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Abstract
Explainable AI (XAI) and interpretable machine
learning methods help to build trust in model pre-
dictions and derived insights, yet also present a
perverse incentive for analysts to manipulate XAI
metrics to support pre-specified conclusions. This
paper introduces the concept of X-hacking, a form
of p-hacking applied to XAI metrics such as SHAP
values. We show how easily an automated ma-
chine learning pipeline can be adapted to exploit
model multiplicity at scale: searching a Rashomon
set of ‘defensible’ models with similar predictive
performance to find a desired explanation. We for-
mulate the trade-off between explanation and ac-
curacy as a multi-objective optimisation problem,
and illustrate empirically on familiar real-world
datasets that, on average, Bayesian optimisation
accelerates X-hacking 3-fold for features suscep-
tible to it, versus random sampling. We show
the vulnerability of a dataset to X-hacking can
be determined by information redundancy among
features. Finally, we suggest possible methods
for detection and prevention, and discuss ethical
implications for the credibility and reproducibility
of XAI.

1. Introduction
Machine learning (ML) models are increasingly integral to
decision-making in critical sectors such as healthcare, crim-
inal justice and public policy. As these models grow more
complex, so does the challenge of interpreting the rationale
behind their predictions. This has given rise to explainable
AI (XAI) methods, which aim to make model reasoning
more transparent and globally maintain trust in ML systems.
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However, the growing demand for interpretable models
and ‘data-driven’ decisions creates an incentive for actors,
unscrupulously—or through lack of time or experience—to
seek out model explanations that support pre-specified con-
clusions, conceal hidden agendas or evade ethical scrutiny.

In this paper, we introduce the concept of explanation hack-
ing, or X-hacking—a form of p-hacking (Head et al., 2015)
applied to XAI metrics. X-hacking refers to the practice of
deliberately searching for and selecting models that produce
a desired explanation while maintaining ‘acceptable’ accu-
racy. Unlike other adversarial XAI attacks, X-hacking ex-
plores plausible combinations of analysis decisions to build
a pipeline that might otherwise have been found innocu-
ously. It is a strategy of lying through omission, exploiting
a phenomenon known as model multiplicity (Black et al.,
2022), where different models offer equivalent predictive
performance (Brunet et al., 2022).

We extend existing work on model multiplicity to incorpo-
rate the full analysis pipeline, including data preprocessing,
feature extraction, choice of model class and hyperparame-
ter tuning, steps which are often poorly reported in scientific
publications.

Though the search for such decision sets by hand is long
and laborious, it can be accelerated through the exploita-
tion of automated machine learning (AutoML) solutions,
or any automated model selection tools that facilitate dis-
covery of a model that may also be found—or presented as
found—via human decision-making. Recently, a number of
AutoML solutions have been introduced that integrate data
preprocessing into the decision-making pipeline, opening
up additional avenues for explanation attacks (Salehin et al.,
2024).

We demonstrate empirically in a post-hoc manner how off-
the-shelf AutoML pipelines can be used, even with a lim-
ited computational budget, to perform X-hacking on SHAP
values for familiar real-world datasets, by ‘cherry picking’
those models that support a desired narrative. Secondly,
we develop a custom AutoML solution to facilitate ad-hoc
X-hacking at scale, formulating the task as a multi-objective
optimisation (MOO) problem, selecting from the Pareto
frontier of predictive performance and model explanations
to find a ‘defensible’ model in the Rashomon set. We com-
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Figure 1: Framework for ‘X-hacking’ using AutoML. For a given dataset, an automated pipeline evaluates different
combinations of modelling decisions, simultaneously optimising performance and XAI metrics

pare random and Bayesian hyperparameter optimisation to
maximise accuracy and minimise SHAP explanations of top
features from a common baseline and show that Bayesian
hyperparameter optimisation is, on average, three times
faster in finding defensible models. We compare the time
taken in post-hoc and ad-hoc settings to obtain a defensible
model for susceptible datasets: the ad-hoc framework took
an average of 6 minutes—10 times faster than post-hoc.

Our contributions are as follows: (1) we show the ease with
which X-hacking can be performed using off-the-shelf soft-
ware with attacks on different types of SHAP summaries
in a post-hoc manner; (2) we perform directed (ad-hoc)
X-hacking at scale, using Bayesian multi-objective optimi-
sation, comparing it with random sampling; (3) we demon-
strate how some datasets are more vulnerable than others to
confirmatory explanations unrepresentative of the ground
truth; (4) we compare post-hoc and ad-hoc X-hacking by
calculating the time required to find the first defensible
model; (5) we discuss methods for prevention and detection
of X-hacking. Code to replicate our experiments is available
on GitHub.

2. Background
In this section, we introduce the key concepts of XAI, multi-
plicity and questionable research practices, whose intersec-
tion gives rise to the threat of X-hacking.

Explainable AI Traditional statistical models, such as
generalized linear regression models or decision trees, are
inherently or ante-hoc explainable and easily interpreted by
humans. Algorithmic ML models (see Breiman, 2001) tend
to be more opaque, requiring post-hoc explanation methods

to examine the effect of different inputs and investigate po-
tential biases (Gunning et al., 2019). These methods can
be model-specific, such as feature importance for random
forests and DeepLIFT for deep learning (Shrikumar et al.,
2019), or model-agnostic, such as LIME (Ribeiro et al.,
2016) and SHAP values (Lundberg & Lee, 2017). While
not without criticisms (Gosiewska & Biecek, 2020), Shap-
ley value-derived explanations enjoy widespread adoption
(Hickling et al., 2023). Increasing interest in XAI and algo-
rithmic fairness (Garg et al., 2020), and their inclusion in
future legislative frameworks regulating the use of AI (Bordt
et al., 2022), brings incentives for manipulation. Adversarial
attacks against XAI or fairness metrics are an emerging area
of research. Attacks can involve manipulating a model’s
architecture or its explanations or ‘poisoning’ training data
(Baniecki & Biecek, 2024). In particular, fairwashing de-
scribes the practice of attempting to deceive measures of
algorithmic fairness. Approaches include approximating a
complex, biased model with an ostensibly fair, interpretable
one (Aivodji et al., 2019), designing an unfair model that
switches to generating ‘fair’ predictions when being au-
dited, akin to automotive manufacturers cheating emissions
tests (Slack et al., 2020), or performing biased sampling of
the data points used to compute the SHAP values (Laberge
et al., 2023a). Recently, authors have proposed methods
to detect and thwart such attacks (Shamsabadi et al., 2022;
Carmichael & Scheirer, 2023).

Multiplicity Models and their explanations are not
unique; multiple alternative models can deliver roughly
equivalent predictive performance (Pawelczyk et al., 2020;
Brunet et al., 2022; Rudin et al., 2024). This phenomenon is
known variously as model multiplicity (Marx et al., 2020),
underspecification (D’Amour et al., 2022) or the Rashomon

2

https://github.com/datasciapps/x-hacking
https://github.com/datasciapps/x-hacking


X-Hacking: The Threat of Misguided AutoML

effect (Breiman, 2001; D’Amour, 2021). Procedural mul-
tiplicity describes models that have identical predictive ac-
curacy but differ in their internal structures (Mehrer et al.,
2020; Black E., 2021), a concept also known as a Rashomon
set (Fisher et al., 2019) or the ‘set of good models’ (Ganesh
et al., 2025). A special case of procedural multiplicity is
predictive multiplicity: where models achieve the same ac-
curacy but produce different predictions (Black et al., 2022).
The effects of multiplicity can be felt at the level of individ-
ual predictions (Marx et al., 2020), and on global properties
such as model fairness and robustness (Rodolfa et al., 2021;
D’Amour et al., 2022). Recent work has studied multiplicity
in specific classes, including linear and generalized addi-
tive models (Dong & Rudin, 2020; Zhong et al.), neural
networks (Mehrer et al., 2020; Black E., 2021; Laberge
et al., 2023b), sparse decision trees (Wang et al., 2022) and
random forests (Smith et al., 2020).

p-hacking In null hypothesis significance testing, p-
hacking is a questionable research practice whereby re-
searchers, equipped with many possible data analysis
choices, only report those yielding a ‘significant’ result
(Wasserstein & Lazar, 2016) while others languish unpub-
lished (Scargle, 1999). Strategies for p-hacking include
multiple testing, selective reporting and favourable impu-
tation (Stefan & Schönbrodt, 2023). Any choices that are
contingent on data, rather than a pre-specified study proto-
col, are vulnerable to these ‘researcher degrees of freedom’,
whether or not there is a conscious desire to mislead (Gel-
man & Loken, 2013). This phenomenon is considered to
have contributed to the reproducibility crisis in scientific
research (Wicherts et al., 2016). Even in systematic reviews
of literature, p-hacking may not be easy to detect (Rooprai
et al., 2022), though pre-registrations and replication studies
aim to discourage the practice (Hussey, 2021). In quanti-
tative sciences, details of data preparation are often poorly
reported, yet can have a significant impact on results (Jani
et al., 2023). Some authors (Heyard & Held, 2022) suggest
data and code should be made available at the preprint stage
rather than at final publication time, however the willingness
of researchers to do so varies by discipline (Hussey, 2023;
Goldacre et al., 2019).

3. Problem statement
The goal of explanation hacking is to find a model that cor-
roborates a predetermined view of the world. For example,
a pharmaceutical company may wish to show that a drug is
not associated with adverse outcomes, an organisation may
wish to claim decisions were not biased against a protected
group, or a lobbyist may wish to show that smoking protects
against cancer.

Thanks to predictive multiplicity, automated model selection

tools (including AutoML) make it easy for people to obtain
models with desirable explanations—deliberately or not.
Existing studies of multiplicity, however, are restricted to
specific model families and do not cover modern end-to-end
data science pipelines.

Consider a set of models M designed to perform a task
(e.g. classification) on a dataset D. We can quantitatively
evaluate a model m ∈ M via a procedure eval(m,D,Q),
where Q is a quality measure, either a predictive perfor-
mance metric (e.g. accuracy), denoted QD(m) = perf(m);
or an inferential summary for a feature of interest QD(m) =
I(m,x) for x ∈ D. Classical inference is typically tied to
measures such as model coefficients, p-values or effect sizes
(e.g. Cohen’s d), which have capacity to mislead (Pogrow,
2019), but also limit the family of models and data science
pipelines at the (unscrupulous) analyst’s disposal. Model-
agnostic XAI metrics, such as SHAP values, open up a wider
range of algorithms and possible combinations of hyperpa-
rameters that may yield varied interpretations.

Ordinarily, model search is an optimisation problem,

argmax
m∈M

QD(m), (1)

where Q = perf(m). X-hacking extends this with a com-
peting objective, I(m,x).

A post-hoc strategy retrieves a (Rashomon) set of ‘good’
models exceeding a pre-specified baseline, e.g. Ms =
{m : perf(m) ≥ b}, then optimises the other metric, e.g.
argmaxm∈Ms ID(m,x). Alternatively, an ad-hoc strat-
egy combines these metrics, inter alia (e.g. risk of get-
ting caught, Z) into a multi-objective optimisation, where
QD = (q1, . . . , qn) is a vector.

Here, we intentionally do not specify the expressiveness of
conditions that encode model interpretations or the process
of generating the data science pipeline.

4. Explanation Hacking
In this section, we outline a framework, illustrated in Fig-
ure 1, that unscrupulous or inexperienced actors might em-
ploy to find publishable ML models with predetermined,
possibly contrarian explanations. We consider three quan-
tifiable metrics that an actor might consider when trying to
hack XAI metrics.

Explanations SHAP values are typically presented visu-
ally in the form of force plots, SHAP summary plots, partial
dependence graphs or feature importance (see, e.g. Lund-
berg et al., 2018; Stenwig et al., 2022). If a specific data
point, xi, such as an individual patient or credit card appli-
cant (the ‘suing set’; Shamsabadi et al., 2022), is of interest,
then the adversary can ‘fish’ for a trained model that gives
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a SHAP value in the desired direction, e.g. I(m,xi) → 0,
allowing them to claim that an AI-assisted decision was not
based on a protected characteristic. Model- or large group-
level explanations require aggregated SHAP statistics. If in-
terpreting a model based on ranked feature importance, then
one could set I(m,x) = rankD(mean(|SHAP(x)|)) > k,
to seek models where the feature of interest is not in the
‘top k’ most important features. Partial dependence plots,
despite being a visual summary, may also be ‘hacked’: an
adversary can examine the relationship between SHAP and a
specific feature approximately with the slope of a simple lin-
ear model (Figure 4), or even I = Corr(x, SHAP(x)) and
search for models with positive, negative or no correlation.

Defensible models The premise of an X-hacking frame-
work is for an agent to select combinations of analysis
decisions—such as the model family, architecture, data
transformations or imputation methods—each of which is
individually defensible (i.e. could be justified in peer re-
view), but whose combination leads to a confirmatory result.
A decision is defensible if a plausible justification can be
proffered in the report accompanying the analysis. For this
we consider two alternative appeals to authority: the model
has superior predictive performance to a baseline (i.e. the
Rashomon set of ‘good models’ Ganesh et al., 2025); or
the choice is considered ‘standard practice’ by peers in the
target domain. As the former is more readily quantified
(i.e. perf(m)) in an automated search, for the remainder of
this paper we use the term ‘defensible’ models simply to
refer to the Rashomon set of models with good predictive
performance.

Hence, we treat X-hacking as balancing competing objec-
tives of predetermined explanations, measured via XAI met-
rics, and predictive performance.

4.1. Cherry Picking

Let m↓ be a suitable baseline model and let b = perfD(m↓)
be its performance, and Ik(x) = mean(|SHAPm(x)|),
the mean absolute SHAP of feature x for model m.
Let x∗

m↓
be the top ranking feature by importance

(rankm↓(x
∗
m↓

) = 1) for the baseline model, where x∗
m↓

:=

argmaxx∈D Im↓(x). Let M be the search space of mod-
els in the AutoML solution and St,D ⊂ M the set of
models returned by AutoML after running for duration t.
The Rashomon set of models having comparative or su-
perior performance to the baseline is given by Rt,D :=
{m | m ∈ St,D ∧ perfD(m) ≥ b}. Let Ct,D be the
set of models that confirm the desired hypothesis, e.g.
Ct,D = {m | rankm(x∗

m↓
) > k}, the set of models where

x∗
m↓

is not in the top k > 1 most important features.

A human or machine can then simply ‘cherry-pick’ any
model from Ct,D∩Rt,D, the intersection of the set of models

that confirm the desired hypothesis and the Rashomon set:
the confirmatory Rashomon set.

4.2. Directed Search

A more efficient, but higher-effort, ad-hoc approach involves
custom multi-objective optimisation.

Let M be the population of models in the AutoML search
space and QD(m,x) = {q1, q2} be a vector of objectives,
with q1 = −perf(m,D) and q2 = Ik(m,x) for m ∈ M .
Then, for each feature of interest x, we select the optimal
model using (1), either from a random subset of models
{mj} or from the suggestions of a Bayesian optimiser.

We say model m (Pareto)-dominates another model m′ ∈ Λ
for a feature x if and only if there is no criterion qi in which
m′ ≻ m (m′ is superior to m), and at least one criterion qj
in which m ≻ m′. An analyst may select a trained model
from the Pareto front of feasible solutions.

Remark A weighted-sum scalarisation approach to multi-
objective optimisation can also be used. Details are in the
Appendix C.

5. Experiments
In this section, we explain our experimental setup and
present empirical results of X-hacking as described in § 4.1
and § 4.2. Next, we demonstrate how certain features can
be robust to X-hacking. Finally, we compare X-hacking
methods to see how quickly they are each able to find a
model that is in the confirmatory Rashomon set.

5.1. Cherry Picking

To demonstrate the feasibility of ‘easy’ X-hacking ap-
proaches, we present an empirical evaluation using off-
the-shelf XAI and AutoML software packages and several
familiar real-world datasets.

Data We selected 23 datasets from the OpenML-CC18
classification benchmark (Bischl et al., 2021), where the
task was binary classification from tabular features. For
all datasets, categorical features were one-hot encoded and
samples with missing values omitted.

Tools Python packages scikit-learn (Pedregosa
et al., 2011) and auto-sklearn (Feurer et al., 2019) built
and trained the ML models, and package shap (Lundberg
et al., 2018) estimated SHAP values from the successfully
evaluated models. Models were evaluated on an internal
cluster using 192 CPUs with 300GB RAM.

X-hacking The baseline model was a random forest classi-
fier trained with scikit-learnwith all parameters set to
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Figure 2: Proportion of models with superior predictive
performance where ‘top’ feature from baseline is no longer
ranked in the ‘top 3’. Each bar represents one dataset

default. To get different candidate models against the base-
line, we ran auto-sklearn for one hour on each dataset,
with a runtime limit of 100 seconds for each model configu-
ration. For the baseline and all models evaluated in AutoML,
the shap’s model-agnostic KernelExplainer routine
was employed to compute SHAP values, using a background
sample size 50 and test sample size 100.

Manipulation of two different SHAP-based explanations was
attempted: feature importance ranking and partial depen-
dence plots. Feature importance was determined as either
the ranking or magnitude of the mean absolute SHAP val-
ues of the features. The visual appearance of the feature
dependence plot was quantified by a simple linear regres-
sion model of SHAP against respective feature values, the

Figure 3: Changes in feature importance relative to baseline
for cardiac-disease data. Features are ordered by
baseline importance.

Figure 4: Lines of best fit of SHAP against feature height,
for different models evaluated by AutoML indicating avail-
ability of several choices for models (Other) that ’flip’ the
SHAP value

slope indicating the sign of any (approximate) linear rela-
tionship between the feature and the outcome. Predictive
performance was measured by accuracy score; the AutoML
pipeline was optimized for this metric as a single objective
(the default) with no consideration given to SHAP during
the initial model search; model explanations were evaluated
post-hoc.

Results: feature importance With no agenda of our own,
we arbitrarily chose the most important feature at baseline
as the target for explanation manipulation. Figure 2 shows,
for each dataset, the proportion of models returned by the
AutoML pipeline where this feature is no longer ranked
in the ‘top 3’ for feature importance, conditional on the
model’s predictive accuracy being higher than at baseline.

For about a third of the datasets, it was not possible in the
time available to find a more accurate ML model that ‘top-
pled’ the baseline most important feature. For a similar
proportion of datasets, almost every more performant model
had different top features. Figure 3 shows the distribution of
change in mean absolute SHAP values, compared to the base-
line random forest classifier, for the cardiac-disease
dataset. The distribution of differences is close to zero for
the top three features, suggesting that for this dataset, it may
be difficult to find a modelling pipeline that renders the ‘top’
feature at baseline as unimportant in a reported model.

Results: feature dependence As well as the importance
of a feature—an unsigned quantity—a misguided analyst
may wish to manipulate the shape of the effect. The lines
of best fit between SHAP and feature height (which has
high importance at baseline; feature 2 in Figure 3) for the
cardiac-disease dataset are plotted in Figure 4. Sev-
eral modelling choices are available that ‘flip’ the SHAP
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value for this feature while being more accurate than the
baseline. Hence, an analyst might present the underlying
partial dependence plot as evidence of the negative effect
of height on cardiac disease—omitting the information that
alternative models, including the baseline, show either pos-
itive or no linear effect. Further results are given in Ap-
pendix D.

Whilst ‘cherry picking’ a desired model from an undirected
set of candidates may seem easier approach to implement,
such a ‘cherry’ may not be found in a reasonable time using
standard AutoML tools, or it may be difficult to define a
space of uniformly defensible models.

5.2. Directed Search

To deliberately hack explanations, we created a custom Au-
toML solution that allows us to perform multi-objective op-
timisation of performance and explanations in a distributed
manner on familiar real-world datasets.

Data as given in § 5.1

Tools For this experiment, the AutoML solution should
support multi-objective optimisation over many model
classes and their hyperparameters in a distributed manner.
Most AutoML solutions do not support these requirements
seamlessly (see Appendix A). Therefore, we create our
custom AutoML solution by using the search space from
auto-sklearn, enabling Bayesian multi-objective op-
timisation using optuna and running of pipelines in a
distributed manner using Ray-tune. More details are in
Appendix B.

Directed X-hacking To demonstrate intentional manipu-
lation of explanations, the top 4 features from each dataset
were taken, which correspond to the top 4 most impor-
tant features in the random forest baseline. In total, we
perform this experiment for 92 features. To get differ-
ent candidate models against the baseline, the custom Au-
toML setup was run for 12 hours for the top 4 features
indicated by the baseline, with a runtime limit of 1 hour
for each model configuration suggested by the Bayesian
optimiser. For all models evaluated in our custom Au-
toML setup, shap’s model-agnostic explainer, Kernel
Explainer routine was employed to compute SHAP val-
ues, using a background sample size 50 and test sample size
100. Manipulation of SHAP-based feature importance was
attempted. MOTPESampler (Ozaki et al., 2022) was used as
the Bayesian optimiser. Feature importance was determined
as the magnitude of the mean absolute SHAP values of the
features. Predictive performance was measured by accu-
racy score. The AutoML pipeline was optimised for these
two objectives simultaneously as a multi-objective optimi-
sation where accuracy score was optimised to be maximum

credit_history

Bayesian
Random

credit_amount

duration

0 . . . 1 2 4 6 8 10 12
Time (h)

purpose

Figure 5: Cumulative minimum of mean absolute SHAP for
top 4 features of dataset credit-g for Bayesian optimisa-
tion and random sampling

and mean absolute SHAP was optimised to be minimum.To
demonstrate how fast/slow Bayesian multi-objective opti-
misation is, we run the setup with same time and resource
limits but with a random optimiser.

Results: directed search The cumulative minimum
mean absolute SHAP of four ‘top’ (at baseline) features
for defensible models was recorded for random sampling
and Bayesian optimisation over 12 hours of runtime and
plotted in Figure 5 for the credit-g dataset. To sum-
marise this information for all datasets, Figure 6 shows the
ratio of duration of time when cum min mean(|SHAP(xi|)
for Bayesian optimisation was always lower than random
sampling over the top 4 features from baseline across all
datasets. For these features, on average, Bayesian opti-
misation reached the overall minimum of mean absolute
SHAP obtained by random sampling 3 hours earlier. For
the remaining features where the overall minimum mean
absolute SHAP was lower for random sampling, on average,
random sampling reached the overall minimum obtained by
Bayesian optimisation nearly 55 minutes earlier. This indi-
cates, on average, Bayesian optimisation is 3 times faster
than random sampling for a majority of features to defen-
sibly hack explanations. For some features (20/92), no
defensible models were found by both random sampling
and Bayesian optimisation in the current setting, indicating
their robustness to X-hacking.

5.3. Vulnerability to X-hacking

Quantifying the vulnerability of a dataset to X-hacking
is equivalent to measuring predictive multiplicity: exist-
ing metrics include Rashomon Capacity, based on the KL-
divergence for a set of probabilistic classifiers (Hsu & Cal-
mon, 2022). In practice, predictive multiplicity may only be
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Figure 6: Ratio of time duration (over 12 hours) Bayesian
MOO had better optimisation for mean absolute SHAP than
random MOO for top 4 features from all datasets
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Figure 7: Trade-off between accuracy and (approximate)
SHAP dependence slope

approximated, as it is typically computationally infeasible
to evaluate every possible analysis pipeline. To determine
when a feature is robust to X-hacking, we perform a simula-
tion.

Simulation Using the multi-objective optimisation pack-
age Optuna (Akiba et al., 2019), we evaluate 50 models on
a simulated dataset. SHAP values are calculated using the
shap package’s model-agnostic explainer. Sample sizes
are the same as in § 4.1.

(a) Redundant (b) No redundancy

Figure 8: Predictive accuracy versus SHAP values for simu-
lated features (each point corresponds to a trained pipeline).

Simulation results Figure 7 shows three simulated
datasets containing two collinear features measured with
varying levels of noise. Additivity of SHAP values allows
attribution to be transferred from one feature to the other
without loss of accuracy, but this effect decreases with the
signal-to-noise ratio. This shows the ability to manipulate
XAI metrics for a given feature depends on the level of
information shared with others.

We demonstrate in Figure 8 that it is possible to flip SHAP
values of features with redundant information present in
other variables, without loss of accuracy, but not for vari-
ables without such information redundancy. Having access
to the data-generating process allows us to be aware of the
relations between variables and the redundancy of informa-
tion present within them. We select two variables (one with
redundant information captured by dependent nodes and
one without) to demonstrate which variables can and cannot
be flipped for a particular dataset. Therefore, how easy it
is to manipulate the SHAP values of a particular feature—
and hence the need for a directed search or a more tightly
curated search space—is determined by redundancy among
the features. If all input features are completely independent
of one other, manipulation of SHAP values—without change
of model predictive accuracy—is not possible.

5.4. Cherry-picking vs directed search

As opposed to cherry-picking a model from a Rashomon
set obtained after passing a dataset through an off-the-shelf
AutoML solution, using directed search, one can continue
performing X-hacking until a confirmatory model is found.
Using the results obtained in the experiments § 5.1 and § 5.2
we see the time it takes for both X-hacking techniques to
find the first confirmatory defensible model in one hour of
runtime. In this experiment, we see those defensible models
where the rank of the top feature from baseline is no longer
in the ‘top 3’.

Data and Tools as given in § 5.1 and § 5.2

Results: First confirmatory defensible model For 15
out of 23 datasets, using directed search, a defensible model
could be found without waiting for an hour, as opposed
to the case of post-hoc setting. For 14 such datasets, a
defensible model could be found in less than 6 minutes
of directed X-hacking. Table 1 shows the time it took (in
seconds) for directed X-hacking to find the first defensible
model. This demonstrates on average a 10x faster finding of
defensible models for datasets and their features vulnerable
to X-hacking.
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Table 1: Time taken (in minutes and seconds) by directed
search to find the first confirmatory defensible model for the
top feature of each dataset according to the baseline random
forest in an ad-hoc X-hacking setting.

Dataset Name Time taken

breast-w 3 s
ilpd 5 s
diabetes 7 s
blood-transfusion 10 s
cardiac-disease 24 s
pc1 37 s
kc2 42 s
wilt 47 s
climate-model 1 m 4 s
wdbc 1 m 16s
numerai28.6 1 m 45 s
credit-approval 2 m 17 s
pc3 4 m 39 s
kc1 5 m 20 s
credit-g 55 m 18 s

Figure 9: Marginal distribution of SHAP slopes over
AutoML-evaluated models for the feature height

6. Detection and Prevention
Understanding the scale of the problem—as well as detec-
tion and prevention—requires systematic ability to identify
potentially selectively reported ML pipelines. In this sec-
tion, we outline several approaches that might be used to
highlight inconsistencies indicative of explanation hacking.
We consider these approaches to complement existing pro-
posals for detection of fairwashing (e.g. Shamsabadi et al.,
2022). Feasibility of these methods depends on the level of
access to raw data, code and detailed analysis protocols.

Explanation histograms With access to raw data, a re-
viewer may set up their own AutoML pipeline to explore the
space of possible pipelines, performing the same process as
in § 4.1, but with the goal of visualising the marginal distri-
bution of XAI metrics over likely pipelines and locating the
reported metric within this distribution. A reported value
lying in the extreme tails (or outside the distribution com-
pletely) would be consistent with explanation hacking, and
may be quantified via hypothesis testing. With infinite time,

computing power and a well-specified search space, the au-
ditor may explore all possible pipelines, but in practice the
explored pipelines may not be representative, so an effec-
tive search would exploit domain knowledge or additional
information. The goal is not necessarily to reverse-engineer
the exact pipeline used, rather to investigate the sensitivity
of reported explanations. An example is given in Figure 9.

Pipeline analysis How close is a coded pipeline to what
is reported in the paper, or to accepted practices in the field?
Though a labour-intensive task for a human domain expert,
pipeline–pipeline similarity can be converted into a graph
isomorphism problem, if data analysis pipelines are repre-
sented as directed acyclic graphs and the similarity quanti-
fied as graph edit distance (Ono et al., 2021). A challenge
of this approach is extracting the pipeline correctly (Redyuk
et al., 2022) from code or text. Moreover, parsable, discov-
erable pipelines in the literature may not be representative
of best practice.

7. Discussion and limitations
The experiments presented here exploit SHAP values, which
have their own limitations (Huang & Marques-Silva, 2023),
but the general framework may be adapted to p-values or
other XAI metric. In principle, any post-hoc explanation
method susceptible to model multiplicity faces similar risks.
A systematic exploration of different XAI metrics is planned
as future work.

The unethical use of statistical tools has a long history in
science (Huff, 1993), exacerbated by a ‘publish or perish’
culture. While we do not present any evidence of X-hacking
‘in the wild’, we argue the latest developments in AutoML
and XAI provide means, motive and opportunity. A guided
search over an ever-growing field of data science operators,
including X-hacking, presents a more dangerous type of
scientific ‘fake news’ as it can be done at scale, with low
additional effort by using readily available tools, and it is
much more difficult to detect—it does not take much effort
to disguise its use even from an educated, expert mind.

With small sample sizes, the effort and statistical expertise
needed to ‘squeeze’ insights out of the data was much higher.
AI methods enable such dishonest practices to be (semi-)
automated, scalable and accessible to researchers and practi-
tioners at lower effort and cost. The deception need not even
involve all authors of a publication, as one author might be
tempted to use X-hacking in isolation, without knowledge of
their co-authors. Pre-registered analysis plans could prove
valuable, if comprehensive enough to cover the range of
models and hyperparameters in an AutoML search space.

Aware of the ease of lying through X-hacking, we do
not present a comprehensive how-to guide or a tool that
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could be used by an adversarial actor, demonstrating
only a proof of concept. However, our code and exper-
iments are open source (GitHub: https://github.
com/datasciapps/x-hacking) and we encourage
others to adapt the experimental setting to their own view on
what plausible effort might be on the part of an adversary.

In this paper, we have considered the case of inexperienced
scientists or adversarial analysts, however the potential for
perverse incentives ranges much further, due to additional
financial motivations for reporting misleading explanations.
Existing and future legislative frameworks regulating the use
of AI, particularly in high-stakes scenarios (e.g. EU AI act;
GDPR) increasingly mandate or encourage explainability
(Panigutti et al., 2023) including in industrial contexts.

We view our demonstration of the plausibility of this new
modality of lying as a necessary step for developing effec-
tive countermeasures.

Impact Statement
This paper introduces the concept of ‘X-hacking’, a misuse
of XAI and AutoML tools to produce defensible but mis-
leading model explanations. The study highlights a potential
avenue for adversarial misuse that could undermine trust in
machine learning systems and exacerbate the reproducibility
crisis in scientific research.

While the goal of this work is to inform the community
of the risks associated with X-hacking and propose coun-
termeasures, there is a potential for these findings to be
misused by actors seeking to exploit these vulnerabilities.
Technical details that would lower the barrier to adversarial
use have been omitted. Our open source code is intended to
facilitate reproducibility and to encourage further research
into detecting and preventing X-hacking. We emphasize
the importance of responsible dissemination of related tools
and frameworks and advocate for the inclusion of detection
strategies as part of routine XAI evaluations.

The societal implications of X-hacking are potentially broad,
particularly in high-stakes domains such as healthcare, fi-
nance and criminal justice, where biassed or misleading
explanations could have significant ethical and legal ramifi-
cations. Our aim is to mitigate these risks through awareness
and contribute to the development of more robust and trust-
worthy AI systems.
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A. AutoML and multi-objective optimisation
In order to conduct experiments to answer our research questions, an off-the-shelf AutoML solution should be able to
perform multi-objective optimisation with custom objective functions over many model classes. However, to our knowledge,
an off-the-shelf solution that incorporates all the required capabilities in a single package does not exist. Table 2 shows
different AutoML and hyperparameter optimisation libraries and their capabilities: support for multi-objective optimisation
(MOO), support for many model classes (MMC) and support for custom objective functions (CO).

Table 2: Off-the-shelf capabilities of different AutoML and hyperparameter optimisation solutions. Our solution (36) enables
multi-objective optimisation in an existing AutoML library

# Library Type MOO MMC CO

1. Ax (Bakshy et al., 2018) hyperopt Yes No No
2. BaYesOpt (Martinez-Cantin, 2014) hyperopt No No No
3. BOHB (Falkner et al., 2018) hyperopt No No No
4. CFO (Wu et al., 2021) hyperopt No Yes No
5. BlendSearch (Wang et al., 2021a) hyperopt No Yes No
6. HEBO (Cowen-Rivers et al., 2022) hyperopt yes no yes
7. HyperOpt (Bergstra et al., 2013) hyperopt No No Yes
8. SkOpt (Head et al., 2021) hyperopt No No Yes
9. Nevergrad (Bennet et al., 2021) hyperopt No No Yes

10. Optuna (Akiba et al., 2019) hyperopt Yes No Yes
11. ZooOpt (Liu et al., 2022) hyperopt No No Yes
12. TPOT (Parmentier et al., 2019) AutoML limited Yes Yes
13. TPOT2 Alpha (Le et al., 2020) AutoML limited Yes Yes
14. Auto-Sklearn (Feurer et al., 2019) AutoML No Yes Yes
15. Hyperopt-sklearn (Komer et al., 2019) AutoML No Yes No
16. FLAML (Wang et al., 2021b) AutoML Yes Yes Yes
17. H2O AutoML (LeDell & Poirier, 2020) AutoML No Yes No
18. AutoGluon (Tang et al., 2024) AutoML No Yes Yes
19. MLBox (Vasile et al., 2018) AutoML No Yes No
20. Auto-Keras (Jin et al., 2019) AutoML Yes No Yes
21. AutoGluon-Tabular (Erickson et al., 2020) AutoML No Yes Yes
22. AutoWEKA (Thornton et al., 2013) AutoML No Yes No
23. AutoML mljar-supervised (Płońska & Płoński, 2021) AutoML No Yes No
24. Hyperactive (Simon Blanke, since 2019) hyperopt Yes No Yes
25. Optunity (Claesen et al., 2014) hyperopt No No Yes
26. HyperparmeterHunter (McGushion, 2018) hyperopt No No No
27. KerasTuner (O’Malley et al., 2019) hyperopt No No Yes
28. Talos (Autonomio) hyperopt No No No
29. ML.Net (Ahmed et al., 2019) AutoML No Yes No
30. NNI (Microsoft, 2021) AutoML No No No
31. Azure AutoML (Microsoft, 2018) AutoML No Yes No
32. Amazon SageMaker (Amazon, 2017) AutoML No Yes No
33. Google Vertex AI (Google Cloud) AutoML Yes No No
34. Ray Tune (Liaw et al., 2018) hyperopt Yes No Yes
35. syne-tune (Salinas et al., 2022) hyperopt Yes no yes
36. Ray tune + optuna + autosklearn Automl Yes Yes Yes
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B. Custom AutoML solution
To enable distributed multi-objective optimisation (MOO) over the search space of classification models, data pre-processors,
and pre-processing steps provided by autosklearn we incorporated optuna for MOO and Ray Tune for distributed
computing. We repurposed the search space of auto-sklearn and created our own solution to enable multi-objective
optimisation over the search space of the models and their hyperparameters provided by auto-sklearn. By using
optuna(Akiba et al., 2019), we added a multi-objective optimiser on top of auto-sklearn. To enable distributed com-
putation of models and optimisation of their hyperparameters, we used ray tune along with optuna. The combination
of these three already available solutions allowed us to perform multi-objective optimisation at scale, which was not possible
in standalone auto-sklearn. Arguably, autosklearn 2.0 fixes these issues, however, at the time of this writing,
multi-objective optimisation is not an official feature in the package. Another choice is FLAML(Wang et al., 2021b), however,
its documented moderate reliability (Gijsbers et al., 2024) finalised the choice of auto-sklearn. The OpenML CC-18
dataset and its features are fed into the Bayesian or random optimiser, or both (depending on the experiment conducted).
These optimisers are provided by Optuna. Depending on the experiment, we also feed the random forest baseline metrics.
Optuna generates hyperparameter configurations and Ray Tune runs them in parallel for each feature. An illustration of the
architecture is given in Figure 10.
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Figure 10: Architecture of our custom AutoML solution

Extracting the search space To create our custom AutoML solution, we extracted the full search space of autosklearn
library. The classification and pre-processing algorithms are given in Table 3 and Table 4, respectively. The library is built
using ConfigSpace (Lindauer et al., 2019), which provides a simple function to extract the entire search space including
classification algorithms, their hyperparameters, type of hyperparameter: categorical or continuous, and the conditions on
them, if any.

Optuna for multi-objective optimisation Optuna is an automatic hyperparameter optimization software framework,
particularly designed for machine learning. It features an imperative, define-by-run style user API. Optuna features
multi-objective optimisation and defines the following basic concepts.

• Study: optimization based on an objective function

• Trial: a single execution of the objective function

The goal of study is to find an optimal set of hyperparameter values through multiple trials.

We leverage the define-by-run style user API and recreate the extracted search space from auto-sklearn. This recreated
search space can be used with optuna and the optimisation algorithms in the package, which support multiple objectives.

Ray Tune for distributed computing of trials Ray (Moritz et al., 2018) is an open source framework to build and scale
machine learning applications. Tune (also called Ray Tune), a sub-package of Ray, is a Python library for experimental
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Table 3: Classification algorithms provided in auto-sklearn. The number of hyperparameters associated with the
algorithm (λ) are separated into categorical (cat) and continuous (cont). The numbers in the parenthesis are the conditional
hyperparameters, which are relevant when other parameters are active.

Name #λ cat (cond) cont (cond)

AdaBoost (AB) 4 1 (-) 3 (-)
Bernoulli naı̈ve Bayes 2 1 (-) 1 (-)
decision tree (DT) 4 1 (-) 3 (-)
extreml. rand. trees 5 2 (-) 3 (-)
Gaussian naı̈ve Bayes - - -
gradient boosting (GB) 6 - 6 (-)
kNN 3 2 (-) 5 (-)
LDA 4 1 (-) 1 (-)
linear SVM 4 2 (-) 3 (-)
kernel SVM 7 2 (-) 5 (2)
multinomial naı̈ve Bayes 2 1 (-) -
passive aggressive 3 1 (-) 2 (-)
QDA 4 1 (-) 1 (-)
random forest (RF) 5 2 (-) 3 (-)
Linear Class. (SGD) 10 4 (-) 6 (3)

execution and hyperparameter tuning at any scale. We use Ray Tune to enable distributed execution of Optuna trials,
saving trials, metadata and maintaining trial states during and after the end of a trial run.

C. Weighted-sum scalarisation approach to multi-objective optimisation for X-hacking
The typical target of an automated machine learning pipeline is a model classification performance metric such as a confusion
matrix, or derived statistics such as accuracy, F1 score and area under the receiver operating characteristic (ROC) curve. At
the same time, we wish to optimize our desired model explanation, which could be described through a p-value or coefficient
value, feature importance, effect size (e.g. Cohen’s d), Shapley value or fairness metric (Agrawal et al., 2021, § 4). The task
is therefore a multi-objective optimization problem. How much predictive performance must be sacrificed, on average, to
get the explanation desired? To explore the trade-off between accuracy (or AUC, F1, Brier score etc.) against the chosen
XAI metric (SHAP, p-value, Cohen’s δ), we propose a scalarized scoring function, Q, based on a weighted sum of lying (2),
performance (3) and obviousness (4).

Let perf(m) denote the predictive performance of model pipeline m and let obv(m) denote some quantified measure of
obviousness, audacity or inadmissibility. Let m↑ := argmaxm{perf(m)} be the best-performing pipeline and m↓ denote
an acceptable baseline model1. Let v denote the feature explained by an XAI metric Xm(v), such as SHAP. Then we
maximize the scalar objective function

Q :=− sgn (Xm↑(v)) · λ ·Xm(v) (2)
+ perf(m) (3)
− µ · obv(m), (4)

where λ and µ are parameters that define a Pareto front of possible solutions. Such an objective may be passed to any
AutoML framework that accepts custom scoring metrics.

As XAI and predictive performance metrics lie on different scales, efficient selection of λ is crucial. Suppose that the
‘best’ model is anticipated to have accuracy no greater than 0.9, while a baseline model achieves accuracy of 0.7. If a
baseline or prior SHAP is +1, and the aim is to find a model that ‘flips’ or nullifies this, then a pragmatic starting point is
λ ≤ (perf(m↑)− perf(m↓))/Xm↓ = (0.9− 0.7)/1 = 0.2, so that larger-scale changes in SHAP ‘drive’ the optimizer.

1m↓ := argminm{perf(m)} for acceptable models m ∈ M
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Table 4: Pre-processing algorithm provided in auto-sklearn. The number of hyperparameters associated with the
algorithm (λ) are separated into categorical (cat) and continuous(cont). The numbers in the parenthesis are the conditional
hyperparameters, which are relevant when other parameters are active.

Name #λ cat (cond) cont (cond)

extreml. rand. trees prepr. 5 2 (-) 3 (-)
fast ICA 4 3 (-) 1 (1)
feature agglomeration 4 3 (-) 1 (-)
kernel PCA 5 1 (-) 4 (3)
rand. kitchen sinks 2 - 4 (3)
linear SVM prepr. 3 1 (-) 2 (-)
no preprocessing - - 4
nystroem sampler 5 1 (-) 4 (3)
PCA 2 1 (-) 1 (-)
polynomial 3 2 (-) 1 (1)
random trees embed. 4 2 (-) 1 (-)
select percentile 2 1 (-) -
select rates 3 2 (-) -

one-hot encoding 2 1 (-) 1 (1)
imputation 1 1 (-) -
balancing 1 1 (-) -
rescaling 1 1 (-) -

D. Details on experimental setup and results
This section covers the implementation details and results from post-hoc and ad-hoc strategies for X-hacking. For each
strategy used to perform X-hacking we first list the datasets used, give details on the resource and implementation and finally
give the results for all the datasets used to perform X-hacking.

D.1. Experimental setup and results for post-hoc X-hacking (Cherry-picking)

This section covers the implementation details and results from the experiments for all the datasets for post-hoc X-hacking.
Following listing the datasets used and implementations details we show the graphs for changes in feature importance relative
to baseline for all the datasets, lines of best fit of SHAP for all the features for all the datasets, and marginal distribution of
SHAP slopes over AutoML-evaluated models for all the features of all the datasets.

D.1.1. DATASETS

For the current experiment, we have 23 datasets from OpenML Benchmark CC-18 (Bischl et al., 2021). The current
experiment for explainability of the algorithms are carried out on datasets with a binary target. The datasets are listed in
Table 5.

D.1.2. RESOURCE AND IMPLEMENTATION DETAILS

For all of the calculations, we stick to parallel computation using CPUs. For our experiments we have used at most 192
CPUs in parallel on an institutional computing cluster. Since the datasets are structured, a maximum of 300 GB of RAM
was used for the experiments. Since computation time for SHAP calculations increase as one increases the number of test
samples, parallelism become imperative. We restricted the number of test samples to 100 to calculate SHAP for all the
datasets for resource management reasons.

The implementation is done in Python programming language. We used pandas and numpy libraries for data wrangling,
scikit-learn as our base ML library, auto-sklearn for automated finding of models, optuna for multi-objective
optimisation, and shap for calculating shap values.
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Table 5: Binary classification datasets from OpenML CC-18 Benchmark suite.

OpenML ID Dataset #Features

15 breast-w 9
29 credit-approval 15
31 credit-g 20
37 diabetes 8

1049 pc4 37
1050 pc3 37
1053 jm1 21
1063 kc2 21
1067 kc1 21
1068 pc1 21
1461 bank-marketing 16
1464 blood-transfusion 4
1480 ilpd 10
1485 madelon 500
1494 qsar-biodeg 41
1510 wdbc 30
1590 adult 14
4134 Bioresponse 1776

23517 numerai28.6 21
40701 churn 20
40983 wilt 5
40994 climate-model 18
45547 cardiac-disease 12

data split : for training all the models, baseline and AutoML, we used 20% of the samples as test dataset for all of the
datasets mentioned in Table 5.

preprocessing : for all of the datasets, the samples where any feature had missing (NaN) values were removed. The indices
of the omitted data are saved for later results.

random seed : for reproducibility of the results, a random seed of 42 is used everywhere.

baseline : the baseline model is the default sklearn.ensemble.RandomForestClassifier with the mentioned
random state.

AutoML : for each dataset, we run auto-sklearn for 3600 seconds in total and a run time limit of 100 seconds for
each candidate model with the mentioned random seed. An ensemble size of 1 is used since ensemble models are out
of the scope for the current experiment. A model that takes more than 100 seconds to train is omitted.

explainer : due to its model agnostic behaviour, we use shap.KernelExplainer for calculating the SHAP values. A
background sample of 50 and test sample of 100 samples from the test split is used. The respective indices of the 100
samples are saved for regression analysis discussed later.

D.1.3. RESULTS

In this sub-section we show all the graphs for the experiment conducted on all of the datasets. Due to large number of
features in the dataset Bioresponse we do not include the graphs for them here. However, they are available in the
GitHub repository. Similarly, since there are too many visualizations for lines of best fits and kernel density graphs for fitted
slopes for SHAP values, we include a few examples here and the rest are available on GitHub.

Changes in feature importance relative to baseline The changes in feature importance relative to the baseline for a
feature v for an AutoML model is calculated as:
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y =
| SHAPv |baseline

|V |∑
j=1

| SHAPj |baseline

− | SHAPv |automl
|V |∑
j=1

| SHAPj |automl

(5)

where V is the set of all features for a dataset. This difference gives us the relative change in explainability from the baseline
model for each feature in all the datasets. This can be visualised through violin plots for all the datasets. The violin plots are
given below.

Figure 11: Relative change for dataset breast-w Figure 12: Relative change for dataset credit-approval

Figure 13: Relative change for dataset credit-g Figure 14: Relative change for dataset diabetes
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Figure 15: Relative change for dataset pc4 Figure 16: Relative change for dataset pc3

Figure 17: Relative change for dataset jm1 Figure 18: Relative change for dataset kc2

Figure 19: Relative change for dataset kc1 Figure 20: Relative change for dataset pc1
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Figure 21: Relative change for dataset bank-marketing Figure 22: Relative change for dataset
blood-transfusion

Figure 23: Relative change for dataset ilpd Figure 24: Relative change for dataset madelon

Figure 25: Relative change for dataset qsar-biodeg Figure 26: Relative change for dataset wdbc
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Figure 27: Relative change for dataset adult Figure 28: Relative change for dataset cardiac-disease

Figure 29: Relative change for dataset numerai28.6 Figure 30: Relative change for dataset churn

Figure 31: Relative change for dataset wilt Figure 32: Relative change for dataset climate-model
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Lines of best fit of SHAP To calculate the lines of best fit for SHAP for all features of a dataset, the subset of the test split
on which the SHAP values were calculated is taken as the data with the corresponding SHAP values as the target. A linear
regression model is fitted on this data using sklearn.linear model.LinearRegression for the baseline as well
as all the models that have accuracy at least as good as baseline found by running AutoML on the dataset. Since displaying
all the graphs is not feasible, we provide with a few examples here. The lines of best fit for the rest of the features for all of
the datasets can be seen in the GitHub repository.

Figure 33: Lines of best fit of SHAP for feature Clump
Thickness in dataset breast-w

Figure 34: Lines of best fit of SHAP for feature A11 in dataset
credit-approval

Figure 35: Lines of best fit of SHAP for feature pres in
dataset diabetes

Figure 36: Lines of best fit of SHAP for feature Design
Density in dataset pc4
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Figure 37: Lines of best fit of SHAP for feature Essential
Complexity in dataset pc3

Figure 38: Lines of best fit of SHAP for feature l in dataset
jm1

Figure 39: Lines of best fit of SHAP for feature
locCodeAndComment in dataset kc1

Figure 40: Lines of best fit of SHAP for feature V1 in dataset
blood-transfusion

Figure 41: Lines of best fit of SHAP for feature V6 in dataset
ilpd

Figure 42: Lines of best fit of SHAP for feature V15 in dataset
wdbc
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Figure 43: Lines of best fit of SHAP for feature
total night minutes in dataset churn

Figure 44: Lines of best fit of SHAP for feature Mean NIR
in dataset wilt

Figure 45: Lines of best fit of SHAP for feature
tidal mix max in dataset climate-model

Figure 46: Lines of best fit of SHAP for feature height in
dataset cardiac-disease
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D.1.4. MARGINAL DISTRIBUTION OF SHAP SLOPES OVER AUTOML-EVALUATED MODELS

Here we show the marginal distribution of slopes over all Auto-ML models that have the accuracy at least as good as the
baseline model. The graphs correspond to the ones displayed in the previous sub-section.

Figure 47: Marginal distribution of SHAP slopes for feature
Clump Thickness in dataset breast-w

Figure 48: Marginal distribution of SHAP slopes for feature
A11 in dataset credit-approval

Figure 49: Marginal distribution of SHAP slopes for feature
pres in dataset diabetes

Figure 50: Marginal distribution of SHAP slopes for feature
Design Density in dataset pc4

Figure 51: Marginal distribution of SHAP slopes for feature
Essential Complexity in dataset pc3

Figure 52: Marginal distribution of SHAP slopes for feature l
in dataset jm1
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Figure 53: Marginal distribution of SHAP slopes for feature
locCodeAndComment in dataset kc1

Figure 54: Marginal distribution of SHAP slopes for feature
V1 in dataset blood-transfusion

Figure 55: Marginal distribution of SHAP slopes for feature
V6 in dataset ilpd

Figure 56: Marginal distribution of SHAP slopes for feature
V15 in dataset wdbc

Figure 57: Marginal distribution of SHAP slopes for feature
total night minutes in dataset churn

Figure 58: Marginal distribution of SHAP slopes for feature
Mean NIR in dataset wilt

Figure 59: Marginal distribution of SHAP slopes for feature
tidal mix max in dataset climate-model

Figure 60: Marginal distribution of SHAP slopes for feature
height in dataset cardiac-disease
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D.2. Experimental setup and results for ad-hoc X-hacking (Directed search)

This section covers the implementation details and results from the experiments for all the datasets for ad-hoc X-hacking.
Following listing the datasets used and implementations details, we show the graphs for cumulative minimum of mean
absolute SHAP for Bayesian optimisation and random sampling. These graphs are shown for top-4 features from each
dataset according to the random forest baseline.

D.3. Dataset

The datasets are the same as given in § D.1.1

D.4. Resource and implementation details

For all of the calculations, we stick to parallel computation using CPUs. For ad-hoc X-hacking we have used at most 292
CPUs in parallel on an institutional computing cluster. To run many candidate models for each dataset, a maximum of 1 TB
of RAM was used for the experiments. Since computation time for SHAP calculations increase as one increases the number
of test samples, parallelism become imperative. We restricted the number of test samples to 100 to calculate SHAP for all
the datasets, for resource management reasons.

The implementation is done in Python programming language. We used pandas and numpy libraries for data wrangling,
scikit-learn as our base ML library, auto-sklearn for its search space including models and its hyperparameters,
ConfigSpace to extract the search space from auto-sklearn, optuna for enabling multi-objective optimisation,
ray tune for parallel running of different models and intermediate storage of experiment related metrics, and shap for
calculating shap values.

data split : for training all the models, baseline and models from our custom AutoML implementation, we used 20% of the
samples as test dataset for all the datasets mentioned in Table 5.

preprocessing : for all the datasets, the samples where any feature had missing (NaN) values were removed. The indices of
the omitted data are saved for later results.

random seed : for reproducibility of the results, a random seed of 42 is used everywhere.

baseline : the baseline model is the default sklearn.ensemble.RandomForestClassifier with the mentioned
random state.

AutoML : for each dataset, we run our custom AutoML solution described in § B for 12 hours (43200 seconds) in total and
a run time limit of 1 hour (3600 seconds) for each candidate model with the mentioned random seed. We the custom
AutoML solution with both Bayesian optimisation and random sampling

explainer : due to its model agnostic behaviour, we use shap.KernelExplainer for calculating the SHAP values. A
background sample of 50 and test sample of 100 samples from the test split is used. The respective indices of the 100
samples are saved for regression analysis discussed later.

D.4.1. RESULTS

In this sub-section we show using graphs for cumulative minimum of mean absolute SHAP for Bayesian optimisation and
random sampling for all the datasets. It is expected that some features are not vulnerable to X-hacking, and thus for those
features we do not see the data in the plots2.

2empty graphs represent features being robust to X-hacking. Marked with *
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Figure 61: Cumulative minimum of mean absolute SHAP for
top 4 features of dataset breast-w for Bayesian optimisa-
tion and random sampling
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Figure 62: Cumulative minimum of mean absolute SHAP for
top 4 features of dataset credit-approval for Bayesian
optimisation and random sampling
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Figure 63: Cumulative minimum of mean absolute SHAP for
top 4 features of dataset credit-g for Bayesian optimisa-
tion and random sampling
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Figure 64: Cumulative minimum of mean absolute SHAP for
top 4 features of dataset diabetes for Bayesian optimisa-
tion and random sampling
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Figure 65: Cumulative minimum of mean absolute SHAP for
top 4 features of dataset pc4 for Bayesian optimisation and
random sampling
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Figure 66: Cumulative minimum of mean absolute SHAP for
top 4 features of dataset pc3 for Bayesian optimisation and
random sampling
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Figure 67: Cumulative minimum of mean absolute SHAP for
top 4 features of dataset jm1 for Bayesian optimisation and
random sampling∗
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Figure 68: Cumulative minimum of mean absolute SHAP for
top 4 features of dataset kc2 for Bayesian optimisation and
random sampling
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Figure 69: Cumulative minimum of mean absolute SHAP for
top 4 features of dataset kc1 for Bayesian optimisation and
random sampling
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Figure 70: Cumulative minimum of mean absolute SHAP for
top 4 features of dataset pc1 for Bayesian optimisation and
random sampling
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Figure 71: Cumulative minimum of mean absolute SHAP for
top 4 features of dataset bank-marketing for Bayesian
optimisation and random sampling∗
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Figure 72: Cumulative minimum of mean absolute SHAP
for top 4 features of dataset blood-transfusion for
Bayesian optimisation and random sampling
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Figure 73: Cumulative minimum of mean absolute SHAP for
top 4 features of dataset ilpd for Bayesian optimisation and
random sampling
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Figure 74: Cumulative minimum of mean absolute SHAP for
top 4 features of dataset madelon for Bayesian optimisation
and random sampling
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Figure 75: Cumulative minimum of mean absolute SHAP
for top 4 features of dataset qsar-biodeg for Bayesian
optimisation and random sampling
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Figure 76: Cumulative minimum of mean absolute SHAP for
top 4 features of dataset wdbc for Bayesian optimisation and
random sampling
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Figure 77: Cumulative minimum of mean absolute SHAP for
top 4 features of dataset adult for Bayesian optimisation
and random sampling∗
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Figure 78: Cumulative minimum of mean absolute SHAP for
top 4 features of dataset cardiac-disease for Bayesian
optimisation and random sampling
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Figure 79: Cumulative minimum of mean absolute SHAP
for top 4 features of dataset numerai28.6 for Bayesian
optimisation and random sampling
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Figure 80: Cumulative minimum of mean absolute SHAP for
top 4 features of dataset churn for Bayesian optimisation
and random sampling
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Figure 81: Cumulative minimum of mean absolute SHAP for
top 4 features of dataset wilt for Bayesian optimisation and
random sampling
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Figure 82: Cumulative minimum of mean absolute SHAP
for top 4 features of dataset climate-model for Bayesian
optimisation and random sampling
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Figure 83: Cumulative minimum of mean absolute SHAP for top 4 features of dataset Bioresponse for Bayesian
optimisation and random sampling∗
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E. Exploring Shap Value Sensitivity to Noise and Information Sharing
In the first scenario, we examine a case featuring two identical features with no inherent independent noise. In this context,
we observe no discernible shift in accuracy across different variables. This outcome can be attributed to the intrinsic additive
nature of SHAP values, whereby the transfer of SHAP values from one feature to another occurs seamlessly without any
resultant loss of accuracy. This is principally due to the absence of information loss.

The second experimental model introduces a lower noise-to-signal ratio, distinguishing between noise (independent
information associated solely with a specific feature) and signal (information shared between both variables). When we
transfer SHAP values from one variable to another within this context, we encounter a scenario where the transference fails
to capture identical information. Consequently, accuracy experiences a decline, albeit not of a significant magnitude.

In the third experiment, we explore a high noise-to-signal ratio, leading to a noteworthy decrease in accuracy when
manipulating SHAP values across different features. This emphasizes the sensitivity of SHAP values to the presence of
substantial noise within the data.

These experiments are strategically designed to demonstrate the circumstances under which it is feasible to manipulate
SHAP values for a given dataset without incurring substantial accuracy loss. It becomes easier to reduce or alter SHAP
values for a specific feature when the information associated with that feature is shared among other variables.

In the context of an automated machine learning (AutoML) pipeline, different preprocessing steps and algorithms may
yield models with comparable accuracy but varying feature importance, as indicated by SHAP values. The likelihood of
encountering such models is contingent upon the search space of available models and the non-linearity inherent in the
relationships among features or the underlying data generation process. For instance, when the relationship is profoundly
non-linear, and the model’s search space predominantly consists of linear models, these models are more prone to assigning
higher SHAP importance to linear relationships within the data generation process.

the equations are
f0 ∼ Uniform(0, 5)

f1 ∼ 10 · f0 +N (0, σ1)

f2 ∼ 20 · f0 +N (0, σ2)

f3 ∼ 3 · f1 + 4 · f2 +N (0, 0.01)

(6)

The variation in the normal distribution’s standard deviation can be harnessed as a mechanism for adjusting the level of
independent information within dependent variables. By employing this approach, we can simulate diverse scenarios
representing distinct degrees of independent information.

Our empirical findings clearly illustrate that as the magnitude of independent information in the dependent variables
is augmented, the corresponding reduction in predictive accuracy resulting from changes in SHAP (SHapley Additive
exPlanations) values also experiences a corresponding increase. This relationship serves as compelling evidence of the
critical role played by independent information in shaping the accuracy of predictive models, particularly in the context of
SHAP value manipulation.

F. Leveraging Redundancy for Shapley Value Manipulation
Incorporating a surplus of redundant variables into a model can be a strategically advantageous approach, particularly when
the objective is to reverse the prevailing trend exhibited by Shapley values associated with a specific feature. This concept
hinges on the premise that each child variable linked to the feature of interest encapsulates not only the information inherent
to that feature but also additional information contributed by the respective child variable. For the sake of simplification
and rigorous analysis, one can consider the information stemming from child nodes as a form of ‘noise’, while the data
originating directly from the feature of interest, acting as the ‘parent’ variable, is regarded as the ‘signal’. The overarching
goal is to amplify the signal-to-noise ratio for the feature by strategically configuring different combinations of child
variables.

In the ensuing illustrative examples, we expound upon this concept by showcasing the characteristic trends observed in
Shapley values for distinct input values of specific features, achieved by fitting approximate linear regression models. A
notable scenario arises when one child variable introduces an additional layer of information that follows a disparate trend
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compared to another child variable linked to the same parent. In such instances, a linear amalgamation of these variables
serves the purpose of disentangling the signal from the noise. This amalgamation strategically leverages the opposing
noise effects exhibited in different models, thereby neutralizing their individual impact. If the noise effects happen to be
multiplicative in nature, log transforms may be judiciously employed before engaging in linear combinations to attain similar
results.

A foundational principle emerges from this exploration: the greater the number of independent child nodes associated with
a specific feature, the more susceptible that feature becomes to a phenomenon referred to as “flipping”, where its trend
contrasts with the true underlying trend. Redundancy in the information domain empowers us to reconstruct the feature
and construct a model that effectively showcases an inverse trend for the given feature values. Notably, this transformation
can be accomplished while maintaining an equivalent level of predictive accuracy, as exemplified in the earlier instances
illustrating the Shapley value versus accuracy Pareto front.
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