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Abstract

In this article, we present a high-bandwidth
egocentric neuromuscular speech interface
for translating silently voiced speech artic-
ulations into text. Specifically, we col-
lect electromyographic (EMG) signals from
multiple articulatory sites on the face and
neck as individuals articulate speech in
an alaryngeal manner to perform EMG-to-
language translation. Such an interface is
useful for restoring audible speech in indi-
viduals who have lost the ability to speak in-
telligibly due to laryngectomy, neuromuscu-
lar disease, stroke, or trauma-induced dam-
age (e.g., from radiotherapy toxicity) to the
speech articulators. Previous works have fo-
cused on training text or speech synthesis
models by mapping EMG collected during
audible speech articulation to correspond-
ing time-aligned audio, or by transferring
time-aligned audio targets from EMG col-
lected during audible articulation to EMG
collected during silent articulation. How-
ever, such paradigms are not suitable for in-
dividuals who have already lost the ability to
audibly articulate speech. Here, we present
an alignment-free EMG-to-language con-
version approach using only EMG col-
lected during silently articulated speech.
Our method is trained on a large, general-
domain English language corpus and is re-
leased in an open-sourced manner.

1 Introduction

Electromyographic (EMG) signals collected from
the orofacial neuromuscular system during the
silent articulation of speech in an alaryngeal man-
ner can be synthesized into personalized audible
speech, potentially enabling individuals without
vocal function to communicate naturally. More-
over, such systems could seamlessly interface with
virtual environments where audible communica-
tion may be disruptive (e.g., multiplayer games)

leemiller@ucdavis.edu

or facilitate telephonic conversations in noisy set-
tings. A key enabler of these advancements is
the rich information encoded in EMG signals
recorded from multiple spatially distributed loca-
tions, capturing muscle activation patterns across
different muscles. This richness allows for the
decoding of subtle and intricate articulatory de-
tails, potentially offering higher bandwidth and
lower latency compared to exocentric or allocen-
tric modalities, such as video-based lip-to-speech
synthesis. By leveraging this information, EMG-
based systems offer a promising foundation for
natural and efficient communication across a range
of applications.

Willett et al. (2023) and Metzger et al. (2023)
present invasive speech brain computer interfaces
(BCI). While invasive methods are viable for indi-
viduals with anarthria or amyotrophic lateral scle-
rosis, our EMG-based non-invasive speech pros-
thesis is appropriate for individuals who have un-
dergone laryngectomy or experience dysarthria or
dysphonia. Défossez et al. (2023) demonstrate a
non-invasive BCI where listened speech segments
are reconstructed from magnetoencephalography
(MEG) or electroencephalography (EEG) signals.
However, such systems are not suitable for initiat-
ing communication (e.g., through speech).

Unlike invasive methods (Willett et al., 2023;
Metzger et al., 2023), which record neural activ-
ity at single-neuron resolution with high signal-to-
noise ratios, EMG captures the aggregated activity
of multiple muscle motor units, with signals fur-
ther distorted as they propagate through the subcu-
taneous tissue and skin. These distortions lead to
spatial signal correlations across electrodes, where
activity at one sensor can influence measurements
at others. To model this structure, we introduce
symmetric positive definite (SPD) matrix repre-
sentations that encode second-order inter-channel
correlations, providing a compact and discrimi-
native representation of EMG signals. In con-



trast to prior approaches (Défossez et al., 2023;
Gaddy and Klein, 2020, 2021), which learn repre-
sentations by mapping time-aligned MEG, EEG,
or EMG signals to corresponding audio, we fur-
ther improve the translation pipeline by directly
predicting phoneme sequences from EMG with-
out requiring time-aligned audio. This is achieved
using connectionist temporal classification (CTC)
loss (Graves et al., 20006), enabling alignment-free
sequence prediction akin to standard speech-to-
text (S2T) translation.

2 Prior work

The current benchmark in silent speech interfaces
is established by Gaddy and Klein (2020, 2021).
Using electromyographic (EMG) signals collected
during silently articulated speech (Fg) and audibly
articulated speech (£ 4), along with corresponding
audio signals (A), they develop a recurrent neural
transduction model to map time-aligned features
of £ 4 or Eg with A. In their baseline model, joint
representations between F4 and A are learned
during training, and the model is tested on Eg. To
improve performance, a refined model aligns Eg
with F 4, and subsequently uses the aligned fea-
tures to learn joint representations with A. The
methods described above have significant short-
comings that limit their practicality for real-world
deployment. These include: (I) the unavailability
of good-quality F 4 and A in individuals who have
lost vocal and articulatory functions; (2) the need
for a 2x sized training corpus for learning x repre-
sentations (requiring both £4 and Eg); and (3) the
requirement for aligned features, which are com-
putationally expensive and time-consuming to ob-
tain, making near real-time implementation chal-
lenging. We overcome these challenges by train-
ing a model using only Eg and corresponding
phonemic transcriptions, without any alignments,
employing CTC loss.

Schultz and Wand (2010) demonstrate EMG-
to-language modeling using only Eg, relying on
hidden Markov models (HMMs) trained on a
small 101-word vocabulary. However, they do
not demonstrate the scalability of this approach to
large-vocabulary corpora.

Benster et al. (2024) present a cross-modal ap-
proach to training EMG-to-language model, us-
ing contrastive loss functions that leverage both
E4 and Eg, as well as audio-only corpora (A)
such as LibriSpeech (Panayotov et al., 2015), to

learn shared representations between the audio
and EMG modalities. In contrast to their work,
our approach relies solely on the surface EMG
modality (Eg), without leveraging additional data
sources such as synchronized audio signals (£ 4)
or large-scale audio-only corpora (A). This single-
modality design enables us to model EMG-to-
language mappings without requiring access to
multimodal datasets or external speech resources.

Another notable approach is presented by
Gowda et al. (2024), who demonstrate that, un-
like images and audio - which are functions sam-
pled on Euclidean grids - EMG signals are de-
fined by a set of orthogonal axes, with the man-
ifold of SPD matrices as their natural embedding
space. We build upon the methods described by
Gowda et al. (2024) in our analysis and introduce
the following key improvements: (I) we train a
recurrent model for EMG-to-phoneme sequence-
to-sequence generation, as opposed to the classifi-
cation models proposed by Gowda et al. (2024),
(@ we operate in the sparse graph spectral do-
main, effectively circumventing bottlenecks asso-
ciated with repeated eigenvalue computation in
neural networks, which, due to their iterative na-
ture, often have limited parallelization capabilities
on GPUs, and (3) demonstrate EMG-to-language
conversion on continuously articulated speech as
opposed to individual words or phonemes.

A substantial body of prior work (Jou et al.,
2006; Kapur et al., 2020; Meltzner et al., 2018;
Toth et al., 2009; Janke and Diener, 2017; Di-
ener et al., 2018) has laid the groundwork for the
development of silent speech interfaces. While
these studies have been instrumental in shaping
the field, they place less emphasis on understand-
ing the data structure and the implementation of
parameter and data-efficient approaches.

In the following sections, () we explain the
inherent non-Euclidean data structure of EMG
signals, @ quantify the signal distribution shift
across individuals, and () demonstrate that
high fidelity phoneme-by-phoneme translation of
EMG-to-language is possible using only Eg with-
out £4 and A.

3 Methods

EMG signals are collected by a set of sensors V
and are functions of time ¢. A sequence of EMG
signals Eg corresponding to silently articulated
speech, associated with audio A and phonemic



content L, is represented as Fs = {f,(¢)}vy ep-
Here, f,(¢) denotes the EMG signal captured at a
sensor node v as a function of time ¢. The au-
dio signal A encodes both phonemic (lexical) con-
tent and expressive aspects of speech, such as vol-
ume, pitch, prosody, and intonation, while L rep-
resents purely the phonemic content—a sequence
of phonemes. For instance, the phonemic con-
tent L of the word <FRIDAY> is denoted by the
phoneme sequence <F-R-AY-D-IY>.

To model the mapping from Eg to L, we em-
ploy a sequence-to-sequence model trained using
CTC loss. This approach allows us to train the
model with unaligned pairs of Fg and L, elimi-
nating the need for precise alignment between the
input signals and their corresponding phoneme se-
quences. During testing, a sample of Eg not in the
training set outputs probabilities over all possible
phonemes (40 of them in our case) at every time
step, and we construct L using beam search. L is
then converted to personalized audio A using few-
shot learning (Choi et al., 2021), which requires
as little as a single audio clip from the individual
(an audio clip of about 2-5 minutes, not necessar-
ily containing the same phonemic content as L,
recorded before their clinical condition). By lever-
aging this sample, we generate audio A that cap-
tures both the predicted linguistic content and the
speaker’s unique vocal characteristics (we elabo-
rate on this topic in section 8.2).

3.1 EMG data representation

Gowda et al. (2024) demonstrate that the mani-
fold of SPD matrices serves as an effective em-
bedding space for EMG signals, enabling the nat-
ural distinction of different orofacial movements
associated with speech articulation and all En-
glish phonemes using raw signals. We make sig-
nificant improvements on their methods to per-
form phoneme-by-phoneme decoding as opposed
to classification paradigms and demonstrate our
methods on continuously articulated speech in the
English language as opposed to discrete word or
phoneme articulations.

We construct a complete graph G = (V,E(7))
to represent the functional connectivity of EMG
signals, where £(7) denotes the set of edges over
a time window 7 = [tsTarT,tEND|. The edge
weight between two nodes v; and v € V within
this time window is defined as e19 = e9; = fle |
which corresponds to the covariance of the signals

at those nodes during the interval. Consequently,
the edge (adjacency) matrix £(7) is symmetric and
positive semi-definite. To ensure positive definite-
ness, we convert the semi-definite adjacency ma-
trices to definite matrices by applying the transfor-
mation £ < (1 —n)€ +ntrace(€)Z, where Z
is the identity matrix of the same dimension as &£.
We empirically found that » = 0.1 suffices for all
our data. We then model these symmetric positive
definite (SPD) matrices using a Riemannian ge-
ometry approach via Cholesky decomposition, as
described by Lin (2019) (we provide background
on Riemannian geometry of SPD matrices in ap-
pendix A).

For any adjacency matrix £, we can express it
as & = UXUT, where U is the matrix of eigen-
vectors, and X is a diagonal matrix containing the
corresponding eigenvalues. However, instead of
calculating U for each £ at every time-step 7, we
fix an approximate common eigenbasis () derived
from the Fréchet mean F (Lin, 2019) of all ad-
jacency matrices (at different time points) in the
training set. Specifically, we compute F as the
geometric mean of all £, and decompose it as
F = QAQ", where  contains the eigenvectors
of F, and A is a diagonal matrix of its eigenval-
ues.

Using this fixed eigenbasis (), any adjacency
matrix £ can be approximately diagonalized as
QTEQ, yielding a sparse matrix 0. Gowda
et al. (2024) show that such a matrix () can be
learned using neural networks constrained on the
Stiefel manifold (Huang and Van Gool, 2017) and
that such a () is different for different individ-
uals. However, neural networks constrained on
the Stiefel manifold require performing repeated
eigendecomposition operations, which have lim-
ited parallelization capability and lead to unstable
gradients when using CTC loss. Therefore, we
simply derive () from the Fréchet mean F and use
that () to obtain sparse matrices . This formu-
lation allows us to work in an approximate graph
spectral domain with a consistent orthogonal basis
across all time windows 7. For our task, we com-
pute the graph spectral sequences o for all time
windows 7 and use these as inputs for EMG-to-
language translation. We illustrate these concepts
in figure 1.
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Figure 1: LEFT: EMG-to-phoneme translation pipeline. Bandpass-filtered and z-normalized EMG sig-
nals are converted into SPD edge matrices £(7), which are approximately diagonalized to o(7) and
passed through a BiGRU. The model outputs phoneme probabilities P(7) every 20 ms. The most prob-
able phoneme sequence is decoded using beam search. RIGHT: Illustration of the geometry of SPD
matrices in 3D. Edge matrices from individuals A (blue) and B (green) are shown on a convex cone
manifold, with their corresponding Fréchet means in purple and yellow, respectively. The tangent spaces
at A and B differ (because the surface is curved), and the induced transformations in RIVI reflect a change

of basis. Inset: eigenvectors of individual A.

3.2 EMG-to-phoneme sequence translation

We implement a gated recurrent unit (GRU)
architecture for EMG-to-phoneme sequence-to-
sequence modeling. The input to the GRU con-
sists of a sequence of approximately diagonalized
matrices, denoted as o, derived over different time
windows T.

To investigate whether recurrent models defined
on the manifold provide better representations of
o(7) for sequence-to-sequence translation com-
pared to those defined in Euclidean space, we draw
motivation from prior works (Chakraborty et al.,
2018; Jeong et al., 2024), which show that re-
current networks defined on manifolds outperform
their Euclidean counterparts on classification and
forecasting tasks involving manifold-valued data.
Based on this, we construct three distinct GRU ar-
chitectures:

(D GRU gycrmean: A GRU layer defined in the
Euclidean domain, following the implementation
described by Chung et al. (2014),

@ GRU paniroLp: A GRU layer formulated
on the manifold of SPD matrices, as proposed by
Jeong et al. (2024), and

3 GRU wantrorp + ODE: A GRU layer defined
on the manifold of SPD matrices, plus an im-
plicit layer solved using neural ordinary differ-
ential equations, integrating methodologies from
Jeong et al. (2024), Chen et al. (2018), and Lou
et al. (2020).

GRUwmaniroLp and GRUwaniroLp + oDE directly
accept SPD matrices, o, as input, whereas
GRUEgycLipean processes vectorized representa-
tions of 0. At each time step, the GRU models
output probability distributions over 40 phonemes
in the English language. The models are trained
using CTC loss, and during inference, the most
probable phoneme sequence is reconstructed using
beam search decoding. The end-to-end EMG-to-
language translation model is depicted in figure 1.
We provide further details on the GRU architec-
tures in appendix A.

3.3 Geometric perspective aligns well with
biology

We model multivariate EMG signals recorded at
|V| sensor nodes over different time windows 7
using symmetric edge matrices £(7) € RIVIXVI,
which capture pairwise relationships between sen-



sor channels. Each matrix £(7) can be interpreted
as defining a linear transformation of the sensor
space RIVI, reflecting the spatial structure of EMG
activity at time 7. This transformation admits a
spectral interpretation: when £(7) is symmetric, it
can be diagonalized as

E(r)=US(n\UT,

where U is an orthonormal matrix whose columns
are the eigenvectors of £(7), and X(7) is a diag-
onal matrix of eigenvalues. In this eigenbasis co-
ordinate system, the transformation of space is ex-
pressed as a weighted combination of the eigen-
vectors, with the eigenvalues in X(7) serving as
scaling coefficients. To reduce variability across
time and to enable sequential modeling, we fix an
approximate eigenbasis Q € RVI*IVI and project
each edge matrix into this basis:

o(m) = QE(M)Q,

yielding an approximately diagonal matrix o (7).
The diagonals of o(7) approximate the eigenval-
ues of £(7) in the shared basis (), providing a
compact summary of the EMG activity at each
time window. These sequences of approximate
eigenvalues can then be modeled using a recur-
rent neural network to capture temporal dynam-
ics. This formulation aligns with the physiolog-
ical origin of EMG signals: the surface EMG
measurement arises from an additive superposi-
tion of motor unit action potentials, resulting in
a structure that is naturally well-represented in an
eigenbasis. This contrasts with modalities like
speech, which are better modeled as time-varying
filters applied to time-varying sources (Sivaku-
mar et al.,, 2024). Importantly, the choice of
eigenbasis () is subject-specific. EMG signals
from different individuals yield different underly-
ing transformations £(7) and, consequently, dif-
ferent eigenspaces due to anatomical and physio-
logical variability—including differences in sub-
cutaneous fat, muscle fiber composition, conduc-
tion velocities, and neural drive properties. As a
result, signal distribution shifts across individuals
can be interpreted as changes of basis in the un-
derlying space RVI,

4 Data

We evaluate our models using three datasets.
They are DATA syaLL-vocas, DATA L arGe-vocass

and DATA yato-woRrDS- The duration of
DATA smaLi-vocas 18 approximately 75 min-
utes, DATA [ arge-vocas 1S approximately 480
minutes (about 8 hours), and DATA yaro-worbs
is approximately 60 minutes (60 x 4 from four
different individuals). The size of the data is
comparable to that used in Willett et al. (2023);
Metzger et al. (2023) in terms of the number of
articulated sentences.

We begin with DATA syari-vocas, @ times-
tamped dataset of isolated and connected words,
to demonstrate that EMG-to-phoneme sequence
mapping is feasible using only Eg, without re-
lying on E4 or external audio corpora (A). This
controlled setting serves as a proof of concept be-
fore extending to more complex and naturalistic
speech.

Next, we use DATA 1 arge-vocag tO evaluate our
models on silently articulated speech in uncon-
strained, conversational settings using a large,
general-domain English corpus. This dataset re-
flects realistic usage scenarios and challenges in
large-vocabulary decoding.

Finally, DATA yato-worps 18 used to demonstrate
that a generalizable language-to-spelling model
can be trained with minimal data by using a com-
pact set of codewords, such as the NATO phonetic
alphabet. We train the same model architecture
separately for different individuals and find that
performance is consistent across subjects. This in-
dicates that our proposed architecture is effective
across users.

We describe each dataset in more detail below.
Additional information on data collection and ex-
perimental setup is provided in appendix B.

4.1 DATA smaLL-vOCAB

Following Gaddy and Klein (2020), we cre-
ate a limited-vocabulary dataset consisting of 67
unique words. These words include weekdays,
ordinal dates, months, and years. Sentences
are constructed from these words in the format
<WEEKDAY-MONTH-DATE-YEAR>. A single in-
dividual silently articulated 500 such sentences,
and the resulting EMG data, denoted as Eg, is
translated into output phoneme sequences. We
also have timestamps that mark the beginning and
end of each word within a sentence.

We collect EMG data from 31 sites at a sam-
pling rate of 5000 Hz. For details about electrode
placement and the experimental setup, please refer



to appendix B.

4.2 DATA [,ARGE-VOCAB

We adapt the language corpora from Willett
et al. (2023), who demonstrated a speech brain-
computer interface by translating neural spikes
from the motor cortex into speech. The dataset
comprises an extensive English language corpus
containing approximately 6,500 unique words and
11,000 sentences. Unlike Gaddy and Klein (2020,
2021), we collect only Eg (excluding E/4 and
A) and perform Fg-to-language translation with-
out time-aligning with £4 and A. The data col-
lection setup follows the methodology described
for DATA syaLi-vocas- This corpus includes sen-
tences of varying lengths, with the subject articu-
lating sentences at a normal speed, averaging 160
words per minute. Timestamps were used solely
to mark the beginning and end of each sentence,
with the subject clicking the computer mouse at
the start of articulation and again upon comple-
tion (unlike DATA smaLL-vocas, there are no times-
tamps to demarcate between words within a sen-
tence). For details about electrode placement and
the experimental setup, please refer to appendix B.

4.3 DATA naAT0-WORDS

We use the dataset provided by Gowda et al.
(2024)!. Specifically, we use data from their sec-
ond experiment, in which 4 individuals articu-
lated English sentences in a spelled-out manner
using NATO phonemic codes in a silent man-
ner. For instance, the word <RAINBOW> was ar-
ticulated as <ROMEO-ALFA-INDIA-NOVEMBER-
BRAVO-OSCAR-WHISKEY > with phonemic tran-
scription <R-OW-M-1Y-OW spacE AE-L-F-AH space
IH-N-D-IY-AH spacE N-OW-V-EH-M-B-ER spacE B-
R-AA-V-OW spacE AO-S-K-ER space W-IH-S-K-
IY>. Subjects articulated phonemically balanced
RAINBOW and GRANDFATHER passages in this
spelled-out format. In total, 1968 NATO code
articulations were recorded across both passages.
The EMG data was collected from 22 sites in the
neck and cheek regions at a sampling rate of 5000
Hz.

5 Results

Here, we describe the experimental setup and
results for DATA | arge-vocas, DATA smaLL-vocaBs
and DATA yaro-worps. During preprocessing, raw

"The dataset is available at Gowda et al. (2024) dataset.

EMG signals are bandpass filtered between 80
and 1000 Hz and z-normalized per channel along
the time dimension. A complete time-dependent
graph, £(7), and its diagonalized form, o(7), are
then constructed from the EMG signals.

5.1 ReSllltS fOl‘ DATA LARGE-VOCAB

We use a timestep 7 of 20 ms, implemented as a
sliding window with 50 ms of overlapping con-
text and a 20 ms step size, to compute £(7) and
o(1), both of which are SPD matrices of size
31 x 31. The matrices o(7) are then input to a
GRU for EMG-to-phoneme sequence translation.
The dataset is split into training, validation, and
test sets consisting of 8000, 1000, and 1970 sen-
tences, respectively. Sentences in the test set are
not present in the training and validation sets. The
model depicted in figure 1 is trained using 3 GRU
layers for 100 epochs, and the weights correspond-
ing to the lowest validation loss are selected.

In table 1, we report the phoneme error rate
(PER) and word error rate (WER), computed us-
ing the Levenshtein distance between the original
and reconstructed sequences. Words are recon-
structed from phoneme sequences using dictionary
lookup, scored with a 3-gram language model fol-
lowing Heafield (2011) (we elaborate on this in
section 8.1).

Table 1: PER and WER on
DATA [ ARGE-VOCAB- Lower values indicate
better performance. Gray inset values correspond
to models trained on raw SPD matrices without
approximate diagonalization.

Mean

MODEL PER WER

6.4 million parameters 0.478 0.51) 0.80 (0.82)

In figure 2, we show the phoneme error rate
(PER) and the corresponding word error rate
(WER) for the decoded sentences in test set. A
lower PER can still result in a high WER, depend-
ing on the nature of the transcription errors. For
example, the phrase <BELIEVE EVERYTHING>
with phonemic transcription <B-TH-L-TY-V-SpaCE-
EH-V-R-1Y-TH-IH-NG>, when decoded by the
model as

, results in the sentence <REALLY
VERY THINK>. Although the PER is only 0.38,
the WER is 1.5.

In figure 3, we examine how model size affects

the PER. To do this, we vary the number of GRU
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quartile annotations for DATA [ arge-vocas. A
lower PER can still result in a high WER.
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Figure 3: Model size versus PER for EMG-to-
phoneme translation for DATA [ srge-vocas-

layers and, within each configuration, the dimen-
sionality of the GRU’s hidden units. We observe
that the relationship between PER and model size
approximately follows the power law, as described
by Hoffmann et al. (2022) in the context of LLMs.
Specifically, when trained with sufficient data, the
error E/ can be expressed as E = %, where NV
is the model size and « and 3 are positive con-
stants. This relationship allows us to predict model
performance based on its size. Notably, even a
single-layer model achieves a reasonably low PER

of 0.56, although deeper models perform better.

5.2 Results for DATA SMALL-VOCAB

We use a timestep 7 of 50 ms, implemented as a
sliding window with 100 ms of overlapping con-
text and a 50 ms step size, to compute £(7) and
o(7), both of which are SPD matrices of size
31 x 31. The matrices o(7) are then input to a
GRU for EMG-to-phoneme sequence translation.
The dataset is split into training, validation, and
test sets consisting of 370, 30, and 100 sentences,
respectively. The model depicted in figure 1 is
trained using a single GRU layer for 100 epochs,
and the weights corresponding to the lowest vali-
dation loss are selected.

We also provide a comparative analy-
sis  of GRU EgycLipeans  GRU manirorp,  and
GRU maniroLp + opE.  Training GRU EycLipean
takes approximately 2 minutes, GRU waniroLp ap-
proximately 40 minutes, and GRU psniroLp + ODE
approximately 80 minutes on an RTX 4090 GPU.

In table 2, we report the phoneme error rate
(PER) and word error rate (WER), computed us-
ing the Levenshtein distance between the origi-
nal and reconstructed sequences. Words are re-
constructed from phoneme sequences by matching
them to the word sequence with the lowest Leven-
shtein distance in a 67-word corpus.

Table 2: Mean PER and WER for
DATA smaLL-vocas- Lower PER and WER are bet-
ter.

PER
0.13

MODEL SIZE
4 MILLION

WER
0.14

In figure 4, we analyze the impact of model
size on phoneme error rate (PER) across dif-
ferent GRU configurations by varying the di-
mensionality of the GRU’s hidden units. For
GRU gyciipean and GRU paniroLp, We oObserve
that the relationship between PER and model size
approximately follows a power-law trend. In con-
trast, GRU maniroLp-ope deviates from this pat-
tern: while it performs competitively at smaller
model sizes, its performance deteriorates as the
model size increases. The cause of this degrada-
tion remains unclear.
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Figure 4: Model size versus PER for EMG-to-
phoneme translation for DATA syarr-vocas-

Importantly, both GRU pmanirorp  and
GRU MmaniroLp-opg incur higher computational
and training costs, yet fail to yield significant
performance improvements at larger scales. As
a result, the practical utility of neural ordinary



differential equation-based architectures for
sequence-to-sequence model is limited.

The primary motivation for this analysis was
to investigate whether performance improvements
observed in prior work on manifold-based mod-
els for classification tasks (Chakraborty et al.,
2018; Jeong et al., 2024) extend to more com-
plex sequence-to-sequence modeling. Our empir-
ical findings suggest that this is not the case.

5.3 Results fOl' DATA NATO-WORDS

We use a timestep 7 of 30 ms, implemented as a
sliding window with 150 ms of overlapping con-
text and a 30 ms step size, to compute £(7) and
o(1), both of which are SPD matrices of size
31 x 31. The matrices o(7) are then input to a
GRU for EMG-to-phoneme sequence translation.
The dataset is split into training, validation, and
test sets consisting of 416, 104, and 1968 articula-
tions, respectively. The model depicted in figure 1
is trained using a single GRU layer for 100 epochs,
and the weights corresponding to the lowest vali-
dation loss are selected.

In table 3, we report the character error rate
(CER). For a given character articulation—for ex-
ample, <R>, which corresponds to the spoken
form <ROMEO: R-OW-M-1Y-OW>—we consider
the decoded character to be <R> if the predicted
phoneme sequence most closely matches that of
<R> among the 26 alphabet characters. It is worth
noting that the test set is nearly five times larger
than the training set. This experimental paradigm
is designed to evaluate whether a model can be
trained effectively using very limited data—an
important consideration for clinical applications,
where collecting large amounts of data can be too
strenuous for patients. In our case, the model is
trained on just 10 minutes of data and evaluated
on 50 minutes of data.

Table 3: Mean CER for DATA xaro-worps. Lower
CER indicates better performance. The chance er-
ror rate is 0.96, and our error rates are significantly
lower than this baseline.

SUBJECT CER

1 0.557
2 0.550
3 0.704
4 0.564

In figure 5, we examine how model size across
various GRU configurations affects the PER. To
do this, we vary the dimensionality of the GRU’s
hidden units. We observe similar trends as noted
in figure 4 across all subjects.

5.4 Comparison with prior work

To the best of our knowledge, there is no prior
work that performs Fg-to-language conversion
without using F' 4 or A on large English language
corpora with CTC loss. Therefore, we compare
our methods on the EMG2QWERTY dataset intro-
duced by Sivakumar et al. (2024). In this dataset,
subjects wear EMG wristbands on both hands and
touch-type on a QWERTY keyboard. The goal
is to decode the resulting EMG signals into a se-
quence of characters using CTC loss. Although
the physical actions involved in EMG-to-speech
decoding and EMG2QWERTY differ, the underly-
ing machine learning principles remain similar.

To enable a fair comparison, we conduct con-
trolled experiments in which we replace the origi-
nal log-spectrogram features from Sivakumar et al.
(2024) with SPD covariance matrices. We perform
two variants: one using SPD matrices directly,
and another using their approximately diagonal-
ized versions. Apart from substituting the features,
we omit their SPECAUGMENT data augmentation
strategy—this should not compromise the fairness
of the comparison, as SPECAUGMENT was shown
to improve their performance. Additionally, we
train our models for 250 epochs (compared to 150
in their setup, where their model converged early),
and apply a weight decay of 1073 to the Adam op-
timizer to ensure stable training.

We focus on a specific case from Sivakumar
et al. (2024), in which personalized models are
trained independently for each individual, start-
ing from random weight initialization. The zero-
shot paradigm, in which a model is trained on data
from 100 subjects and evaluated on 8 unseen in-
dividuals, as well as the personalized fine-tuning
paradigm, in which individual models are initial-
ized with generic weights pretrained on 100 sub-
jects, are beyond the scope of this work. In this
paper, we restrict our investigation to personalized
models trained from scratch.

The results are presented in table 4. As shown,
our proposed methods outperform the baseline
approaches reported by Sivakumar et al. (2024).
Furthermore, the use of approximately diagonal-
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Figure 5: Model size versus PER for EMG-to-phoneme translation for DATA yaro-worps-

Table 4: Comparison between our proposed methods and those presented by Sivakumar et al. (2024),
with all results averaged over 8 subjects. Model size and FLOPs are identical across all three models.

Lower CER is better.

No LM

VAL CER (% |) TEST CER (% |)

6-GRAM CHAR-LM

VAL CER (% |) TEST CER (% 1)

SIVAKUMAR ET AL. (2024) | 15.65 £5.95 15.38 £ 5.88 11.03 £4.45 9.55 +5.16
SPD COV MATRICES 15.66 £ 5.70 15.25 £ 5.66 10.48 + 4.38 8.71 +4.51
+ DIAGONALIZATION 14.33 +5.27 14.03 +£5.27 9.61 + 3.84 7.95 +4.54
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Figure 6: Each dot represents an individual test subject, with connecting lines indicating within-subject
performance across different models. The boxplots summarize the median and interquartile range of
the results. Our SPD Cov Matrices + DiaconaLizaTion method improves performance for all subjects except
USERG.



ized SPD matrices leads to improved performance
compared to raw SPD matrices. These findings
support the effectiveness of our approach, which
is specifically designed to reflect the underlying
biological structure of EMG signals.

In figure 6, we present subject-wise character
error rates (CER). Our method improves perfor-
mance for all users except USER6. When de-
coding is performed without a language model,
we observe an 8.8% improvement in CER. With
a language model, the improvement increases to
16.8%.

6 Discussion and conclusion

We present a non-invasive, EMG-based speech
neuroprosthesis designed for individuals with clin-
ical conditions that impair voicing and articulator
movement. Unlike previous approaches that rely
on mapping EMG features to time-aligned acous-
tic signals, our method bypasses audio supervi-
sion entirely. Instead, we treat EMG-to-phoneme
conversion as a standalone sequence-to-sequence
problem, modeling the EMG modality directly
without requiring alignment or regression to the
audio domain.

Our approach is lightweight, computationally
efficient, and grounded in principled design. By
releasing our dataset and codebase as open-source
resources, we aim to establish a reproducible and
extensible foundation for future research in neuro-
muscular speech interfaces. The effectiveness of
our method is demonstrated on large-vocabulary
speech corpora, where we show that direct EMG-
to-language modeling is feasible.

This contrasts with other non-invasive neural
decoding approaches, such as EEG- and MEG-
based systems, which—even when constrained
to closed-set classification tasks over small vo-
cabularies and evaluated under favorable con-
ditions, such as when alignment between neu-
ral signals and audio is known—yield high er-
ror rates. For example, decoding listened speech
from EEG results in error rates around 95%,
while MEG-based methods report error rates near
59% (Défossez et al., 2023). In comparison, our
approach performs phoneme-level decoding on
large-vocabulary corpora with error rates below
50%, underscoring the potential of EMG as a more
accurate and scalable non-invasive alternative.

It should also be noted that invasive BCI and our
non-invasive EMG-based method serve different

use cases. Invasive systems, such as those reported
by Willett et al. (2023) (PER = 21%) and Met-
zger et al. (2023) (PER = 46%), offer higher ac-
curacy but rely on more than 250 implanted elec-
trodes and operate at slower speaking rates (62—78
words per minute). These systems are especially
valuable for individuals with severe motor impair-
ments, such as anarthria or ALS, where residual
muscle movement may be absent. In contrast,
our approach is well-suited for individuals who re-
tain articulatory muscle control but are unable to
produce voiced speech. Additionally, EMG-based
systems may be advantageous in contexts such as
virtual or augmented reality, where silent commu-
nication is desirable.

7 Limitation

While our results are promising, this work has a
few limitations. Currently, sentence processing is
performed only after the entire utterance has been
completed, rather than in an online, real-time fash-
ion. This introduces latency and limits the sys-
tem’s suitability for naturalistic, real-time conver-
sational interaction.

8 Supplementary Technical Details

Here, we provide further information regarding
the decoding paradigms employed in our exper-
iments, and our approach to personalized audio
synthesis.

8.1 DECODING PARADIGMS

We decode CTC output probabilities using beam
search without incorporating external language
models or prior linguistic constraints. At each
timestep, the algorithm retains the top hypotheses
based solely on CTC symbol probabilities, main-
taining a fixed beam width of 5. The final output
is the sequence with the highest cumulative prob-
ability under the CTC model.

To convert phoneme sequences into words, we
use a decoding method that combines hard seg-
mentation, lexicon-based dictionary lookup, and
language model scoring. The phoneme sequence
is first segmented into candidate word units us-
ing a designated blank token, with each segment
retained if it exceeds a minimum length. Each
segment is then matched against a lexicon using
normalized Levenshtein distance, and the top-k
closest candidates are considered. Each candidate
word is scored using:



score = Apm - LM(sentence)

— Apist - normalized Levenshtein distance,

where LM(sentence) is the log-probability of
the decoded word sequence under a trained n-
gram language model, and the normalized dis-
tance is the Levenshtein distance between the
phoneme segment and the candidate word’s
phoneme representation, divided by the maximum
of the two lengths. The weights ALm, Apist € [0, 1]
control the tradeoff between language model guid-
ance and acoustic similarity, and are constrained
such that App + Apiss = 1. The candidate with
the highest score is selected for each segment.
This approach enables decoding of noisy phoneme
sequences into linguistically plausible word se-
quences.

We create a 3-gram language using LibriSpeech
TRAIN-CLEAN-100 (Panayotov et al., 2015) tran-
scriptions. The lexicon consists of all unique
words from the LibriSpeech TRAIN-CLEAN-100
(which is about 35000 words).

We also experimented with jointly training a
model using both CTC and attention losses, fol-
lowing the approach described in Hori et al.
(2017), and incorporated probabilities from both
the CTC and attention-based decoders during
beam search. However, this joint model underper-
formed compared to the CTC-only decoding ap-
proach.

8.2 TEXT TO PERSONALIZED AUDIO
SYNTHESIS

We synthesize constructed phoneme sequences
into personalized audio using methods described
by Choi et al. For this, we train the model pro-
posed by Choi et al. on speech corpora provided
by Panayotov et al. (LibriSpeech TRAIN-CLEAN-
360 and TRAIN-CLEAN-100) and Veaux et al.
(VCTK corpus). For few-shot learning, we use a
2-minute reference audio clip from the subject to
capture the speaker’s vocal characteristics.

The process involves converting the predicted
text into audio using Google Text-to-Speech
(gTTS). The gTTS-generated audio is then person-
alized using the model by Choi et al., leveraging
the 2-minute reference audio data. This approach
ensures that the synthesized audio closely mimics
the speaker’s unique vocal attributes.



Table 5: Examples of EMG-to-phoneme sequence translations. We do translations using EMG collected
during silent articulations (Eg) with CTC loss without making use of corresponding time aligned audio
(A) and EMG collected during audible articulation (E4). Ground truth sentences with corresponding
timestamps. Ground truth phonemic transcriptions. Decoded phonemic transcriptions. Decoded sen-
tences.

Top-3 (best) transcribed sentences in DATA | srce-vocas
r-start <IT WAS EIGHT FOR>1gxp
IH-T space W-AA-Z space P-EY-D space F-AO-R

TH-T space W-AA-Z space P-EY-T space F-AO-R

IT WAS PAY FOR

r-start <IT’S A COMMUNITY CENTER>1gnD

IH-T-S space AH space K-AH-M-Y-UW-N-AH-T-1Y space S-EH-N-T-ER

IH-T-S space AH space K-AH-M-Y-UW-N-IH-T-1Y seace S-EH-N-T-ER-N
IT’S A COMMUNITY CENTER

rstart <JUST ALL DIFFERENT COLORS >1_gnp

J-AH-S-T seace AO-L space D-IH-F-ER-AH-N-T seace K-AH-L-ER-Z

J-AH-S-T space AO-L seace D-TH-F-ER-AH-N space space K-TH-L-ER-Z
JUST ALL DIFFERENT COLORS

Bottom-3 (worst) transcribed sentences in DATA | srge-vocas
rstart <THE DEATH PENALTY >r1gnp

DH-AH space D-EH-TH space P-EH-N-AH-L-T-1Y

IH seace DH-TH-T space TH-K space P-AY seace AE-K
THAT THICK MY BACK

rstart <HE DOES THE YARD> 1 gnp

HH-TY space D-AH-Z seace DH-AH space Y-AA-R-D

IH-TH-T space IH-S space N-ITH-N-T space AY-T
ITITS KNIT MIGHT

rstart <THAT’S AWFUL>1.gnp
TH-AE-T-S seace AA-F-AH-L

DH-EH-R space AH space T-OY-T
THERE A POINT
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A Background on Riemannian geometry
of SPD matrices

Speech articulation involves the coordinated ac-
tivation of various muscles, with their activa-
tion patterns defined by the functional connec-
tivity of the underlying neuromuscular system.
Consequently, EMG signals collected from mul-
tiple, spatially separated muscle locations exhibit
a time-varying graph structure. Gowda et al.
(2024) demonstrate that the graph edge matrices
corresponding to orofacial movements underlying
speech articulation are inherently distinguishable
on the manifold of SPD matrices. Through exper-
iments with 16 subjects, they highlight the effec-
tiveness of using SPD manifolds as an embedding
space for these edge matrices. Building on this
foundation, we investigate the temporal evolution
of graph connectivity using edge matrices to en-
able EMG-to-language translation.

Directly working with SPD matrices using
affine-invariant or log-Euclidean metrics (Arsigny
et al., 2007) involves computationally expensive
operations, such as matrix exponential and matrix
logarithm calculations. These operations make
mappings between the manifold space and the tan-
gent space, and vice versa, computationally inten-
sive. To address this, Lin (2019) proposed meth-
ods to operate on SPD matrices using Cholesky
decomposition. They established a diffeomor-
phism between the Riemannian manifold of SPD
matrices and Cholesky space, which was later uti-
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lized by Jeong et al. (2024) to develop compu-
tationally efficient recurrent neural networks. In
Cholesky space, the computational burden is sig-
nificantly reduced: logarithmic and exponential
computations are restricted to the diagonal ele-
ments of the matrix, making them element-wise
operations. Additionally, the Fréchet mean is de-
rived in a closed form.

Given a set of SPD edge matrices £(7) over
different time windows 7, we first calculate their
corresponding Cholesky decompositions £(7) =
CHOLESKY (E(7)), such that £(7) = L(7)L(7)".
Then, the Fréchet mean of the Cholesky decom-
posed matrices £(7) is given by

1 n
FCHOLESKY = n Z{E(Tz” +

i=1

exp (:L Zlog(D(ﬁ(n)))) .
=1

The Fréchet mean F on the manifold of SPD
matrices is calculated as

T
F = ‘FCHOLESKYFCHOLESKY'

In the above equation, | £(7)] is the strictly lower
triangular part of the matrix £(7), and D(L(7)) is
the diagonal part of the matrix £(7).

GRU gycLipeany 18 a standard GRU (Chung
et al., 2014). GRU maniroLp 18 constructed from
GRU gycLipean by replacing the arithmetic oper-
ations of GRUgycLipean defined in the Euclidean
domain with the corresponding operations on the
SPD manifold. Gates of GRU panroLp as de-
fined by Jeong et al. (2024) are given below.
Given the sparse SPD edge matrices o(7) over
different time windows 7, we first calculate their
corresponding Cholesky decompositions [(7) =
CHOLESKY (o (7)), such that o(7) = I(7)I(7)7.

Update-gate 2, at time-step 7 is

zr = SIGMOID(w, |7 | + uz|hr—1] + b))+
SIGMOID (b, [exp(w, log(D(l;))+
Uy log(D(hT—l))])7 (1)

where w,, u,, b,, w,s, and u, are real weights
and b,/ is a real positive weight.

Reset-gate r at time-step 7 is

rr = SIGMOID(wy |1 | + up|hr—1] + by )+
SIGMOID (b, [exp(w, log(D(l;))+
upr log(D(hr—1))]), (2)

where w,, u,, b,, w,s, and u,s are real weights
and b, is a real positive weight.

Candidate-activation vector iLT 18

he = TANH(wp L] +un (|77 ] % [hr-1])+ba)+
SOFTPLUS (by, exp(wp log(D(1;))
+ ups log(D(r7) * D(hr-1)))), (3)

where wy,, up, by, wy, and uy are real weights
and by is a real positive weight.

Output vector h.; is

he = (1= |20 ]) % [hea ] + 20 * B )+
exp((1 — D(z7)) * log(D(hr—1))+
D(z;) * log(D(h.))). (4)

In the above equations, h,_ is the hidden-state at
time-step 7 — 1.

In GRU waniroLp + ODE, We define an additional
implicit layer solved using neural ODEs. The dy-
namics f of the EMG data are modeled by a neural
network with parameters ©. The output state h7

is updated as

hr_1 + ODESOLVE( fo,LOG(h,—1), (T—1,7))
hr = GRU(I,,EXP(hr_1)), (5)

where LOG is the logarithmic mapping from the
manifold space of SPD matrices to its tangent
space, and EXP is its inverse operation, as defined
by Lin and given below. GRU denotes a gated re-
current unit whose gates are defined by equations
1-4.

For a matrix X in the tangent space, the expo-
nential map to the manifold space at £ is given by

EXP(X) =
|L] 4+ [X] + D(L) exp (D(X)D(L) ). (6)

For a matrix £ in the manifold space, the loga-
rithmic map to the tangent space at £ is given by

LOG.(K) =
K] — [£] +D(£)log (D(L)'D(K)). (7)

In the above, £ denotes a point on the manifold.

Previous work by Gowda and Miller (2024)
demonstrated the effectiveness of SPD matrices in



decoding discrete hand gestures from EMG sig-
nals collected from the upper limb. Furthermore,
SPD matrix representations have been extensively
utilized to model electroencephalogram (EEG)
signals, although they have never been applied
to complex tasks such as sequence-to-sequence
speech decoding. For example, Barachant et al.
(2011, 2013) employed Riemannian geometry
frameworks for classification tasks in EEG-based
brain-computer interfaces, while Sabbagh et al.
(2019) developed regression models based on
Riemannian geometry for biomarker exploration
using EEG data.

The novelty of our work lies in the algebraic in-
terpretation of manifold-valued data through lin-
ear transformations, and the development of mod-
els for complex sequence-to-sequence tasks. This
approach moves beyond the conventional applica-
tions of classification and regression.

B Experimental details

We collect EMG signals from 31 sites on the neck,
chin, jaw, cheek, and lips using monopolar elec-
trodes. An ACTICHAMP PLUS amplifier and as-
sociated active electrodes from BRAIN VISION
(Brain Vision) are used to record EMG signals at
5000 Hertz. To ensure proper contact between
the skin surface and electrodes, we use SUPER-
VIsc, a high-viscosity electrolyte gel from EASY-
CAP (Easycap). We develop a software suite in
a PYTHON environment to provide visual cues
to subjects and to collate and store timestamped
data. For time synchronization, we use lab stream-
ing layer (LSL). See figure 7 for electrode place-
ment. Besides 31 data electrodes, we also have a
GROUND electrode (marked as GND) and a REF-
ERENCE electrode (marked as 32). GROUND elec-
trode is placed on the left ear lobe and the REFER-
ENCE electrode is placed on the right ear lobe.

Before signal acquisition, participants were
briefed on the experimental protocol and seated
comfortably in a chair. For silent speech data
(Es), participants were instructed to articulate nat-
urally but inaudibly. For DATA syarr-vocas, the
sentences were presented as individual or grouped
words, demarcated by timestamps, and displayed
in the following manner:

< WEEKDAY > — < MONTH >
t=0 t=2 t=2s t=4s
< DATE > — < YEAR >
t=4s t=6s t=6s t=9s

with each segment temporally following the
previous one. In DATA 1 srce-vocas, there are no
such intra-sentence timestamps; only the start
and end of the sentence are timestamped using
mouse clicks from the subject. When a subject
is ready to articulate a sentence, they click the
mouse, prompting the sentence to appear on the
screen. Once articulation is complete, they click
the mouse again to indicate the end, causing
the sentence to disappear from the screen—thus
allowing them to articulate at their own pace.

The data collection environment was carefully
controlled to eliminate AC electrical interference.
EMG signals underwent minimal preprocessing.
The signal from the REFERENCE channel (elec-
trode 32) was subtracted from all other EMG
data channels. The resulting signals were then
bandpass filtered using a third-order Butterworth
filter between 80 and 1000 Hz and segmented
according to sentence start and end times based
on synchronized timestamps. The segmented
sentences were subsequently z-normalized along
the time dimension for each channel. The prepro-
cessed EMG signals were then used to construct
a fully connected sensor graph, £(7), and its
approximately diagonalized form, o (7).

The electrodes are positioned over regions that
directly overlay muscle groups involved in speech
articulation, providing coverage of key articulators
such as the tongue, jaw, lips, and larynx.

Electrode locations 19, 21, 3, and 1 approxi-
mately overlie the hyoglossus, palatoglossus, and
styloglossus muscles. These muscles, located in
the lower cheek region, play a vital role in tongue
movement and are consistently recruited across a
wide range of articulatory gestures. Muscles in
the upper and posterior cheek regions—such as the
masseter and temporalis, which control jaw mo-
tion, and the zygomaticus, involved in upper lip
elevation—are associated with electrode regions
approximately around nodes 22, 18, 17, and 15 in
figure 7. Electrodes located beneath the jaw cap-
ture activity from muscles involved in tongue pro-
trusion and jaw—tongue coordination, such as the
genioglossus (near electrodes 8, 9, 23, and 25) and
the digastric. Additionally, electrodes near the la-
ryngeal region (nodes 6, 7, 10, 11, 26, and 27)
reflect the activity of muscles that modulate laryn-
geal and hyoid position—such as the sternohyoid,


https://brainvision.com/products/actichamp-plus/
https://shop.easycap.de/products/supervisc
https://labstreaminglayer.org

Figure 7: LEFT: Electrode placement on the left side of the neck. MIDDLE: Electrode placement on the
right side of the neck. RIGHT: Electrode placement on the left cheek.

stylohyoid, and digastric—which are instrumen-
tal in pitch control, vowel shaping, and jaw move-
ment.



