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Abstract

Each Large Language Model (LLM) possesses001
unique strengths and limitations, urging the002
model ensemble to take full advantage of com-003
plementary strengths of different LLMs. To004
achieve this, we propose novel model ensem-005
ble methods which combine the confidence and006
popularity scores to generate the final outputs.007
The confidence is measured by the belief de-008
gree of one LLM to produce its output and the009
popularity is evaluated through the consistency010
degree of its output to other LLMs. Experi-011
mental results demonstrate that our methods012
markedly improve the performance on seven013
commonly used reasoning benchmarks, sur-014
passing both the top-performing model and015
other strong baselines. Additionally, we ex-016
plore the effects of varying ensemble sizes, of-017
fering valuable insights for optimizing model018
ensemble strategies for LLMs reasoning.019

1 Introduction020

Large Language Models (LLMs) have achieved re-021

markable progress in recent years. Many LLMs,022

including notable ones like GPT-4 (OpenAI, 2023),023

Claude (Anthropic, 2023), Bard (Google, 2023)024

and Llama-2 (Touvron et al., 2023), have shown025

impressive general capabilities, attributed to pre-026

training on large-scale corpora, instruction fine-027

tuning and alignment with human feedback. Ac-028

cording to research conducted by Zhang et al.029

(2023), a single model faces significant challenges030

during reasoning tasks when the required knowl-031

edge was not encountered during the pre-training032

phase. Consequently, the combination of multiple033

LLMs, utilizing the unique inherent knowledge in034

each model, has the great potential to enhance the035

results across various reasoning tasks.036

Figure 1 shows a Venn diagram of the sample037

sets correctly answered by the three models on the038

GSM8K (Cobbe et al., 2021) dataset. The samples039

correctly answered by all three models account040

26.46%

15.47%

41.93% 61.26%

54.74%

7.81%

100%

4.09%

Qwen-chat-14B
Baichuan2-chat-13B

InternLM-chat-20B

Figure 1: The Venn diagram shows the intersection and
union relationships among the sets of samples correctly
answered by three models on the GSM8K dataset. The
overlapping sections of the circles in the diagram rep-
resent the proportion of samples correctly answered by
different models in common.

for only 26.46%. If we can effectively integrate 041

the responses generated by the three models, the 042

theoretical upper bound of accuracy could reach 043

77.64%, which is much higher than the accuracy of 044

the three individual models at 41.93%, 54.74%, and 045

61.26% respectively. Therefore, by leveraging the 046

complementary strengths of various LLMs through 047

an ensemble approach, it is feasible to construct 048

an all-encompassing model that outperforms indi- 049

vidual models. Just as the saying goes ’two heads 050

are better than one’, ensemble methods can bring 051

together the unique capabilities of each model, ad- 052

dressing their individual limitations and amplifying 053

their collective strengths. 054

Previous studies on LLMs ensemble (Farinhas 055

et al., 2023; Jiang et al., 2023) often relied on task- 056

specific judge models (Farinhas et al., 2023) or 057

specially trained generative models (Jiang et al., 058

2023). The use of these methods is limited in 059
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certain scope, and they require additional super-060

vised training. Other studies (Wang et al., 2023)061

primarily concentrates on the internal integration062

within a single model, which we refer to as "self-063

ensemble", rather than ensemble among multiple064

models. To address the shortcomings of existing065

ensemble methods, we present three novel unsuper-066

vised LLMs ensemble methods: Confidence-Based,067

Popularity-Based and MBR-Based methods. The068

methods integrates the confidence scores of individ-069

ual models in their responses and the consistency070

scores of one response to others (called ’popular-071

ity’) to get the final answer. The methods eliminate072

the need for additional parameter training and can073

be used for a variety of tasks. Experimental results074

demonstrate that our method outperforms all single075

models and strong ensemble baselines in various076

benchmarks.077

In this paper, we make the following contribu-078

tions:079

• We introduce three novel unsupervised en-080

semble methods for multiple LLMs. These081

methods combine the generative confidence082

of single models and the majority consensus083

of multiple models. The methods are not lim-084

ited to any specific domain and do not require085

additional supervised training.086

• Experiments demonstrate that our approaches087

exhibit substantial improvements in per-088

formance, consistently surpassing the top-089

performing single models and strong baselines090

across seven benchmarks.091

2 Related Work092

2.1 Model ensemble093

Currently, common ensemble methods can be094

broadly categorized into two types: supervised095

methods (Jiang et al., 2023) and unsupervised meth-096

ods (Wang et al., 2023; Farinhas et al., 2023).097

Supervised ensemble methods require addi-098

tional training of specialized models and are usu-099

ally limited by the tasks and domains. Jiang et al.100

(2023) presented a question to eleven different mod-101

els to generate responses. Then a ranking model102

(He et al., 2023), PairRanker, is trained to select the103

top-ranked responses and a T5-like model (Chung104

et al., 2022) is trained to generate the final an-105

swers. The introduction of trainable parameters can106

improve performance, but it also leads to higher107

time and computational demands, and reduces the108

model’s flexibility for direct application to other 109

tasks. 110

Unsupervised ensemble methods currently 111

mainly focus on the integration of multiple re- 112

sponses from a single model. Majority voting (Lam 113

and Suen, 1997) is the most commonly used un- 114

supervised ensemble method. Wang et al. (2023) 115

introduced Self-Consistency decoding, selecting 116

answers through a majority vote among multiple 117

responses. Zhou et al. (2020) and Farinhas et al. 118

(2023) utilized the Minimum Bayes-risk decoding 119

(Kumar and Byrne, 2002; Eikema and Aziz, 2020) 120

to integrate multiple candidate results from a sin- 121

gle model in machine translation tasks, achieving 122

impressive results. But their approach still involves 123

integration only on a single model. Unsupervised 124

ensemble methods for multiple LLMs remains a 125

highly promising research field. 126

2.2 Reasoning of Large Language Models 127

Reasoning is the process of integrating various 128

types of knowledge from both explicit and im- 129

plicit sources, to derive new conclusions about real 130

or hypothetical situations in the world (Yu et al., 131

2023). According to Qiao et al. (2023), reasoning 132

tasks can be categorized into several types, such as 133

Arithmetic Reasoning , Commonsense Reasoning 134

and more. In addition, academic examination style 135

multiple-choice questions (Hendrycks et al., 2021) 136

also represent an important form of reasoning tasks. 137

Existing studies have explored numerous ap- 138

proaches aimed at unlocking reasoning capabilities 139

of large language models. A notable development 140

is the Chain-of-Thought (CoT) reasoning (Wei 141

et al., 2022), which navigates models through step- 142

by-step thinking to tackle complex reasoning tasks. 143

Wang et al. (2023) introduced Self-Consistency, a 144

technique that involves sampling multiple reason- 145

ing paths and selecting the final answer through 146

majority voting. However, no model is capable 147

of handling all reasoning tasks, especially when 148

applying the model to domains that were not seen 149

during the pre-training phase (Zhang et al., 2023). 150

3 Methods 151

Task Definition. Consider a reasoning task with 152

an input denoted by x. Let there be K LLMs 153

represented as M1,M2, ...,MK . For each model 154

Mk, we define a specific prompt pk. We require 155

each model to generate responses to the input x 156

with its prompt. The response produced by model 157
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Figure 2: We evaluate the accuracy of responses generated by four fundamental models across different probability
intervals, utilizing the aggregation of all datasets described in Section 4.1.

Mk when provided with input x is denoted by158

rk = Mk(pk, x).159

In this paper, the task of model ensemble is con-160

ceptualized as the process of choosing the most161

appropriate response among those generated by dif-162

ferent models. The chosen response of ensemble is163

represented as R∗.164

We employ three unsupervised methods for165

model ensemble, as Figure 3, namely Confidence-166

Based, Popularity-Based, and MBR-Based meth-167

ods. Each method employs its respective set of168

criteria to choose responses.169

3.1 Confidence-Based Method170

Generally speaking, the greater the model’s confi-171

dence in a response, the more likely it is that this172

response accurately represents the correct answer173

to the input. Accurately estimating the confidence174

of a model in generating responses remains an un-175

resolved issue. Existing methods (Lu et al., 2022)176

require the introduction of additional training or177

parameters. We avoid introducing new parameters178

and instead use the average probability of each to-179

ken generated by the model as a measure of the180

model’s confidence.181

We find that the accuracy of reasoning is closely182

related to the probability of generating responses.183

As illustrated in Figure 2, our experiments on four184

commonly used LLMs reveal that the higher the185

generation probability, the greater the chance that186

this response is accurate. Thus, the probability 187

of response serves as an indicator of the model’s 188

confidence in the correctness of its own answer. 189

Therefore, we use the probability of responses 190

as a measure of each model’s confidence, and we 191

perform model ensemble based on these confidence 192

values. This method is illustrated in Figure 3(a). 193

In particular, given the input x and the prompt pk, 194

the confidence of responses rk generated by model 195

Mk can be represented as Equation 1 : 196

Conf(rk|Mk) = exp
1
T

∑T
t=0 logP (rtk|pk,x,r

1
k,...,r

t−1
k )

(1) 197

We select the response that maximizes the value, 198

as detailed in the specified Equation 2. 199

R∗ = argmax
rk

{Conf(rk|Mk)} (2) 200

3.2 Popularity-Based Method 201

Majority voting plays a crucial role in ensemble 202

learning. When experts, each offering unique in- 203

sights, come together, majority voting often out- 204

performs relying on a single opinion (Lam and 205

Suen, 1997). Inspired by Self-Consistency decod- 206

ing (Wang et al., 2023), we integrate the majority 207

voting into our model ensemble methods. Our aim 208

is to choose a response that reflects popularity, 209

representing the agreement of most models and 210

demonstrating consensus across multiple models. 211
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Figure 3: We utilize three distinct unsupervised approaches for model ensemble: (a) Confidence-Based method,
(b) Popularity-Based method, (c) MBR-Based method. We prompt every model participating in the ensemble
to answer the same reasoning question, thereby generating their responses. Subsequently, each method assess
responses from various models, ultimately selecting the final appropriate response.

Considering that matching-Based voting of Self-212

Consistency decoding is not suitable for all reason-213

ing tasks, We propose a new voting mechanism.214

We calculate semantic similarity between each re-215

sponse generated by one model and all responses216

from other models, aggregating these similarity217

scores as votes for popularity:218

Popularity(rk) =
K∑

j=0,j ̸=k

SIM(rk, rj) (3)219

where SIM(.) denotes the semantic similarity be-220

tween two responses.221

The response receiving the highest number of222

votes is considered the most popular response and223

thus becomes the final choice, as illustrated in Fig-224

ure 3(b). This is formally expressed as:225

R∗ = argmax
rk

{Popularity(rk)} (4)226

3.3 MBR-Based Method227

In machine translation tasks, Minimum Bayesian228

Risk (MBR) is frequently employed in the decod-229

ing process, commonly referred to as MBR decod-230

ing (Eikema and Aziz, 2020; Farinhas et al., 2023),231

typically taking the following form:232

h∗ := argmax
h∈H

Ep(y|x,θ) [u(y, h)], (5)233

where u(y, h) is utility function which assesses the234

hypothesis h against a reference y. Equation 5 aims235

to identify the candidate that optimally maximizes 236

the expected utility function u(y, h) (or minimises 237

expected loss) over the entire set of translation hy- 238

potheses H . Furthermore, the expected value is 239

generally estimated through a Monte Carlo sam- 240

pling (Farinhas et al., 2023): 241

Ep(y|x,θ) [u(Y, h)] ≈
1

M

M∑
i=1

u(yi, h) (6) 242

This process involves using M samples drawn from 243

p(y|x,θ), which provides an unbiased estimate of the 244

expected utility. 245

Inspired by the MBR decoding method, we mi- 246

grate this approach to the field of model ensemble. 247

We utilize a popularity voting mechanism as the 248

utility function and define M in Equation 6 as the 249

number of models participating in the ensemble. 250

Additionally, we consider the unique attributes of 251

each model by incorporating the confidence of the 252

model at the time of generating each response, as 253

formulated in Equation 7 254

R∗ =argmax
rk

1

K − 1

K∑
j=0,j ̸=k

Conf(rk|Mk)SIM(rk, rj)

(7) 255

We name it MBR-Based ensemble method and 256

Figure 3(c) provides a visual illustration of this 257

method. MBR-Based method integrates generation 258

confidence from one model and majority voting 259
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from multiple models, effectively capturing both260

self-assurance of single model and the collective261

agreement among all models.262

4 Experiments263

4.1 Setup264

We conduct a comprehensive evaluation of our en-265

semble methodology, which integrates eight differ-266

ent large language models (LLMs), across seven267

reasoning benchmarks:268

Models. We select four types of large lan-269

guage models with unique foundational architec-270

tures: Llama-2 (Touvron et al., 2023), Baichuan-2271

(Baichuan, 2023), Qwen (Bai et al., 2023), and272

InternLM (InternLM, 2023) from OpenCompass273

Leaderboard1. For each foundational model, we in-274

vestigate two configurations varied by scale, specif-275

ically 7B and 13B parameters. These models will276

be denoted as M1-M8 in the following sections.277

Benchmarks. We employ seven different rea-278

soning tasks as evaluation benchmarks. In terms of279

task types, we select datasets from multiple do-280

mains following the categorizations established281

in prior research (Qiao et al., 2023; Hendrycks282

et al., 2021), including academic examination,283

arithmetic reasoning, and commonsense reasoning284

datasets. These tasks encompass two main for-285

mats: multiple-choice reasoning tasks and genera-286

tive answer-Based reasoning tasks. This approach287

aims to comprehensively assess reasoning capabili-288

ties of our ensemble methods across various fields.289

• Academic Examination. We use the Measur-290

ing Massive Multitask Language Understand-291

ing (MMLU; Hendrycks et al., 2021) dataset,292

including fifty seven tasks covering areas such293

as mathematics, American history, computer294

science and more.295

• Arithmetic Reasoning. We use GSM8K296

(Cobbe et al., 2021) and AQUA-RAT (Ling297

et al., 2017) datasets. Both of them require298

multi-step arithmetic reasoning to solve math299

world problems.300

• Commonsense Reasoning. We use Com-301

monsenseQA (CSQA; Talmor et al., 2019)302

and OpenBookQA (OBQA; Mihaylov et al.,303

2018 2018) that require multi-step reasoning304

using commonsense knowledge. We also in-305

clude TriviaQA (Joshi et al., 2017) without its306

1https://opencompass.org.cn/leaderboard-llm

reference documents, which requires various 307

knowledge. Additionally, we use SQuAD 2.0 308

(Rajpurkar et al., 2018) for reading compre- 309

hension task. 310

Settings. We apply our three ensemble tech- 311

niques: Confidence-Based, Popularity-Based and 312

MBR-Based methods on four selected models. Typ- 313

ically, we select the top four models based on their 314

performance for each specific dataset, leading to a 315

variation in the ensemble’s model selection. How- 316

ever, prior research has indicated that when there 317

is a substantial performance gap among different 318

models on a particular dataset, models with inferior 319

performance can significantly degrade the overall 320

efficacy of the ensemble (Wang et al., 2023). There- 321

fore, if the performance gap between the top four 322

models is too large, we select four models with 323

more similar performance for ensemble instead. 324

Regarding the prompt, we adopt a zero-shot (Ko- 325

jima et al., 2022) testing framework for all mod- 326

els. For each dataset, we create a specific prompt 327

that includes a brief task description and relevant 328

questions or options. For more information on the 329

prompt, please refer to Appendix B. 330

Baselines. As baselines, we select three types of 331

methods: 332

• Single Model. We evaluate all eight LLMs 333

separately on each dataset using a greedy de- 334

coding strategy. 335

• Self-Ensemble. The best-performing single 336

model is employed to generate answers four 337

times using sampling decoding strategy and 338

our three ensemble methods as self-ensemble 339

baseline. 340

• Supervised Multi-Model Ensemble. Pair- 341

Ranker (Jiang et al., 2023) is used to select 342

the most appropriate answer from candidates 343

for the same question. It has been trained with 344

responses from various models in instruction- 345

following tasks. 346

Evaluation. After obtaining the model’s re- 347

sponse to a question, we extract the answer in 348

different ways according to the dataset’s features. 349

For datasets with multiple choices, we prompt the 350

model with final response, question and options. 351

We then instruct the model to calculate and output 352

the probabilities for each option following the ap- 353

proach of Baichuan (2023). Then we select the op- 354

tion with the highest probability as the final answer. 355

5
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Method MMLU GSM8K AQUA CSQA OBQA TriviaQA SQuAD
M1-M4 vary across different datasets

M1-greedy 50.94 61.26 30.71 78.87 71.60 68.03 71.09
M2-greedy 49.76 54.74 30.31 74.12 70.00 66.95 69.42
M3-greedy 49.39 52.39 29.13 73.05 65.80 61.95 69.22
M4-greedy 48.47 41.93 28.35 70.27 60.80 60.62 66.76

Self-ensemble results derived from four samples of the best model (M1)
Random 49.34 56.10 25.59 75.92 67.60 66.68 70.25
Confidence 50.22 60.80 29.13 76.82 70.00 68.48 71.73
Popularity 50.11 58.23 22.83 77.48 69.00 67.99 72.87
MBR-Based 50.14 61.87 27.56 76.66 70.80 68.32 72.66

Ensemble results of models M1-M4
Random 49.49 51.48 30.71 75.18 67.60 64.17 69.23
PairRanker 52.43 59.06 34.65 76.74 72.60 66.48 72.35
Confidence 50.87 62.09 33.07 77.31 72.60 70.05 73.24
Popularity 51.25 57.62 30.31 78.38 71.20 69.95 75.45
MBR-Based 51.58 63.00 35.04 79.44 74.60 70.85 75.72

Table 1: The overall accuracy of different methods across all datasets. The models participating in the ensemble
vary across different datasets, denoted as M1-M4 (with performance ranked from high to low). Self-ensemble
corresponds to the ensemble results of four sampled responses from the best-performing model M1. The methods
that performs best in self-ensemble are indicated with an underline. The best overall results are highlighted in bold.

For other types of datasets, we employ rule-based356

methods such as regular expression matching to357

extract the correct answer from the response. Fi-358

nally, across all datasets, we employ accuracy as359

the evaluation metric.360

4.2 Main results361
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Figure 4: Comparative analysis of model performances:
best single model, MBR-Based method of self-ensemble
and MBR-Based method of multi-model ensemble
across all datasets. To demonstrate the relative per-
formance among methods, we normalized the original
performance value.

We report all experimental results in Table 1.362

Models M1 to M4 (performance from high to low)363

represent the models participating in the ensemble.364

For detailed information on the selection of the365

four specific models (M1 to M4) and performance366

of all eight models for each dataset, please refer 367

to Appendix A. In Figure 4, we present the results 368

of the best single model, the MBR-Based method 369

of Self-ensemble and the MBR-Based method of 370

multi-model ensemble across all datasets. 371

Confidence-Based method achieves better per- 372

formance than best single models on five datasets, 373

as shown in Table 1. In most cases, when the prob- 374

ability assigned to a response is higher, it indicates 375

that the model is more confident about the con- 376

tent. Consequently, the chance that the response 377

contains correct answer is higher, as illustrated in 378

Figure 2. However, sometimes the most confident 379

model is not necessarily the one that generates the 380

best response, and we provide further analysis in 381

Section 4.5. These results indicate that relying on 382

the confidence of response by a single model can 383

be effective but insufficient. 384

Popularity-Based method has also achieved 385

better performance than single models on three 386

datasets. The core of this method is majority voting, 387

based on comparing semantic similarities, aiming 388

to identify the answers that most models consider 389

to be correct. When models, each with distinct 390

knowledge and parameters, collaborate in decision- 391

making, majority voting often yields more effec- 392

tive results than relying on a single model (Lam 393

and Suen, 1997). Furthermore, we observe that 394

the Popularity-Based method is ineffective when 395

there’s a significant performance gap among the 396

models, as the weaker models introduce significant 397
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N Model Method MMLU GSM8K AQUA CSQA OBQA TriviaQA SQuAD

1 M1 Greedy 50.94 61.26 30.71 78.87 71.60 68.03 71.09

2 M1-M2

Random 50.46 57.62 32.68 75.84 68.00 67.47 70.61
Confidence 50.94 62.47 33.07 79.93 72.60 70.09 73.42
Popularity - - - - - - -
MBR-Based 50.94 62.47 33.07 79.93 72.60 70.09 73.42

3 M1-M3

Random 49.91 58.38 26.38 75.02 67.00 65.79 70.21
Confidence 50.84 62.55 31.50 77.97 74.20 70.24 73.81
Popularity 50.82 58.76 32.28 78.05 72.20 69.47 73.54
MBR-Based 51.56 61.49 35.04 78.79 74.60 70.66 74.19

4 M1-M4

Random 49.49 51.48 30.71 75.18 67.60 64.17 69.23
Confidence 50.87 62.09 33.07 77.31 72.60 70.05 73.24
Popularity 51.25 57.62 30.31 78.38 71.20 69.95 75.45
MBR-Based 51.58 63.00 35.04 79.44 74.60 70.85 75.72

5 M1-M5

Random 48.21 49.89 28.35 71.25 64.80 63.49 67.92
Confidence 46.87 44.88 28.74 74.04 69.60 69.53 71.91
Popularity 47.69 55.27 27.95 79.93 71.00 69.67 76.77
MBR-Based 46.33 50.04 29.53 78.05 72.20 70.33 77.44

Table 2: The accuracy of different ensemble methods across all datasets when the number of models changes. The
best results in each group are underlined and the best overall results are bolded.

noise.398

MBR-Based method has achieved the best re-399

sults on almost all datasets. It surpasses the perfor-400

mance of the best model by a large margin on sev-401

eral benchmarks. At the same time, we can observe402

that the MBR-Based method has also shown im-403

provements compared to Confidence-Based meth-404

ods and Popularity-Based methods. This method405

demonstrates its ability to integrate the confidence406

of single models and the consensus degree of multi-407

ple models, maximizing the strengths of all models408

while minimizing their weaknesses.409

4.3 Our methods vs. Self-ensemble410

Table 1 also presents the results of self-ensemble411

from the best-performing model (M1) on each412

dataset. Self-ensemble only shows marginal im-413

provements in just three of the datasets compared414

with the greedy decoding strategy. This indicates415

that LLMs might find the optimal solution through416

a single greedy decoding process for some specific417

tasks, making additional sampled responses for the418

ensemble ineffective in significantly improving per-419

formance.420

The observed gap between self-ensemble and421

multi-model ensemble methods can be attributed422

to the limitations in diversity and perspective in423

a single model. Self-ensemble methods generate424

varied responses, but they are confined within the425

model’s own learned patterns and inherent biases,426

which can limit the accuracy. In contrast, multi-427

model ensemble methods integrate the strengths of428

diverse models. This variety allows multi-model 429

ensemble methods to excel in different aspects of 430

a specific task, thereby mitigating the weaknesses 431

inherent in individual models. 432

4.4 Our methods vs. Supervised methods 433

As shown in Table 1, PairRanker outperforms the 434

best-performing model only on four datasets. This 435

performance limitation stems from the fact that 436

PairRanker’s training data does not cover the com- 437

prehensive knowledge necessary for a wide range 438

of reasoning tasks. Consequently, PairRanker strug- 439

gles to accurately assess the correctness of the re- 440

sponses generated by different models, making 441

it less effective than our proposed MBR-Based 442

method across almost all datasets. Compared to 443

supervised methods, our approach demonstrates 444

better versatility, being able to fully leverage the 445

knowledge of different models without being lim- 446

ited by training data. 447

4.5 Analysis of model numbers in ensemble 448

Table 2 shows that the number of models in the en- 449

semble has a significant impact. We vary the num- 450

ber from two to five by adding a relatively weaker 451

model sequentially. It is worth mentioning that if 452

there are only two models participating in the en- 453

semble, only the similarity between the responses 454

of these two models will be calculated, so the final 455

response can not be selected through their popu- 456

larity. At the same time, the MBR-Based method 457

degenerates into the Confidence-Based method in 458

7



this case.459

Overall, when the number of models in the en-460

semble is less than five, our MBR-Based method461

achieves the best performance across almost all462

datasets, except on GSM8K with N=3. However,463

when the ensemble expands to include five mod-464

els, we observe notable performance degradation465

across several datasets. It is possible that including466

more models can widen the gap between the best467

and worst-performing models, which is not bene-468

ficial for the ensemble. Although we have made469

efforts to select models with similar performance,470

there remains a difference of more than 5% among471

models in some tasks, limited by the availability of472

publicly available LLMs.473

M1 M2 M3 M4 M5

LL -0.094 -0.108 -0.123 -0.182 -0.066

Table 3: The average log-likelihood (LL) of responses
generated by M1 to M5 on GSM8K dataset.

In order to analyze the reasons behind the474

changes of overall ensemble performance after475

adding a relatively weaker model, we present the476

response allocation results of the MBR-Based en-477

semble on the GSM8K dataset in Figure 5 with the478

ensemble number varying from two to five. This in-479

cludes the number of selection for each model’s re-480

sponses and the accuracy of these responses. Com-481

paring the results of Figure 5 (b) and (c), we can482

find that when adding a relatively weaker model483

M4, the generated responses are not frequently cho-484

sen and thus do not significantly affect overall per-485

formance. More importantly, M4’s participation486

appears to have a positive impact on the perfor-487

mance of other models (M1-M3). This is likely488

that M4’s responses participate in the majority vot-489

ing mechanism, potentially boosting the popularity490

of a correct answer from M1-M3. Consequently,491

with the inclusion of M4, there is an observed im-492

provement in the accuracy from 61.49% to 63.00%.493

Moreover, after adding M5, the performance494

of the MBR-Based ensemble method on GSM8K495

drops significantly. Comparing the change of the496

response allocation between Figure 5 (c) and (d),497

it can be found that the responses of the weakest498

model M5 are frequently chosen under this case.499

To explore the reasons for this phenomenon, we500

list the average log likelihood values of responses501

generated by M1-M5 in Table 3, reflecting the re-502

sponse generation probabilities of each model. We503
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M4

700

M5

5

M4

470

849

56%

66%

M1 M2

634

400

65% 61%

M1 M2

285

55%

M3

690

380

66%
61%

M1 M2

237

58%

M3

42%

329
175

72%

62%

M1 M2

20%

35%

110

64%

M3

(a)
(c)

(b) (d)

Chosen_num/
Acc

Ensemble 
model

Chosen_num/
Acc

Ensemble 
model

Chosen_num/
Acc

Ensemble 
model

Chosen_num/
Acc

Ensemble 
model

Chosen number

Accuracy

Figure 5: The chosen number of responses generated
by each model and accuracy under different ensemble
sizes.

find that the probability of responses generated by 504

M5 is significantly higher than M1-M4, thus the 505

number of chosen responses from M5 under the 506

MBR-Based method is more, leading to a drastic 507

drop (from 63.00% to 50.04%) in ensemble perfor- 508

mance. 509

5 Conclusions 510

We introduce three model ensemble approaches 511

designed for large language models across var- 512

ious reasoning tasks: the confidence-Based 513

method, popularity-Based method, and MBR- 514

Based method. Importantly, our methods effec- 515

tively take full advantages of different models 516

across various tasks. Our MBR-Based Method, 517

which combines the generative confidence and con- 518

sensus degree from diverse models, has shown 519

superior performance across almost all reasoning 520

benchmarks. The empirical findings further demon- 521

strate that model ensemble strategies, as opposed to 522

single model, successfully utilize the combined rea- 523

soning capabilities of different models to achieve 524

enhanced performance. Moreover, our analysis 525

demonstrates that the number of models included 526

in the ensemble significantly impacts its overall 527

effectiveness. 528
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Limitations529

The limitations of our work can be summarized in530

two main aspects. Firstly, our study mainly focused531

on the ensemble methods of large language mod-532

els in reasoning tasks. For generative tasks such533

as machine translation and summarization, their534

evaluation metrics only measure the similarity be-535

tween the responses and reference answers, which536

does not necessarily indicate the correctness of the537

responses. Therefore, our research concentrated538

on reasoning tasks, which generally have clear cor-539

rect answers and evaluation standards. Secondly,540

our experiments were conducted mainly on models541

with sizes of 7B and 13B. Due to resource con-542

straints, we did not perform experiments on larger543

models, and thus, it remains uncertain whether our544

methods can be extrapolated to larger-scale models.545
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A Full Results 726

The performance of eight models across all datasets 727

is presented in Table 4 to Table 10. For those mod- 728

els participating in the ensemble, we have marked 729

them as M1 to M5 in the "chosen" column. It is 730

noteworthy that in three of the seven datasets, we 731

did not select the top five performing models for 732

ensemble. This decision was based on an obser- 733

vation (Wang et al., 2023): the great performance 734

gap can adversely affect the effectiveness of the 735

model ensemble. Therefore, we selected models 736

with more similar performance instead. 737

B Prompt Template 738

We provide the full prompts used for each dataset 739

in Table 11, which consist of a task description and 740

specific questions or options. 741
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Table 4: MMLU

Model Chosen MMLU

InternLM-7b - 44.15
Llama2-7b M5 45.26
Baichuan2-7b M4 48.47
InternLM-20b M3 49.39
Baichuan2-13b M2 49.76
Llama2-13b M1 50.94
Qwen-7b - 54.86
Qwen-14b - 63.17

Table 5: GSM8K

Model Chosen GSM8K

Llama2-7b - 24.94
InternLM-7b - 32.83
Baichuan2-7b - 34.42
Llama2-13b M5 35.10
InternLM-20b M4 41.93
Qwen-7b M3 52.93
Baichuan2-13b M2 54.74
Qwen-14b M1 61.26

Table 6: AQUA

Model Chosen AQUA

InternLM-7b - 23.23
Llama2-7b M5 27.17
Baichuan2-7b M4 28.35
Llama2-13b M3 29.13
Qwen-7b M2 30.31
InternLM-20b M1 30.71
Baichuan2-13b - 37.80
Qwen-14b - 45.67

Table 7: CSQA

Model Chosen CSQA

Llama2-7b - 56.76
Llama2-13b - 57.49
Baichuan2-7b - 63.14
InternLM-7b M5 65.11
Baichuan2-13b M4 70.27
Qwen-7b M3 73.05
InternLM-20b M2 74.12
Qwen-14b M1 78.87

Table 8: OBQA

Model Chosen OBQA

Llama2-7b - 54.60
Llama2-13b - 56.80
InternLM-7b M5 57.20
Baichuan2-7b M4 60.80
InternLM-20b M3 65.80
Qwen-7b M2 70.00
Baichuan2-13b M1 71.60
Qwen-14b - 85.80

Table 9: TriviaQA

Model Chosen TriviaQA

InternLM-7b - 40.00
Baichuan2-7b - 53.35
InternLM-20b - 56.74
Llama2-7b M5 60.37
Qwen-7b M4 60.62
Baichuan2-13b M3 61.95
Qwen-14b M2 66.95
Llama2-13b M1 68.03

Table 10: SQuAD

Model Chosen SQuAD

Baichuan2-7b - 44.14
Baichuan2-13b - 48.72
Qwen-7b - 50.75
InternLM-7b M5 63.98
Llama2-7b M4 66.76
InternLM-20b M3 69.22
Qwen-14b M2 69.75
Llama2-13b M1 71.09
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Table 11: prompt

Datasets Prompt

MMLU

"The following is a multiple choice question (with answers) about {Subject}.
Please analyze carefully and provide your answer.
Question: {Question}
{Option}
Answer: Let’s think step by step."

GSM8K
"Please solve the following math problem:
Question: {Question}
Answer: Let’s think step by step."

AQUA

"Please solve the following math problem:
Question: {Question}
{Option}
Answer: Let’s think step by step."

CSQA

"The following is a multiple choice question that requires commonsense rea-
soning to answer. Please analyze carefully and provide your answer.Question:
{Question}
{Option}
Answer: Let’s think step by step."

OBQA

"The following is a multiple choice question that require external facts or
knowledge. Please analyze carefully and provide your answer.
Question: {Question}
{Option}
Answer: Let’s think step by step."

TriviaQA

"Please answer the following question, your answer should be as simple as
possible.
Question: {Question}
Answer:"

SQuAD

"Given the following passage, answer the subsequent question. If the passage
does not contain the information to answer the question, reply with ’unanswer-
able’.
Passage: {Passage}
Question:{Question}
Answer:"

12


	Introduction
	Related Work
	Model ensemble
	Reasoning of Large Language Models

	Methods
	Confidence-Based Method 
	Popularity-Based Method
	MBR-Based Method

	Experiments
	Setup
	Main results
	Our methods vs. Self-ensemble
	Our methods vs. Supervised methods 
	Analysis of model numbers in ensemble

	Conclusions
	Full Results
	Prompt Template

