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ABSTRACT

Stellar mass is a fundamental quantity that determines the properties and evo-
lution of stars. However, estimating stellar masses in star-forming regions is
challenging because young stars are obscured by dense gas and the regions are
highly inhomogeneous, making spherical dynamical estimates unreliable. Su-
pervised machine learning could link such complex structures to stellar mass,
but it requires large, high-quality labeled datasets from high-resolution magneto-
hydrodynamical (MHD) simulations, which are computationally expensive. We
address this by pretraining a vision transformer on one million synthetic frac-
tal images using the self-supervised framework DINOv2, and then applying the
frozen model to limited high-resolution MHD simulations. Our results demon-
strate that synthetic pretraining improves frozen-feature stellar mass predictions,
with the pretrained model performing slightly better than a supervised model
trained on the same limited simulations. Principal component analysis of the ex-
tracted features further reveals semantically meaningful structures, suggesting that
the model enables unsupervised segmentation of star-forming regions without the
need for labeled data or lightweight fine-tuning.

1 INTRODUCTION

Stellar mass is a fundamental stellar property that governs luminosity, lifetime, stellar evolutionary
tracks, and stellar nucleosynthesis, which produce the chemical elements essential for the origin of
our solar system and life. In astronomy, the initial mass function (IMF) describes the stellar mass
distribution at the time of their formation, that is, how many stars of a given mass are born in a star
forming region (Salpeter} |1955). In general, the IMF has a downward slope, meaning that low-mass
stars dominate in number; however, the small number of high-mass stars plays a crucial role by
ionizing the surrounding gas, dispersing heavy elements, and providing mechanical feedback to the
interstellar medium. As a result, the slope of the IMF affects not only galaxy evolution and the
history of star formation, but also the origin of life, through its influence on the production of heavy
elements. For example, a “shallow” slope IMF—richer in massive stars—leads to brighter young
galaxies and faster chemical evolution, whereas a “steep” IMF, with fewer massive stars, produces
the opposite trend.

Observations suggest that the IMF exhibits a remarkably similar shape across diverse environments,
while the physical mechanisms governing this distribution remain unclear (Offner et al |2014). To
uncover the origin of the IMF, it is essential to determine the masses of young, still-forming stars
(protostars and pre-main-sequence stars) through observations. However, determining the masses of
young stars from direct observations remains highly challenging. They are deeply embedded within
their natal molecular clouds, making them invisible with optical light. Furthermore, their luminosity
originates primarily from gas accretion rather than stellar radiation, making mass estimates difficult
using methods commonly applied to main-sequence stars.

Predicting stellar masses from their environments is a challenging task. The gas is highly inhomo-
geneous, making analytic models unreliable, while capturing the physics requires three-dimensional
(3D) simulations, which are too expensive to produce in large numbers (Pelkonen et al., 2021). A
promising approach is to combine high-resolution simulations with deep learning. In our work,
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three-dimensional (3D) magneto-hydrodynamical (MHD) simulations are employed to capture the
physics of star formation and track stellar mass growth (Nozaki et al) [2025). We then leverage
two-dimensional (2D) maps of gas projected from these 3D high-resolution MHD simulations to
develop deep learning models for predicting stellar masses. Since large amounts of high-resolution
simulations or observational data with labels are rarely available, we propose a framework that com-
bines self-supervised pretraining and downstream tasks. Models are trained on numerous synthetic
images to learn robust visual representations, while limited high-resolution MHD simulations are
reserved for evaluation on downstream tasks.

Figure 1: Examples of fractal images.

2 RELATED WORK

Self-supervised Learning for Astrophysics Self-supervised learning has become a powerful ap-
proach for extracting image representations without labels, which could help mitigate challenges
associated with limited labeled data. Early methods like MoCoV3 and MAE
improved vision transformer (ViT) pretraining but often required supervised fine-tuning.
In contrast, DINOv2 (Caron et all, 2021} [Zhou et al., 2022} [Oquab et al, 2024) captures semantic
structures by enforcing consistency across multiple views, transfers to downstream tasks without
fine-tuning backbones, and requires only lightweight classifiers or k-nearest neighbor evaluation.
In astrophysics, self-supervised learning has enabled galaxy classification with sparse labels
et all 2021} [Desmons et all, [2024)), inference of galaxy properties by combining simulations and
observations (Eisert et al.| 2024)), and mitigation of observational biases through metadata (Rizhko

& Blooml, [2025)), with DINOv?2 recently applied to galaxy images (Parker et al.| 2024).

Pretraining with Synthetic Data Supervised deep learning has achieved remarkable success by
training models on large labeled datasets. An alternative line of research investigates the use of
synthetic data generated with mathematical equations to achieve competitive performance across
various downstream tasks. Such data can be produced inexpensively and in large quantities, without
demanding experiments, observations, or extensive computational resources, and without raising
ethical or privacy concerns. A pioneering study (Kataoka et al.,[2020) showed that supervised pre-
training on fractal images alone can reach competitive accuracy on natural images, in some cases
even surpassing models pretrained on ImageNet-22k (Kataoka et all, [2022). This approach has
since been extended to supervised learning with ViTs (Nakashima et al.| 2022} [Kataoka et al.| 2022}
Nakamura et all, 2023} [2024) and to self-supervised learning with convolutional neural networks
(Baradad Jurjo et al., 2021} Baradad et al.} 2022).

3 METHODOLOGY

3.1 DATA GENERATION

Synthetic Images for Pretraining We extend the Flame algorithm (Draves & Reckase,
2008) to generate our datasets of fractal images. With randomly sampled parameters 6; =
(as, b, ci,d;, e;, f;) for rotation and shifting fed to a translation w, coordinates are sampled through

an iterated function system (IFS; [1988),

w(@; 0;) = (‘c‘? Z) @+ (}) , (1)

where x is a coordinate. At each sampling step, one of the non-linear variations (e.g., spherical
and bubble) of the original Flame algorithm (Draves & Reckase, [2008)) is probabilistically applied,
yielding the next sampled point «; 1 = w(a;; 6;). Each image uses four such variations, with points
from each variation rendered in a distinct color. The sampled points are then rendered as 336 x 336
images.
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Figure 2: Overview of our model. Left: self-supervised pretraining with synthetic fractal images
using DINOV?2 to extract feature vectors. Right: frozen-feature or zero-shot evaluation on simulation
with the frozen encoder, applied to stellar mass prediction (k-NN) and semantic segmentation (PCA-
based colors).

We generate candidate images with one million points and retain only images whose coverage ex-
ceeds a lower threshold (the fraction of pixels covered by the fractal), preventing smudged or largely
empty images while ensuring diversity within each image (Kataoka et al.| 2020} [Anderson & Far-
2022). In our setup, the threshold is set to 0.9, motivated by the hypothesis that higher coverage
increases inter-image diversity and improves accuracy; this hypothesis is examined in Section [6.1]
To speed up sampling, we estimate coverage on an eight-times downsampled image with 42 x 42
pixels. Examples are shown in Fig.[I] The dataset generation for IM synthetic images was executed
with a throughput of 2.67 TFLOPS per image and 2.67 EFLOPS in total.

Simulations of star-forming regions We performed 3D MHD simulations with SFUMATO, an

adaptive mesh refinement code (Matsumotol, [2007; Matsumoto et al, 2015} [Fukushima & Yajima,
12021} Nozaki et al., 2025), in a cubic box of 4 parseq'| per side containing 3000 M| of gas with

an initial uniform proton density of 1365 cm 3 and a magnetic field of 10 4G along the z-axis. We
solve the following basic MHD equations with the Poisson equation:

Ip

E'FV'(PV):()» 2)
g( V) + (V-V)V——V.P-i-i(VXB)XB— Vo 3)
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where p, P,v,B,®, E, T and A are the density, pressure, velocity, magnetic field, gravitational
potential, total energy, the heating and cooling rates. The heating I" and cooling A rates include the
processes such as heating from chemical reactions, cooling from line emissions and energy transfer
between gas and dust.

To follow the long-term evolution, we use the sink particle method (Matsumoto et al., 2013)), in
which unstable dense clumps are replaced by sink particles that accrete gas within a fixed radius

'] parsec ~ 3.08 x 10*® km ~ 3.26 light years
2] Mg, (solar mass) is equal to the mass of the Sun.
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(5.0 x 10~% pc). The accreted mass is taken as the protostellar mass, allowing us to trace protostellar
growth. The finest spatial resolution is Az ~ 3 x 1073 parsec, sufficient to resolve the Jeans length
with more than five cells, given an initial velocity field with a Mach number of 10. Our dataset
consists of 32k snapshots of 0.5 pc regions centered on protostars, from which we construct 64 x 64
maps of column density, mean line-of-sight velocity, and its velocity dispersion along the z, y, and
z axes, each paired with the elapsed time since protostar formation and the stellar mass shown in
Fig. 2] (2). The simulation was executed with a throughput of 2540 TFLOPS per snapshot and 81.2
EFLOPS in total.

3.2 MODEL IMPLEMENTATION

We employ a ViT-L/16 encoder within the DINOv2 framework (Caron et al., [2021; [Zhou et al.|
20225 |Oquab et al.l 2024)) for self-supervised pretraining and zero-shot or reasonable fine-tuning
evaluation. The encoder is pretrained on 1M synthetic fractal images at a resolution of 336 for 100
epochs with a batch size of 1024 and a patch size of 16. For comparison, we implement a ResNet-18
(He et al.l [2016)) baseline trained in a fully supervised manner. Both models use a cosine-annealed
learning rate schedule with a maximum of 0.04, including 10 warm-up epochs followed by 90 epochs
of cosine decay. The ResNet-18 is trained with an L regression loss and a batch size of 1024 for 100
epochs. Simulation data are preprocessed by applying a logarithmic transformation to stellar mass
and column density, and min—max normalization to mean line-of-sight velocity and its dispersion.
To assess scaling, we further pretrain a ViT-L/16 encoder on 10M synthetic fractal images with a
batch size of 2048 for 70 total epochs (10 warm-up epochs followed by 60 cosine-decay epochs),
due to computational limitations.

4 EXPERIMENTAL SETUP

Self-supervised Pretraining with Synthetic Data and £-NN Regression The pretrained ViT-
L/16 encoder is applied to 32k snapshots from star-formation simulations at a resolution of 64 to ob-
tain 1024-dimensional feature vectors. Principal component analysis (PCA) is fitted on the training
split and applied to all features while preserving the full dimensionality of 1024 (PCA whitening).
The transformed features are then evaluated with a distance-weighted k-nearest neighbors (k-NN)
regressor (k = 5) to predict the logarithm of stellar mass, using 24k training and 8k test samples.
Prediction performance is assessed in terms of root-mean-square error (RMSE) and the coefficient
of determination (R?).

Zero-shot Unsupervised Feature Visualization To examine the semantic structure of the learned
representations, feature vectors from the pretrained ViT-L/16 encoder are projected with PCA and
the first three components are mapped to the RGB color space (dimensionality reduction on PCA).
Although pretraining is performed with a patch size of 16, for visualization we linearly upsample
4x4 input patches to 16x16 prior to encoding, in order to maintain consistency with the token
granularity of the model.

5 RESULTS

We evaluate the ViT-L/16 encoder, pretrained on fractal images, on two downstream tasks, keeping
the model parameters frozen.

5.1 FROZEN-FEATURE REGRESSION ON STELLAR MASSES

Fig.|3alshows a scatter plot of the first and second PCA components of feature vectors from column
density, mean line-of-sight velocity, and its velocity dispersion maps. The distribution exhibits a
weak trend with stellar masses, which are otherwise difficult to infer from 2D density and velocity
information alone.

To evaluate predictive performance, we use all all PCA-whitened components with a k-NN regressor
trained on the training set and tested on the validation set. Fig.[3bland Fig. [3c|compare stellar mass
predictions from our method and a supervised ResNet-18 baseline, respectively. Both approaches
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Figure 3: Frozen-feature regression of stellar masses. (a) PCA projection of feature vectors from
DINOV2 colored by stellar mass. (b) True versus predicted stellar masses using DINOv2 represen-
tations with k-NN regression. (c¢)True versus predicted stellar masses from a supervised ResNet-18
baseline.

follow the ground truth trend up to ~ 6 M, where more than 10? training samples are available.
Beyond this, with fewer than 10 samples, ResNet-18 tends to underestimate stellar masses, while
DINOV2 captures many true values in the range 615 M. At higher masses, neither model performs
reliably due to data scarcity. Table [T] shows that PCA features slightly improve scores over raw
feature vectors and that pretraining with fractal images markedly improves performance compared
to the result of random initialization with DINOv2.

ResNet-18 DINOV2 + k-NN (k = 5)
Methods ‘ Random Init.  Pretrained ‘ Random Init.  Pretrained with PCA whitening
R%(1) -1.9 0.80 -0.58 0.80 0.81
RMSE ({) 0.34 0.089 0.52 0.089 0.088

Table 1: R? and RMSE of frozen-feature regression on stellar mass using ResNet-18 and DINOv2.

5.2 ZERO-SHOT SEMANTIC SEGMENTATION WITH PCA-BASED COLORS

Fig. ] shows four examples (a—d), each containing four panels: column density Nyp, mean line-
of-sight velocity vy, its velocity dispersion o,, and a color map based on the first three PCA
components of the 1024-dimensional feature vectors. Black areas correspond to either diffuse, low-
density regions or regions of very high velocity dispersion, the latter likely marking sites of ongoing
star formation. Yellow to yellow-green areas highlight regions of low velocity dispersion (Fig. #a}-
[c). Magenta and dodgerblue indicate negative and positive line-of-sight velocities in regions of high
velocity dispersion (Fig. @bH4d), where gas may accrete onto dense cores and contribute to stellar
growth. Notably, this semantic segmentation arises directly from the PCA projection of pretrained
representations, without any labeled data or supervised fine-tuning.

6 ABLATION STUDY

6.1 COVERAGE ON SYNTHETIC PRETRAINING DATA AND ACCURACY ON DOWNSTREAM
TASKS

We construct the pretraining dataset by applying a lower coverage threshold and retaining only
images that exceed it, thereby avoiding degenerated cases from specific fractal parameters (e.g.,
contracted smudged shapes or largely empty images) that worsen the performance of representation
learning. While the main experiments fixed the lower coverage at 0.9, here we sweep it more broadly
and study its effect on downstream accuracy.

In this evaluation, we pretrain a ViT for 100 epochs on 100k synthetic images with a batch size
of 256, and evaluate the accuracy using a k-NN classifier (¢ = 10) on frozen ViT features for
ImageNet-1k. We vary the lower coverage threshold from 0.0 to 0.9. Table 2] shows top-1 and
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Figure 4: Snapshots from MHD simulations with visualizations of PCA components of feature
vectors. Each panel shows four maps: column density Ny, mean line-of-sight velocity ves, its
velocity dispersion o, and a color map of the first three PCA components from image patches.

w/o PCA whitening | w PCA whitening

Lower Coverage Threshold | top-1 top-5 | top-1 top-5
0.0 7.44 14.18 | 15.21 24.74

0.3 10.41 18.85 | 21.11 32.39

0.4 9.62 17.89 | 19.94 31.28

0.5 11.74 20.24 | 21.20 32.39

0.6 8.02 14.03 | 12.83 20.85

0.9 8.58 14.58 | 14.36 22.69

Table 2: Effect of lower coverage threshold during synthetic pretraining on downstream
ImageNet—-1k accuracy. Those are measured on top-1 and top-5 accuracy with a k-NN classi-
fier (k = 10) on frozen ViT features, with and without PCA whitening.

top-5 accuracies, with and without PCA applied for the raw feature vectors. Although our initial
hypothesis was that enforcing high coverage (threshold = 0.9) would increase inter-image diversity
and thus improve accuracy, we find that a moderate threshold around 0.5 yields the best performance
across all cases.
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6.2 SCALING ON PRETRAINING DATA

To assess pretraining data scaling, we evaluate a frozen ViT with a k-NN classifier (¢ = 10) and
with a trainable MLP head (“MLP probe”) after pretraining on 1M and 10M synthetic images. In
k-NN, labels of the valid data are predicted using the frozen features of the training data, whereas
the MLP probe performs lightweight fine-tuning by training an MLP head on those feature vectors
while keeping the encoder frozen. For the MLP probe, we sweep the head learning rate from 0.65
to 0.85; 0.85 performs best, although 100 epochs might be insufficient for full convergence.

Table [3] shows that the MLP probe achieves 36.8% top-1 and 58.9% top-5 accuracy on
ImageNet-1k with pretraining on 10M synthetic images, compared to 32.6% and 53.5% with
1M, while the accuracies on £-NN improve only marginally. Scaling to 10M yields broadly positive
but modest gains for both £-NN and the MLP probe, suggesting redundancy in the larger dataset and
that diversity—not volume alone—drives discriminative feature learning.

k-NN on I-1k k-NN on I-1k MLP probe k-NN on SF
w/o PCA whitening | w/ PCA whitening on I-1k with PCA whitening
Dataset size | top-1 top-5 | top-1 top-5 | top-1 top-5 || R2(1) RMSE ()
IM 8.58 14.58 | 14.36 22.69 | 32.6 535 0.81 0.088
10M ‘ 8.40 15.90 ‘ 14.50 24.64 ‘ 36.8  58.9 H 0.82 0.086

Table 3: Effect of pretraining dataset size on downstream performance: ImageNet -1k (I-1k) top-
1/top-5 using k-NN (k=10) with and without PCA whitening and an MLP probe on frozen ViT
features, and coefficient of determination (R?) and root-mean-square error (RMSE) on 3D MHD
simulations of star-forming (SF) regions. All evaluations use a frozen ViT encoder.

7 SUMMARY AND LMITATIONS

Our results demonstrate that self-supervised synthetic pretraining can serve as a data-efficient al-
ternative to supervised pipelines in high-resolution, yet data-limited, MHD simulations, with a ViT
encoder achieving performance comparable to that of supervised learning. PCA-based visualization
further revealed meaningful structures, such as dense cores and inflows, motivating the extension of
this approach to stellar property prediction and its direct application to observational data.

We also find two practical choices that matter for synthetic pretraining. First, varying the lower
coverage threshold reveals that a threshold of approximately 0.5 outperforms very high coverage of
0.9, suggesting that aggressive filtering may suppress morphological diversity and harm downstream
accuracy (Section [6.I). Second, scaling the pretraining set from 1M to 10M images improves the
accuracy of the linear evaluation on ImageNet -1k by 4.2% in top-1 and 5.4% in top-5. Neverthe-
less, the gain is modest, indicating redundancy in the 10M dataset and suggesting that diversity—not
volume alone—governs the ViT’s ability to learn discriminative features (Section|[6.2).

The present approach indicates a potential to predict protostellar masses, and incorporating informa-
tion from more extended gas and velocity fields may ultimately enable predictions of the final stellar
mass and the IMFE. The framework, however, still relies on labeled simulation data for training in
order to apply it to observations. Meanwhile, PCA-based segmentation highlights that broad struc-
tural patterns can be identified without labels, though addressing observational noise—potentially
by constructing datasets from the noise itself—will be crucial for robustness in practice. Domain
transferability among fractal images, simulations, and observations should also be investigated in
future work.
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