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Abstract

Each Large Language Model (LLM) possesses
unique strengths and limitations, urging the
model ensemble to take full advantage of com-
plementary strengths of different LLMs. To
achieve this, we propose novel model ensem-
ble methods which combine the confidence and
popularity scores to generate the final outputs.
The confidence is measured by the belief de-
gree of one LLM to produce its output and the
popularity is evaluated through the consistency
degree of its output to other LLMs. Experi-
mental results demonstrate that our methods
markedly improve the performance on seven
commonly used reasoning benchmarks, sur-
passing both the top-performing model and
other strong baselines. Additionally, we ex-
plore the effects of varying ensemble sizes, of-
fering valuable insights for optimizing model
ensemble strategies for LLMs reasoning.

1 Introduction

Large Language Models (LLMs) have achieved re-
markable progress in recent years. Many LLMs,
including notable ones like GPT-4 (OpenAl, 2023),
Claude (Anthropic, 2023), Bard (Google, 2023)
and Llama-2 (Touvron et al., 2023), have shown
impressive general capabilities, attributed to pre-
training on large-scale corpora, instruction fine-
tuning and alignment with human feedback. Ac-
cording to research conducted by Zhang et al.
(2023), a single model faces significant challenges
during reasoning tasks when the required knowl-
edge was not encountered during the pre-training
phase. Consequently, the combination of multiple
LLMs, utilizing the unique inherent knowledge in
each model, has the great potential to enhance the
results across various reasoning tasks.

Figure 1 shows a Venn diagram of the sample
sets correctly answered by the three models on the
GSMSK (Cobbe et al., 2021) dataset. The samples
correctly answered by all three models account
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Figure 1: The Venn diagram shows the intersection and
union relationships among the sets of samples correctly
answered by three models on the GSM8K dataset. The
overlapping sections of the circles in the diagram rep-
resent the proportion of samples correctly answered by
different models in common.

for only 26.46%. If we can effectively integrate
the responses generated by the three models, the
theoretical upper bound of accuracy could reach
77.64%, which is much higher than the accuracy of
the three individual models at 41.93%, 54.74%, and
61.26% respectively. Therefore, by leveraging the
complementary strengths of various LLMs through
an ensemble approach, it is feasible to construct
an all-encompassing model that outperforms indi-
vidual models. Just as the saying goes 'two heads
are better than one’, ensemble methods can bring
together the unique capabilities of each model, ad-
dressing their individual limitations and amplifying
their collective strengths.

Previous studies on LLMs ensemble (Farinhas
et al., 2023; Jiang et al., 2023) often relied on task-
specific judge models (Farinhas et al., 2023) or
specially trained generative models (Jiang et al.,
2023). The use of these methods is limited in



certain scope, and they require additional super-
vised training. Other studies (Wang et al., 2023)
primarily concentrates on the internal integration
within a single model, which we refer to as "self-
ensemble", rather than ensemble among multiple
models. To address the shortcomings of existing
ensemble methods, we present three novel unsuper-
vised LLMs ensemble methods: Confidence-Based,
Popularity-Based and MBR-Based methods. The
methods integrates the confidence scores of individ-
ual models in their responses and the consistency
scores of one response to others (called *popular-
ity’) to get the final answer. The methods eliminate
the need for additional parameter training and can
be used for a variety of tasks. Experimental results
demonstrate that our method outperforms all single
models and strong ensemble baselines in various
benchmarks.

In this paper, we make the following contribu-
tions:

* We introduce three novel unsupervised en-
semble methods for multiple LLMs. These
methods combine the generative confidence
of single models and the majority consensus
of multiple models. The methods are not lim-
ited to any specific domain and do not require
additional supervised training.

* Experiments demonstrate that our approaches
exhibit substantial improvements in per-
formance, consistently surpassing the top-
performing single models and strong baselines
across seven benchmarks.

2 Related Work
2.1 Model ensemble

Currently, common ensemble methods can be
broadly categorized into two types: supervised
methods (Jiang et al., 2023) and unsupervised meth-
ods (Wang et al., 2023; Farinhas et al., 2023).
Supervised ensemble methods require addi-
tional training of specialized models and are usu-
ally limited by the tasks and domains. Jiang et al.
(2023) presented a question to eleven different mod-
els to generate responses. Then a ranking model
(He et al., 2023), PairRanker, is trained to select the
top-ranked responses and a T5-like model (Chung
et al., 2022) is trained to generate the final an-
swers. The introduction of trainable parameters can
improve performance, but it also leads to higher
time and computational demands, and reduces the

model’s flexibility for direct application to other
tasks.

Unsupervised ensemble methods currently
mainly focus on the integration of multiple re-
sponses from a single model. Majority voting (Lam
and Suen, 1997) is the most commonly used un-
supervised ensemble method. Wang et al. (2023)
introduced Self-Consistency decoding, selecting
answers through a majority vote among multiple
responses. Zhou et al. (2020) and Farinhas et al.
(2023) utilized the Minimum Bayes-risk decoding
(Kumar and Byrne, 2002; Eikema and Aziz, 2020)
to integrate multiple candidate results from a sin-
gle model in machine translation tasks, achieving
impressive results. But their approach still involves
integration only on a single model. Unsupervised
ensemble methods for multiple LLMs remains a
highly promising research field.

2.2 Reasoning of Large Language Models

Reasoning is the process of integrating various
types of knowledge from both explicit and im-
plicit sources, to derive new conclusions about real
or hypothetical situations in the world (Yu et al.,
2023). According to Qiao et al. (2023), reasoning
tasks can be categorized into several types, such as
Arithmetic Reasoning , Commonsense Reasoning
and more. In addition, academic examination style
multiple-choice questions (Hendrycks et al., 2021)
also represent an important form of reasoning tasks.

Existing studies have explored numerous ap-
proaches aimed at unlocking reasoning capabilities
of large language models. A notable development
is the Chain-of-Thought (CoT) reasoning (Wei
et al., 2022), which navigates models through step-
by-step thinking to tackle complex reasoning tasks.
Wang et al. (2023) introduced Self-Consistency, a
technique that involves sampling multiple reason-
ing paths and selecting the final answer through
majority voting. However, no model is capable
of handling all reasoning tasks, especially when
applying the model to domains that were not seen
during the pre-training phase (Zhang et al., 2023).

3 Methods

Task Definition. Consider a reasoning task with
an input denoted by x. Let there be K LLMs
represented as My, My, ..., M. For each model
My, we define a specific prompt p;. We require
each model to generate responses to the input x
with its prompt. The response produced by model
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Figure 2: We evaluate the accuracy of responses generated by four fundamental models across different probability
intervals, utilizing the aggregation of all datasets described in Section 4.1.

M, when provided with input x is denoted by
Ty = My (py, ©).

In this paper, the task of model ensemble is con-
ceptualized as the process of choosing the most
appropriate response among those generated by dif-
ferent models. The chosen response of ensemble is
represented as R*.

We employ three unsupervised methods for
model ensemble, as Figure 3, namely Confidence-
Based, Popularity-Based, and MBR-Based meth-
ods. Each method employs its respective set of
criteria to choose responses.

3.1 Confidence-Based Method

Generally speaking, the greater the model’s confi-
dence in a response, the more likely it is that this
response accurately represents the correct answer
to the input. Accurately estimating the confidence
of a model in generating responses remains an un-
resolved issue. Existing methods (Lu et al., 2022)
require the introduction of additional training or
parameters. We avoid introducing new parameters
and instead use the average probability of each to-
ken generated by the model as a measure of the
model’s confidence.

We find that the accuracy of reasoning is closely
related to the probability of generating responses.
As illustrated in Figure 2, our experiments on four
commonly used LLMs reveal that the higher the
generation probability, the greater the chance that

this response is accurate. Thus, the probability
of response serves as an indicator of the model’s
confidence in the correctness of its own answer.

Therefore, we use the probability of responses
as a measure of each model’s confidence, and we
perform model ensemble based on these confidence
values. This method is illustrated in Figure 3(a).
In particular, given the input x and the prompt py,
the confidence of responses 7, generated by model
Mj, can be represented as Equation 1 :

Conf(ry|My,) = exP% S0 log P(rhlpr.@,r st
(D

We select the response that maximizes the value,
as detailed in the specified Equation 2.

R* = arg max{Conf (7| M)}

Tk

2

3.2 Popularity-Based Method

Majority voting plays a crucial role in ensemble
learning. When experts, each offering unique in-
sights, come together, majority voting often out-
performs relying on a single opinion (Lam and
Suen, 1997). Inspired by Self-Consistency decod-
ing (Wang et al., 2023), we integrate the majority
voting into our model ensemble methods. Our aim
is to choose a response that reflects popularity,
representing the agreement of most models and
demonstrating consensus across multiple models.
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Figure 3: We utilize three distinct unsupervised approaches for model ensemble: (a) Confidence-Based method,
(b) Popularity-Based method, (¢) MBR-Based method. We prompt every model participating in the ensemble
to answer the same reasoning question, thereby generating their responses. Subsequently, each method assess
responses from various models, ultimately selecting the final appropriate response.

Considering that matching-Based voting of Self-
Consistency decoding is not suitable for all reason-
ing tasks, We propose a new voting mechanism.
We calculate semantic similarity between each re-
sponse generated by one model and all responses
from other models, aggregating these similarity
scores as votes for popularity:

K
Popularity(ry) = Z SIM(ry,75)  (3)
=072k

where SIM(.) denotes the semantic similarity be-
tween two responses.

The response receiving the highest number of
votes is considered the most popular response and
thus becomes the final choice, as illustrated in Fig-
ure 3(b). This is formally expressed as:

R* = arg max{Popularity(r) } 4)
Tk

3.3 MBR-Based Method

In machine translation tasks, Minimum Bayesian
Risk (MBR) is frequently employed in the decod-
ing process, commonly referred to as MBR decod-
ing (Eikema and Aziz, 2020; Farinhas et al., 2023),
typically taking the following form:

h* := arg I}{leajt}l{ Ep(ylz.ﬁ) {u(yy h)]a 6]

where u(y, h) is utility function which assesses the
hypothesis h against a reference y. Equation 5 aims

to identify the candidate that optimally maximizes
the expected utility function u(y, h) (or minimises
expected loss) over the entire set of translation hy-
potheses H. Furthermore, the expected value is
generally estimated through a Monte Carlo sam-
pling (Farinhas et al., 2023):

1
Epypo (Y. ] & 2> ulyish)  (6)

i=1

This process involves using M samples drawn from
D(y|z,6)> Which provides an unbiased estimate of the
expected utility.

Inspired by the MBR decoding method, we mi-
grate this approach to the field of model ensemble.
We utilize a popularity voting mechanism as the
utility function and define M in Equation 6 as the
number of models participating in the ensemble.
Additionally, we consider the unique attributes of
each model by incorporating the confidence of the
model at the time of generating each response, as
formulated in Equation 7

K
Z Conf{(rg| My)SIM(rx, 75)
=037k
@)

We name it MBR-Based ensemble method and
Figure 3(c) provides a visual illustration of this
method. MBR-Based method integrates generation
confidence from one model and majority voting

1
K-1

R* =argmax
Tk



from multiple models, effectively capturing both
self-assurance of single model and the collective
agreement among all models.

4 Experiments

4.1 Setup

We conduct a comprehensive evaluation of our en-
semble methodology, which integrates eight differ-
ent large language models (LLMs), across seven
reasoning benchmarks:

Models. We select four types of large lan-
guage models with unique foundational architec-
tures: Llama-2 (Touvron et al., 2023), Baichuan-2
(Baichuan, 2023), Qwen (Bai et al., 2023), and
InternLM (InternL.M, 2023) from OpenCompass
Leaderboard'. For each foundational model, we in-
vestigate two configurations varied by scale, specif-
ically 7B and 13B parameters. These models will
be denoted as M1-M8 in the following sections.

Benchmarks. We employ seven different rea-
soning tasks as evaluation benchmarks. In terms of
task types, we select datasets from multiple do-
mains following the categorizations established
in prior research (Qiao et al., 2023; Hendrycks
et al.,, 2021), including academic examination,
arithmetic reasoning, and commonsense reasoning
datasets. These tasks encompass two main for-
mats: multiple-choice reasoning tasks and genera-
tive answer-Based reasoning tasks. This approach
aims to comprehensively assess reasoning capabili-
ties of our ensemble methods across various fields.

* Academic Examination. We use the Measur-
ing Massive Multitask Language Understand-
ing (MMLU; Hendrycks et al., 2021) dataset,
including fifty seven tasks covering areas such
as mathematics, American history, computer
science and more.

e Arithmetic Reasoning. We use GSMSK
(Cobbe et al., 2021) and AQUA-RAT (Ling
et al., 2017) datasets. Both of them require
multi-step arithmetic reasoning to solve math
world problems.

¢ Commonsense Reasoning. We use Com-
monsenseQA (CSQA; Talmor et al., 2019)
and OpenBookQA (OBQA; Mihaylov et al.,
2018 2018) that require multi-step reasoning
using commonsense knowledge. We also in-
clude TriviaQA (Joshi et al., 2017) without its

"https://opencompass. org.cn/leaderboard-11m

reference documents, which requires various
knowledge. Additionally, we use SQuAD 2.0
(Rajpurkar et al., 2018) for reading compre-
hension task.

Settings. We apply our three ensemble tech-
niques: Confidence-Based, Popularity-Based and
MBR-Based methods on four selected models. Typ-
ically, we select the top four models based on their
performance for each specific dataset, leading to a
variation in the ensemble’s model selection. How-
ever, prior research has indicated that when there
is a substantial performance gap among different
models on a particular dataset, models with inferior
performance can significantly degrade the overall
efficacy of the ensemble (Wang et al., 2023). There-
fore, if the performance gap between the top four
models is too large, we select four models with
more similar performance for ensemble instead.
Regarding the prompt, we adopt a zero-shot (Ko-
jima et al., 2022) testing framework for all mod-
els. For each dataset, we create a specific prompt
that includes a brief task description and relevant
questions or options. For more information on the
prompt, please refer to Appendix B.

Baselines. As baselines, we select three types of
methods:

* Single Model. We evaluate all eight LLMs
separately on each dataset using a greedy de-
coding strategy.

* Self-Ensemble. The best-performing single
model is employed to generate answers four
times using sampling decoding strategy and
our three ensemble methods as self-ensemble
baseline.

* Supervised Multi-Model Ensemble. Pair-
Ranker (Jiang et al., 2023) is used to select
the most appropriate answer from candidates
for the same question. It has been trained with
responses from various models in instruction-
following tasks.

Evaluation. After obtaining the model’s re-
sponse to a question, we extract the answer in
different ways according to the dataset’s features.
For datasets with multiple choices, we prompt the
model with final response, question and options.
We then instruct the model to calculate and output
the probabilities for each option following the ap-
proach of Baichuan (2023). Then we select the op-
tion with the highest probability as the final answer.
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Method MMLU GSMS8K AQUA CSQA OBQA TriviaQA SQuAD
M 1-M4 vary across different datasets

" Mi-greedy 5094 6126 3071 7887 7160 68.03  71.09
M2-greedy 49.76 54.74 30.31 74.12 70.00 66.95 69.42
M3-greedy 49.39 52.39 29.13 73.05 65.80 61.95 69.22
M4-greedy 48.47 41.93 28.35 70.27 60.80 60.62 66.76

Self-ensemble results derived from four samples of the best model (M1)

"Random 4934 5610 2559 7592 6760  66.68 7025
Confidence 50.22 60.80 29.13 76.82 70.00 68.48 71.73
Popularity 50.11 58.23 22.83 77.48 69.00 67.99 72.87
MBR-Based 50.14 61.87 27.56 76.66 70.80 68.32 72.66

Ensemble results of models M1-M4

" Random 4949 = 5148 3071 7518  67.60 6417  69.23
PairRanker 52.43 59.06 34.65 76.74 72.60 66.48 72.35
Confidence 50.87 62.09 33.07 77.31 72.60 70.05 73.24
Popularity 51.25 57.62 30.31 78.38 71.20 69.95 75.45
MBR-Based 51.58 63.00 35.04 79.44 74.60 70.85 75.72

Table 1: The overall accuracy of different methods across all datasets. The models participating in the ensemble
vary across different datasets, denoted as M1-M4 (with performance ranked from high to low). Self-ensemble
corresponds to the ensemble results of four sampled responses from the best-performing model M1. The methods
that performs best in self-ensemble are indicated with an underline. The best overall results are highlighted in bold.

For other types of datasets, we employ rule-based
methods such as regular expression matching to
extract the correct answer from the response. Fi-
nally, across all datasets, we employ accuracy as
the evaluation metric.

4.2 Main results

SQuAD

Trivia QA AQUA

OBQA CsQA

Best Single Model

—— MBR-Based of Self-Ensemble
MBR-Based of Multi-Model Ensemble

Figure 4: Comparative analysis of model performances:
best single model, MBR-Based method of self-ensemble
and MBR-Based method of multi-model ensemble
across all datasets. To demonstrate the relative per-
formance among methods, we normalized the original
performance value.

We report all experimental results in Table 1.
Models M1 to M4 (performance from high to low)
represent the models participating in the ensemble.
For detailed information on the selection of the
four specific models (M1 to M4) and performance

of all eight models for each dataset, please refer
to Appendix A. In Figure 4, we present the results
of the best single model, the MBR-Based method
of Self-ensemble and the MBR-Based method of
multi-model ensemble across all datasets.

Confidence-Based method achieves better per-
formance than best single models on five datasets,
as shown in Table 1. In most cases, when the prob-
ability assigned to a response is higher, it indicates
that the model is more confident about the con-
tent. Consequently, the chance that the response
contains correct answer is higher, as illustrated in
Figure 2. However, sometimes the most confident
model is not necessarily the one that generates the
best response, and we provide further analysis in
Section 4.5. These results indicate that relying on
the confidence of response by a single model can
be effective but insufficient.

Popularity-Based method has also achieved
better performance than single models on three
datasets. The core of this method is majority voting,
based on comparing semantic similarities, aiming
to identify the answers that most models consider
to be correct. When models, each with distinct
knowledge and parameters, collaborate in decision-
making, majority voting often yields more effec-
tive results than relying on a single model (Lam
and Suen, 1997). Furthermore, we observe that
the Popularity-Based method is ineffective when
there’s a significant performance gap among the
models, as the weaker models introduce significant



N  Model Method MMLU GSMS8K AQUA CSQA OBQA TriviaQA SQuAD
1 MI1 Greedy 50.94 61.26 30.71 78.87 71.60 68.03 71.09
Random 50.46 57.62 32.68 75.84 68.00 67.47 70.61
Confidence 50.94 62.47 33.07 79.93 72.60 70.09 73.42
2 Mi1-M2 .
Popularity - - - - - - -
MBR-Based  50.94 62.47 33.07 79.93 72.60 70.09 73.42
Random 49.91 58.38 26.38 75.02 67.00 65.79 70.21
3 MI-M3 Confidence 50.84 62.55 31.50 77.97 74.20 70.24 73.81
Popularity 50.82 58.76 32.28 78.05 72.20 69.47 73.54
MBR-Based  51.56 61.49 35.04 78.79 74.60 70.66 74.19
Random 49.49 51.48 30.71 75.18 67.60 64.17 69.23
4 MIl-Md Confidence 50.87 62.09 33.07 77.31 72.60 70.05 73.24
Popularity 51.25 57.62 30.31 78.38 71.20 69.95 75.45
MBR-Based  51.58 63.00 35.04 79.44 74.60 70.85 75.72
Random 48.21 49.89 28.35 71.25 64.80 63.49 67.92
5 MI-MS Confidence 46.87 44.88 28.74 74.04 69.60 69.53 71.91
Popularity 47.69 55.27 27.95 79.93 71.00 69.67 76.77
MBR-Based  46.33 50.04 29.53 78.05 72.20 70.33 77.44

Table 2: The accuracy of different ensemble methods across all datasets when the number of models changes. The
best results in each group are underlined and the best overall results are bolded.

noise.

MBR-Based method has achieved the best re-
sults on almost all datasets. It surpasses the perfor-
mance of the best model by a large margin on sev-
eral benchmarks. At the same time, we can observe
that the MBR-Based method has also shown im-
provements compared to Confidence-Based meth-
ods and Popularity-Based methods. This method
demonstrates its ability to integrate the confidence
of single models and the consensus degree of multi-
ple models, maximizing the strengths of all models
while minimizing their weaknesses.

4.3 Our methods vs. Self-ensemble

Table 1 also presents the results of self-ensemble
from the best-performing model (M1) on each
dataset. Self-ensemble only shows marginal im-
provements in just three of the datasets compared
with the greedy decoding strategy. This indicates
that LLMs might find the optimal solution through
a single greedy decoding process for some specific
tasks, making additional sampled responses for the
ensemble ineffective in significantly improving per-
formance.

The observed gap between self-ensemble and
multi-model ensemble methods can be attributed
to the limitations in diversity and perspective in
a single model. Self-ensemble methods generate
varied responses, but they are confined within the
model’s own learned patterns and inherent biases,
which can limit the accuracy. In contrast, multi-
model ensemble methods integrate the strengths of

diverse models. This variety allows multi-model
ensemble methods to excel in different aspects of
a specific task, thereby mitigating the weaknesses
inherent in individual models.

4.4 Our methods vs. Supervised methods

As shown in Table 1, PairRanker outperforms the
best-performing model only on four datasets. This
performance limitation stems from the fact that
PairRanker’s training data does not cover the com-
prehensive knowledge necessary for a wide range
of reasoning tasks. Consequently, PairRanker strug-
gles to accurately assess the correctness of the re-
sponses generated by different models, making
it less effective than our proposed MBR-Based
method across almost all datasets. Compared to
supervised methods, our approach demonstrates
better versatility, being able to fully leverage the
knowledge of different models without being lim-
ited by training data.

4.5 Analysis of model numbers in ensemble

Table 2 shows that the number of models in the en-
semble has a significant impact. We vary the num-
ber from two to five by adding a relatively weaker
model sequentially. It is worth mentioning that if
there are only two models participating in the en-
semble, only the similarity between the responses
of these two models will be calculated, so the final
response can not be selected through their popu-
larity. At the same time, the MBR-Based method
degenerates into the Confidence-Based method in



this case.

Overall, when the number of models in the en-
semble is less than five, our MBR-Based method
achieves the best performance across almost all
datasets, except on GSM8K with N=3. However,
when the ensemble expands to include five mod-
els, we observe notable performance degradation
across several datasets. It is possible that including
more models can widen the gap between the best
and worst-performing models, which is not bene-
ficial for the ensemble. Although we have made
efforts to select models with similar performance,
there remains a difference of more than 5% among
models in some tasks, limited by the availability of
publicly available LLMs.

M1 M2 M3 M4 M5
LL -0.094 -0.108 -0.123 -0.182 -0.066

Table 3: The average log-likelihood (LL) of responses
generated by M1 to M5 on GSMSK dataset.

In order to analyze the reasons behind the
changes of overall ensemble performance after
adding a relatively weaker model, we present the
response allocation results of the MBR-Based en-
semble on the GSM8K dataset in Figure 5 with the
ensemble number varying from two to five. This in-
cludes the number of selection for each model’s re-
sponses and the accuracy of these responses. Com-
paring the results of Figure 5 (b) and (c), we can
find that when adding a relatively weaker model
M4, the generated responses are not frequently cho-
sen and thus do not significantly affect overall per-
formance. More importantly, M4’s participation
appears to have a positive impact on the perfor-
mance of other models (M1-M3). This is likely
that M4’s responses participate in the majority vot-
ing mechanism, potentially boosting the popularity
of a correct answer from M1-M3. Consequently,
with the inclusion of M4, there is an observed im-
provement in the accuracy from 61.49% to 63.00%.

Moreover, after adding M5, the performance
of the MBR-Based ensemble method on GSM8K
drops significantly. Comparing the change of the
response allocation between Figure 5 (c) and (d),
it can be found that the responses of the weakest
model M5 are frequently chosen under this case.
To explore the reasons for this phenomenon, we
list the average log likelihood values of responses
generated by M1-MS5 in Table 3, reflecting the re-
sponse generation probabilities of each model. We

Chosen_num/ Chosen_num/
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Figure 5: The chosen number of responses generated

by each model and accuracy under different ensemble
sizes.

M1 M2

find that the probability of responses generated by
MS is significantly higher than M1-M4, thus the
number of chosen responses from M5 under the
MBR-Based method is more, leading to a drastic
drop (from 63.00% to 50.04%) in ensemble perfor-
mance.

5 Conclusions

We introduce three model ensemble approaches
designed for large language models across var-
ious reasoning tasks: the confidence-Based
method, popularity-Based method, and MBR-
Based method. Importantly, our methods effec-
tively take full advantages of different models
across various tasks. Our MBR-Based Method,
which combines the generative confidence and con-
sensus degree from diverse models, has shown
superior performance across almost all reasoning
benchmarks. The empirical findings further demon-
strate that model ensemble strategies, as opposed to
single model, successfully utilize the combined rea-
soning capabilities of different models to achieve
enhanced performance. Moreover, our analysis
demonstrates that the number of models included
in the ensemble significantly impacts its overall
effectiveness.



Limitations

The limitations of our work can be summarized in
two main aspects. Firstly, our study mainly focused
on the ensemble methods of large language mod-
els in reasoning tasks. For generative tasks such
as machine translation and summarization, their
evaluation metrics only measure the similarity be-
tween the responses and reference answers, which
does not necessarily indicate the correctness of the
responses. Therefore, our research concentrated
on reasoning tasks, which generally have clear cor-
rect answers and evaluation standards. Secondly,
our experiments were conducted mainly on models
with sizes of 7B and 13B. Due to resource con-
straints, we did not perform experiments on larger
models, and thus, it remains uncertain whether our
methods can be extrapolated to larger-scale models.
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Table 4: MMLU

Model Chosen MMLU Table 8: OBQA
InternLM-7b - 44.15
Llama2-7b M5 4526 Model Chosen  OBQA
Baichuan2-7b M4 48.47 Llama2-7b _ 54.60
InternL.M-20b M3 49.39 Llama2-13b R 56.80
Baichuan2-13b M2 49.76 Intern.M-7b M5 57.20
Llama2-13b M1 50.94 Baichuan2-7b M4 60.80
Qwen-7b - 54.86 InternLM-20b M3 65.80
Qwen-14b - 63.17 Qwen-7b M2 70.00
Baichuan2-13b MI 71.60
Table 5: GSMSK Qwen-14b - 85.80
Model Chosen GSMSK
Llama2-7b - 24.94
InternL.M-7b - 32.83
Baichuan2-7b - 34.42
Llama2-13b M5 35.10 Table 9: TriviaQA
InternLM-20b M4 41.93
Qwen-7b M3 52.93 Model Chosen TriviaQA
Baichuan2-13b M2 54.74
Qwen-14b M1 61.26 Int?rnLM—7b - 40.00
Baichuan2-7b - 53.35
InternLM-20b - 56.74
Table 6: AQUA Llama2-7b M5 60.37
Qwen-7b M4 60.62
Model Chosen AQUA Baichuan2-13b M3 61.95
T R Qurtiy e g
Llama2-7b M5 27.17
Baichuan2-7b M4 28.35
Llama2-13b M3 29.13
Qwen-7b M2 30.31
InternLM-20b M1 30.71
Baichuan2-13b - 37.80
Qwen-14 - 45.67 Table 10: SQuAD
Table 7: CSQA Model Chosen SQuAD
Baichuan2-7b - 44.14
Model Chosen CSQA Baichuan2-13b - 48.72
Llama2-7b - 56.76 Qwen-7b - 50.75
Llama2-13b ; 57.49 Intern. M-7b M5 63.98
Baichuan2-7b - 63.14 Llama2-7b M4 66.76
InternLM-7b M5 65.11 Internl. M-20b M3 69.22
Baichuan2-13b M4 70.27 Qwen-14b M2 69.75
Qwen-7b M3 73.05 Llama2-13b M1 71.09
InternLM-20b M2 74.12
Qwen-14b M1 78.87
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Table 11: prompt

Datasets

Prompt

MMLU

"The following is a multiple choice question (with answers) about {Subject}.
Please analyze carefully and provide your answer.

Question: {Question}

{Option}

Answer: Let’s think step by step."

GSMSK

"Please solve the following math problem:
Question: {Question}
Answer: Let’s think step by step."

AQUA

"Please solve the following math problem:
Question: {Question}

{Option}

Answer: Let’s think step by step."

CSQA

"The following is a multiple choice question that requires commonsense rea-
soning to answer. Please analyze carefully and provide your answer.Question:
{Question}

{Option}

Answer: Let’s think step by step."

OBQA

"The following is a multiple choice question that require external facts or
knowledge. Please analyze carefully and provide your answer.

Question: {Question}

{Option}

Answer: Let’s think step by step."

TriviaQA

"Please answer the following question, your answer should be as simple as
possible.

Question: {Question}

Answer:"

SQuAD

"Given the following passage, answer the subsequent question. If the passage
does not contain the information to answer the question, reply with "unanswer-
able’.

Passage: {Passage}

Question: {Question }

Answer:"
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