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Abstract

A central concern in classification is the vulnerability of machine learning models to adver-
sarial attacks. Adversarial training is one of the most popular techniques for training robust
classifiers, which involves minimizing an adversarial surrogate risk. Recent work charac-
terized when a minimizing sequence of an adversarial surrogate risk is also a minimizing
sequence of the adversarial classification risk for binary classification— a property known
as adversarial consistency. However, these results do not address the rate at which the
adversarial classification risk converges to its optimal value for such a sequence of functions
that minimize the adversarial surrogate. This paper provides surrogate risk bounds that
quantify that convergence rate. Additionally, we derive distribution-dependent surrogate
risk bounds in the standard (non-adversarial) learning setting, that may be of independent
interest.

1 Introduction

A central concern regarding sophisticated machine learning models is their susceptibility to adversarial
attacks. Prior work (Biggio et al., 2013; Szegedy et al., 2013) demonstrated that imperceptible perturbations
can derail the performance of neural nets. As such models are used in security-critical applications such as
facial recognition (Xu et al., 2022) and medical imaging (Paschali et al., 2018), training robust models
remains a central concern in machine learning.

In the standard classification setting, the classification risk is the proportion of incorrectly classified data.
Rather that minimizing this quantity directly, which is a combinatorial optimization problem, typical machine
learning algorithms perform gradient descent on a well-behaved alternative surrogate risk. If a sequence of
functions that minimizes this surrogate risk also minimizes the classification risk, then the surrogate risk
is referred to as consistent for that specific data distribution. In addition to consistency, one would hope
that minimizing the surrogate risk would be an efficient method for minimizing the classification risk. This
convergence rate can be bounded by surrogate risk bounds, which are functions that provide a bound on the
excess classification risk in terms of the excess surrogate risk.

In the standard binary classification setting, consistency and surrogate risk bounds are well-studied topics
(Bartlett et al., 2006; Lin, 2004; Steinwart, 2007; Zhang, 2004). On the other hand, fewer results are known
about the adversarial setting. The adversarial classification risk incurs a penalty when a point can be
perturbed into the opposite class. Similarly, adversarial surrogate risks involve computing the worst-case
value (i.e. supremum) of a loss function over an ϵ-ball. Frank & Niles-Weed (2024a) characterized which
risks are consistent for all data distributions, and the corresponding losses are referred to as adversarially
consistent. Unfortunately, no convex loss function can be adversarially consistent for all data distributions
(Meunier et al., 2022). On the other hand, Frank (2025) showed that such situations are rather atypical—
when the data distribution is absolutely continuous, a surrogate risk is adversarially consistent so long as
the adversarial Bayes classifier satisfies a certain notion of uniqueness called uniqueness up to degeneracy.
While these results characterize consistency, none describe convergence rates.

Our Contributions:
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• We prove a linear surrogate risk bound for adversarially consistent losses (Theorem 11).

• If the ‘distribution of optimal attacks’ satisfies a bounded noise condition, we prove a linear surrogate
risk bound, under mild conditions on the loss function (Theorems 11 and 12).

• We prove a distribution dependent surrogate risk bound that applies whenever a loss is adversarially
consistent for a data distribution (Theorem 13).

Notably, this last bullet applies to convex loss functions. Due to the consistency results in prior work (Frank,
2025; Frank & Niles-Weed, 2024a; Meunier et al., 2022), one cannot hope for distribution independent
surrogate bounds for non-adversarially consistent losses. To the best of the authors’ knowledge this paper
is the first to prove surrogate risk bounds for the risks most commonly used in adversarial training, see
Section 6 for a comparison with prior work. Understanding the optimality of the bounds presented in this
paper remains an open problem.

2 Background and Preliminaries

2.1 Surrogate Risks

This paper studies binary classification on Rd with labels −1 and +1. The measures P0, P1 describe the
probabilities of finding data with labels −1, +1, respectively, in subset of Rd. The classification risk of a set
A is the misclassification rate when points in A are classified as +1 and points in AC are classified as −1:

R(A) =
∫

1ACdP1 +
∫

1AdP0

The minimal classification risk over all Borel sets is denoted R∗. As the derivative of an indicator function
is zero wherever it is defined, the empirical version of this risk cannot be optimized with first order descent
methods. Consequently, common machine learning algorithms minimize a different quantity called a surrogate
risk. The surrogate risk of a function f is defined as

Rϕ(f) =
∫
ϕ(f)dP1 +

∫
ϕ(−f)dP0.

In practice, the loss function ϕ selected so that it has well-behaved derivative. In this paper, We assume:
Assumption 1. The loss ϕ is continuous, non-increasing, and limα→∞ ϕ(α) = 0.

The minimal surrogate risk over all Borel measurable functions is denoted Rϕ,∗. After optimizing the
surrogate risk, a classifier is obtained by threshholding the resulting f at zero. Consequently, we define the
classification error of a function by R(f) = R({f > 0}) or equivalently,

R(f) =
∫

1f≤0dP1 +
∫

1f>0dP0.

It remains to verify that minimizing the surrogate risk Rϕ will also minimize the classification risk R.
Definition 1. The loss function ϕ is consistent for the distribution P0, P1 if every minimizing sequence of
Rϕ is also a minimizing sequence of R when the data is distributed according to P0 and P1. The loss function
ϕ is consistent if it is consistent for all data distributions.

Prior work establishes conditions under which many common loss functions are consistent.
Theorem 1. A convex loss ϕ is consistent iff it is differentiable at zero and ϕ′(0) < 0.

See (Bartlett et al., 2006, Theorem 2). Furthermore, (Frank & Niles-Weed, 2024a, Proposition 3) establishes
a condition that applies to non-convex losses:
Theorem 2. If infα 1/2(ϕ(α) + ϕ(−α)) < ϕ(0), then the loss ϕ is consistent.
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The ρ-margin loss ϕρ(α) = min(1,max(1 −α/ρ, 0)) and the shifted sigmoid loss ϕτ (α) = 1/(1 + exp(α− τ)),
τ > 0, both satisfy this criterion. However, a convex loss ϕ cannot satisfy this condition:

1
2 (ϕ(α) + ϕ(−α)) ≥ ϕ

(1
2α+ 1

2 · −α
)

= ϕ(0). (1)

In addition to consistency, understanding convergence rates is a key concern. Specifically, prior work (Bartlett
et al., 2006; Zhang, 2004) establishes surrogate risk bounds of the form Ψ(R(f) − R∗) ≤ Rϕ(f) − Rϕ,∗ for
some function Ψ. This inequality bounds the convergence rate of R(f) −R∗ in terms of the convergence of
Rϕ(f) −Rϕ,∗.

The values R∗, Rϕ,∗ can be expressed in terms of the data distribution by re-writing these quantities in
terms of the total probability measure P = P0 +P1 and the conditional probability of the label +1, given by
η(x) = dP1/dP. An equivalent formulation of the classification risk is

R(f) =
∫
C(η(x), f(x))dP(x) (2)

with
C(η, α) = η1α≤0 + (1 − η)1α>0, (3)

and the minimal classification risk is found by minimizing the integrand of (2) at each x. Define

C∗(η) = inf
α
C(η, α) = min(η, 1 − η), (4)

then the minimal classification risk is

R∗ =
∫
C∗(η(x))dP(x).

Analogously, the surrogate risk in terms of η and P is

Rϕ(f) =
∫
Cϕ(η(x), f(x))dP (5)

and the minimal surrogate risk is
Rϕ,∗ =

∫
C∗
ϕ(η(x))dP(x)

with the conditional risk Cϕ(η, α) and minimal conditional risk C∗
ϕ(η) defined by

Cϕ(η, α) = ηϕ(α) + (1 − η)ϕ(−α), C∗
ϕ(η) = inf

α
Cϕ(η, α). (6)

Notice that minimizers to Rϕ may need to be R-valued— consider the exponential loss ϕ(α) = e−α and a
distribution with η(x) ≡ 1. Then the only minimizer to Rϕ would be +∞.

The consistency of ϕ can be fully characterized by the properties of the function C∗
ϕ(η).

Theorem 3. A loss ϕ is consistent iff C∗
ϕ(η) < ϕ(0) for all η ̸= 1/2.

Surprisingly, this criterion has not appeared in prior work. See Appendix A for a proof.

In terms of the function C∗
ϕ, Theorem 2 states that any loss ϕ with C∗

ϕ(1/2) < ϕ(0) is consistent.

The function C∗
ϕ is a key component of surrogate risk bounds from prior work. Specifically, Bartlett et al.

(2006) show:
Theorem 4. Let ϕ be any loss satisfying Assumption 1 with C∗

ϕ(1/2) = ϕ(0) and define

Ψ(θ) = ϕ(0) − C∗
ϕ

(
1 + θ

2

)
.
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Then
Ψ(C(η, f) − C∗(η)) ≤ Cϕ(η, f) − C∗

ϕ(η) (7)

and consequently
Ψ(R(f) −R∗) ≤ Rϕ(f) −R∗

ϕ. (8)

Equation 8 is a consequence of (7) and Jensen’s inequality. Furthermore, a result of (Bartlett et al., 2006)
implies a linear bound when C∗

ϕ(1/2) < ϕ(0):

R(f) −R∗ ≤ 1
ϕ(0) − C∗

ϕ(1/2)(Rϕ(f) −Rϕ,∗) (9)

Furthermore, a distribution with zero classification error R∗ has the surrogate risk bound

R(f) −R∗ ≤ 1
ϕ(0)(Rϕ(f) −Rϕ,∗) (10)

so long as ϕ(0) > 0. Such distributions are referred to as realizable. A proof of this result that transfers
directly to the adversarial scenario is provided in Appendix B.1.

A distribution is said to satisfy Massart’s noise condition (Massart & Nédélec, 2006) if there is an α ∈ (0, 1/2]
such that |η − 1/2| ≥ α holds P-a.e. Under this condition, Massart & Nédélec (2006) establish improved
sample complexity guarantees. Furthermore, such distributions exhibit a linear surrogate loss bound as well.
These linear bounds, the realizable bounds from (10), and the linear bounds from (9) are summarized in a
single statement below.
Proposition 1. Let η, P be a distribution that satisfies |η − 1/2| ≥ α P-a.e. with a constant α ∈ [0, 1/2],
and let ϕ be a loss with ϕ(0) > C∗

ϕ(1/2 − α). Then for all |η − 1/2| ≥ α,

C(η, f) − C∗(η) ≤ 1
ϕ(0) − C∗

ϕ( 1
2 − α)

(Cϕ(η, f) − C∗
ϕ(η)) (11)

and consequently

R(f) −R∗ ≤ 1
ϕ(0) − C∗

ϕ( 1
2 − α)

(Rϕ(f) −Rϕ,∗) (12)

When α ̸= 0, this surrogate risk bound proves a linear convergence rate under Massart’s noise condition. If
α = 0 and C∗

ϕ(1/2) < ϕ(0), then the bound in (12) reduces to (9) while if α = 1/2 then this bound reduces
to (10). See Appendix B.2 for a proof of this result. One of the main results of this paper is that (12)
generalizes to adversarial risks.

Note that the surrogate risk bound of Theorem 4 can be linear even for convex loss functions. For the hinge
loss ϕ(α) = max(1 − α, 0), the function ϕ computes to ϕ(θ) = |θ|. Prior work (Frongillo & Waggoner, 2021,
Theorem 1) observed a linear surrogate bound for piecewise linear losses: if ϕ is piecewise linear, then C∗

ϕ(η)
is piecewise linear and Jensen’s inequality implies a linear surrogate bound so long as ϕ is consistent (due to
Theorem 3). On the other hand, (Frongillo & Waggoner, 2021, Theorem 2) show that convex losses which
are locally strictly convex and Lipschitz achieve at best a square root surrogate risk rate.

Mahdavi et al. (2014) emphasize the importance of a linear convergence rate in a surrogate risk bound. Their
paper studies the sample complexity of estimating a classifier with a surrogate risk. They note that typi-
cally convex surrogate losses exhibiting favorable sample complexity do not satisfy favorable surrogate risk
bounds, due to the results of (Frongillo & Waggoner, 2021). Consequently, Proposition 1 hints that proving
favorable sample complexity guarantees for learning with convex surrogate risks could require distributional
assumptions, such as Massart’s noise condition.
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2.2 Adversarial Risks

This paper extends surrogate risk bounds of Equations (8), (10) and (12) to adversarial risks. The adversarial
classification risk incurs a penalty of 1 whenever a point x can be perturbed into the opposite class. This
penalty can be expressed in terms of supremums of indicator functions— the adversarial classification risk
incurs a penalty of 1 whenever sup∥x′−x∥≤ϵ 1A(x′) = 1 or sup∥x′−x∥≤ϵ 1AC (x′) = 1. Define

Sϵ(g)(x) = sup
∥x−x′∥≤ϵ

g(x′).

The adversarial classification risk is then

Rϵ(A) =
∫
Sϵ(1AC )dP1 +

∫
Sϵ(1A)dP0

and the adversarial surrogate risk is1

Rϵϕ(f) =
∫
Sϵ(ϕ(f))dP1 +

∫
Sϵ(ϕ(−f))dP0.

A minimizer of the adversarial classification risk is called an adversarial Bayes classifier. After optimizing
the surrogate risk, a classifier is obtained by threshholding the resulting function f at zero. Consequently,
the adversarial classification error of a function f is defined as Rϵ(f) = Rϵ({f > 0}) or equivalently,

Rϵ(f) =
∫
Sϵ(1f≤0)dP1 +

∫
Sϵ(1f>0)dP0. (13)

Just as in the standard case, one would hope that minimizing the adversarial surrogate risk would minimize
the adversarial classification risk.
Definition 2. We say a loss ϕ is adversarially consistent for the distribution P0, P1 if any minimizing
sequence of Rϵϕ is also a minimizing sequence of Rϵ. We say that ϕ is adversarially consistent if it is
adversarially consistent for every possible P0, P1.

Theorem 2 of (Frank & Niles-Weed, 2024a) characterizes the adversarially consistent losses:
Theorem 5. The loss ϕ is adversarially consistent iff C∗

ϕ(1/2) < ϕ(0).

Theorem 2 implies that every adversarially consistent loss is also consistent. Unfortunately, (1) shows that
no convex loss is adversarially consistent. However, the data distribution for which adversarial consistency
fails presented in (Meunier et al., 2022) is fairly atypical: Let P0, P1 be the uniform distributions on Bϵ(0).
Then one can show that the function sequence

fn =
{

1
n x ̸= 0
− 1
n x = 0

(14)

minimizes Rϵϕ but not Rϵ whenever C∗
ϕ(1/2) = ϕ(0) (See Proposition 2 of (Frank & Niles-Weed, 2024a)). A

more refined analysis relates adversarial consistency for losses with C∗
ϕ(1/2) = ϕ(0) to a notion of uniqueness

of the adversarial Bayes classifier for losses satisfying C∗
ϕ(1/2) = ϕ(0).

Definition 3. Two adversarial Bayes classifiers A1, A2 are equivalent up to degeneracy if any set A with
A1 ∩ A2 ⊂ A ⊂ A1 ∪ A2 is also an adversarial Bayes classifier. The adversarial Bayes classifier is unique
up to degeneracy if any two adversarial Bayes classifiers are equivalent up to degeneracy.

Theorem 3.3 of (Frank, 2024) proves that whenever P is absolutely continuous with respect to Lebesgue
measure, then equivalence up to degeneracy is in fact an equivalence relation. Next, Theorem 4 of (Frank,
2025) relates this condition to the consistency of ϕ.
Theorem 6. Let ϕ be a loss with C∗

ϕ(1/2) = ϕ(0) and assume that P is absolutely continuous with respect
to Lebesgue measure. Then ϕ is adversarially consistent for the data distribution given by P0, P1 iff the
adversarial Bayes classifier is unique up to degeneracy.
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Figure 1: Adversarial Bayes classifiers for the example considered in (14). The adversarial Bayes classifiers
in (a) and (b) are equivalent up to degeneracy and the the adversarial Bayes classifiers in (c) and (d) are
equivalent up to degeneracy, but the adversarial Bayes classifiers in (a) and (c) are not equivalent up to
degeneracy.

The extension of Theorem 4 to the adversarial setting must reflect the consistency results of Theorems 5
and 6.

2.3 Minimax Theorems

A central tool in analyzing the adversarial consistency of surrogate risks is minimax theorems. These results
allow one to express adversarial risks in a ‘pointwise’ manner analogous to (5). We will then combine this
‘pointwise’ expression together with the proof of Theorem 4 to produce surrogate bounds for adversarial
risks.

These minimax theorems utilize the ∞-Wasserstein (W∞) metric from optimal transport. Let Q and Q′ be
two finite positive measures with the same total mass. Informally, the measure Q′ is within ϵ of Q in the
W∞ metric if one can achieve the measure Q′ by moving points of Q by at most ϵ.

The W∞ metric is formally defined in terms of the set of couplings between Q and Q′. A Borel measure γ
on Rd × Rd is a coupling between Q and Q′ if its first marginal is Q and its second marginal is Q′, or in
other words, γ(A× Rd) = Q(A) and γ(Rd × A) = Q′(A) for all Borel sets A. Let Π(Q,Q′) be the set of all
couplings between the measures Q and Q′. Then the W∞ between Q and Q′ is then

W∞(Q,Q′) = inf
γ∈Π(Q,Q′)

ess sup
(x,y)∼γ

∥x − y∥. (15)

Theorem 2.6 of (Jylhä, 2014) proves that the infimum in (15) is always attained. The ϵ-ball around Q in the
W∞ metric is

B∞
ϵ (Q) = {Q′ : W∞(Q′,Q) ≤ ϵ}.

The minimax theorem below will relate the adversarial risks Rϵϕ, Rϵ to dual problems in which an adversary
seeks to maximize some dual quantity over Wasserstein-∞ balls. Specifically, one can show:

1In order to define the risks Rϵ
ϕ and Rϵ, one must argue that Sϵ(g) is measurable. Theorem 1 of (Frank & Niles-Weed,

2024b) proves that whenever g is Borel, Sϵ(g) is always measurable with respect to the completion of any Borel measure.

6
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Lemma 1. Let g be a Borel function. Let γ be a coupling between the measures Q and Q′ supported on
∆ϵ = {(x,x′) : ∥x − x′∥ ≤ ϵ}. Then Sϵ(g)(x) ≥ g(x′) γ-a.e. and consequently∫

Sϵ(g)dQ ≥ sup
Q′∈B∞

ϵ (Q)

∫
gdQ′.

See Appendix C for a proof. Thus, applying Lemma 1, the quantity infARϵ(A) can be lower bounded by an
infimum followed by a supremum. Is it possible to swap this infimum and supremum? (Pydi & Jog, 2021)
answers this question in the affirmative. Let C∗(η) be as defined in (4) and let

R̄(P′
0,P′

1) = inf
A Borel

∫
1ACdP′

1 +
∫

1AdP′
0 =

∫
C∗
(

dP′
1

d (P′
1 + P′

0)

)
d (P′

0 + P′
1) . (16)

Theorem 7. Let R̄ be as defined in (16). Then

inf
A Borel

Rϵ(A) = sup
P′

1∈B∞
ϵ (P1)

P′
0∈B∞

ϵ (P0)

R̄(P′
0,P′

1).

Furthermore, equality is attained at some Borel measurable A, P∗
0, and P∗

1 with P∗
0 ∈ B∞

ϵ (P0) and P∗
1 ∈

B∞
ϵ (P1).

See (Frank & Niles-Weed, 2024a, Theorem 1) for a proof of this statement. The maximizers P∗
0, P∗

1 can be
interpreted as optimal adversarial attacks (see discussion following (Frank & Niles-Weed, 2024b, Theorem 7)).
Frank (2024, Theorem 3.4) provide a criterion for uniqueness up to degeneracy in terms of dual maximizers.
Theorem 8. The following are equivalent:

A) The adversarial Bayes classifier is unique up to degeneracy

B) There are maximizers P∗
0, P∗

1 of R̄ for which P∗(η∗ = 1/2) = 0, where P∗ = P∗
0+P∗

1 and η∗ = dP∗
1/dP∗

In other words, the adversarial Bayes classifier is unique up to degeneracy iff the region where both classes
are equally probable has measure zero under some optimal adversarial attack. Theorems 6 and 8 relate
adversarial consistency and the dual problem, suggesting that these optimal adversarial attacks P∗

0, P∗
1 may

appear in adversarial surrogate bounds.

Frank & Niles-Weed (2024b) prove an minimax principle analogous to Theorem 7 for the adversarial surrogate
risk. Let C∗

ϕ(η) be as defined in (6) and let

R̄ϕ(P′
0,P′

1) = inf
f Borel

∫
ϕ(f)dP′

1 +
∫
ϕ(−f)dP′

0 =
∫
C∗
ϕ

(
dP′

1
d (P′

1 + P′
0)

)
d (P′

0 + P′
1) (17)

Theorem 9. Let R̄ϕ be defined as in (17). Then

inf
f Borel,
R-valued

Rϵϕ(f) = sup
P′

1∈B∞
ϵ (P1)

P′
0∈B∞

ϵ (P0)

R̄ϕ(P′
0,P′

1).

Furthermore, equality is attained at some Borel measurable f∗, P∗
0, and P∗

1 with P∗
0 ∈ B∞

ϵ (P0) and P∗
1 ∈

B∞
ϵ (P1).

Just as in the non-adversarial scenario, Rϵϕ may not assume its infimum at an R-valued function. However,
(Frank & Niles-Weed, 2024a, Lemma 8) show that

inf
f R-valued

Rϵϕ(f) = inf
f R-valued

Rϵϕ(f).

7
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Lastly, one can show that maximizers of R̄ϕ are always maximizers of R̄ as well. In other words— optimal
attacks on minimizers of the adversarial surrogate Rϵϕ are always optimal attacks on minimizers of the
adversarial classification risk Rϵ as well.
Theorem 10. Consider maximizing the dual objectives R̄ϕ and R̄ over B∞

ϵ (P0) × B∞
ϵ (P1).

1) Any maximizer (P∗
0,P∗

1) of R̄ϕ over B∞
ϵ (P0) × B∞

ϵ (P1) must maximize R̄ as well.

2) If the adversarial Bayes classifier is unique up to degeneracy, then there are maximizers (P∗
0,P∗

1) of
R̄ϕ where P∗(η∗ = 1/2) = 0, with P∗ = P∗

0 + P∗
1 and η∗ = dP∗

1/dP∗.

See Appendix D for a proof of Item 1), Item 2) is shown in Theorems 5 and 7 of (Frank, 2025).

3 Main Results

Prior work has characterized when a loss ϕ is adversarially consistent with respect to a distribution P0, P1:
Theorem 5 proves that a distribution independent surrogate risk bound is only possible when C∗

ϕ(1/2) < ϕ(0)
while Theorem 6 suggests that a surrogate bound must depend on the marginal distribution of η∗ under P∗,
and furthermore, such a bound is only possible when P∗(η∗ = 1/2) = 0.

Compare these statements to Proposition 1: Theorems 5 and 6 imply that ϕ is adversarially consistent for
P0, P1 if C∗

ϕ(1/2) < ϕ(0) or if there exist some maximizers of R̄ that satisfy Massart’s noise condition.
Alternatively, due to Theorem 10, one can equivalently assume that there are maximizers of R̄ϕ satisfying
Massart’s noise condition. Our first bound extends Proposition 1 to the adversarial scenario, with the data
distribution P0, P1 replaced with the distribution of optimal adversarial attacks.
Theorem 11. Let P0, P1 be a distribution for which there are maximizers P∗

0, P∗
1 of the dual problem R̄ϕ that

satisfy |η∗ − 1/2| ≥ α P∗-a.e. for some constant α ∈ [0, 1/2] with C∗
ϕ(1/2 − α) < ϕ(0), where P∗ = P∗

0 + P∗
1,

η∗ = dP∗
1/dP∗. Then

Rϵ(f) −Rϵ∗ ≤ 3 +
√

5
2

1
ϕ(0) − C∗

ϕ(1/2 − α) (Rϵϕ(f) −Rϵϕ,∗).

When C∗
ϕ(1/2) < ϕ(0), one can select α = 0 in Theorem 11 to produce a distribution-independent bound.

The constant (3 +
√

5)/2 may be sub-optimal; in fact Theorem 4 of Frank (2025) proves that Rϵ(f) −
Rϵ∗ ≤ 1/(2(ϕ(0) − C∗

ϕρ
(1/2)))(Rϵϕρ

(f) − Rϵϕρ,∗) where ϕρ(α) = min(1,max(0, 1 − α/ρ)) is the ρ-margin loss.
Furthermore, the bound in (10) extends directly to the adversarial setting.
Theorem 12. Let ϕ be any loss with ϕ(0) > 0 satisfying Assumption 1. Then if Rϵ∗ = 0,

Rϵ(f) −Rϵ∗ ≤ 1
ϕ(0)

(
Rϵϕ(f) −Rϵϕ,∗

)
A distribution will have zero adversarial risk whenever the supports of P0 and P1 are separated by at least
2ϵ, see Example 1 and Figure 2a for and example. Zero adversarial classification risk corresponds to α = 1/2
in Massart’s noise condition.

In contrast, Theorem 11 states that if some distribution of optimal adversarial attacks satisfies Massart’s
noise condition, then the excess adversarial surrogate risk is at worst a linear upper bound on the excess
adversarial classification risk. However, if C∗

ϕ(1/2) = ϕ(0), this constant approaches infinity as α → 0,
reflecting the fact that adversarial consistency fails when the adversarial Bayes classifier is not unique up to
degeneracy. When α ̸= 1/2, understanding what assumptions on P0, P1 guarantee Massart’s noise condition
for P∗

0, P∗
1 is an open question. Example 4.6 of (Frank, 2024) demonstrates a distribution that satisfies

Massart’s noise condition and yet the adversarial Bayes classifier is not unique up to degeneracy. Thus
Massart’s noise condition for P0,P1 does not guarantee Massart’s noise condition for P∗

0, P∗
1. See Example 2

and Figure 2b for an example where Theorem 11 applies with α > 0.
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Figure 2: Distributions from Examples 1 to 3 along with attacks that maximize the dual R̄ϕ.

Finally, by averaging bounds of the form Theorem 11 over all values of η∗ produces a distribution-dependent
surrogate bound, valid whenever the adversarial Bayes classifier is unique up to degeneracy. For a given
function f , let the concave envelope of f be the smallest concave function larger than f :

conc(f) = inf{g :≥ f on dom(h), g concave and upper semi-continuous} (18)

Theorem 13. Assume that C∗
ϕ(1/2) = ϕ(0) and that the adversarial Bayes classifier is unique up to

degeneracy. Let P∗
0, P∗

1 be maximizers of R̄ϕ for which P∗(η∗ = 1/2) = 0, with P∗ = P∗
0 + P∗

1 and
η∗ = dP∗

1/dP∗. Let H(z) = conc(P∗(|η∗ − 1/2| ≤ z)). Let Ψ be the function defined by Theorem 4 and
let Λ̃(z) = Ψ−1(min( z6 , ϕ(0))). Then

Rϵ(f) −Rϵ∗ ≤ Φ̃(Rϵϕ(f) −Rϵϕ,∗)

with
Φ̃(z) = 6

(
id + min(1,

√
−2eH ln 2H)

)
◦ Λ̃

See Example 3 and Figure 2c for an example of calculating a distribution-dependent surrogate risk bound.

One can prove that the function H is always continuous and satisfies H(0) = 0, proving that this bound is
non-vacuous (see Lemma 2 below). Further notice that H lnH approaches zero as H → 0.

The map Φ̃ combines two components: Λ̃, a modified version of Ψ−1, and H, a modification of the cdf of
|η∗ − 1/2|. The function Λ̃ is a scaled version of Ψ−1, where Ψ is the surrogate risk bound in the non-
adversarial case of Theorem 4. The domain of Ψ−1 is [0, ϕ(0)], and thus the role of the min in the definition
of Λ̃ is to truncate the argument so that it fits into this domain. The factor of 1/6 in this function appears
to be an artifact of our proof, see Section 5 for further discussion. In contrast, the map H translates
the distribution of η∗ into a surrogate risk transformation. Compare with Theorem 6, which states that
consistency fails if P∗(η∗ = 1/2) > 0; accordingly, the function H becomes a poorer bound when more mass
of η∗ is near 1/2.

Examples

Below are three examples for which each of our three main theorems apply. These examples are all one-
dimensional distributions, and we denote the pdfs of P0, and P1 by p0 and p1.

To start, a distribution for which the supports of P0, P1 are more than 2ϵ apart must have zero risk.
Furthermore, if P is absolutely continuous with respect to Lebesgue measure and the supports of P0, P1 are
exactly 2ϵ apart, then the adversarial classification risk will be zero (see for instance (Awasthi et al., 2023a,
Lemma 4) or (Pydi & Jog, 2021, Lemma 4.3)).
Example 1 (When Rϵ∗ = 0). Let p0 and p1 be defined by

p0(x) =
{

1 if x ∈ [−1 − δ,−δ]
0 otherwise

p1(x) =
{

1 if x ∈ [δ, 1 + δ]
0 otherwise

9
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for some δ > 0. See Figure 2a for a depiction of p0 and p1. This distribution satisfies Rϵ∗ = 0 for all ϵ ≤ δ
and thus the surrogate bound of Theorem 12 applies.

Examples 2 and 3 require computing maximizers to the dual R̄ϕ. See Appendices J.1 and J.2 for these
calculations. The following example illustrates a distribution for which Massart’s noise condition can be
verified for a distribution of optimal attacks.
Example 2 (Massart’s noise condition). Let δ > 0 and let p be the uniform density on [−1−δ,−δ]∪[δ, 1+δ].
Define η by

η(x) =
{

1
4 if x ∈ [−1 − δ,−δ]
3
4 if x ∈ [δ, 1 + δ]

(19)

see Figure 2b for a depiction of p0 and p1. For this distribution and ϵ ≤ δ, the minimal surrogate and
adversarial surrogate risks are always equal (Rϕ,∗ = Rϵϕ,∗). This fact together with Theorem 9 imply that
optimal attacks on this distribution are P∗

1 = P1 and P∗
0 = P0, see Appendix J.1 for details. Consequently:

the distribution of optimal attacks P∗
0, P∗

1 satisfies Massart’s noise condition with α = 1/4 and as a result
the bounds of Theorem 11 apply.

Finally, the next example presents a case in which Massart’s noise condition fails for the distribution of
optimal adversarial attacks, yet the adversarial Bayes classifier remains unique up to degeneracy. Theorem 13
continues to yield a valid surrogate bound.
Example 3 (Gaussian example). Consider an equal Gaussian mixture with equal variances and differing
means, with µ1 > µ0:

p0(x) = 1
2 · 1√

2πσ
e− (x−µ0)2

2σ2 , p1(x) = 1
2 · 1√

2πσ
e− (x−µ1)2

2σ2

We further assume µ1 − µ0 ≤
√

2σ; see Figure 2c for a depiction. We will show that when µ1 − µ0 < 2ϵ, the
optimal attacks P∗

0, P∗
1 are gaussians centered at µ0 + ϵ and µ1 − ϵ— explicitly the pdfs of P∗

0 and P∗
1 are

given by
p∗

0(x) = 1
2 · 1√

2πσ
e− (x−(µ0+ϵ))2

2σ2 , p∗
1(x) = 1

2 · 1√
2πσ

e− (x−(µ1−ϵ))2

2σ2 , (20)

see Appendix J.2 for details. We verify that P∗
0 and P∗

1 are in fact optimal by finding a function f∗ for which
Rϵϕ(f) = R̄ϕ(P∗

0,P∗
1), the strong duality result in Theorem 9 will then imply that P∗

0 and P∗
1 must maximize

the dual R̄ϕ, see Appendix J.2 for details.

However, when µ1 − µ0 ≤
√

2σ, then the function h(z) = P∗(|η∗ − 1/2| ≤ z) is concave in z for all
ϵ < (µ1 −µ0)/2 and consequently h = H, see Appendix J.3 for details. Unfortunately, h is a rather unweildy
function. By comparing to the linear approximation at zero, one can show the following upper bound on H:

H(z) ≤ min
(

16σ2

µ1 − µ0 − 2ϵz, 1
)
. (21)

Again, see Appendix J.3 for details.

When ϵ ≥ (µ1 − µ0)/2, (Frank, 2024, Example 4.1) shows that the adversarial Bayes classifier is not unique
up to degeneracy. Notably, the bound in preceding example deteriorates as (µ1 − µ0)/2 → ϵ, and then fails
entirely when ϵ = (µ1 − µ0)/2.

4 Linear Surrogate Bounds— Proof of Theorems 11 and 12

The proof of Theorem 12 simply involves bounding the indicator functions Sϵ(1f>0), Sϵ(1f≤0) in terms of
the functions Sϵ(ϕ ◦ f) and Sϵ(ϕ ◦ −f). This strategy is entirely analogous to that the argument for the
(non-adversarial) surrogate bound (10) in Appendix B.1. A similar argument is also an essential intermediate
step of the proof of Theorem 11.

10
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Proof of Theorem 12. If Rϵ∗ = 0, then the duality result Theorem 7 implies that for any measures P′
0 ∈

B∞
ϵ (P0), P′

1 ∈ B∞
ϵ (P1) then P′(η′ = 0 or 1) = 1, where P′ = P′

0 + P′
1 and η′ = dP′

1/dP′. Consequently,
R̄ϕ(P′

0,P′
1) = 0 for any (P′

0,P′
1) ∈ B∞

ϵ (P0) × B∞
ϵ (P1) and consequently Rϵϕ,∗ = 0. Thus it remains to show

that Rϵ(f) ≤ 1
ϕ(0)R

ϵ
ϕ(f) for all functions f . We will prove the bound

Sϵ(1f≤0)(x) ≤ 1
ϕ(0)Sϵ(ϕ(f))(x). (22)

The inequality (22) trivially holds when Sϵ(1f≤0) = 0. Alternatively, the relation Sϵ(1f≤0)(x) = 1 implies
f(x′) ≤ 0 for some x′ ∈ Bϵ(x) and consequently Sϵ(ϕ(f))(x) ≥ ϕ(0). Thus whenever Sϵ(1f≤0)(x) = 1,

Sϵ(1f≤0)(x) = ϕ(0)
ϕ(0) ≤ 1

ϕ(0)Sϵ(ϕ(f))(x). (23)

An analogous argument implies that whenever Sϵ(1f>0)(x) = 1,

Sϵ(1f>0)(x) = Sϵ(1−f<0)(x) ≤ 1
ϕ(0)Sϵ(ϕ(−f))(x).

As a result:

Rϵ(f) =
∫
Sϵ(1f≤0)(x)dP1 +

∫
Sϵ(1f>0)(x)dP0 ≤ 1

ϕ(0)

(∫
Sϵ(ϕ(f))(x)dP1 +

∫
Sϵ(ϕ(−f)(x)dP0

)
= 1
ϕ(0)R

ϵ
ϕ(f)

In contrast, when the optimal surrogate risk Rϵϕ,∗ is non-zero, the bound in Theorem 11 necessitates a more
sophisticated argument. Below, we decompose both the adversarial classification risk and the adversarial
surrogate risk as the sum of four terms positive terms.

Let P∗
0,P∗

1 be any maximizers of R̄ϕ that also maximize R̄ by Theorem 10. Set P∗ = P∗
0 +P∗

1, η∗ = dP∗
1/dP∗.

Let γ∗
0 , γ∗

1 be the couplings between P0, P∗
0 and P1, P∗

1 respectively that achieve the infimum in (15). Then
due to the strong duality in Theorem 7, one can decompose the excess classification risk as

Rϵ(f) −Rϵ∗ = Rϵ(f) − R̄(P∗
0,P∗

1) = I1(f) + I0(f) (24)

with
I1(f) =

(∫
Sϵ(1f≤0)(x) − 1f≤0(x′)dγ∗

1

)
+
(∫

C(η∗, f) − C∗(η∗)dP∗
1

)
I0(f) =

(∫
Sϵ(1f>0)(x) − 1f>0(x′)dγ∗

0

)
+
(∫

C(η∗, f) − C∗(η∗)dP∗
0

)
Lemma 1 implies that Sϵ(1f≤0)(x) − 1f≤0(x′) must be positive, while the definition of C∗ implies that
C(η∗, f) − C∗(η∗) ≥ 0.

Similarly, one can express the excess surrogate risk as

Rϵϕ(f) −Rϵϕ,∗ = Iϕ1 (f) + Iϕ0 (f) (25)

with
Iϕ1 (f) =

(∫
Sϵ(ϕ(f))(x) − ϕ(f)(x′)dγ∗

1

)
+
(∫

Cϕ(η∗, f) − C∗
ϕ(η∗)dP∗

1

)
Iϕ0 (f) =

(∫
Sϵ(ϕ(−f))(x) − ϕ(−f)(x′)dγ∗

0

)
+
(∫

Cϕ(η∗, f) − C∗
ϕ(η∗)dP∗

0

)

11
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Define Kϕ = 3+
√

5
2 · 1

ϕ(0)−C∗
ϕ

(1/2−α) . We will argue that:

I0(f) ≤ KϕI
ϕ
0 (f). (26) I1(f) ≤ KϕI

ϕ
1 (f). (27)

Below, we discuss the proof of (27) and an analogous argument will imply (26).

The proof proceeds by splitting the domain Rd × Rd into three different regions D1, E1 F1 and proving the
inequality in each case with a slightly different argument. These three cases will also appear in the proof of
theorem Theorem 13. Define the sets D1, E1, F1 by

D1 = {(x,x′) : Sϵ(1f≤0)(x) − 1f(x′)≤0 = 0} (28)
E1 = {(x,x′) : Sϵ(1f≤0)(x) − 1f(x′)≤0 = 1, f(x′) ≥ β} (29)
F1 = {(x,x′) : Sϵ(1f≤0)(x) − 1f(x′)≤0 = 1, f(x′) < β} (30)

where β > 0 is some constant, to be specified later (see Equations (32) and (33)). On the set D1 the
adversarial error matches the non-adversarial error with respect to the distribution P∗

0, P∗
1, and thus the

bound in (12) implies a linear surrogate bound. On E1, the same argument as (23) together with (12) proves
a linear surrogate bound for adversarial risks. In short: this argument uses the first term in Iϕ1 (f) to bound
the first term in I1(f) and the second term of Iϕ1 (f) to bound the second term of I1(f).

In contrast, The counterexample discussed in (14) demonstrates that when f is near 0, the quantity
Sϵ(ϕ(f))(x) − ϕ(f)(x′) can be small even though Sϵ(1f≤0)(x) − 1f≤0(x′) can be large. Consequently, a
different strategy is required to establish a linear surrogate bound on the set F1. The key observation is
that under the assumptions of Proposition 1, the function f must be bounded away from zero whenever it
misclassifies a point. As a result, the excess conditional risk Cϕ(η, f) −C∗

ϕ(η) is bounded below by a positive
constant and thus can be used to bound terms comprising Iϕ1 (f). The constant β is then specifically chosen
to balance the contribution of the risks over the sets E1 and F1.

Proof of Theorem 11. We will will prove (27), the argument for (26) is analogous. Due due to Equations (24)
and (25), these inequalities prove the desired result. First, notice that (12) implies that

C(η∗(x′), f(x′)) − C∗(η∗(x′)) ≤ 1
ϕ(0) − C∗

ϕ(1/2 − α)
(
Cϕ(η∗(x′), f(x′)) − C∗

ϕ(η∗(x′))
)

P∗-a.e. (31)

Choose the constant β to satisfy

ϕ(β) = tC∗
ϕ(1/2 − α) + (1 − t)ϕ(0) (32)

with t = (3 −
√

5)/2. The parameter t is specifically selected to balance the contributions of the errors on
E1 and F1, specifically it should satisfy

1
t

= 1 + 1
1 − t

= 3 +
√

5
2 = Kϕ(ϕ(0) − C∗

ϕ(1/2 − α)) (33)

Next, we prove the relation (27) on each of the sets D1, E1, F1 separately.

1. On the set D1:
Lemma 1 implies that Sϵ(ϕ(f))(x)−ϕ(f(x′)) ≥ 0. This fact together with Equation 31 implies (27).

2. On the set E1:
If Sϵ(1f≤0)(x) − 1f(x′)≤0 = 1 but f(x′) ≥ β, then Sϵ(ϕ ◦ f)(x) ≥ ϕ(0) while ϕ(f(x′)) ≤ ϕ(β) and
thus Sϵ(ϕ ◦ f)(x) − ϕ(f(x′)) ≥ ϕ(0) − ϕ(β) = t(ϕ(0) − C∗

ϕ(1/2 − α)) = 1/Kϕ by (33). Thus

Sϵ(1f≤0)(x) − 1f≤0(x′) = 1 = Kϕ

Kϕ
≤ Kϕ(Sϵ(ϕ ◦ f)(x) − ϕ(f(x′)) (34)

This relation together with (31) implies (27).

12
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3. On the set F1:
First, Sϵ(1f≤0)(x)−1f(x′)≤0 = 1 implies that f(x′) > 0. If additionally f(x′) < β, then both f(x′) <
β and −f(x′) < β and consequently Cϕ(η∗, f(x′)) ≥ ϕ(β). Furthermore, as C∗

ϕ is increasing on
[0, 1/2] and decreasing on [1/2, 1] (see Lemma 5 in Appendix B.2), sup|η−1/2|≥α C

∗
ϕ(η) = C∗

ϕ(1/2−α).
Thus due to the choice of β in (32):

Cϕ(η∗, f(x′)) − C∗
ϕ(η∗) ≥ ϕ(β) − C∗

ϕ(1/2 − α) = (1 − t)(ϕ(0) − C∗
ϕ(1/2 − α)).

The same argument as (34) then implies

Sϵ(1f≤0)(x) − 1f≤0(x′) ≤ 1
(1 − t)(ϕ(0) − C∗

ϕ(1/2 − α)) (C∗
ϕ(η∗, f(x′)) − C∗

ϕ(η∗))

This relation together with Equations (31) and (33) and Lemma 1 imply (27).

5 Proof of Theorem 13

Before proving Theorem 13, we will show that this bound is non-vacuous when the adversarial Bayes classifier
is unique up to degeneracy. The function h(z) = P(|η∗ − 1/2| ≤ z) is a cdf, and is thus right-continuous in
z. Furthermore, if the adversarial Bayes classifier is unique up to degeneracy, then h(0) = 0. The following
lemma implies that if H = conc(h) then H is continuous at 0 and H(0) = 0. See Appendix E for a proof.
Lemma 2. Let h : [0, 1/2] → R be a non-decreasing function with h(0) = 0 and h(1/2) = 1 that is right-
continuous at 0. Then conc(h) is non-decreasing, conc(h)(0) = 0, and continuous on [0, 1/2].

The first step in proving Theorem 13 is showing an analog of Theorem 11 with α = 0 for which the linear
function is replaced by an η-dependent concave function.
Proposition 2. Let Φ be a concave non-decreasing function for which C(η, α)−C∗(η) ≤ Φ(Cϕ(η, α)−C∗

ϕ(η))
for any η ∈ [0, 1] and α ∈ R. Let P∗

0, P∗
1 be any two maximzers of R̄ϕ for which P∗(η∗ = 1/2) = 0 for

P∗ = P∗
0 + P∗

1 and η∗ = dP∗
1/dP∗. Let G : [0,∞) → R be any non-decreasing concave function for which the

quantity
K =

∫ 1
G((ϕ(0) − C∗

ϕ(η∗))/2)dP
∗

is finite. Then Rϵ(f) −Rϵ∗ ≤ Φ̃(Rϵϕ(f) −Rϵϕ,∗), where

Φ̃(z) = 6

√
KG

(
1
6z
)

+ 2Φ
(

1
2z
)

(35)

The function Ψ−1 in Theorem 4 and the surrogate bounds of Zhang (2004) provide examples of candidate
functions for Φ. As before, this result is proved by dividing the risks Rϵϕ, Rϵ as the sum of four terms as in
(24), (25) and then bounding these quantities over the sets D1, E1, and F1 defined in (28),(29), and (30)
separately. The key observation is that when f is bounded away from argminCϕ(η, ·), the excess conditional
risk Cϕ(η, f) − C∗

ϕ(η) must be strictly positive. This quantity again serves to bound both components of
Iϕ1 (f), even if iti s not uniformly bounded away from zero. As before, the constant β is selected to balance
the contributions of the risk on the sets E1 and F1. This time, the value β is function of η∗(x′), where
β : [0, 1] → R is a monotonic function for which

ϕ(β(η)) = tC∗
ϕ(η) + (1 − t)ϕ(0) = 1

2
(
ϕ(0) + C∗

ϕ(η)
)

(36)

with t = 1/2. In Appendix F, we show that there exists such a function β. An argument like the proof of
Theorem 11 mixed with applications of the Cauchy-Schwartz and Jensen’s inequality then proves Proposi-
tion 2, see Appendix G for details. Again, the function β is chosen to balance the contributions of the upper
bounds on the risk on E1 and F1.

13
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The factor of 1/6 in (35) arises as an artifact of the proof technique. Specifically, the constant 6 = 2 · 3
reflects two distinct components of the argument: the factor of 3 results from averaging over three sets D1,
E1, F1, (see (68) in Appendix G), the factor of 2 arises from combining the bounds associated with the two
integrals I1(f) and I0(f) (see Equations (66) and (68) in Appendix G).

We now turn to the problem of identifying functions G for which the constant K in the preceding proposition
is guaranteed to be finite. Observe that ϕ(0)−C∗

ϕ(η∗) ≥ ϕ(0)−C∗
ϕ(1/2) and so if ϕ(0) > C∗

ϕ(1/2), the identity
function is a possible choice for G. This option results in

Φ̃(z) = 2
ϕ(0) − C∗

ϕ(1/2)z + 2Φ
(

1
2z
)
,

which may improve the convergence rate relative to the bound in Theorem 11. The results developed here
extend the classical analysis of Bartlett et al. (2006) to the adversarial setting. Moreover, Proposition 2
points to a pathway for generalizing the framework of Zhang (2004) to robust classification.

Alternatively, we consider constructing a function G for which the constant K in Proposition 2 is always
finite when the adversarial Bayes classifier is unique, but distribution dependent. Observe that if h is the cdf
of |η− 1/2| and h is continuous, then

∫
1/hrdh is always finite. This calculation suggests Φ = h ◦ Ψ−1, with

Ψ defined in Theorem 4. To ensure the concavity of G, we instead select G = H ◦ Ψ−1 with H = conc(h).
Lemma 3. Assume C∗

ϕ(1/2) = ϕ(0). Let P1, P0, P∗
1, P∗

0, ϕ, H, and Ψ be as in Theorem 13. Let Λ(z) =
Ψ−1(min(z, ϕ(0))). Then for any r ∈ (0, 1), Then

Rϵ(f) −Rϵ∗ ≤ Φ̃(Rϵϕ(f) −Rϵϕ,∗) (37)

with

Φ̃(z) = 6

√
1

1 − r
2rH

(
Λ
(

1
6z
))r

+ 2Λ
(z

2

)
.

Proof. For convenience, let Λ̄(z) = 1
2 Λ(2z). Let G = (H ◦ Λ̄)r, where h(z) = P∗(|η∗ − 1/2| ≤ z). Then G is

concave because it is the composition of an concave function and an increasing concave function. We will
verify that

K =
∫ 1
G((ϕ(0) − C∗

ϕ(η∗))/2)dP
∗ ≤ 2r

1 − r

First, ∫ 1
G((ϕ(0) − C∗

ϕ(η∗))/2)dP
∗ =

∫ 1
H(|η∗ − 1/2|)r dP

∗ =
∫

[0, 1
2 ]

1
H(s)r dP

∗♯s =
∫

(0, 1
2 ]

1
H(s)r dP

∗♯s

with s = |η∗ − 1/2|. The assumption P∗(|η∗ = 1/2|) = 0 allows us to drop 0 from the domain of integration.
Because the function H is continuous on (0, 1] by Lemma 2, this last expression can actually be evaluated
as a Riemann-Stieltjes integral with respect to the function h(s) = P(|η∗ − 1/2| ≤ s):

∫ 1
H(s)r dP

∗♯s =
∫ 1
H(s)r dh (38)

This result is standard when P∗ is Lebesgue measure, (see for instance Theorem 5.46 of (Wheeden & Zyg-
mund, 1977)). We prove equality in (38) for strictly decreasing functions in Proposition 4 in Appendix H.1.

Finally, the integral in (38) can be bounded as∫ 1
H(s)r dh ≤ 2r

1 − r
(39)

14
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If h were differentiable, then the chain rule would imply∫ 1
H(s)r dh ≤

∫ 1
h(s)r dh =

∫ 1

0

1
h(s)r h

′(s)dz = 1
1 − r

h(s)1−r
∣∣∣∣1
0

= 1
1 − r

.

This calculation is more delicate for non-differentiable H; we formally prove inequality in (39) in Ap-
pendix H.2.

This calculation proves the inequality (37) with Φ̃ as

6

√
·2r

1 − r
H

(
1
2Λ
(

2
6z
))r

+ Λ(z)

The concavity of Λ together with the fact that Λ(0) = 0 then proves the result.

Minimizing this bound over r then produces Theorem 13, see Appendix I for details.

6 Related Works

The most similar results to this paper are Li & Telgarsky (2023); Mao et al. (2023a). Li & Telgarsky (2023)
prove a surrogate bound for convex losses, when one can minimize over the thresh-holding value in (13)
rather than just 0. (Mao et al., 2023a) proves an adversarial surrogate bound for a modified ρ-margin loss.

Many papers study the statistical consistency of surrogate risks in the standard and adversarial context.
Bartlett et al. (2006); Zhang (2004) prove surrogate risk bounds that apply to the class of all measurable
functions Lin (2004); Steinwart (2007) prove further results on consistency in the standard setting, and
Frongillo & Waggoner (2021) study the optimally of such surrogate risk bounds. (Bao, 2023) relies on the
modulus of convexity of C∗

ϕ to construct surrogate risk bounds. Philip M. Long (2013); Mingyuan Zhang
(2020); Awasthi et al. (2022); Mao et al. (2023a;b); Awasthi et al. (2023b) further study consistency restricted
to a specific family of functions; a concepts called H-consistency. Prior work Mahdavi et al. (2014)also uses
these surrogate risk bounds in conjunction with surrogate generalization bounds to study the generalization
of the classification error.

In the adversarial setting, (Meunier et al., 2022; Frank & Niles-Weed, 2024a) identify which losses are adver-
sarially consistent for all data distributions while (Frank, 2025) shows that under reasonable distributional
assumptions, a consistent loss is adversarially consistent for a specific distribution iff the adversarial Bayes
classifier is unique up to degeneracy. (Awasthi et al., 2021) study adversarial consistency for a well-motivated
class of linear functions while some prior work also studies the approximation error caused by learning from
a restricted function class H. Liu et al. (2024) study the approximation error of the surrogate risk. Compli-
menting this result, Awasthi et al. (2023b); Mao et al. (2023a) study H-consistency in the adversarial setting
for specific surrogate risks. Standard and adversarial surrogate risk bounds are a tool central tool in the
derivation of the H-consistency bounds in this line of research. Whether the adversarial surrogate bounds
presented in this paper could result in improved adversarial H-consistency bounds remains an open problem.

Our proofs rely on prior results that study adversarial risks and adversarial Bayes classifiers. Notably,
(Bungert et al., 2021; Pydi & Jog, 2021; 2020; Bhagoji et al., 2019; Awasthi et al., 2023a) establish the exis-
tence of the adversarial Bayes classifier while (Frank & Niles-Weed, 2024b; Pydi & Jog, 2020; 2021; Bhagoji
et al., 2019; Frank, 2025) prove various minimax theorems for the adversarial surrogate and classification
risks. Subsequently, (Pydi & Jog, 2020) uses a minimax theorem to study the adversarial Bayes classifier,
and (Frank, 2024) uses minimax results to study the notion of uniqueness up to degeneracy.

7 Conclusion

In conclusion, we prove surrogate risk bounds for adversarial risks whenever ϕ is adversarially consistent for
the distribution P0, P1. When ϕ is adversarially consistent or the distribution of optimal adversarial attacks
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satisfies Massart’s noise condition, we prove a linear surrogate risk bound. For the general case, we prove
a concave distribution-dependent bound. Understanding the optimality of these bounds remains an open
problem, as does understanding how these bounds interact with the sample complexity of estimating the
surrogate quantity. These questions were partly addressed by (Frongillo & Waggoner, 2021) and (Mahdavi
et al., 2014) in the standard setting, but remain unstudied in the adversarial scenario.
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