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ABSTRACT

Recently, the Kolmogorov-Arnold Network (KAN) has been proposed, signifi-
cantly outperforming MLP in terms of interpretability and symbolic representa-
tion. In practice, KANs are required to fit data to extremely high precision. For
instance, in typical applications of KAN like inferring precise equations from data
and serving as solvers for partial differential equations, high accuracy is an intrin-
sic requirement. In the current architecture of KAN, cubic B-spline basis func-
tions were selected as the approximate tools. However, the inflexibility of fixed
degree and knots in B-splines restricts the adaptability of the activation functions.
Due to these inherent limitations of B-spline functions, especially low-order and
homogeneity, KAN still has room for improvement in accuracy. In this paper,
we propose the Legendre-KAN that can enhance the degrees of freedom of the
basis functions in the KAN. Compared to the traditional Spline-KAN, Legendre-
KAN utilizes parameterized Legendre basis functions and normalization layers
at the edges of the KAN. Benefiting from higher-order orthogonal polynomials,
Legendre-KAN significantly outperforms the Spline-KAN in terms of accuracy.
Extensive experiments demonstrate that Legendre-KAN achieves higher accuracy
and parameter efficiency, of which accuracy reaches 10 times that of Spline-KAN
in some cases. For those functions which can be symbolized, this leads to more
correct results as opposed to Spline-KAN. Our approach effectively improves the
accuracy of the mathematical relationships in KANS, providing a better solution
for approximating and analyzing complex nonlinear functions.

1 INTRODUCTION

Traditional neural networks have demonstrated outstanding performance in many typical fields, in-
cluding image processing (Krizhevsky et al. 2012)), speech recognition (Hinton et al., [2012), and
natural language processing (Nadkarni et al.l 2011). During the past decade, they have also become
important tools for solving scientific research problems, in which the interpretability and accuracy of
the network is very important. However, neural networks based on multilayer perceptrons (MLPs)
are often viewed as black-box models, significantly limiting their utility in scientific research (Makke
& Chawlal, [2024)). On the other hand, traditional activation functions, such as ReLLUs, are lack of de-
grees of freedom and that the determination of their number and positioning is also part of the prob-
lems. A substantial number of redundant parameters are often required to achieve high-precision
approximations of scientific formulas.

Recently, a new interpretable Kolmogorov-Arnold network (KAN) has been proposed. As a promis-
ing alternative to the MLP in neural networks, KAN uses parameterized B-spline basis functions
at the edges of network, known as Spline-KAN. In Spline-KAN, complex multi-dimensional func-
tions are first decomposed into the sum and composition of one-dimensional functions. These one-
dimensional functions are then fitted by B-spline basis functions through training neural network
and are represented as symbolic functions wherever possible. Compared to symbolic regression in
traditional machine learning, Spline-KAN provides more continuous and stable results in symbolic
representation tasks (Liu et al., 2024).

In scientific research based on Al, equations inferred from noise-free data demand extremely high
precision. For example, the physics-informed neural networks (PINNs), which serve as numerical
solvers for partial differential equations (PDEs), inherently require high accuracy (Cuomo et al.,
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2022). More importantly, the accuracy of network directly impacts its reliability, which severely
limits its practical applications (Korns, 2011). Especially in KAN, inaccurate predictions lead to
mathematical expressions that significantly differ from the true function. The initial results of the
activation functions in KAN are typically obtained through a pre-training approach. Subsequently,
the functions in the set are translated and scaled to identify a symbolic function that closely aligns
with the training outcomes, which serves as the mathematical expression of this activation function.
However, low-precision pre-training results of Spline-KAN hinder the network’s ability to find the
correct symbolic representation, severely impacting the subsequent training phase and leading to a
decrease in the network’s accuracy. Furthermore, this may result in an analytical expression that is
entirely different from the original function.

The low accuracy of Spline-KAN can be attributed to the use of B-spline basis functions. As a
fundamental approximate tools, B-splines endow the Spline-KAN with superior interpretability and
performance on scientific tasks compared with MLP. In traditional function approximation, low-
degree piecewise polynomials in B-spline functions often fail to achieve effective fitting in certain
regions of one-dimensional functions due to lower degrees of freedom. Unfortunately, the same
issue persists for Spline-KAN when dealing with multidimensional functions. This implies that, in
the field of symbolic representation, Spline-KAN struggles to achieve high-accuracy results with a
limited number of parameters in some cases.

As a system of orthogonal polynomials defined over a finite interval, Legendre polynomials are
widely used in solving differential equations, physical problems and computer graphics (Mall &
Chakravertyl 2016; [Parand & Razzaghil [2004; Wu et al. [2020). When used as activation func-
tions, Legendre polynomials can flexibly approximate complex signals with high-order and global
polynomials. To improve the accuracy of traditional KAN, we proposed Legendre-KAN. This net-
work significantly enhance the accuracy of the pre-training results, allowing for more precise sym-
bolic approximations. In cases where certain Spline-KAN fits yield erroneous outcomes, the use of
Legendre basis functions enables the Legendre-KAN to still produce relatively accurate analytical
expressions. To alleviate the issue of gradient explosion commonly encountered with polynomial
activation functions in neural networks, as well as the limitations imposed by the domain of Legen-
dre polynomials, we draw inspiration from Spline-KAN and employ a periodic Min-Max function
to constrain the range of input node data. This normalization layer dynamically normalizes the in-
put data by periodically assessing the range of each input node’s values. Furthermore, we identify
that the gradient explosion in KAN arises from excessively large coefficients during affine trans-
formations of the basis functions. To address this, we utilize smaller initialization coefficients in
Legendre-KAN to ensure that the activation function transitions from a more stable state to the tar-
get function. Additionally, we enhance the loss function in Spline-KAN to restrict the coefficients
of the basis functions within a specified range.

This paper proposes the Legendre-KAN based on the Legendre polynomials and the KA theorem.
By using parameterized Legendre basis functions on the edges of the KAN, the advantages of Legen-
dre polynomials are well integrated into the KAN. With the same number of parameters and greater
time efficiency, Legendre-KAN outperforms both Spline-KAN and MLP in most functions, as il-
lustrated in Figure [T} especially excelling in fitting complex signals. This significantly enhances
the reliability and interpretability of mathematical relationships for KAN in symbolic representation
tasks, which has important implications for the application and development of KA networks in
natural science research.
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Figure 1: Test loss(RMSE) of Legendre-KAN, Spline-KAN and MLP. The high reduction rate of
error shows the advantages of legendre polynomials’ orthogonality.
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2 BACKGROUND AND MOTIVATION

2.1 KOLMOGOROV-ARNOLD THEOREM AND KAN

The Kolmogorov-Arnold representation theorem (Arnold, 2009; [Kolmogorov, (1957; Braun &
Griebel, 2009) has the following general form:

2n+1

f®) = fla, - 2,) = Z P, <Z¢q,p(mp)> . (1)

where @, : [0,1] — R and ¢, : R — R. Its application in neural networks has been extensively
studied (Lin & Unbehauen| [1993; Montanelli & Yang| [2020;|Lai & Shen, |2021}; [He| [2023}; |Schmidt-
Hieber, [2021)). Recently, as a breakthrough application of the KA theorem in neural networks,
Kolmogorov-Arnold Network(KAN) was proposed to implement a multi-level deep KA neural net-
work, effectively combining the strengths of MLP and the KA theorem. By utilizing parameterizable
activation functions, the KAN has demonstrated outstanding performance across various domains.
KAN has been integrated into transformers, achieving significant success (Genet & Inzirillo| [2024).
Research has also explored its application in graph neural networks, in which KAN is better than
MLP (Bresson et al.l 2024). Especially in Al+Science tasks, including solving differential equa-
tions and symbolic representation of functions, KAN outperforms MLPs. The great potential of
KAN in scientific tasks means that further research on KAN is of considerable importance. Most
critically, the KAN leverages the KA theorem to decompose the traditional multivariate function
approximation problem into a composition of univariate function approximations. This implies that
the accuracy or interpretability of the KAN directly depends on the univariate basis functions it
employs.

2.2 B-SPLINE BASIS FUNCTIONS AND LEGENDRE POLYNOMIALS

In this section, we analyze the commonly used B-spline basis functions and Legendre polynomials
in univariate function approximation. We first introduce the definitions of the basis functions, and
then, expound our motivation for proposing Legendre-KAN.
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Figure 2: B-spline basis functions and Legendre polynomials. In each interval, only 4 cubic spline
basis functions are used to fit the signal for the interval. In contrast, Legendre polynomials of degrees
from 0 to 7 are used in fitting tasks.

B-spline functions and its fitting characteristic. A spline function is a type of function that is
piecewise smooth and has a certain degree of smoothness at the junction of each piece. The term
spline comes from the tool used by engineering draftsmen to connect specified points into a smooth
curve. As the basic part of KAN, B-spline activation functions are the main source of its inter-
pretability and advantages (Shukla et al.,|2024), which is called Spline-KAN. The B-spline function
used by KAN is the same as its form in function fitting (De Boor,|1972). For instance, the analytical
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form of cubic B-splines functions can be expressed as:

3 2
$lz]” — || j%, lz| <1
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0, x € others

In numerical analysis, a B-spline function is characterized by minimal support relative to its degree,
smoothness and a specified partition of the domain (Prautzsch et al.l |2002). Advantages such as
locality and smoothness makes it widely used in computer graphics and computer-aided design
(CAD). In function fitting, as shown in Figure [2a] function F'(x) is partitioned into intervals and
fitted using B-spline functions.
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Figure 3: Fitting results and error for Legendre functions and B-spline functions. We use a function
with jump and smooth regions. Each column shows the fitting results and error when using the
first n basis functions. The first row represents the fitting results, and the second row represents the
fitting error corresponding to the results.

From a mathematical perspective, the optimal parametrized activation function trained in KAN can
be interpreted as a univariate function approximation problem. As the foundation of Spline-KAN, B-
spline basis functions exhibit piecewise smooth characteristics, but they are only suitable for fitting
smooth, simple functions. For more complex functions, spline functions perform well in smooth
regions but may introduce significant errors in jump areas, as illustrated in Figure[3] The core issue
is the low degree of freedom of piecewise basis in the function approximation space of splines. The
jump areas of data usually require many and higher-order basis functions to achieve high accuracy
fitting, but in Spline-KAN, only a very small number of lower-order polynomials are used to fit
each areas, which are not sufficient to fit the drastic changes in the jump region. This problem
can severely impact the accuracy of the activation function approximation between certain nodes.
Furthermore, it can degrade the overall fitting accuracy of the entire network, as shown in Figure|[d]
In order to improve the accuracy of the network, it is crucial to choose a basis function that has
global approximation space and is higher-order stable.

Legendre Polynomials. Polynomial function is a class of non-linear function, recently it has also
been used in neural networks, where the output is expressed as a polynomial of the input. As a
special class of polynomials, Legendre polynomials were obtained by Gram-Schmidt orthogonal-
ization of the linearly independent function system (Legendre, |1785)). Rodrigul’s formula gives a
more concise form: 1

= 2l dgn

L, (x) [(2* = 1)"],n=1,2,... 3)
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These polynomials in Figure [2b] possess excellent properties such as orthogonality, even-odd sym-
metry and completeness. As orthogonal polynomials on a finite interval, Legendre polynomials
are widely used in solving differential equations and physical problems (Al-Shaher & Mechee,
2021). Due to their excellent numerical stability and orthogonality, Legendre polynomials are also
extensively applied in high-precision numerical approximation and scientific research (Ma et al.,
2007). We use the recursive form of the Legendre polynomial to ensure the numerical stability
when z € [—1, 1] (Abramowitz & Stegunl [1972):

2n—1 n—1
Ly(z) = - xLp_q(x) —

Lp—2(x),n >2 “4)

while Lo(z) = 1 and L;(x) = z. Recently, many studies have integrated Legendre polynomials
into neural networks to achieve better results. For instance, FILM employs Legendre polynomials
to approximate historical information in time series, improving the accuracy of long-term predic-
tions (Zhou et al,2022). In LMU, Legendre polynomials are used to map phase space, resulting in
a new high-performance recurrent neural network (Voelker et al.,[2019).

As a type of basis, Legendre polynomials have a global function approximation space. Functions
of different orders are all used to fit complex patterns and relationships of data, which means it
has more degrees of freedom compared to B-spline basis functions. In traditional function fitting,
for jump regions where B-spline fitting exhibits lower accuracy, Legendre polynomials, with their
higher-degree global nature, provide a smaller and more evenly distributed approximation error,
as shown in Figure 3] Based on these advantages, we propose the Legendre-KAN. Experimental
results demonstrate that the aforementioned characteristics of Legendre polynomials in function
fitting are well integrated into KAN, enabling Legendre-KAN to achieve 10 to 100 times higher
fitting accuracy than Spline-KAN in many complex functions in Table [/} Moreover, the degree of
the polynomial can be adjusted, which provides flexibility in the capacity of model.

3 METHODOLOGY

In this work, we propose Legendre-KAN as improvement over the accuracy of Spline-KAN. Build-
ing on the strengths of the KAN, particularly its interpretability and symbolic representation capa-
bilities, Legendre-KAN enhance the accuracy of KAN through input normalization, reduced initial-
ization parameters, and the incorporation of orthogonal high-order Legendre bases. We first explain
the advantage of Legendre-KAN in Section On the other hand, the structure of Legendre-KAN
is presented in Section[3.2]

3.1 LEGENDRE-KOLMOGOROV-ARNOLD NETWORK (LEGENDRE-KAN).

As discussed below, the activation functions with lower degrees of freedom prevents Spline-KAN
from producing accurate results. Local low-order basis functions struggle to achieve high-accuracy
results, but as we increases the order of B-spline, test loss get worse in Appendix [B| In some cases
this may cause the network to choose the wrong symbolic function. In Table 2] we use KAN to
approximate F'(z) = (1o — 10e7%)~1 + (21 — 10e=°)~1. Due to the lower accuracy of the pre-
training step, Spline-KAN selects the wrong sign function on edge 1, which ultimately leads to the
result which has nothing to do with the original function.

To improve the degrees of freedom of basis functions, we initially used power basis functions.
Within the polynomial function space, this approach offers higher-order and global polynomials
compared to the spline function space. However, these functions exhibits instability when dealing
with complex tasks in Table [/} which means that power basis is not suitable for KAN. Naturally,
we consider the orthogonalized version of x™, the Legendre polynomials. Legendre polynomials
mitigate the numerical instability inherent in power bases by applying appropriate orthogonalization.
For given B-spline basis functions with G knots and Kth order, the (K + G — 1)** order Legendre
polynomials achieve significantly higher accuracy in global function fitting compared to B-splines,
as the function space contains global higher-order polynomials. With normalization and smaller
initial coefficients, Legendre-KAN reduces the impact of the increase of function’s order on the
results of KAN. Motivated by this, we propose the Legendre-KAN.

By using parameterized Legendre functions on the edges of the KAN, the advantages of Legendre
polynomials are effectively embedded into Legendre-KAN. With the same number of parameters
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and improved computational efficiency, Legendre-KAN demonstrates superior accuracy in training
most functions compared to Spline-KAN, particularly excelling in fitting high-order signals. This
significantly enhances the reliability and interpretability of mathematical relationships in symbolic
representation tasks within the KAN network, and holds substantial significance for the application
and development of KAN in natural science research.

3.2 ARCHITECTURE OF LEGENDRE-KAN
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Figure 4: Architecture of Legendre-KAN, of which shape is [2,4, - - ,2, 1] and order is 2.

In this section we will introduce in detail the components and functions of Legendre-KAN. The
entire network structure of Legendre-KAN can be found in Figure ]

Kolmogorov-Arnold networks. The structure of KA networks is very different from that of MLPs.
The shape of a KAN with L layers can be summarized in the following form:
[n17n27"'7nL}7 (5)

where the number of nodes in the i‘" layer is denoted as n;. The activation values of neurons in the
I'" layer and (I + 1) layer can be denoted as:

ng
B .
Tit1,j = Z(élﬂ',j(xlﬂ')a J=1 g
i=1
(6)

g+n

o1 () = arj SiLU(x) + br Z CLi g,k Brn (%)
k=0

where z; ; is the j'" node from left to right in the (' layer. The activation function between ;41 ;
and z; ; is represented as ¢7; ;»and the By, , (z) is the k" B-spline functions of order n and g knots.
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Finally, the output of the network can be written in matrix form:

111 dr12 - Prim
P12, 22 - DL2m
®=| S )
¢l7nl+171 ¢l,nl+1,2 ¢l7nz+17nz
which means the output values of KAN are denoted as:
KAN(z) = [®ro®p_;0..Pg|x. (8)

Activation Function of Legendre-KAN. To incorporate the superior function approximation prop-
erties of Legendre polynomials into the KAN, the Legendre-KAN architecture replaces the spline
activation functions used in Spline-KAN with Legendre polynomials defined on the interval [-1,1].
These Legendre polynomials are then combined linearly to form the activation functions within the
network:

kEma

Legendre(z) = Z ciLi(z), 9)
i=0

where L;(x) represents the ith Legendre polynomials of order k,,,,. Since the gradient descent
process essentially scales the Legendre basis functions, overly large initialization parameters can
result in excessively large positive and negative coefficients for the basis functions. We use smaller
initialization parameters c; to solve the problem of gradient explosion.

As a solution to the problem of low individual accuracy caused by node activation values exceed-
ing the basis function interval, Legendre-KAN use the normalization layer to normalize the input

activation values:
2z — (xmax + znzin)

Norm(z) = ; (10)

Tmaz — Tmin
where .4, and ,,,;,, are calculated from the range of input data dynamically.
For the activation function ¢ (z) within the network, we also combined the best-performing b(z) =
SiLU (x) with the Legendre basis to enhance the smoothness of the high-order polynomial fitting
results. To sum up, the activation function of the Legendre-KAN can be expressed as:

¢L(x) =a SiLU(z) + b Legendre(Norm(zx)) (11)

Loss Function of Legendre-KAN. To mitigate the effects of gradient explosion in polynomial acti-
vation functions, the loss function in Legendre-KAN incorporates a penalty term for the coefficients,
which differs from Spline-KAN, as follows:

1
L=— i — Ui — ;2 12
Np ; (y y ) + Nc = c] ( )

4 EXPERIMENTS

In this chapter, we evaluate the accuracy and performance of the Legendre-KAN in symbolic repre-
sentation tasks. Additionally, we demonstrate the high accuracy of Legendre-KAN in fitting com-
plex nonlinear functions that cannot be symbolized. Furthermore, we visualize the result errors to
demonstrate how high-order polynomial bases enhance the ability of KAN in capturing complex
global signals. Finally, we conduct ablation experiments to assess the impact of each component
on the performance of Legendre-KAN. The results of other KANs, including Fourier-KAN and
Wavlet-KAN, are in Appendix (Xu et al,[2024} [Bozorgasl & Chenl [2024).

Experimental Setup. All functions tested in this study are sourced from the KAN and Feynman
datasets (Udrescu et all [2020; |[Udrescu & Tegmark, 2020). For all experiments, original input
is normalized to the range [—1,1]. To ensure fairness, we compare the Legendre-KAN with k
order Legendre polynomial basis functions to Spline-KAN and MLPs with the same number of
parameters, as detailed in Appendix[A] We perform hyperparameter tuning on the training set. Each
method has a couple of hyperparameters: the learning rate, number of epochs and coefficients scale,
more details are under Appendix
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4.1 PERFORMANCE ON SYMBOLIC FUNCTIONS

Table 1: Test loss and average running time over symbolic functions

Function Shape Spline-KAN Legendre-KAN
best k/grid best loss loss (equal params)  Train/epoch(s) best k best loss Train/epoch(s)

LTy [2,2,1] 4/16 2.04 x 1074 4.26 x 1074 0.122494 7 3.48 x 10~° 0.066302
(zo +2)/(x1 +2) [2,2,1] 3/13 1.44 x 10~° 1.72 x 101 0.121438 6 3.70 x 1072 0.045682
Vo + 1+ o +1 [2,1] 5/16 1.01 x 1073 1.01 x 1073 0.028822 20 7.29 x 104 0.016484
(wg+2)" L+ (z1 +2)71 [2,1] 3/18 1.05 x 1076 3.16 x 1076 0.037084 15 8.37 x 1078 0.013190
sin(xg) + sin(z1) [2,1] 3/18 1.71 x 1077 538 x 1077 0.032387 15 5.78 x 1078 0.013335
tan(zg) + tan(zy) [2,1] 3/18 1.26 x 1075 1.83 x 107° 0.040951 18 1.03 x 1077 0.013565
arcsin(zg) + arcsin(z) [2,1] 417 2.40 x 1073 240 x 1073 0.024183 20 1.66 x 103 0.012618
exp(xo) + exp(x1) [2,1] 3/17 5.15 x 1077 2.70 x 1076 0.030216 13 1.52x 1077 0.011386
log(wo +2) +log(z1 +2)  [2,1] 3/16 2.49 x 1077 9.81 x 1077 0.024169 15 7.07 x 1078 0.013442

Our experiments first focus on simple fundamental functions that can be symbolically fixed. The
training accuracy of these simple functions directly affects the overall accuracy and fitting precision
of the network. We selected representative basis functions used in the fixed-step process of the KAN
network as test signals. These simple, symbolizable functions provide a good evaluation of the per-
formance of the Legendre-KAN in terms of symbolic representation and data fitting. As shown in
Table[T} Legendre-KAN demonstrates extremely high accuracy in symbolic function representation.
It achieves lower optimal loss and faster training speed, when using same parameter quantity, com-
pared to Spline-KAN. Additionally, Legendre-KAN is able to achieve superior fitting results with
fewer parameters. This is because the globality and orthogonality of the Legendre polynomials,
which ameliorates the parameter efficiency of KAN.

4.2 EVALUATION OF SYMBOLIC REPRESENTATION ABILITY

Table 2: Fitting results of f(z), including symbolic results and training loss

Network Edge number Symbolic function / ry Loss(RMSE) Symbolic representation results Loss(RMSE)
1th 2th 3th (pre-training) (final training)
. 0,1,1 z71/80.8%  tan(z)/79.9% log(z)/25.7% ) 1.05816(zq + 0.00011)~" .
Spline-KAN 50‘2, 1; tan(z) / 82.2% r(l 3 81.6% (‘,xl;v((:r)) Jotay,  BO9X100 Ly 6iam tan(2.093g7(;ml - 1.57[))04) “1202m30 B x 10
Legendre-KAN (0,1,1) w7 /844%  tan(x)/84.1%  log(x) /1T8% 11 o (w0 — 0.00010) " 8.82 x 10-°
(0,2,1) z71/80.5%  tan(z)/80.4% log(z)/52.8% (21 — 0.00010) "

output o output o

¢g,1,1 ¢g,2,1 \NV\/V" ¢6,1,l ¢6,2,l

Xo input ‘ X1 input ‘ Xo input * X1 input *
(a) Spline-KAN, final loss 1.25 x 10> (b) %egendre—KAN, final loss 8.82 x

10
Figure 5: Results of f(z) = (20 + 107%) "' + (21 + 10~5) " after pre-training, where ¢, ; ; () is

the activation functions of edge (I, 4, j) between node(l, i) and node(I + 1, j). The functions ¢Z(z)
and ¢’ (z) are defined in Section

The accuracy achieved during initial training significantly impacts the correctness of the final sym-
bolic representation. The high precision of Legendre-KAN allows it to provide a more easily fixed
initial result within the KAN, leading to a final symbolic representation accuracy. As illustrated in
Figure [5 and Table 2] unlike Spline-KAN, the higher accuracy enables Legendre-KAN to fit func-
tion which requires precise modeling. After setting and next training, Legendre-KAN gets true result
accurate to five decimal places, but Spline-KAN has an error on edge(0, 1,1).

As shown in Table[3] difference between Spline-KAN and Legendre-KAN is not obvious on simple
functions. However, when dealing with complex coefficients, as highlighted in the table, Legendre-
KAN’s superior precision yields results that closely align with the original function. Importantly, for
instances where Spline-KAN produces erroneous fittings, Legendre-KAN is capable of accurately
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capturing the correct function, demonstrating only minor discrepancies in coefficient accuracy com-
pared to the original function. The loss ratio represents the ratio of the RMSE between Spline-KAN
and Legendre-KAN. It is evident that for functions with incorrect symbolic representations, the error
difference between the two methods is significant. These experiments underscore the critical role of
accuracy in KAN for both symbolic representation and interpretability.

Table 3: Results of symbolic functions

Origin function Result of Legendre-KAN Result of Spline-KAN Loss ratio
exp(sin(xg) + 77) exp(sin(o) + 3) exp(sin(o) + a3) 1.37 x 10°
ah+af+ a3+ 2 ah+af + a3+ 2 ah+af+ a3+ 2 8.74 x 10!
1.00sin(12x0) + 1.00sin(12z;) 0.98sin(11.86x0) + 0.9 sin(11.8921) 0.95sin(11.742 + 0.01) + 0.95sin(11.76; + 0.01) 4.05 x 10°
tanh (1.00z§ + 1.00z{ + 1.00z4 + 1.00z4 + 1) 1.05tanh (0.94z8 + 0.9421 + 0.94z3 + 0.9424 — 0.95) + 0.01 1.01 tanh (0.99z8 + 0.9921 + 0.9923 + 0.99z4 — 0.99) 5.12 x 10*
1.00 exp(sin(zo) + 3 + za]) 1.00 exp(sin(wo) + 23 + x5/) +0.01 1.71 exp(sin(zo) + &3 + Ux2) 2.02 x 101
(1.00 exp(a0) + 1.00 exp(z1)) 1.03(1.00 exp(0.99) + 0.98 exp(1.011)) " — 0.05 7.11ex0(0.91 exp(xo) + 0.91 exp(z1)) — 24.44 1.44 x 10°

(w0 + 21" + 1.00) (x} + 23 + 1.00) 0.71( (5.6220 — 5.39) — (1 +0.01)" = 0.68) ' +0.13 7.1 x 10°

4.3 PERFORMANCE ON COMPLEX NONLINEAR FUNCTIONS

In this subsection, we evaluate the performance of KANs and MLPs on complex nonlinear func-
tions. We use =™ as the activation function of Polynomial-KAN, and the number of layers in MLPs
ranges from 3 to 6. In Appendix for oscillatory functions, polynomial functions and com-
plex composite functions, Legendre-KAN achieves extremely high accuracy. Additionally, we test
scaling and translation of symbolic functions. For these types of functions, changes in the input in-
terval significantly affect the fitting performance of Spline-KAN, but Legendre-KAN still produces
high-accuracy results.

In function fitting, high-order polynomials often leads to numerical instability and oscillation, which
severely affects fitting accuracy. However, as shown in Table [] high-order and high-dimensional
Legendre polynomials do not compromise the fitting efficiency of Legendre-KAN.

Table 4: Test loss (RMSE) over high-dimensional and high-order functions

Function Spline-KAN Polynomial-KAN Legendre-KAN MLPs
Lowestloss  Timeratio Lowestloss  Time ratio Lowest loss Time ratio Lowest loss Time ratio
230+ 230 + a0 +as +1 2.62 x 1074 5.33 1.66 x 10=* 1.66 1.68 x 10~7 1.00 2.82 x 1072 0.99
2§+ + a0+l +1 4.54 x 1074 2.57 9.69 x 107° 2.16 3.57 x 1077 1.00 2.05 x 1072 0.72
exp (ﬁz;ﬂ% sinz(g.’cl)) 4.58 x 10~ 0.75 1.69 x 1073 2.16 8.10 x 10~° 1.00 8.26 x 1072 0.20
tanh(z§ + o + 23 + 24 — 1) 2.50 x 1074 2.44 9.13 x 107* 1.72 1.03 x 10~4 1.00 5.69 x 1072 0.26
xo((21 — 2)% + (w2 — 23)% + (w4 — 1:5)‘2)’1 1.89 x 1072 2.14 1.34 x 102 0.59 5.41 x 1072 1.00 2.38 x 1073 0.04

4.4  VISUALIZATION OF TEST LOSS

To demonstrate the impact of the Legendre polynomial basis on the accuracy of the KAN, Figure [6]
visualizes the test loss for some binary functions. By comparing Figure [6a] and the [y error
for Spline-KAN increases especially when x approaches -1 and 1. This is because the function
f(z, ¢) cannot be effectively captured by low-order spline bases when x nears -1 and 1. In contrast,
the presence of higher-order global polynomial bases in the Legendre polynomial function space
allows the KANS to capture the global signal. As shown in Figure [61] this results in lower and more
uniformly distributed errors across the test samples.

4.5 ABLATION ANALYSIS

To investigate the impact of different modules on the accuracy of Legendre-KAN, we conducted
ablation experiments focusing on parameter initialization, normalization functions, and basis func-
tions. As previously discussed, Legendre-KAN shows a significant advantage over Spline-KAN
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Figure 6: Visualization of test loss for Spline-KAN and Legendre-KAN

for polynomial problems. When extended to specific problems, Legendre-KAN may demonstrate
higher interpretability and accuracy.

Parameter Initialization: We present the impact of initialization parameters on model accuracy in
Table N. We evaluated the effect of initialization parameters ranging from 1 to on accuracy and gra-
dient explosion during model training. Figure[7ashows the results of f(z) = 3>+ 21+ 23 +ai+1.
Normalization Functions: To assess the impact of normalization functions on model performance,
We first tested five different normalization functions: Min-Max, DSILU, ReLLU, Tanh and a com-
bined function. The results of f(z) = z§° + 21° + 23 + 23 + 1 are shown in Figure[7b}
Combination: In addition, we evaluate the importance of normalization function(Min-Max) and
parameter initialization in Figure The PDE function is V2 f(x,y) = 902® + 20sin® y — 25sin® g,
of which the truth solution is f(z,y) = 219 + sin® .

16x107 [ Normalization+Initialization
] Normalization

None
[ Initialization

15%107 4 '

2

14x1074

] 0]

13%107 44 0]

1E-5
12¢107 |

166 1079
1.4x107

74 ] |

1 05 04

testloss.

Test loss(MSE)
m
IS

Testloss(MSE)

005 001 MIN-MAX  DSilu Pinjie Tanh Relu pdeloss boloss 12loss
Parameters Initialization scale Activation functions
(a) Results of test function with (b) Results of test function with (c) Results of PDE
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Figure 7: Ablation analysis
5 CONCLUSION

This paper proposes the Legendre-KAN that combines the advantages of Legendre polynomials
and the KA theorem. This network leverages the global and orthogonal properties of the Legendre
basis functions, effectively addressing the numerical approximation accuracy issues associated with
low-order spline bases. Extensive experiments demonstrate that Legendre-KAN achieves higher

accuracy and interpretability in symbolic representation, compared to the Spline-KAN, while using
less time and parameters.

10
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A ANALYSIS OF NETWORK PARAMETERS

For the Legendre-KAN with & — 1-th order Legendre polynomial basis functions, and the Spline-
KAN using &’-th order B-spline basis with k— &’ intervals, both networks have k activation functions
on their edges. The number of parameters on each edge is k£ + 3, which includes the coefficients for
the k activation functions, two additional weighting parameters, and a bias after the final activation
value.
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When the structure of KAN is [ng,n, ..., n;], with k activation functions on each edge, the total
number of parameters can be presented as :

-1

N = (k+3)) ninip (13)
=1

When the structure of MLP is [ng, 11, ..., 7], the total number of parameters can be presented as :

-1
Npw =Y (nj + Dnja (14)

j=1

B THE EFFECT OF THE ORDER OF SPLINE-KAN
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Figure 8: Test loss and training time of KAN.

In this figure, we evaluate the effect of the order of Spline-KAN when fitting F(x) = (zo —
10e75) "1 + (21 — 10e=5) L. Surprisingly, as the order increases, the fitting results of F'(z) become
worse. This means that increasing the order will not produce a more precise result. Therefore, the
low-order B-spline basis function is used in the experiments of Spline-KAN in this paper.

C EXPERIMENT PARAMETER

The experiments were performed on a desktop PC with Intel Core i5-13600kf processor, 4070Ti
GPU, 32G memory.

During hyperparameter tuning for KAN, including Spline-KAN and Legendre-KAN, we per-
form a grid search over the values {10, 1,0.1,0.5,0.01,0.05,0.001,0.0001} for the learning rate,
{10, 20, 40, 60, 80, 100} for the number of epochs, {0.1,0.01,0.001,0.0001} for the initial coeffi-
cients scale. For each hyperparameter combination, we run 3 random seeds and choose the best
result.

Some explanations of indicators used in this article. All the ratios represent the ratio of the
indicator of a certain network to this indicator of Legendre.

For each tasks, we test the network with different parameter quantity. The parameter quantity for
the lowest error of the result of the Legendre-KAN is assumed to be k;. We divide all the results of
networks into two parts. The first part is the part where the parameter quantity is less than or equal
to or slightly greater than k;. The other part is the part where the number of parameters is less
than or equal to the maximum number of basis functions specified. The former is to compare the
situation when the two networks’ parameter quantities are equal. The second part is used to compare
the optimal fitting accuracy of the network under a certain number of parameters. For the result with
the lowest error in the first part, the number of basis functions is described as Equal params. For
the result with the lowest error in the second part, the number of basis functions is described as best
k/grid in Spline-KAN and best k in other networks.

13
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The parameter quantity of the network under optimal loss:

Table 5: Test loss over complex nonlinear functions

Function KAN shape SPline—KAN Polynomial-KAN Legendre-KAN MLPs
best k/grid  Equal params bestk Equal params bestk best shape best shape
af+al+adtas+1 [4,1] 4/22 4/4 7 7 7 [4,23,1] [4,7,1]
o+ +ad +as+1 [4,1] 4/25 4/12 21 15 15 [4,23,1] [4,13,1]
oh(af — D)(ah - 1) + af° [2,1] 4/26 4/22 24 24 24 [2,8,3.3.1]  [2,7,2,4,1]
Jo(2020) + a3 [2.5.1] 5/26 5/11 14 14 15 [2,41,8,4,1]  [2,28,5,4,1]
tan(1.4zo) + tan(1.42;) 2.1) 4/21 4/26 29 29 29 2,16,1] [2,15,1]
log((xo + 1.05)(x; + 1.05)) 2.1] 4/27 4/26 30 30 30 2,15,1] [2,15,1]
exp(—10(xg — 0.1)%) + exp(—10(z1 + 0.1)2) 2,1) 4/27 4/22 11 11 25 2,11,2,1] [2,14,1]
exp(sin(zo) + a3) 2.1.1] 3/24 4/14 6 6 17 [2,11,4,3 [2,7,3,
(w0 + 1) /(2 + zo1) 2,2,1) 3/23 4/14 9 9 14 2,18, 2,12,4,3,1)
Table 6: Test loss over high-dimensional and high-order functions
. Spline-KAN  Polynomial-KAN  Legendre-KAN MLPs
Function KAN shape X
best k/grid best k best k best shape
230+ 2P + 2l +ay +1 [4,1] 4/27 30 30 [4.20,1]
2+ + a2 + a2l +1 [4,1] 4/57 60 60 [4,15,7,1]
exp (ﬁz}ﬂ% sinz(gx,)) [100,1,1] 3/6 7 8 [100,9,1,1]
tanh(zd + 2t + 23 + 23 — 1) [4,1,1] 6/12 15 17 [4,13,1]
zo((w1 — 22 + (w2 — 23)? + (24— 25)2) " [6,4,1,1] 6/25 9 30 6,13,4,2,1]
D EXPERIMENT DETAILS OF COMPLEX FUNCTIONS
D.1 EXPERIMENT DETAILS OF NONLINEAR FUNCTIONS
Table 7: Test loss over complex nonlinear functions
Function Spline-KAN Polynomial-KAN Legendre-KAN MLPs

Lowest loss

Equal params

Lowest loss

Equal params

Lowest loss

Lowest loss

Equal params

Test loss (RMSE)

ol ol +af+ay+1 819x 1070 148 x 1072 251x 1076 251x10°° 8.03x1077 248x10% 3.58 x 1072
Ty’ + i’ +al+as+ 1 515x107° 444 x107*  1.00x107* 1.25x107%  1.29 x 1077 448 x 1073  2.08 x 1072
x5 (zf — 3)(ah — 1) + 5i° 1.05x107*  167x107% 8.09x 107> 809x107° 7.11x107% 343x1073 1.88x 1072
Jo(20zo) + 2% 221 x 107 247 x 107 7.82x107* 7.82x107* 6.49x107° 4.63x107% 5.02x 1072
tan(1.4w) + tan(1.4z,) 215x 1074 215x107*  561x107* 561x107*  1.37x107® 144x107% 148x 1072
log(xo + 1.05) + log(xy + 1.05) 877x107° 158 x 107% 387x107* 3.87x107* 3.86x 1076 282x1073 282x 1073
exp(—10(zg — 0.1)?) + exp(—10(z1 +0.1)2)  1.03x 107> 149 x 107> 853 x 1073 853x 1073 3.58x 1077 9.27x107* 3.24 x 1073
exp(sin(zo) + 23) 9.91x107%  1.01x107° 337x107° 337x107° 4.59x 10”7 252x107* 333 x107*
(o + 21)/(2 + zoz1) 381x107° 4.88x107° 923x107° 9.23x107° 1.88x107% 157x10"% 290 x 10~*
Time ratio (compared with Legendre-KAN)
wit+at+ad+as+1 6.24 4.79 1.68 1.68 1.00 0.89 0.62
o+l +af+as+1 4.07 5.18 1.99 2.14 1.00 1.00 1.09
x(af — 3)(af — 1) + 5ai® 3.03 2.18 1.58 1.58 1.00 0.41 0.37
Jo(20z0) + % 2.31 1.55 1.02 1.02 1.00 0.11 0.10
tan(1.4z0) + tan(1.4z) 2.76 2.76 1.61 1.61 1.00 0.63 0.82
log(xo + 1.05) + log(xy + 1.05) 3.29 2.42 1.47 1.47 1.00 0.63 0.63
exp(—10(zo — 0.1)?) + exp(—10(z; + 0.1)?) 2.80 2.37 1.82 1.82 1.00 0.85 0.80
exp(sin(zq) + x7) 1.47 1.47 0.92 0.06 1.00 0.24 0.24
(zo + 21)/(2 + mo21) 1.92 1.76 1.63 1.63 1.00 0.21 0.20
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D.2 EXPERIMENT DETAILS OF COMPLEX FUNCTIONS WHEN USING OTHER KANS

Table 8: Test loss and average running time over symbolic functions

Function Shape Fourier-KAN Wavlet- KAN Legendre-KAN
bestk  bestloss  loss (equal params)  Train/epoch(s) best k bestloss  Train/epoch(s) bestk  bestloss  Trainfepoch(s)

ToZ1 [2,2,1] 6 118 x 1072 2.26 x 1072 - 3.18 x 107%  6.05 x 1072 - 7 3.48 x 1073 0.066302
(w0 +2)/(1 +2) 2.2.1] 11 846x 107" 217 %1073 - 139x 107 254 %1079 - 6 370X 107  0.045682
VI F1+yar +1 2,1 18 6.61x 107" 2.63 x 107 2281078 228 x107% 20 7.29x107* 0016484
(w0 +2)7 1+ (a1 +2)7F [2.1] 19 L70x107° 713 x107° - 1.05x 1073 1.45 x 1072 - 15 8.37x 1078 0.013190
sin(x) + sin(wy) 12,1 12 718x107° 175 % 1074 - 9.39x 107 1.04x 107 - 15 5.78x107%  0.013335
tan(zo) + tan(z;) 2,1 18 9.23x 107" 111 %1078 249 x 1073 249 x 1073 18 1.03x 1077 0.013565
arcsin(wo) + arcsin(x1) 2,1 15 2.00x107° 2.00 x 1075 - 513x 1079 513 %107 - 20 1.66x107% 0012618
exp(zo) + exp(z1 2,1 15 221x107* 2.87 x 107 - 6.14x 107 6.14x 107" - 13 1.52x 1077 0.011386
log(wo +2) +log(x1 +2)  [2,1] 13 776 x10°° 9.80 x 10~° - 8.83x 107 154x 1073 - 15 7.07x107%  0.013442

Table 9: Test loss over complex nonlinear functions

Function Fourier-KAN Wavlet-KAN Legendre-KAN
Lowest loss  Equal params ~ Lowest loss ~ Equal params Lowest loss
Test loss (RMSE)
wp+at+ad+as+1 324x107% 386x107% 3.04x107% 7.11x107® 8.03 x 10~7
s+l + a4 a3+ 1 6.25x 107* 280 x 107® 4.65x 107® 9.45x 107®  1.29 X 10~ 7
ag(2d — 3)(xf — 1) + 5a1° 239x 107%  6.42x107% 222x107% 222x107% 7.11 x 1078
Jo(20z0) + % 1.13x107%  1.13x 107 3.70 x 1072  6.52x 1072  6.49 x 10~°
tan(1.4z) + tan(1.4x1) 578 x 1073 578 x 1073 6.18x 107%  6.18 x 107%  1.37 x 107
log(zo + 1.05) + log(x1 + 1.05) 225x 1073 225x107%  3.65x 107% 3.65x 107%  3.86 x 107
exp(—10(zo — 0.1)%) + exp(—10(z1 + 0.1)2) 2.67x 107> 2.67x 107> 247 x107* 3.24x10"* 3.58 x 1077
exp(sin(wg) + x?) 1.16 x 107%  1.31x 1072 256 x 1073  3.15x 107%  4.59 x 1077
(o +21)/(2 + xox1) 6.97x107°  6.97x107° 1.02x 1073 144 x 1073 1.88 x 10~°
Time ratio (compared with Legendre-KAN)
of+at+ad g +1 — — - - 1.00
P+ 20+ a2l g+ 1 - - - - 1.00
z§(2f — 1)(2§ — 1) + Sal° - - - - 1.00
Jo(20z¢) + % - - - - 1.00
tan(1.4zo) + tan(1.4z,) - - - - 1.00
log(zo + 1.05) + log(x1 + 1.05) — - - — 1.00
exp(—10(zg — 0.1)%) + exp(—10(z1 + 0.1)?) - - - - 1.00
exp(sin(zg) + 2?) - - - - 1.00
(zo +21)/(2 + zox1) - - - - 1.00

The mnist dataset. We use the shape [784, 100, 10] Legendre-KAN with Adam for 2000 steps on
the cross-entropy loss. The max degree of Legendre polynomials is 4. The result shows that the test
accuracy of Legendre-KAN can achieve 98.63%. The experimental results may be biased by seeds
and initialization. If time permits, we will conduct more tests.
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