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Abstract

Subword tokenizers are widely adopted for001
pretrained language models (PLMs). As they002
are originally designed for machine translation003
(MT) tasks, these tokenizers always introduce a004
subword prefix to distinguish starting and con-005
tinuing tokens for better decoding. In this paper,006
we empirically study the necessity of the sub-007
word prefix for pretrained language models on008
natural language understanding (NLU) tasks.009
Experimental results show that our prefix-free010
variant, Bert-SPFT, achieves a comparable re-011
sult with 19% fewer embedding parameters.012
The further probing task also suggests that the013
capability to distinguish the subword types is014
not related to the model performance.015

1 Introduction016

Tokenization is an essential preprocessing step for017

many NLP tasks by transforming original text into018

tokens. To alleviate unknown token problems,019

subword tokenization methods are proposed and020

become the main streaming for machine transla-021

tion tasks(Sennrich et al., 2016). In recent years,022

subword tokenization methods are also widely023

adopted in pretrained languages models (PLMs)024

like Bert(Devlin et al., 2019), Roberta(Liu et al.,025

2019), GPT-2(Radford et al., 2019) and so on.026

The conventional subword tokenization meth-027

ods are originally designed for machine translation028

(MT) tasks for which it’s necessary to transform the029

generated tokens into space-separated texts for de-030

coding. A prefix is introduced to these tokenizers,031

which makes subwords two different types: start-032

ing subwords and continuing subwords. We call it033

the subword prefix. For example, the tokenizer of034

Bert employs the prefix “##” for continuing sub-035

words. For decoding, a space can be added directly036

in front of the starting subword to ensure the suc-037

cessful decoding of space-separated text.038

Although the subword prefix strategy facilitates039

the decoding of machine translation models, it is040

unnecessary for natural language understanding 041

(NLU) tasks. We argue that the subword prefix 042

even makes the vocabulary parameter redundant to 043

some extent. With the subword prefix, some words 044

may have both starting form and continuing form 045

in the vocabulary, such as“apple” and “##apple”, 046

“layer” and “##layer”. Taking bert-base-uncased1 047

as an example, 8.8% of tokens have two forms at 048

the same time. 049

We first investigate the performance of the tok- 050

enizer without using the subword prefix. In this 051

paper, we use the Bert tokenizer as an example as 052

it is a widely used pretrained language model for 053

NLU tasks. Based on the original Bert tokenizer, 054

we propose a tokenization method, Subword Prefix 055

Free Tokenizer (SPFT), without using the subword 056

prefix. On more than 10 NLU tasks, such as text 057

classification, question answering, and named en- 058

tity recognition, our tokenizer achieves comparable 059

performance even with 19% less embedding param- 060

eters. It validates our hypothesis that the subword 061

prefix is unnecessary for NLU tasks. 062

We further analyze the segmentation result and 063

find that the Bert-SPFT produces a better segmen- 064

tation result both statistically and morphologically. 065

We also observe that Bert can easily distinguish the 066

two types of subwords at the very early pretraining 067

stage, which indicates that this ability can not be 068

translated into model performance. 069

The main contributions of this paper are summa- 070

rized as follows: 071

• To the best of our knowledge, we are the first 072

to study how the subword prefix affects the 073

PLMs’ performance for NLU tasks. 074

• Experiments on more than 10 NLU tasks 075

demonstrate that Bert-SPFT can obtain a com- 076

parable result with the original Bert while hav- 077

ing a 19% reduction in vocabulary parameters. 078

1https://huggingface.co/bert-base-uncased
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• We provide in-depth analysis to learn that079

Bert-SPFT can achieve better morphological080

and statistical performance.081

• The results of a probing experiment suggest082

that PLMs can predict the subword prefix at083

a very early stage. However, this capability084

can not be translated to the downstream tasks’085

performance.086

2 Related Work087

In this section, we first revisit the subword tok-088

enization methods and discuss how tokenization089

methods affect pretrained language models.090

2.1 Subword Tokenization091

Gage proposes the Byte-Pair-Encoding(BPE) algo-092

rithm as a compression algorithm that merges most093

often co-occurring pairs into one token. Sennrich094

et al. first applies BPE on machine translation095

tasks. Wang et al. applies BPE, not at the char-096

acter level but at the byte level. GPT-2(Radford097

et al., 2019) and Roberta(Liu et al., 2019) em-098

ploys the BBPE as the tokenizer. Schuster and099

Nakajima proposes the WordPiece for processing100

Japanese and Korean text. The difference is that101

WordPiece merges pairs with the likelihood of an102

n-gram-based language model. BERT(Devlin et al.,103

2019) uses WordPiece as the tokenizer. Kudo em-104

ploys a unigram language model(UnigramLM) to105

transform the text into subwords. Yang et al. em-106

ploys the UnigramLM method in their tokenizer.107

Kudo and Richardson provides a popular tokenizer108

package SentencePiece for both BPE and Unigram109

LM algorithms.110

2.2 How Tokenization Methods affect111

Downstream Tasks112

Gallé claims that the shorter token sequence trans-113

lates to better results on machine translation tasks.114

Gowda and May finds that the word frequency of115

the long-tail words affects the translation results.116

Bostrom and Durrett claims that UnigramLM gives117

a better segmentation result than BPE for morpho-118

logical performance and downstream task results.119

3 Experiments on NLU tasks120

In this section, we first give a quick look at the121

Bert tokenizer and our subword prefix-free variant,122

Bert-SPFT. Then we test our Bert-SPFT on various123

downstream NLU tasks.124

3.1 Bert Tokenizer 125

The Bert model uses WordPiece(Schuster and 126

Nakajima, 2012) as its tokenizer. It introduces a 127

subword prefix “##” to distinguish the subwords 128

at the beginning (starting subwords) and the others 129

(continuing subwords) when building its vocabu- 130

lary. Then, based on this vocabulary, it is simplified 131

to a longest-match tokenizer for practical use. 132

We argue that the subword prefix is unnecessary 133

and it is a waste of vocabulary capacity. We pro- 134

pose a subword prefix-free tokenizer Bert-SPFT 135

based on the Bert tokenizer. The only difference 136

is our Bert-SPFT only uses the subword without 137

prefix in the vocabulary. As Figure1 shows, com- 138

pared to the Bert tokenizer, our Bert-SPFT tends to 139

preserve the core parts of the words with the fixed 140

vocabulary. 141

3.2 Experiments on Downstream tasks 142

In this subsection, we perform extensive experi- 143

ments to examine how Bert-SPFT works on NLU 144

tasks. 145

We use the bert-base-uncased as the pre- 146

trained model. We choose text classification 147

tasks from GLUE (Wang et al., 2018), ques- 148

tion answering tasks of SQuADv1.1(Rajpurkar 149

et al., 2016), named entity recognition tasks of 150

CoNLL2003(Tjong Kim Sang and De Meulder, 151

2003). The experimental details are listed in Ap- 152

pendix A. 153

As Table 1 shows, our Bert-SPFT only performs 154

slightly worse on the average score with a reduc- 155

tion on embedding parameters. We assume that 156

the Bert-SPFT is not well trained in the pretrained 157

model. We further conduct a continue-pretraining 158

with the Bert-SPFT. After continuing pretraining 159

for 5000 steps, we get comparable results on these 160

tasks. This experimental result demonstrates the 161

effectiveness of our proposed Bert-SPFT on down- 162

stream NLU tasks. 163

4 Analysis 164

In this section, we carry out a statistical analysis 165

on Bert-SPFT and find that the Bert-SPFT leads to 166

more frequent long-tail tokens. We use a human- 167

annotated segmentation dataset to verify that Bert- 168

SPFT is more consistent with human annotations. 169

Finally, we conduct a probing experiment to verify 170

that although the model can easily distinguish dif- 171

ferent subwords, this is not related to downstream 172

tasks. 173
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Word: unchecked
BERT: un  ##che ##cked
BERT-SPFT:   un  checked

Word: misunderstands
BERT: mis ##under ##stands
BERT-SPFT: mis understands

Word:  microelectromechanical
BERT:  micro ##ele ##ct ##rom ##ech ##ani ##cal
BERT-SPFT:  micro electro  mechanical

Word:  misidentifications
BERT:  un ##mis ##ide  ##nti ##fication ##s
BERT-SPFT:  mis  identification  s

Word: singalongs
BERT: sing ##alo ##ng ##s
BERT-SPFT: sing along s

Word: unsuspected
BERT: un ##sus ##pe ##cted
BERT-SPFT: un suspected

Word: eyewitness
BERT: eye ##wi ##tness
BERT-SPFT: eye witness

Word:  mispronunciation
BERT:  mis ##pro ##nu ##ncia ##tion
BERT-SPFT:  mis pronunciation

Figure 1: Examples of the tokenization results of the original Bert tokenizer and our proposed Bert-SPFT.

Cola QNLI MNLI(m/mm) MRPC QQP STSB STS2 QA NER Avg
Bert 55.53 91.46 84.58 84.90 83.04 90.96 88.21 92.84 88.33 94.62 85.45
-S 55.59 90.94 84.13 84.32 84.71 90.88 88.47 92.57 87.89 93.77 85.33
-S + P 57.06 91.08 84.37 84.55 83.33 90.96 88.70 92.91 88.02 94.14 85.51

Table 1: Experimental results of downstream tasks. Bert is the bert-base-uncased model. "-S" means using the
same pretrained model with our proposed Bert-SPFT. "-S + P" means we first conduct a continue pretraining with
the Bert-SPFT and bert-base-uncased model. QA represents the F1 score of SQuADv1.1. NER represents the F1
score of CoNLL2003. All the results are the average of five runs.

vocab size avg token length
Bert 30522 1.1273
-S 24694 (-19%) 1.1451 (+1.59%)
-S + R 30522 1.1042 (-2.05%)

Table 2: The average token length and vocab size of
three tokenizers. Bert means the bert-base-uncased
tokenizer. "-S" means our proposed Bert-SPFT. "-S+R"
means our proposed Bert-SPFT with a reconstructed
vocabulary".

4.1 Statistical Analysis174

Since our Bert-SPFT only uses the subwords with-175

out “##”, the vocabulary size is about 81% of the176

original Bert tokenizer. For a fair comparison, we177

also train a WordPiece tokenizer with the same178

vocabulary size as the original Bert tokenizer.179

As Table2 shows, Bert-SPFT tends to lead to a180

longer token sequence as the vocabulary shrinks by181

19%. However, given the same vocab budget, the182

Bert-SPFT leads to 2% less than the original Bert183

in token length.184

As Figure2 shows, the last 30% of tokens in the185

vocabulary has a higher token frequency which sug-186

gests for both pretrain and downstream tasks, using187

Bert-SPFT can lead to a more adequate training on188

long-tail tokens.189
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Figure 2: The token frequency of long-tail tokens in the
vocabulary of different tokenizers.

4.2 Morphological Experiments 190

Besides the benefits in average token length and 191

long-tail token frequency, we verify the consistency 192

of Bert-SPFT with human segmentation data. 193

Motivated by Itzhak and Levy, we use 194

LADEC(Gagné et al., 2019) a large dataset of 195

human-annotated English compounds dataset and 196

measure the overlap of the tokenized result and 197

human annotated labels. 198

The total amount of the LADEC is 8956. Each 199

compound word has two morphemes. We remove 200

all the plural words and finally get 6017 words. 201

We define two metrics to match the consistency 202
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Full Match Term Match
Bert 60.63% 71.61%
-S 75.93(+25.23)% 81.4(+13.67)%

Table 3: The full match ratio and term match ratio of the
original bert-base-uncased tokenizer and our proposed
Bert-SPFT on the LADEC dataset.

of tokenized results and human labels.203

Full Match Ratio means that the number of the204

tokenized result is consistent with human labels.205

Given the word “walkabout” with the compounds206

“walk” and “about”, if the tokenized result is “walk207

about” or “walkabout”, we consider it a full match.208

Term Match Ratio measures how many terms209

of the tokenized result match the human labels.210

The denominator is the total number of terms. The211

numerator is the total matched terms. If a word is212

matched as a whole, we consider the matched term213

number to be 2.214

As Table 3 shows, our proposed Bert-SPFT out-215

performs the original Bert tokenizer with a 25.23%216

increase in full match ratio and a 13.67% increase217

in term match ratio.218

The experimental results verify that the results219

of Bert-SPFT and human segmentation data are220

more consistent.221

4.3 Probing on subword types222

Results on downstream tasks demonstrate the effec-223

tiveness of Bert-SPFT, and we would like to further224

investigate subword prefixes in pretrained models.225

We conduct further experiments to examine the226

following research questions.227

• RQ1. Can PLMs distinguish the starting228

subword and continuing subword?229

• RQ2. If the PLMs have the ability, is this230

correlated to the model performance?231

Motivated by previous work(Itzhak and Levy,232

2022), we directly extract the embedding matrix233

from the pretrained bert-base-uncased model. We234

split them with a portion of 80%, 10%, and 10% as235

train/dev/test datasets.236

We build a simple three-layer feed-forward net-237

work and train it for 100 epochs.238

We find that the model can easily distinguish the239

starting subwords from the continuing subwords240

with nearly 100% accuracy which proves the RQ1.241

To validate the RQ2, we train a Bert from scratch242

and save the checkpoint for every 1000 steps. For243

each checkpoint, we predict the subword prefix 244

with the embedding matrix and perform MNLI fine- 245

tuning to verify the performance on downstream 246

tasks. 247
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Figure 3: The accuracy of subword prefix prediction
and MNLI match score for each training step.

As Figure3 shows, at the 5000 steps of train- 248

ing, the model is capable of distinguishing the two 249

types of subwords with more than 95% accuracy. 250

However, when we use the MNLI score to mea- 251

sure the performance of the model on downstream 252

tasks, we find that the model is still far from being 253

well trained. This probing experiment proves that 254

although PLMs can recognize different subword 255

types, this cannot be translated into benefits for 256

downstream tasks. 257

5 Conclusion 258

In this paper, we empirically study the necessity of 259

the subword prefix in tokenizer. Downstream ex- 260

periments prove our subword prefix-free tokenizer, 261

Bert-SPFT, achieves a comparable result with 19% 262

fewer embedding parameters. From statistical and 263

morphological aspects, we also observe a better 264

segmentation with our Bert-SPFT. We further con- 265

duct a probing task that suggests the capability to 266

distinguish the subword types is not related to the 267

model performance. 268

In future work, we would like to further inves- 269

tigate the Bert-SPFT by pretraining a Bert model 270

from scratch. We believe that pre-training from 271

scratch can better exploit the Bert-SPFT. Besides, 272

we want to study the subword prefix in other to- 273

kenizers, such as the byte-level BPE tokenizer of 274

Roberta. The more difficult part is that the tok- 275

enizer of Roberta directly models the spaces. 276
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Exact Match F1
Bert 80.75 88.33
Bert-SPFT 80.21 87.89
Bert-SPFT * 80.34 88.02

Table 4: Exact match and F1 score of different tokeniz-
ers on SQuADv1.1.

Acc F1 Pre Rec
Bert 98.92 94.62 94.18 95.07
Bert-SPFT 98.74 93.77 93.49 94.05
Bert-SPFT * 98.91 94.14 93.84 94.44

Table 5: Accuarcy, F1, Precision and Recall score on
CoNLL2003.

length is 128. The train epochs are 3. The learning388

rate is set to 2e− 5.389

For SQuADv1.1, we use the batch size of 12.390

The max sequence length is 384. The stride win-391

dow size is 128. The learning rate is set to 3e− 5.392

All the experiments are implemented with hug-393

gingface2 and performed on an NVIDIA A100. For394

each experiment, we run 5 times and then calculate395

the average scores.396

A.1.2 SQuADv1.1 Result397

As Table4 shows the exact match score and F1398

score of different tokenizers on SQuADv1.1.399

A.1.3 CoNLL2003 Result400

As Table5 shows the accuracy, F1, precision and401

recall score on CoNLL2003 NER task.402

A.2 Details of Morphological Experiments403

Bert Bert-SPFT
Full Match 520 520
Exact Match 3128 4049
Single Term Match 1322 658

Table 6: Details Matching Counts of the Bert tokenizer
and Bert-SPFT in the LADEC dataset.Full Match
means the given word is in the vocabulary and will
not be segmented anymore. Exact Match means the
segmentation results are consistent with the human an-
notation. Single Term Match means only one term is
matched for human annotation and tokenized results.

Label-0 Label-1
Training Set 18944 4666
Evaluation Set 2336 585
Test Set 2414 577

Table 7: In the Probing experiment, the number of posi-
tive and negative examples in the training set, evaluation
set, and test set

A.3 Details of Probing Experiments 404

A.3.1 Statistics for Datasets 405

A.3.2 Implementation Details of the Probing 406

Model 407

The size of each feed forward layer is (768, 32), 408

(32, 16) and (16, 1). We use the batch size of 256. 409

We train the model for 100 epochs. The experi- 410

ments are performed on CPUs. 411

A.3.3 Implementation Details of the Bert 412

Pre-training 413

As a training set, we leverage data from the English 414

wiki and book corpus. We take advantage of a 256 415

train batch size. 128 is the maximum sequence 416

length. Weight decay is set to 0.01 and the learning 417

rate is 1e− 4. 418

A.4 Limitations 419

The results in this paper have some limitations. 420

First, we only focus on the WordPiece tokenizer. 421

But our method can also be applied to other tokeniz- 422

ers like the Byte-level BPE tokenizer (Wang et al., 423

2020) of Roberta(Liu et al., 2019) . In subsequent 424

experiments, we will conduct research on these to- 425

kenizers. Second, we only use a pre-trained BERT 426

and then conduct a few steps continue pretraining 427

to verify the effect of our proposed tokenizer on 428

downstream tasks. We think this does not fully 429

demonstrate the effectiveness of our proposed to- 430

kenizer. For future work, we would like to train a 431

Bert from scratch and fine-tune downstream tasks 432

to see if there are more improvements. 433

2https://huggingface.co/
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