-TD500, as well as the COVID-19 Test dataset. We compare models across different architectures,
including RetinaNet (Lin et al., [2017)), FCOS (Li et al. |2023), and ROI Transformer (Ding et al., [2019).

For some methods, such as PSC on DOTA, we were unable to reproduce the reported results from the
original article. Despite multiple training runs using the official code and recommended hyper-parameters,
fluctuations in performance — also noted in prior works — became evident. To ensure a fair comparison,
we maintain consistent experimental settings so that the only differences between our model and state-of-
the-art (SOTA) approaches are method-specific parameters. In this context, we emphasize the advantage
of our proposed approach, which requires no additional hyper-parameters, simplifying both implementation
and reproducibility.

Our method achieved consistent improvements across FCOS models, both OBB- and HBB-supervised. While
RetinaNet and ROI Transformer also showed improvements on some datasets, their results exhibited greater
variance. Notably, there is a significant drop in performance on scene text detection datasets when tran-
sitioning from HBB- to OBB-supervised tasks. This can be attributed to the limited number of images in
ICDAR15 and MSRA-TD500. When learning orientation from the redundancy in the data without explicit
orientation information, it is expected that these methods are less robust in conditions of limited training
dat.

Precision of Angular Prediction. While standard mAP provides a general indication of model per-
formance, it does not directly reflect the precision of a network’s angular predictions, as better angular
prediction might not affect the true positive/false negative count. For example, one might want to address
the accuracy of orientation predictions when detecting objects via mAP50, where objects can be reliably
detected but may still have imprecise angle estimates. Hence, we introduce two complementary metrics that
specifically evaluate orientation accuracy: the mean absolute error (MAEg) and the root mean square error
(RMSEg) of the predicted angle relative to the ground truth for all true positive detections based on mAP50.
This way, MAEg provides an intuitive measure of angular error in radians, while RMSEg penalizes large
errors more heavily. Note that angular discontinuity and symmetry ambiguities may yield significant angle
errors even when predictions are close to the ground truth. To mitigate this, we consider the 7w periodicity
of rectangular bounding boxes, calculating the angle error § between prediction 6preq and ground truth 6,
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Dataset Arch. Method MAEy RMSEy

Rot. RetinaNet 0.075 0.233

. GWD 0.086 0.223

RetinalNet KFIoU 0.104  0.251

RST KFIoU 0.101 0.230
D Rot. FCOS 0.533  0.870

CSL 0.066 0.202

KLD 0.547 0.877

DOTA  FCOS PSC 0.059  0.196

RST KLD 0.123 0.328

RST FCOS 0.068 0.188
" "ROI Trans 0.088  0.218

ViT ROI Trans KFIoU 0.112 0.242

RST ROI Trans 0.089 0.223

RST KFloU 0.123 0.254

Rot. RetinaNet 0.033 0.054

. GWD 0.025 0.037

RetinalNet KFIoU 0.031  0.048

RST KFIoU 0.028 0.039
D Rot. FCOS 0.023  0.040

CSL 0.038 0.049

KLD 0.024 0.040

HRSC  FCOS PSC 0.019  0.028

RST KLD 0.018 0.026

RST FCOS 0.019 0.027
~ "ROI Trans 0.032  0.043

ROI Trans KFIoU  0.025 0.039
RST ROI Trans  0.022 0.033
RST KFIoU 0.018 0.028

Table 3: Angular prediction precision. MAEg and RMSEg scores on DOTAv1.0 and HRSC2016 across
different methods. The best score is shown in green and the second-best score in blue.

as follows:

§ = min ( min (‘gper - ggt|7 |0prcd - ggt + 7T|) ) > ) (9)

epred - egt - 7T|

MAEg and RMSEg are then computed using § in their standard equations. Table [3]compares the MAEg and
RMSEg scores for OBB-supervised methods on the DOTA and HRSC2016 datasets. We exclude circular
objects from DOTA, i.e. baseball-diamond, storage-tank, roundabout, as they may have more arbitrary
orientations. Results indicate that the structure tensor approach reduces angular error significantly, specially
for SOTA methods that are more prone to errors. The average angle precision improvement across evaluated
models in DOTA corresponds to 0.176 for MAEg and 0.203 for RMSEg, which is equivalent to approximately
10 degrees. More details on this can be found on the supplementary.

Effect of Anisotropy in the RST Representation. As shown in Figure [4| and discussed in Section
introducing anisotropy to squared objects theoretically reduces the orientation and loss issues caused by the
isotropic nature of these instances. Thus, we test this in practice by comparing the results of the relaxed
structure tensor representation using isotropic squared objects (A1 = 5,2 = %), and anisotropic squared
objects with a 2:1 (A = w, Ay = %) and 4:1 (A = 2w, Ay = %) aspect ratio, respectively. We report the
results on DOTA and HRSC in Table [4] in which we can observe how anisotropic relaxed structure tensors
considerably improve angle error and mAP50. While a 4:1 anisotropic relaxed structure tensor shows the
lowest MAEg, the 2:1 tensor achieves the best mAP50 with a minimal MAEg increase that corresponds to

0.34 degrees. This behavior aligns with the idea that the more anisotropic the representation, the easier it
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Dataset Anisotropy MAEgy RMSEy mAP50

Isotropic 0.083 0.200 70.4

DOTAv1.0 2:1 0.068 0.188 71.3
4:1 0.062 0.185 69.6

Isotropic 0.021 0.032 89.9

HRSC2016 2:1 0.019 0.027 90.3
4:1 0.018 0.027 90.1

Table 4: Comparison of structure tensor representations with different levels of anisotropy.
Angle MSE (M AEy), angle RMSE (RM SEy), and mAP50 are shown for DOTAv1.0 and HRSC2016. The
anisotropic structure tensor with a 2:1 aspect ratio yields the best mAP50 scores, with minimal angle error.

DOTA plane class FCOS ROI Trans
KLD KFIoU RST | KLD KFIoU RST
MAEg 43.6° - 9.7° - 16.7° 11.3°

Table 5: Comparison of our approach with other Gaussian-based methods on the square-like
object plane. Our representation addresses this challenging case and provides a more precise angle predic-
tion, i.e. a lower error with respect to the ground truth.

is for the network to estimate the angle as there is a clear principal direction and a larger penalization of
wrong predictions in the loss. This seems to occur until a point is reached, where the extreme anisotropy
in the tensor deviates from the real object shape, and mAP scores are affected as a result. We therefore
apply (A1 = w, Ag = %) to all objects, regardless of aspect ratio, as it avoids discontinuities and yields the
best results in our ablations. The fact that the bounding box format considers the width as the longest
side enforces that the principal direction of the relaxed structure tensor is always aligned towards the width,
as it corresponds to the greater eigenvalue. Hence, the ambiguity of two possible correct orientations is
avoided. This manner, it effectively resolves the square-object issue — unlike GauCho, which states that
it still suffers from decoding ambiguity in such cases. This is shown in the table below, which reports
the MAEy improvement of RST over KLD and FKIoU for the square-like plane class in DOTA. Table
shows the improvement of our method on the square-object category plane, compared to other evaluated
Gaussian-based methods.

6 Computational complexity

We provide an analysis of the computational complexity of our approach and other methods. To this end,
Table[6|reports the FLOPs (in GFLOPs) and the number of parameters for all evaluated methods. As shown,
the relaxed structure tensor representation maintains a reasonable complexity for both metrics, comparable to
other detectors. Therefore, the proposed approach does not introduce a computational bottleneck compared
to the state of the art.

7 Qualitative comparisons

We provide additional qualitative comparisons to highlight the impact of the proposed solution. Fig-
ure [6] presents detection examples on the DOTA dataset using ROI Transformer, ROI Transformer with
KFIoU, and ROI Transformer with the relaxed structure tensor. Additionally, Figure[7] compares results on
HRSC2016. As shown, incorporating the relaxed structure tensor into ROI Transformer (with or without
KFIoU loss) has a noticeable effect. In HRSC2016, the elongated shape of objects (ships) leads to a sce-
nario where increased angular prediction error prevents detections from becoming false positives, ultimately
reducing mAP. The relaxed structure tensor effectively mitigates this issue.
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Method Architecture FLOPs Params (M)
rotated FCOS FCOS 206.92 31.92
CSL FCOS 215.91 32.34
KLD FCOS 206.01 31.92
PSC FCOS 207.16 31.93
rotated RetinaNet RetinaNet 209.58 36.13
GWD RetinaNet 209.58 36.13
KFIoU RetinaNet 215.92 36.42
RST (Ours) FCOS 207.01 31.93

Table 6: Comparison of models in terms of parameters (in millions) and computational com-
plexity (FLOPs). All FLOPs are measured in GFLOPs. ResNet-50 was used as the backbone for all
measurements. Our method remains on the lower end in terms of both FLOPs and parameter count com-
pared to other models.

Method Original Method with RST Difference
MAEy RMSEy MAEy RMSEy MAEy RMSEg
KFIoU RetinaNet 0.104 0.251 0.101 0.23 0.003 0.021
KLD FCOS 0.547 0.877 0.123 0.328 0.424 0.549
FCOS 0.533 0.87 0.068 0.188 0.465 0.682
ROI Trans 0.088 0.218 0.089 0.223 -0.001 -0.005
KFIoU ROI Trans  0.112 0.0242 0.123 0.254 -0.011 -0.2298
Average 0.176 0.203

Table 7: Average of angle precision improvement across evaluated models in DOTA. We compare
the angular precision with MAEg and RMSEg with and without the relaxed structure tensor. As shown, the
average improvement of our approach across all methods is 0.176 for MAEg and 0.203 for RMSEg, which
translates to approximately 10 degrees.

8 Angular error

Section [5| provides an evaluation of angular precision of current methods and the proposed relaxed structure
tensor solution via MAEg and RMSEg. We supplement these results by addressing the improvements
provided by our solution to specific SOTA methods. Hence, we compare MAEg and RMSEg of SOTA
approaches with and without the relaxed structure tensor approach. This comparison can is showed in
Table [7|and Table [§| for DOTA and HRSC2016 respectively. In the case of DOTA, the average improvement
in angular precision with the relaxed structure tensor solution is 0.176 for MAEg and 0.203 for RMSEg. This
is equivalent to about 10 degrees, which is a considerable correction given the simplicity of our approach and
that it requires no hyper-parameters. On HRSC2016, the average improvement is 0.006 for MAEg and 0.0114
for RMSEg. This is equivalent to approximately 0.5 degrees, which is not surprising given that HRSC2016
contains only one class of highly anisotropic objects with a clear principal direction.

9 Conclusion

In this chapter, we present a novel angle representation for oriented object detection that effectively addresses
angular discontinuities and symmetric ambiguities by encoding orientation as a relaxed structure tensor.
It can be easily integrated into existing solutions with minimal effort. Our method is straightforward,
efficient, and does not require hyperparameter tuning, unlike many existing approaches. We evaluated
our representation across several datasets, including satellite imagery, scene text detection, and symmetric
objects, comparing it against state-of-the-art methods. Our approach achieves SOTA performance in average
precision across different benchmarks and reduces angular prediction error, outperforming current solutions
in some cases.
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ROI Trans |Ding et al| (2019) ROI Trans KFIoU [Yang et al.| (2023b)) RST ROI Trans (Ours)

Figure 6: Qualitative comparison between ROI Trans (Ding et al., [2019), ROI Trans
KFIOU (Yang et al., 2023b) and the proposed method (RST ROI Trans), on some DOTA
examples. As shown, the proposed approach predicts a coherent orientation with respect to the detected
objects, while the other methods include more error in their orientation predictions.

Method Original Method with RST Difference
MAEy RMSEy MAEys RMSEy MAEy RMSEg
KFIoU RetinaNet 0.031 0.048 0.028 0.039 0.003 0.009

KLD FCOS 0.024 0.04 0.018 0.026 0.006 0.014
FCOS 0.023 0.04 0.019 0.027 0.004 0.013
ROI Trans 0.032 0.043 0.022 0.033 0.010 0.01
KFIoU ROI Trans  0.025 0.039 0.018 0.028 0.007 0.011
Average 0.006 0.0114

Table 8: Average of angle precision improvement across evaluated models in HRSC2016. We
compare the angular precision with MAEg and RMSEg with and without the relaxed structure tensor. As
shown, the average improvement of our approach across all methods is 0.006 for MAFEg and 0.0114 for
RMSEg, which translates to approximately 0.5 degrees.
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ROI Trans ROI Trans KFloU RST ROI Trans RST ROI Trans KFloU

Figure 7: Qualitative comparison between ROI Trans (Ding et al., 2019), ROI Trans
KFIOU (Yang et al., [2023b)) and the proposed method (RST ROI Trans and RST ROI Trans
KFIoU), on HRSC2016 examples. The relaxed structure tensor models achieve considerable improve-
ments with respect to the original methods on angle prediction.

16



Under review as submission to TMLR

Figure 8: Qualitative comparison between ROI Trans (Ding et al) [2019), ROI Trans KFIOU (Yang et al.
2023b) and the proposed method on HRSC2016, for different rotations of the same image.
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