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Abstract

Subword tokenizers are widely adopted for
pretrained language models (PLMs). As they
are originally designed for machine translation
(MT) tasks, these tokenizers always introduce a
subword prefix to distinguish starting and con-
tinuing tokens for better decoding. In this paper,
we empirically study the necessity of the sub-
word prefix for pretrained language models on
natural language understanding (NLU) tasks.
Experimental results show that our prefix-free
variant, Bert-SPFT, achieves a comparable re-
sult with 19% fewer embedding parameters.
The further probing task also suggests that the
capability to distinguish the subword types is
not related to the model performance.

1 Introduction

Tokenization is an essential preprocessing step for
many NLP tasks by transforming original text into
tokens. To alleviate unknown token problems,
subword tokenization methods are proposed and
become the main streaming for machine transla-
tion tasks(Sennrich et al., 2016). In recent years,
subword tokenization methods are also widely
adopted in pretrained languages models (PLMs)
like Bert(Devlin et al., 2019), Roberta(Liu et al.,
2019), GPT-2(Radford et al., 2019) and so on.
The conventional subword tokenization meth-
ods are originally designed for machine translation
(MT) tasks for which it’s necessary to transform the
generated tokens into space-separated texts for de-
coding. A prefix is introduced to these tokenizers,
which makes subwords two different types: start-
ing subwords and continuing subwords. We call it
the subword prefix. For example, the tokenizer of
Bert employs the prefix “##” for continuing sub-
words. For decoding, a space can be added directly
in front of the starting subword to ensure the suc-
cessful decoding of space-separated text.
Although the subword prefix strategy facilitates
the decoding of machine translation models, it is

unnecessary for natural language understanding
(NLU) tasks. We argue that the subword prefix
even makes the vocabulary parameter redundant to
some extent. With the subword prefix, some words
may have both starting form and continuing form
in the vocabulary, such as*“apple” and “##apple”,
“layer” and “##layer”. Taking bert-base-uncased'
as an example, 8.8% of tokens have two forms at
the same time.

We first investigate the performance of the tok-
enizer without using the subword prefix. In this
paper, we use the Bert tokenizer as an example as
it is a widely used pretrained language model for
NLU tasks. Based on the original Bert tokenizer,
we propose a tokenization method, Subword Prefix
Free Tokenizer (SPFT), without using the subword
prefix. On more than 10 NLU tasks, such as text
classification, question answering, and named en-
tity recognition, our tokenizer achieves comparable
performance even with 19% less embedding param-
eters. It validates our hypothesis that the subword
prefix is unnecessary for NLU tasks.

We further analyze the segmentation result and
find that the Bert-SPFT produces a better segmen-
tation result both statistically and morphologically.
We also observe that Bert can easily distinguish the
two types of subwords at the very early pretraining
stage, which indicates that this ability can not be
translated into model performance.

The main contributions of this paper are summa-
rized as follows:

* To the best of our knowledge, we are the first
to study how the subword prefix affects the
PLMs’ performance for NLU tasks.

* Experiments on more than 10 NLU tasks
demonstrate that Bert-SPFT can obtain a com-
parable result with the original Bert while hav-
ing a 19% reduction in vocabulary parameters.

"https://huggingface.co/bert-base-uncased



* We provide in-depth analysis to learn that
Bert-SPFT can achieve better morphological
and statistical performance.

* The results of a probing experiment suggest
that PLMs can predict the subword prefix at
a very early stage. However, this capability
can not be translated to the downstream tasks’
performance.

2 Related Work

In this section, we first revisit the subword tok-
enization methods and discuss how tokenization
methods affect pretrained language models.

2.1 Subword Tokenization

Gage proposes the Byte-Pair-Encoding(BPE) algo-
rithm as a compression algorithm that merges most
often co-occurring pairs into one token. Sennrich
et al. first applies BPE on machine translation
tasks. Wang et al. applies BPE, not at the char-
acter level but at the byte level. GPT-2(Radford
et al., 2019) and Roberta(Liu et al., 2019) em-
ploys the BBPE as the tokenizer. Schuster and
Nakajima proposes the WordPiece for processing
Japanese and Korean text. The difference is that
WordPiece merges pairs with the likelihood of an
n-gram-based language model. BERT(Devlin et al.,
2019) uses WordPiece as the tokenizer. Kudo em-
ploys a unigram language model(UnigramLLM) to
transform the text into subwords. Yang et al. em-
ploys the UnigramLLM method in their tokenizer.
Kudo and Richardson provides a popular tokenizer
package SentencePiece for both BPE and Unigram
LM algorithms.

2.2 How Tokenization Methods affect
Downstream Tasks

Gallé claims that the shorter token sequence trans-
lates to better results on machine translation tasks.
Gowda and May finds that the word frequency of
the long-tail words affects the translation results.
Bostrom and Durrett claims that UnigramLM gives
a better segmentation result than BPE for morpho-
logical performance and downstream task results.

3 Experiments on NLU tasks

In this section, we first give a quick look at the
Bert tokenizer and our subword prefix-free variant,
Bert-SPFT. Then we test our Bert-SPFT on various
downstream NLU tasks.

3.1 Bert Tokenizer

The Bert model uses WordPiece(Schuster and
Nakajima, 2012) as its tokenizer. It introduces a
subword prefix “##” to distinguish the subwords
at the beginning (starting subwords) and the others
(continuing subwords) when building its vocabu-
lary. Then, based on this vocabulary, it is simplified
to a longest-match tokenizer for practical use.

We argue that the subword prefix is unnecessary
and it is a waste of vocabulary capacity. We pro-
pose a subword prefix-free tokenizer Bert-SPFT
based on the Bert tokenizer. The only difference
is our Bert-SPFT only uses the subword without
prefix in the vocabulary. As Figurel shows, com-
pared to the Bert tokenizer, our Bert-SPFT tends to
preserve the core parts of the words with the fixed
vocabulary.

3.2 Experiments on Downstream tasks

In this subsection, we perform extensive experi-
ments to examine how Bert-SPFT works on NLU
tasks.

We use the bert-base-uncased as the pre-
trained model. We choose text classification
tasks from GLUE (Wang et al., 2018), ques-
tion answering tasks of SQuADv1.1(Rajpurkar
et al., 2016), named entity recognition tasks of
CoNLL2003(Tjong Kim Sang and De Meulder,
2003). The experimental details are listed in Ap-
pendix A.

As Table 1 shows, our Bert-SPFT only performs
slightly worse on the average score with a reduc-
tion on embedding parameters. We assume that
the Bert-SPFT is not well trained in the pretrained
model. We further conduct a continue-pretraining
with the Bert-SPFT. After continuing pretraining
for 5000 steps, we get comparable results on these
tasks. This experimental result demonstrates the
effectiveness of our proposed Bert-SPFT on down-
stream NLU tasks.

4 Analysis

In this section, we carry out a statistical analysis
on Bert-SPFT and find that the Bert-SPFT leads to
more frequent long-tail tokens. We use a human-
annotated segmentation dataset to verify that Bert-
SPFT is more consistent with human annotations.
Finally, we conduct a probing experiment to verify
that although the model can easily distinguish dif-
ferent subwords, this is not related to downstream
tasks.



Word: unchecked
BERT: un #che #cked
BERT-SPFT: un checked

Word: misidentifications
BERT: un ##mis #itide #nti #fication s
BERT-SPFT: mis identification s

Word: unsuspected
BERT: un ##sus ##pe ##cted
BERT-SPFT: un suspected

Word: misunderstands
BERT: mis ##under #stands
BERT-SPFT: mis understands BERT-SPFT: sing along s

Word: eyewitness
BERT: eye ##wi #itness
BERT-SPFT: eye witness

Word: singalongs
BERT: sing ##alo #ng #is

Word: microelectromechanical
BERT: micro ##ele ##ct #trom ttech ##ani #cal
BERT-SPFT: micro electro mechanical

Word: mispronunciation
BERT: mis ##pro ##nu ##ncia ##tion
BERT-SPFT: mis pronunciation

Figure 1: Examples of the tokenization results of the original Bert tokenizer and our proposed Bert-SPFT.

Cola | QNLI | MNLI(m/mm) | MRPC | QQP | STSB | STS2 | QA NER | Avg
Bert 55.53 | 91.46 | 84.58 | 84.90 | 83.04 | 90.96 | 88.21 | 92.84 | 88.33 | 94.62 | 85.45
-S 55.59 | 90.94 | 84.13 | 84.32 | 84.71 | 90.88 | 88.47 | 92.57 | 87.89 | 93.77 | 85.33
-S+P | 57.06 | 91.08 | 84.37 | 84.55 | 83.33 | 90.96 | 88.70 | 92.91 | 88.02 | 94.14 | 85.51

Table 1: Experimental results of downstream tasks. Bert is the bert-base-uncased model. "-S" means using the
same pretrained model with our proposed Bert-SPFT. "-S + P" means we first conduct a continue pretraining with
the Bert-SPFT and bert-base-uncased model. QA represents the F1 score of SQuADv1.1. NER represents the F1
score of CoONLL2003. All the results are the average of five runs.

vocab size avg token length
Bert 30522 1.1273
-S 24694 (-19%) | 1.1451 (+1.59%)
-S+R | 30522 1.1042 (-2.05%)

Table 2: The average token length and vocab size of
three tokenizers. Bert means the bert-base-uncased
tokenizer. "-S" means our proposed Bert-SPFT. "-S+R"
means our proposed Bert-SPFT with a reconstructed
vocabulary".

4.1 Statistical Analysis

Since our Bert-SPFT only uses the subwords with-
out “##”, the vocabulary size is about 81% of the
original Bert tokenizer. For a fair comparison, we
also train a WordPiece tokenizer with the same
vocabulary size as the original Bert tokenizer.

As Table2 shows, Bert-SPFT tends to lead to a
longer token sequence as the vocabulary shrinks by
19%. However, given the same vocab budget, the
Bert-SPFT leads to 2% less than the original Bert
in token length.

As Figure2 shows, the last 30% of tokens in the
vocabulary has a higher token frequency which sug-
gests for both pretrain and downstream tasks, using
Bert-SPFT can lead to a more adequate training on
long-tail tokens.

Token Frequency of Long-tail Tokens for Different Tokenizers
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Bert-SPFT-R
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Figure 2: The token frequency of long-tail tokens in the
vocabulary of different tokenizers.

4.2 Morphological Experiments

Besides the benefits in average token length and
long-tail token frequency, we verify the consistency
of Bert-SPFT with human segmentation data.

Motivated by Itzhak and Levy, we use
LADEC(Gagné et al., 2019) a large dataset of
human-annotated English compounds dataset and
measure the overlap of the tokenized result and
human annotated labels.

The total amount of the LADEC is 8956. Each
compound word has two morphemes. We remove
all the plural words and finally get 6017 words.

We define two metrics to match the consistency




Full Match
Bert | 60.63%
-S 75.93(+25.23)%

Term Match
71.61%
81.4(+13.67)%

Table 3: The full match ratio and term match ratio of the
original bert-base-uncased tokenizer and our proposed
Bert-SPFT on the LADEC dataset.

of tokenized results and human labels.

Full Match Ratio means that the number of the
tokenized result is consistent with human labels.
Given the word “walkabout” with the compounds
“walk” and “about”, if the tokenized result is “walk
about” or “walkabout”, we consider it a full match.

Term Match Ratio measures how many terms
of the tokenized result match the human labels.
The denominator is the total number of terms. The
numerator is the total matched terms. If a word is
matched as a whole, we consider the matched term
number to be 2.

As Table 3 shows, our proposed Bert-SPFT out-
performs the original Bert tokenizer with a 25.23%
increase in full match ratio and a 13.67% increase
in term match ratio.

The experimental results verify that the results
of Bert-SPFT and human segmentation data are
more consistent.

4.3 Probing on subword types

Results on downstream tasks demonstrate the effec-
tiveness of Bert-SPFT, and we would like to further
investigate subword prefixes in pretrained models.
We conduct further experiments to examine the
following research questions.

* RQ1. Can PLMs distinguish the starting
subword and continuing subword?

* RQ2. If the PLMs have the ability, is this
correlated to the model performance?

Motivated by previous work(Itzhak and Levy,
2022), we directly extract the embedding matrix
from the pretrained bert-base-uncased model. We
split them with a portion of 80%, 10%, and 10% as
train/dev/test datasets.

We build a simple three-layer feed-forward net-
work and train it for 100 epochs.

We find that the model can easily distinguish the
starting subwords from the continuing subwords
with nearly 100% accuracy which proves the RQ1.

To validate the RQ2, we train a Bert from scratch
and save the checkpoint for every 1000 steps. For

each checkpoint, we predict the subword prefix
with the embedding matrix and perform MNLI fine-
tuning to verify the performance on downstream
tasks.

100
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Figure 3: The accuracy of subword prefix prediction
and MNLI match score for each training step.

As Figure3 shows, at the 5000 steps of train-
ing, the model is capable of distinguishing the two
types of subwords with more than 95% accuracy.
However, when we use the MNLI score to mea-
sure the performance of the model on downstream
tasks, we find that the model is still far from being
well trained. This probing experiment proves that
although PLMs can recognize different subword
types, this cannot be translated into benefits for
downstream tasks.

5 Conclusion

In this paper, we empirically study the necessity of
the subword prefix in tokenizer. Downstream ex-
periments prove our subword prefix-free tokenizer,
Bert-SPFT, achieves a comparable result with 19%
fewer embedding parameters. From statistical and
morphological aspects, we also observe a better
segmentation with our Bert-SPFT. We further con-
duct a probing task that suggests the capability to
distinguish the subword types is not related to the
model performance.

In future work, we would like to further inves-
tigate the Bert-SPFT by pretraining a Bert model
from scratch. We believe that pre-training from
scratch can better exploit the Bert-SPFT. Besides,
we want to study the subword prefix in other to-
kenizers, such as the byte-level BPE tokenizer of
Roberta. The more difficult part is that the tok-
enizer of Roberta directly models the spaces.
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A Appendix

A.1 Details of Downstream Experiments
A.1.1 Implementation Details on Downstream
Experiments

We use the same setting for text classification tasks
in GLUE. The batch size is 32. The max sequence
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Exact Match | F1
Bert 80.75 88.33
Bert-SPFT 80.21 87.89
Bert-SPFT * | 80.34 88.02

Table 4: Exact match and F1 score of different tokeniz-
ers on SQuADv1.1.

Acc F1 Pre Rec
Bert 98.92 | 94.62 | 94.18 | 95.07
Bert-SPFT 98.74 | 93.77 | 93.49 | 94.05
Bert-SPFT * | 98.91 | 94.14 | 93.84 | 94.44

Table 5: Accuarcy, F1, Precision and Recall score on
CoNLL2003.

length is 128. The train epochs are 3. The learning
rate is set to 2e — 5.

For SQuADvV1.1, we use the batch size of 12.
The max sequence length is 384. The stride win-
dow size is 128. The learning rate is set to 3e — 5.

All the experiments are implemented with hug-
gingface” and performed on an NVIDIA A100. For
each experiment, we run 5 times and then calculate
the average scores.

A.1.2 SQuADvl.1 Result
As Table4 shows the exact match score and F1
score of different tokenizers on SQuADv1.1.

A.1.3 CoNLL2003 Result

As Table5 shows the accuracy, F1, precision and
recall score on CoNLL2003 NER task.

A.2 Details of Morphological Experiments

Bert | Bert-SPFT
Full Match 520 | 520
Exact Match 3128 | 4049
Single Term Match | 1322 | 658

Table 6: Details Matching Counts of the Bert tokenizer
and Bert-SPFT in the LADEC dataset.Full Match
means the given word is in the vocabulary and will
not be segmented anymore. Exact Match means the
segmentation results are consistent with the human an-
notation. Single Term Match means only one term is
matched for human annotation and tokenized results.

Label-0 | Label-1
Training Set 18944 | 4666
Evaluation Set | 2336 585
Test Set 2414 577

Table 7: In the Probing experiment, the number of posi-
tive and negative examples in the training set, evaluation
set, and test set

A.3 Details of Probing Experiments
A.3.1 Statistics for Datasets

A.3.2 Implementation Details of the Probing
Model

The size of each feed forward layer is (768, 32),
(32,16) and (16, 1). We use the batch size of 256.
We train the model for 100 epochs. The experi-
ments are performed on CPUs.

A.3.3 Implementation Details of the Bert
Pre-training

As a training set, we leverage data from the English

wiki and book corpus. We take advantage of a 256

train batch size. 128 is the maximum sequence

length. Weight decay is set to 0.01 and the learning

rate is le — 4.

A.4 Limitations

The results in this paper have some limitations.
First, we only focus on the WordPiece tokenizer.
But our method can also be applied to other tokeniz-
ers like the Byte-level BPE tokenizer (Wang et al.,
2020) of Roberta(Liu et al., 2019) . In subsequent
experiments, we will conduct research on these to-
kenizers. Second, we only use a pre-trained BERT
and then conduct a few steps continue pretraining
to verify the effect of our proposed tokenizer on
downstream tasks. We think this does not fully
demonstrate the effectiveness of our proposed to-
kenizer. For future work, we would like to train a
Bert from scratch and fine-tune downstream tasks
to see if there are more improvements.

Zhttps://huggingface.co/
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