
Geometric Algebra Transformers
Johann Brehmer Pim de Haan Sönke Behrends Taco Cohen

Qualcomm AI Research1

{jbrehmer, pim, sbehrend, tacos}@qti.qualcomm.com

Abstract—Problems involving geometric data arise in a variety
of fields, including computer vision, robotics, chemistry, and
physics. Such data can take numerous forms, such as points,
direction vectors, planes, or transformations, but to date there is
no single architecture that can be applied to such a wide variety of
geometric types while respecting their symmetries. In this paper
we introduce the Geometric Algebra Transformer (GATr), a
general-purpose architecture for geometric data. GATr represents
inputs, outputs, and hidden states in the projective geometric
algebra, which offers an efficient 16-dimensional vector space
representation of common geometric objects as well as operators
acting on them. GATr is equivariant with respect to E(3), the
symmetry group of 3D Euclidean space. As a transformer, GATr
is scalable, expressive, and versatile. In experiments with n-body
modeling and robotic planning, GATr shows strong improvements
over non-geometric baselines.

I. INTRODUCTION

From molecular dynamics to astrophysics, from material
design to robotics, fields across science and engineering deal
with geometric data: points, directions, surfaces, orientations,
and so on. The geometric nature of data provides a rich
structure: a notion of common operations between geometric
types (computing distances between points, applying rotations
to orientations, etc.), a well-defined behaviour of data under
transformations of a system, and the independence of certain
properties of coordinate system choices.

When learning relations from geometric data, incorporating
this rich structure into the architecture has the potential to
improve the performance, especially in the low-data regime. To
implement such an inductive bias, it is useful to first categorize
inputs, outputs, and internal data into certain object types, for
instance group representations. Next, the functions mapping
between these types have certain regularity constraints imposed,
for instance based on equivariance [6].

In this spirit, we introduce the Geometric Algebra Trans-
former (GATr), a general-purpose network architecture for
geometric data. GATr brings together three key ideas.
Geometric algebra: To naturally describe both geometric

objects as well as their transformations in three-dimensional
space, GATr represents data as multivectors of the projective
geometric algebra G3,0,1. Geometric algebra is an elegant,
versatile and practical mathematical framework for geomet-
rical computations. The particular algebra G3,0,1 extends
the vector space R3 to 16-dimensional multivectors, which
can natively represent various geometric types and E(3)
poses. In this framework, common interactions between

1Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

geometric data types can be computed with few operations,
in particular the geometric product.

Equivariance: To behave consistently under transformations,
GATr is equivariant with respect to E(3), the symmetry
group of three-dimensional space. To this end, we develop
several new E(3)-equivariant primitives mapping between
multivectors, including equivariant linear maps, an attention
mechanism, nonlinearities, and normalization layers.

Transformer: Due to its favorable scaling properties, ex-
pressiveness, trainability, and versatility, the transformer
architecture [23] has become the de-facto standard for a
wide range of problems. GATr is based on the transformer
architecture, and hence inherits these benefits.

GATr hence combines two lines of research: the representa-
tion of geometric objects with geometric algebra [9, 10, 18],
popular in computer graphics and physics and recently gaining
traction in deep learning [3, 19, 21], and the encoding
of symmetries through equivariant deep learning [7]. The
result—to the best of our knowledge the first E(3)-equivariant
architecture with internal geometric algebra representations—is
a versatile network for problems involving geometric data. We
demonstrate GATr in a robotic planning problem, where it
significantly outperforms non-geometric baselines.

II. GEOMETRIC ALGEBRA IN A NUTSHELL

We begin with the briefest of introductions to geometric
algebra. For an in-depth introduction, we point the interested
reader to Refs. [9, 10, 18, 19].

Whereas a plain vector space like R3 allows us to take
linear combinations of elements x and y (vectors), a geometric
algebra additionally has a bilinear associative operation: the
geometric product, denoted simply by xy. By multiplying
vectors, one obtains so-called multivectors, which can represent
both geometrical objects and operators. Multivectors can
be expanded on a multivector basis, characterized by their
dimensionality or grade, such as scalars (grade 0), vectors
ei (grade 1), bivectors eiej (grade 2), all the way up to
the pseudoscalar e1 · · · ed (grade d). The symmetric and
antisymmetric parts of the geometric product are called the
interior and exterior (wedge) product. Finally, we will require
is the dualization operator x 7→ x∗. It acts on basis elements
by swapping “empty” and “full” dimensions, e. g. sending
e1 7→ e23.

In order to represent three-dimensional objects as well as
arbitrary rotations and translations acting on them, we work
with the projective geometric algebra G3,0,1 [9, 18, 19]. Here
one adds a fourth homogeneous coordinate x0e0 to the 3D

Object / operator Scalar Vector Bivector Trivector PS
1 e0 ei e0i eij e0ij e123 e0123

Scalar λ ∈ R λ 0 0 0 0 0 0 0
Plane w/ normal n ∈ R3, origin shift d ∈ R 0 d n 0 0 0 0 0
Line w/ direction n ∈ R3, orthogonal shift s ∈ R3 0 0 0 s n 0 0 0
Point p ∈ R3 0 0 0 0 0 p 1 0
Pseudoscalar µ ∈ R 0 0 0 0 0 0 0 µ

Reflection through plane w/ normal n ∈ R3, origin shift d ∈ R 0 d n 0 0 0 0 0
Translation t ∈ R3 1 0 0 1

2
t 0 0 0 0

Rotation expressed as quaternion q ∈ R4 q0 0 0 0 qi 0 0 0
Point reflection through p ∈ R3 0 0 0 0 0 p 1 0

TABLE I: Embeddings of common geometric objects and transformations into the projective geometric algebra G3,0,1. The columns show
different components of the multivectors with the corresponding basis elements, with i, j ∈ {1, 2, 3}, j ̸= i, i.e. ij ∈ {12, 13, 23}. For
simplicity, we fix gauge ambiguities (the weight of the multivectors) and leave out signs (which depend on the ordering of indices in the
basis elements).

vector space, yielding a 24 = 16-dimensional geometric algebra.
The metric of G3,0,1 is such that e20 = 0 and e2i = 1 for
i = 1, 2, 3.

We can use G3,0,1 to represent transformations: a vector u
represents the reflection of other elements in the hyperplane
orthogonal to u. Since any orthogonal transformation is equal
to a sequence of reflections, this allows us to express any
such transformation as a geometric product of (unit) vectors,
u = u1 · · ·uk. These form the Pin group, which turns out to
be the double cover of E(3). In order to apply elements of the
Pin group to an arbitrary multivector x, one uses the sandwich
product:

ρu(x) =

{
uxu−1 if u is even
ux̂u−1 if u is odd

(1)

Here x̂ is the grade involution, which flips the sign of odd-
grade elements such as vectors and trivectors, while leaving
even-grade elements unchanged.

Following Refs. [9, 18, 19], we represent planes with vectors,
and require that the intersection of two geometric objects is
given by the wedge product of their representations. Lines (the
intersection of two planes) are thus represented as bivectors,
points (the intersection of three planes) as trivectors. This
leads to a duality between objects and operators, where objects
are represented like transformations that leave them invariant.
Table I provides a dictionary of these embeddings. It is easy
to check that this representation is consistent with using the
sandwich product for transformations.

We construct network layers that are equivariant with respect
to E(3), or equivalently its double cover Pin(3, 0, 1). A
function f : G3,0,1 → G3,0,1 is Pin(3, 0, 1)-equivariant with
respect to the representation ρ (or Pin(3, 0, 1)-equivariant for
short) if f(ρu(x)) = ρu(f(x)) for any u ∈ Pin(3, 0, 1) and
x ∈ G3,0,1.

III. THE GEOMETRIC ALGEBRA TRANSFORMER

A. Architecture overview

The Geometric Algebra Transformer (GATr) is designed
based on three principles outlines in the introduction: a strong
inductive bias for geometric data through a representation
based on geometric algebra, symmetry awareness through

E(3) equivariance, and scalability and versatility through a
transformer architecture.

We sketch GATr in Fig. 1. In the top row, we show the
overall workflow. If necessary, raw inputs are first preprocessed
into geometric types. The geometric objects are then embedded
into multivectors of the geometric algebra G3,0,1, following
the recipe described in Tbl. I.

The multivector-valued data are processed with a GATr
network. We show this architecture in more detail in the
bottom row of Fig. 1. GATr consists of N transformer blocks,
each consisting of an equivariant multivector LayerNorm, an
equivariant multivector self-attention mechanism, a residual
connection, another equivariant LayerNorm, an equivariant
multivector MLP with geometric bilinear interactions, and
another residual connection. The architecture is thus similar to
a typical transformer [23] with pre-layer normalization [1, 24],
but adapted to correctly handle multivector data and be E(3)
equivariant. We describe the individual layers below.

Finally, from the outputs of the GATr network we extract the
target variables, again following the mapping given in Tbl. I.

B. GATr primitives

a) Linear layers: We begin with linear layers between
multivectors. In Appendix A, we show that the equivariance
condition severely constrains them:

Proposition 1. Any linear map ϕ : Gd,0,1 → Gd,0,1 that is
equivariant to Pin(d, 0, 1) is of the form

ϕ(x) =

d+1∑
k=0

wk⟨x⟩k +

d∑
k=0

vke0⟨x⟩k (2)

for parameters w ∈ Rd+2, v ∈ Rd+1. Here ⟨x⟩k is the blade
projection of a multivector, which sets all non-grade-k elements
to zero.

Thus, E(3)-equivariant linear maps between G3,0,1 multivec-
tors can be parameterized with nine coefficients, five of which
are the grade projections and four include a multiplication with
the homogeneous basis vector e0. We thus parameterize affine
layers between multivector-valued arrays with Eq. (2), with
learnable coefficients wk and vk for each combination of input

= Equi
linear

× N

🐊
GATr

Equi
layer
norm

Geo
attn.

Equi
linear +Equi

linear
Equi
linear

Raw inputs Geometric types Multivector &
scalar inputs

Multivector &
scalar outputs Raw outputs

Preprocess
Embed in
geometric

algebra
🐊
GATr

Extract
from

geometric
algebra1 1

Geo
bilinear

Equi
layer
norm

Equi
linear

Gated
GELU

Equi
linear +

Fig. 1: Overview over the GATr architecture. Boxes with solid lines are learnable components, those with dashed lines are fixed.

channel and output channel. In addition, there is a learnable
bias term for the scalar components of the outputs (biases for
the other components are not equivariant).

b) Geometric bilinears: Equivariant linear maps are not
sufficient to build expressive networks. The reason is that these
operations allow for only very limited grade mixing. For the
network to be able to construct new geometric features from
existing ones, such as the translation vector between two points,
two additional primitives are essential.

The first is the geometric product x, y 7→ xy, the fundamental
bilinear operation of geometric algebra. It allows for substantial
mixing between grades: for instance, the geometric product
of vectors consists of scalars and bivector components. The
geometric product is equivariant (Appendix A).

The second geometric primitive we use derived from the
so-called join2 x, y 7→ (x∗ ∧ y∗)∗. This map may appear
complicated, but it plays a simple role in our architecture:
an equivariant map that involves the dual x 7→ x∗. Including
the dual in an architecture is essential for expressivity: in
G3,0,1, without any dualization it is impossible to represent
even simple functions such as the Euclidean distance between
two points [9]; we show this in Appendix A. While the
dual itself is not Pin(3, 0, 1)-equivariant (w. r. t. ρ), the join
operation is equivariant to even (non-mirror) transformations.
To make the join equivariant to mirrorings as well, we multiply
its output with a pseudoscalar derived from the network
inputs: x, y, z 7→ EquiJoin(x, y, z) = z0123(x

∗ ∧ y∗)∗, where
z0123 ∈ R is the pseudoscalar component of a reference
multivector z.

We define a geometric bilinear layer that
combines the geometric product and the join
of the two inputs as Geometric(x, y; z) =
Concatenatechannels(xy,EquiJoin(x, y; z)). In GATr,
this layer is included in the MLP.

c) Nonlinearities and normalization: We use scalar-gated
GELU nonlinearities [12] GatedGELU(x) = GELU(x1)x,
where x1 is the scalar component of the multivector x.
Moreover, we define an E(3)-equivariant LayerNorm operation

2Technically, the join has an anti-dual, not the dual, in the output. We leave
this detail out for notational simplicity.

for multivectors as LayerNorm(x) = x/
√

Ec⟨x, x⟩, where the
expectation goes over channels and we use the invariant inner
product ⟨·, ·⟩ of G3,0,1.

d) Attention: Given multivector-valued query, key, and
value tensors, each consisting of ni items (or tokens) and
nc channels (key length), we define the E(3)-equivariant
multivector attention as

Attention(q, k, v)i′c′ =
∑
i

Softmaxi

(∑
c⟨qi′c, kic⟩√

8nc

)
vic′ .

(3)
Here the indices i, i′ label items, c, c′ label channels, and ⟨·, ·⟩
is the invariant inner product of the geometric algebra. Just
as in the original transformer [23], we thus compute scalar
attention weights with a scaled dot product; the difference is
that we use the inner product of G3,0,1.We extend this attention
mechanism to multi-head self-attention in the usual way.

C. Extensions

a) Auxiliary scalar representations: While multivectors
are well-suited to model geometric data, many problems contain
non-geometric information as well. Such scalar information
may be high-dimensional, for instance in sinosoidal positional
encoding schemes. Rather than embedding into the scalar
components of the multivectors, we add an auxiliary scalar
representation to the hidden states of GATr. Each layer thus
has both scalar and multivector inputs and outputs. They have
the same batch dimension and item dimension, but may have
different number of channels.

This additional scalar information interacts with the multi-
vector data in two ways. In linear layers, we allow the auxiliary
scalars to mix with the scalar component of the multivectors.
In the attention layer, we compute attention weights both from
the multivectors, as given in Eq. (3), and from the auxiliary
scalars, using a regular scaled dot-product attention. The two
attention maps are summed before computing the softmax,
and the normalizing factor is adapted. In all other layers, the
scalar information is processed separately from the multivector
information, using the unrestricted form of the multivector
map. For instance, nonlinearities transform multivectors with

Method Reward

GATr-Diffuser (ours) 74.8± 1.7
Transformer-Diffuser 69.8± 1.9
Diffuser [15] (reproduced) 57.7± 1.8

Diffuser [15] 58.7± 2.5
EDGI [5] 62.0± 2.1
CQL [17] 24.4
BCQ [11] 0.0

TABLE II: Diffusion-based robotic planning. We show the normalized
cumulative rewards achieved on a robotic block stacking task [15],
where 100 is optimal and means that each block stacking task is
completed successfully, while 0 corresponds to a failure to stack
any blocks. We show the mean and standard error over at least 100
evaluation episodes. The top three results were computed in the GATr
code base, the bottom four taken from the literature [5, 15].

equivariant gated GELUs and auxiliary scalars with regular
GELU functions.

b) Rotary positional embeddings: GATr assumes the data
can be described as a set of items (or tokens). If these items are
distinguishable and form a sequence, we encode their position
using rotary position embeddings [22] in the auxiliary scalar
variables.

c) Axial attention over objects and time: The architecture
is flexible about the structure of the data. In some use cases,
there will be a single dimension along which objects are
organized, for instance when describing a static scene or the
time evolution of a single object. But GATr also supports the
organization of a problem along multiple axes, for example
with one dimension describing objects and another time steps.
In this case, we follow an axial transformer layout [13],
alternating between transformer blocks that attend over different
dimensions. (The not-attended dimensions in each block are
treated like a batch dimension.)

IV. ROBOTIC PLANNING THROUGH INVARIANT DIFFUSION

In Appendix C, we demonstrate Kuka on a synthetic n-body
regression problem. We find that it outperforms non-geometric
baselines and the E(3)-equivariant SEGNN in terms of sample
efficiency and generalization.

In this section of the main paper, we restrict ourselves to
a robotics experiment. We show how GATr defines an E(3)-
invariant diffusion model, that it can be used for model-based
reinforcement learning and planning, and that this combination
is well-suited to solve robotics problems.

We follow Janner et al. [15], who propose to treat learning a
world model and planning within that model as a unified genera-
tive modeling problem. After training a diffusion model [20] on
offline trajectories, one can use it in a planning loop, sampling
from it conditional on the current state, desired future states,
or to maximize a given reward, as needed.

We embed a GATr model in this algorithm and call this
combination GATr-Diffuser. GATr is equivariant with respect
to E(3) and the object permutation group Sn. When used
together with a base density that is E(3)× Sn-invariant, the
diffusion model is also E(3) × Sn-invariant [2, 16]. Often,
a particular task requires breaking this symmetry: imagine,
for instance, that a particular object needs to be moved to

101 102 103 104

Training trajectories

0

20

40

60

80

Re
wa

rd

Robotic block stacking
GATr-Diffuser (ours)
Transformer-Diffuser
Diffuser (reproduced)

EDGI [Brehmer '23]
Diffuser [Janner '22]
CQL [Kumar '20]
BCQ [Fujimoto '18]

Fig. 2: Diffusion-based robotic planning. We show normalized rewards
(higher is better) as in Tbl. II as a function of training dataset size.
GATr () is more successful at block stacking and more sample-
efficient than the baselines, including the original Diffuser model [15]
() and our modification of it based on a Transformer (). In
grey, we show results reported in the literature [5, 15].

a particular location. The Diffuser approach is an excellent
match for such situations, as conditioning on the current state,
future state, or a reward model as proposed by Janner et al.
[15] can softly break the symmetry group as desired [5].

GATr-Diffuser is demonstrated on the problem of a Kuka
robotic gripper stacking blocks using the “unconditional”
environment introduced by Janner et al. [15]. We train a
GATr-Diffuser model on the offline trajectory dataset published
with that paper. To facilitate a geometric interpretation, we
parameterize the data in terms of geometric quantities like
object positions and orientations. In particular, we use the
position and pose of the robotic endeffector as features and
map to joint angles with an inverse kinematics model. We then
test GATr-Diffuser on its ability to stack four blocks on each
other. We compare our GATr-Diffuser model to a reproduction
of the original Diffuser model (based on the published code,
but using our data parameterization) and a new transformer
backbone for the Diffuser model. In addition, we show the
published results of Diffuser [15], the equivariant EDGI [5],
and the offline RL algorithms CQL [17] and BCQ [11] as
published in Ref. [15]. The problem and hyperparameters are
described in detail in Appendix D.

As shown in Tbl. II and Fig. 2, GATr-Diffuser is able to
solve the block-stacking problem better than all baselines. It is
also clearly more sample-efficient, matching the performance of
a Diffuser model trained on the full dataset even when training
only on 1% of the trajectories. The fact that GATr-Diffuser also
outperforms the E(3)-equivariant EDGI model [5] is evidence
that equivariance alone is not the key to its success, hinting
that the geometric algebra provides a useful inductive bias.

REFERENCES

[1] Alexei Baevski and Michael Auli. Adaptive input
representations for neural language modeling. arXiv
preprint arXiv:1809.10853, 2018.

[2] Avishek Joey Bose and Ivan Kobyzev. Equivariant finite
normalizing flows. arXiv preprint arXiv:2110.08649,
2021.

[3] Johannes Brandstetter, Rianne van den Berg, Max Welling,
and Jayesh K Gupta. Clifford neural layers for PDE
modeling. arXiv preprint arXiv:2209.04934, 2022.

[4] Johannes Brandstetter, Rob Hesselink, Elise van der Pol,
Erik J Bekkers, and Max Welling. Geometric and physical
quantities improve E(3) equivariant message passing. In
International Conference on Learning Representations,
2022.

[5] Johann Brehmer, Joey Bose, Pim De Haan, and Taco
Cohen. EDGI: Equivariant Diffusion for Planning with
Embodied Agents. ICLR workshop on Reincarnating
Reinforcement Learning, 2023.

[6] Michael M Bronstein, Joan Bruna, Taco Cohen, and
Petar Veličković. Geometric deep learning: Grids, groups,
graphs, geodesics, and gauges. 2021.

[7] Taco Cohen and Max Welling. Group equivariant
convolutional networks. In International conference on
machine learning, pages 2990–2999. PMLR, 2016.

[8] Erwin Coumans and Yunfei Bai. PyBullet, a Python
module for physics simulation for games, robotics and
machine learning. http://pybullet.org, 2016–2019.

[9] Leo Dorst. A guided tour to the plane-based geometric
algebra pga. 2020. URL https://geometricalgebra.org/
downloads/PGA4CS.pdf.

[10] Leo Dorst, Daniel Fontijne, and Stephen Mann. Geomet-
ric Algebra for Computer Science: An Object-oriented
Approach to Geometry. Morgan Kaufmann Series in
Computer Graphics. Morgan Kaufmann, Amsterdam,
2007. ISBN 978-0-12-369465-2.

[11] Scott Fujimoto, David Meger, and Doina Precup. Off-
policy deep reinforcement learning without exploration.
In International conference on machine learning, pages
2052–2062. PMLR, 2019.

[12] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016.

[13] Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and
Tim Salimans. Axial attention in multidimensional
transformers. arXiv:1912.12180 [cs], December 2019.

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
diffusion probabilistic models. In Neural Information
Processing Systems, 2020.

[15] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey
Levine. Planning with diffusion for flexible behavior
synthesis. In International Conference on Machine
Learning, 2022.

[16] Jonas Köhler, Leon Klein, and Frank Noé. Equivariant
flows: exact likelihood generative learning for symmet-
ric densities. In International conference on machine

learning, pages 5361–5370. PMLR, 2020.
[17] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey

Levine. Conservative q-learning for offline reinforcement
learning. Advances in Neural Information Processing
Systems, 33:1179–1191, 2020.

[18] Martin Roelfs and Steven De Keninck. Graded sym-
metry groups: plane and simple. arXiv preprint
arXiv:2107.03771, 2021.

[19] David Ruhe, Jayesh K Gupta, Steven de Keninck, Max
Welling, and Johannes Brandstetter. Geometric clifford
algebra networks. arXiv preprint arXiv:2302.06594, 2023.

[20] Jascha Sohl-Dickstein, Eric Weiss, Niru
Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In
International Conference on Machine Learning, pages
2256–2265. PMLR, 2015.

[21] Matthew Spellings. Geometric algebra attention networks
for small point clouds. arXiv preprint arXiv:2110.02393,
2021.

[22] Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng
Liu. Roformer: Enhanced transformer with rotary position
embedding. arXiv preprint arXiv:2104.09864, 2021.

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In
Advances in Neural Information Processing Systems,
volume 30, 2017.

[24] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin
Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan, Liwei
Wang, and Tieyan Liu. On layer normalization in the
transformer architecture. In International Conference on
Machine Learning, pages 10524–10533. PMLR, 2020.

http://pybullet.org
https://geometricalgebra.org/downloads/PGA4CS.pdf
https://geometricalgebra.org/downloads/PGA4CS.pdf

APPENDIX

A. Theoretical results

In this section, we state or prove several properties of
equivariant maps between geometric algebras that we use in
the construction of GATr.

The grade involution is a linear involutive bijection ·̂ :
Gn,0,r : Gn,0,r, which sends a k-blade x to x̂ = (−1)kx.
Note that this is an algebra automorphism x̂y = x̂ŷ, and
also an ∧-algebra automorphism. The reversal in a linear
involutive bijection ·̃ : Gn,0,r : Gn,0,r which sends a k-blade
x = x1∧x2∧...∧xk to the reverse: x̃ = xk∧...∧x2∧x1 = ±x
with +x if k ∈ {0, 1, 4, 5, ..., 8, 9, ...} and −x otherwise.
Note that this is an anti-automorphism (contravariant functor):
x̃y = ỹx̃.

Here we denote the sandwich action of u ∈ Pin(n, 0, r)
on a multivector x not as ρu(x), but as u[x]. For odd u,
u[x] = ux̂u−1, while for even u, u[x] = uxu−1. The sandwich
action is linear by linearity of the ·̂ and bilinearity of the
geometric product. Furthermore, note that for any particular u ∈
Pin(n, 0, r), the action is a geometric algebra homomorphism:
u[ab] = uâbu−1 = uâu−1ub̂u−1 = u[a]u[b]. By linearity and
a symmetrization argument [10, Sec 7.1], one can show that it
also a ∧-algebra homomorphism (outermorphism): u[a ∧ b] =
u[a] ∧ u[b].

Let l ≥ k. Given a k-vector a and l-vector b, define the left
contraction as a⌋b := ⟨ab⟩l−k, which is a l − k-vector. For
k = 1, and b a blade b = b1∧ ...∧ bl. Geometrically, a⌋b is the
projection of a to the space spanned by the vectors bi. Thus
we have that a⌋b = 0 ⇐⇒ ∀i, ⟨a, bi⟩ = 0 [10, Sec 3.2.3], in
which case we define a and b to be orthogonal. In particular,
two vectors a, b are orthogonal if their inner product is zero.
Futhermore, we define a vector a to be tangential to blade b
if a ∧ b = 0.

In the projective algebra, a blade x is defined to be ideal if
it can be written as x = e0 ∧ y for another blade y.

1) Linear maps: We begin with Pin-equivariant linear maps.
After some technical lemmata, we prove the most general form
of linear equivariant maps in the Euclidean geometric algebra
Gn,0,0, and then also in projective geometric algebra Gn,0,1.

Proposition 2. The grade projection ⟨·⟩k is equivariant [10,
Sec 13.2.3].

Proof:
Choose an l-blade x = a1∧a2∧ ...∧al. Let u be a 1-versor.

As the action u is an outermorphism, u[x] = u[a1]∧ ...∧u[al]
is an l-blade. Now if l ̸= k, then ⟨x⟩k = 0 and thus u[⟨x⟩k] =
⟨u[x]⟩k. If l = k, then ⟨x⟩k = x and thus u[⟨x⟩k] = ⟨u[x]⟩k.
As the grade projection is linear, equivariance extends to any
multivector.

Proposition 3. The following map is equivariant: ϕ : G3,0,1 →
G3,0,1 : x 7→ e0x.

Proof: Let u be a 1-versor, then u acts on a multivector
as x 7→ u[x] = ux̂u−1, where x̂ is the grade involution.
Note that e0 is invariant: u[e0] = −ue0u

−1 = e0uu
−1 = e0,

where ue0 = −e0u because u and e0 are orthogonal: ue0 =

⟨u, e0⟩+u∧e0 = −e0∧u = −e0∧u. Then ϕ is equivariant, as
the action is an algebra homomorphism: u[ϕ(x)] = u[e0x] =
uê0xu

−1 = uê0u
−1ux̂u−1 = u[e0]u[x] = e0u[x] = ϕ(u[x]).

It follows that ϕ is also equivariant to any product of vectors,
i.e. any versor u.

a) Euclidean geometric algebra: Before constructing the
most general equivariant linear map between multivectors in
projective geometric algebra, we begin with the Euclidean case
Gn,0,0.

Theorem 1 (Cartan-Dieuodonné). Every orthogonal transfor-
mation of an n-dimensional space can be decomposed into at
most n reflections in hyperplanes.

Proof: This theorem is proven in Roelfs and De Keninck
[18].

Lemma 1. In the n-dimensional Euclidean geometric algebra
Gn,0,0, the group Pin(n, 0, 0) acts transitively on the space of
k-blades of norm λ ∈ R>0.

Proof: As the Pin group preserves norm, choose λ = 1
without loss of generality. Any k-blade x of unit norm can be
written by Gram-Schmidt factorization as the wedge product
of k orthogonal vectors of unit norm x = v1 ∧ v2 ∧ ... ∧ vk.
Consider another k-blade y = w1 ∧ w2 ∧ ... ∧ wk with wi

orthonormal. We’ll construct a u ∈ Pin(n, 0, 0) such that
u[x] = y.

Choose n− k additional orthonormal vectors vk+1, ..., vn
and wk+1, .., .wn to form orthonormal bases. Then, there
exists a unique orthogonal transformation Rn → Rn that
maps vi into wi for all i ∈ {1, ..., n}. By the Cartan-
Dieuodonné theorem 1, this orthogonal transformation can
be expressed as the product of reflections, thus there exists
a u ∈ Pin(n, 0, 0) such that u[vi] = wi. As the u action is
a ∧-algebra homomorphism (u[a ∧ b] = u[a] ∧ u[b], for any
multivectors a, b), we have that u[x] = y.

Lemma 2. In the Euclidean (r = 0) or projective (r = 1)
geometric algebra Gn,0,r, let x be a k-blade. Let u be a 1-
versor. Then u[x] = x ⇐⇒ u⌋x = 0 and u[x] = −x ⇐⇒
u ∧ x = 0.

Proof: Let x be a k-blade and u a vector of unit norm.
We can decompose u into u = t+ v with t ∧ x = 0 (the part
tangential to the subspace of x) and v⌋x = 0 (the normal
part). This decomposition is unique unless x is ideal in the
projective GA, in which case the e0 component of u is both
normal and tangential, and we choose t Euclidean.

In either case, note the following equalities: xt =
(−1)k−1tx;xv = (−1)kvx; vt = −tv and note ∄λ ̸= 0 such
that vtx = λx, which can be shown e. g. by picking a basis.
Then:

u[x] = (−1)k(t+ v)x(t+ v)

= (t+ v)(−t+ v)x

= (−∥t∥2 + ∥v∥2)x− 2vtx .

We have u[x] ∝ x ⇐⇒ vtx = 0. If x is not ideal, this implies
that either v = 0 (thus u ∧ x = 0 and u[x] = −x) or t = 0

(thus u⌋x = 0 and u[x] = x). If x is ideal, this implies that
either v ∝ e0 (thus u ∧ x = 0 and u[x] = −x) or t = 0 (thus
u⌋x = 0 and u[x] = x).

Lemma 3. Let r ∈ {0, 1}. Any linear Pin(n, 0, r)-equivariant
map ϕ : Gn,0,r → Gn,0,r can be decomposed into a sum of
equivariant maps ϕ =

∑
lkm ϕlkm, with ϕlkm equivariantly

mapping k-blades to l-blades. If r = 0 (Euclidean algebra) or
k < n+ 1, such a map ϕlkm is defined by the image of any
one non-ideal k-blade, like e12...k. Instead, if r = 1 (projective
algebra) and k = n + 1, then such a map is defined by the
image of a pseudoscalar, like e01...n.

Proof: The Pin(n, 0, r) group action maps k-vectors to
k-vectors. Therefore, ϕ can be decomposed into equivariant
maps from grade k to grade l: ϕ(x) =

∑
lk ϕlk(⟨x⟩k), with

ϕlk having l-vectors as image, and all k′-vectors in the kernel,
for k′ ̸= k. Let x be an non-ideal k-blade (or pseudoscalar
if k = n + 1). By lemmas 1 and 4, in both Euclidean and
projective GA, the span of the k-vectors in the orbit of x
contains any k-vector. So ϕlk is defined by the l-vector y =
ϕlk(x). Any l-vector can be decomposed as a finite sum of l-
blades: y = y1+...yM . We can define ϕlkm(x) = ym, extended
to all l-vectors by equivariance, and note that ϕlk =

∑
m ϕlkm.

Proposition 4. For an n-dimensional Euclidean geometric
algebra Gn,0,0, any linear endomorphism ϕ : Gn,0,0 → Gn,0,0

that is equivariant to the Pin(n, 0, 0) group (equivalently to
O(n)) is of the type ϕ(x) =

∑n
k=0 wk⟨x⟩k, for parameters

w ∈ Rn+1.
Proof: By decomposition of Lemma 3, let ϕ map from

k-blades to l-blades. Let x be a k-blade. Let u be a 1-versor.
By Lemma 2, if u is orthogonal to x, u[ϕ(x)] = ϕ(u[x]) =
ϕ(x) and u is also orthogonal to ϕ(x). If u ∧ x = 0, then
u[ϕ(x)] = ϕ(u[x]) = ϕ(−x) = −ϕ(x) and u ∧ ϕ(x) = 0.
Thus any vector in x is in ϕ(x) and any vector orthogonal to
x is orthogonal to ϕ(x), this implies ϕ(x) = wkx, for some
wk ∈ R. By Lemma 3, we can extend ϕ to ϕ(y) = wky for
any k-vector y.

b) Projective geometric algebra: How about equivariant
linear maps in projective geometric algebra? The degenerate
metric makes the derivation more involved, but in the end we
will arrive at a result that is only slightly more general.

Lemma 4. The Pin group of the projective geometric algebra,
Pin(n, 0, 1), acts transitively on the space of k-blades with
positive norm ∥x∥ = λ > 0. Additionally, the group acts
transitively on the space of zero-norm k-blades of the form
x = e0 ∧ y (called ideal blades), with ∥y∥ = κ.

Proof: Let x = x1 ∧ ... ∧ xk be a k-blade with positive
norm λ. All vectors xi can be written as xi = vi + δie0, for a
nonzero Euclidean vector vi (meaning with no e0 component)
and δi ∈ R, because if vi = 0, the norm of x would have been
0. Orthogonalize them as x′

2 = x2 −⟨x1, x2⟩x1, etc., resulting
in x = x′

1 ∧ · · · ∧ x′
k with x′

i = v′i + δ′ie0 with orthogonal v′i.
Define the translation t = 1 + 1

2

∑
i δ

′
ie0 ∧ v′i, which makes

x′ Euclidean: t[x′] = v′1 ∧ ...∧ v′k. By Lemma 1, the Euclidean

Pin group Pin(n, 0, 0), which is a subgroup of Pin(n, 0, 1),
acts transitively on Euclidean k-blades of a given norm. Thus,
in the projective geometric algebra Pin(n, 0, 1), any two k-
blades of equal positive norm λ are related by a translation
to the origin and then a Pin(n, 0, 0) transformation.

For the ideal blades, let x = e0 ∧ y, with ∥y∥ = κ. We
take y to be Euclidean without loss of generality. For any
g ∈ Pin(n, 0, 1), g[e0] = e0, so g[x] = e0 ∧ g[y]. Consider
another x′ = e0 ∧ y′ with ∥y′∥ = κ and taking y′ Euclidean.
As Pin(n, 0, 0) acts transitively on Euclidean (k − 1)-blades
with norm κ, let g ∈ Pin(n, 0, 0) such that g[y] = y′. Then
g[x] = x′.

We can now construct the most general equivariant linear
map between projective geometric algebras, a key ingredient
for GATr:

Proposition 5. For the projective geometric algebra Gn,0,1,
any linear endomorphism ϕ : Gn,0,1 → Gn,0,1 that is
equivariant to the group Pin(n, 0, r) (equivalently to E(n))
is of the type ϕ(x) =

∑n+1
k=0 wk⟨x⟩k +

∑n
k=0 vke0⟨x⟩k, for

parameters w ∈ Rn+2, v ∈ Rn+1.
Proof: Following Lemma 3, decompose ϕ into a linear

equivariant map from k-blades to l-blades. For k < n + 1,
let x = e12...k. Then following Lemma 2, for any 1 ≤ i ≤ k,
ei ∧ x = 0, ei[x] = −x, and ei[ϕ(x)] = ϕ(ei[x]) = ϕ(−x) =
−ϕ(x) and thus ei∧ϕ(x) = 0. Therefore, we can write ϕ(x) =
x ∧ y1 ∧ ... ∧ yl−k, for l − k vectors yj orthogonal to x.

Also, again using Lemma 2, for k < i ≤ n, ei⌋x = 0 =⇒
ei[ϕ(x)] = ϕ(x) =⇒ ei⌋ϕ(x) = 0 =⇒ ∀i, ⟨ei, yj⟩ = 0.
Thus, yj is orthogonal to all ei with 1 ≤ i ≤ n. Hence, l = k
or l = k + 1 and y1 ∝ e0.

For k = n+ 1, let x = e012...k. By a similar argument, all
invertible vectors u tangent to x must be tangent to ϕ(x), thus
we find that ϕ(x) = x∧ y for some blade y. For any non-zero
ϕ(x), y ∝ 1, and thus ϕ(x) ∝ x. By Lemma 3, by equivariance
and linearity, this fully defines ϕ.

2) Bilinear maps: Next, we turn towards bilinear operations.
In particular, we show that the geometric product and the join
are equivariant.

For the geometric product, equivariance is straightforward:
Any transformation u ∈ Pin(n, 0, r), gives a homomor-
phism of the geometric algebra, as for any multivectors x, y,
u[xy] = ux̂yu−1 = ux̂ŷu−1 = ux̂u−1uŷu−1 = u[x]u[y]. The
geometric product is thus equivariant.

a) Dual and join in Euclidean algebra: For the join and
the closely related dual, we again begin with the Euclidean
geometric algebra, before turning to the projective case later.

The role of the dual is to have a bijection ·∗ : Gn,0,0 →
Gn,0,0 that maps k-vectors to (n−k)-vectors. For the Euclidean
algebra, with a choice of pseudoscalar I , we can define a dual
as:

x∗ = xI−1 = xĨ (4)

This dual is bijective, and involutive up to a sign: (y∗)∗ =
yĨĨ = ±y, with +y = 1 for n ∈ {1, 4, 5, 8, 9, ...} and −y for
n ∈ {2, 3, 6, 7, ...}. We choose Ĩ instead of I in the definition

of the dual so that given n vectors x1, ..., xn, the dual of the
multivector x = x1∧...xn, is given by the scalar of the oriented
volume spanned by the vector. We denote the inverse of the
dual as x−∗ = xI. Expressed in a basis, the dual yields the
complementary indices and a sign. For example, for n = 3
and I = e123, we have (e1)

∗ = −e23, (e12)∗ = e3.
Via the dual, we can define the bilinear join operation, for

multivectors x, y:

x ∨ y := (x∗ ∧ y∗)−⋆ = ((xĨ) ∧ (yĨ))I .

Lemma 5. In Euclidean algebra Gn,0,0, the join is
Spin(n, 0, 0) equivariant. Furthermore, it is Pin(n, 0, 0) equiv-
ariant if and only if n is even.

Proof: The join is equivariant to the transformations from
the group Spin(n, 0, 0), which consists of the product of an
even amount of unit vectors, because such transformations
leave the pseudoscalar I invariant, and the operation consists
otherwise of equivariant geometric and wedge products.

However, let e12...n = I ∈ Pin(n, 0, 0) be the point
reflection, which negates vectors of odd grades by the grade
involution: I[x] = x̂. Let x be a k-vector and y an l-vector.
Then x∨y is a vector of grade n−((n−k)+(n−l)) = k+l−n
(and zero if k + l < n). Given that the join is bilinear, the
inputs transform as (−1)k+l under the point reflection, while
the transformed output gets a sign (−1)k+l−n. Thus for odd
n, the join is not Pin(n, 0, 0) equivariant.

To address this, given a pseudoscalar z = λI , we can create
an equivariant Euclidean join via:

EquiJoin(x, y, z = λI) := λ(x ∨ y) = λ(x∗ ∧ y∗)−∗ . (5)

Proposition 6. In Euclidean algebra Gn,0,0, the equivariant
join EquiJoin is Pin(n, 0, 0) equivariant.

Proof: The EquiJoin is a multilinear operation, so for
k-vector x and l-vector y, under a point reflection, the input
gets a sign (−1)k+l+n while the output is still a k + l − n
vector and gets sign (−1)k+l−n. These signs differ by even
(−1)2n = 1 and thus EquiJoin is Pin(n, 0, 1)-equivariant.

We prove two equalities of the Euclidean join which we use
later.

Lemma 6. In the algebra Gn,0,0, let v be a vector and x, y
be multivectors. Then

v⌋(x ∨ y) = (v⌋x) ∨ y (6)

and
x ∨ (v⌋y) = −(−1)nv̂⌋x ∨ y . (7)

Proof: For the first statement, let a be a k-vector and b
an l-vector. Then note the following two identities:

a ∨ b = ⟨a∗bĨ⟩2n−k−lI = ⟨a∗b⟩n−(2n−k−l)ĨI = ⟨a∗b⟩k+l−n

= a∗⌋b ,
(v⌋a)∗ = ⟨va⟩k−1Ĩ = ⟨vaĨ⟩n−k+1 = ⟨va∗⟩n−k+1

= v⌋(a∗) .

Combining these and the associativity of ⌋ gives:

(v⌋a) ∨ b = (v⌋a)∗⌋b = v⌋(a∗)⌋b = v⌋(a ∨ b)

For the second statement, swapping k-vector a and l-vector
b incurs a ∨ b = (a∗ ∧ b∗)−∗ = (−1)(n−k)(n−l)(b∗ ∧ a∗)−∗ =
(−1)(n−k)(n−l)(b ∨ a). Then we get:

a ∨ (v⌋b) = (−1)(n−k)(n−l−1)(v⌋b) ∨ a

= (−1)(n−k)(n−l−1)v⌋(b ∨ a)

= (−1)(n−k)(n−l−1)+(n−k)(n−l)v⌋(a ∨ b)

= (−1)(n−k)(n−l−1)+(n−k)(n−l)(v⌋a) ∨ b

= (−1)(n−k)(2n−2l−1)(v⌋a) ∨ b

= (−1)k−n(v⌋a) ∨ b

= −(−1)k−1−n(v⌋a) ∨ b

= −(−1)n(̂v⌋a) ∨ b .

This generalizes to multivectors x, y by linearity.

b) Dual and join in projective algebra: For the projective
algebra Gn,0,1 with its degenerate inner product, the dual
definition of Eq. 4 unfortunately does not yield a bijective
dual. For example, e0ẽ012...n = 0. For a bijective dual that
yields the complementary indices on basis elements, a different
definition is needed. Following Dorst [9], we use the right
complement. This involves choosing an orthogonal basis and
then for a basis k-vector x to define the dual x∗ to be the
basis n+ 1− k-vector such that x ∧ x∗ = I , for pseudoscalar
I = e012...n. For example, this gives dual e∗01 = e23, so that
e01 ∧ e23 = e0123.

This dual is still easy to compute numerically, but it can no
longer be constructed solely from operations available to us in
the geometric algebra. This makes it more difficult to reason
about equivariance.

Proposition 7. In the algebra Gn,0,1, the join a ∨ b = (a∗ ∧
b∗)−∗ is equivariant to Spin(n, 0, 1).

Proof: Even though the dual is not a Gn,0,1 operation, we
can express the join in the algebra as follows. We decompose
a k-vector x as x = tx + e0px into a Euclidean k-vector tx
and a Euclidean (k − 1)-vector px. Then Dorst [9, Eq (35)]
computes the following expression

(tx + e0px) ∨ (ty + e0py)

= ((tx + e0px)
∗ ∧ (ty + e0py)

∗)−∗

= tx ∨Euc py + (−1)np̂x ∨Euc ty + e0(px ∨Euc py) , (8)

where the Euclidean join of vectors a, b in the projective algebra
is defined to equal the join of the corresponding vectors in the
Euclidean algebra:

a ∨Euc b := ((a ẽ12...n) ∧ (b ẽ12...n))e12...n

The operation a ∨Euc b is Spin(n, 0, 0) equivariant, as
discussed in Lemma 5. For any rotation r ∈ Spin(n, 0, 1)
(which is Euclidean), we thus have r[a∨Euc b] = r[a]∨Euc r[b].
This makes the PGA dual in Eq. (8) equivariant to the rotational
subgroup Spin(n, 0, 0) ⊂ Spin(n, 0, 1).

We also need to show equivariance to translations. Let
v be a Euclidean vector and τ = 1 − e0v/2 a translation.
Translations act by shifting with e0 times a contraction: τ [x] =
x− e0(v⌋x). This acts on the decomposed x in the following
way: τ [tx + e0px] = τ [tx] + e0px = tx + e0(px − v⌋tx).

We thus get:

τ [x] ∨ τ [y]

= (τ [tx] + e0px) ∨ (τ [ty] + e0py)

= (tx + e0(px − v⌋t)) ∨ (ty + e0(py − v⌋ty))

= x ∨ y − tx ∨Euc (v⌋ty)− (−1)nv̂⌋tx ∨Euc ty

− e0 (px ∨Euc (v⌋ty) + (v⌋tx) ∨Euc py)

(used (8) & linearity)

= x ∨ y − e0 (px ∨Euc (v⌋ty) + (v⌋tx) ∨Euc py)

(used (7))

= x ∨ y − e0

(
−(−1)nv̂⌋px ∨Euc ty + (v⌋tx) ∨Euc py

)
(used (7))

= x ∨ y − e0 ((−1)n(v⌋p̂x) ∨Euc ty + (v⌋tx) ∨Euc py)

= x ∨ y − e0 (v⌋ {(−1)np̂x ∨Euc ty + tx ∨Euc py})
(used (6))

= τ [x ∨ y] .

The join is thus equivariant3 to translations and rotations
and is therefore Spin(n, 0, 1) equivariant.

Similar to the Euclidean case, we obtain full Pin(n, 0, 1)
equivariance via multiplication with a pseudoscalar. We thus
also use the EquiJoin from Eq. (5) in the projective case.

3) Expressivity: As also noted in Ref. [9], in the projective
algebra, the geometric product itself is unable to compute many
quantities. It is thus insufficient to build expressive networks.
This follows from the fact that the geometric product preserves
norms.

Lemma 7. For the algebra Gn,0,r, for multivectors x, y, we
have ∥xy∥ = ∥x∥ ∥y∥.

Proof: ∥xy∥2 = xyx̃y = xyỹx̃ = x∥y∥2x̃ = xx̃∥y∥2 =
∥x∥2∥y∥2.

Hence, any null vector in the algebra can never be mapped
to a non-null vector, including scalars. The projective algebra
can have substantial information encoded as null vector, such
as the position of points. This information can never influence
scalars or null vectors. For example, there is no way to compute
the distance (a scalar) between points just using the projective
algebra. In the GATr architecture, the input to the MLPs that
operate on the scalars, or the attention weights, thus could
not be affected by the null information, had we only used the
geometric product on multivectors.

To address this limitation, we use besides the geometric
product also the join. The join is able to compute such
quantities. For example, given the Euclidean vector e12...n,

3The authors agree with the reader that there must be an easier way to
prove this.

we can map a null vector x = e012...k to a non-null vector
x ∨ e12...n ∝ e12...k.

B. Architecture

In this section, we provide some details on the GATr
architecture that did not fit into the main paper.

a) Equivariant join: One of the primitives in GATr is the
equivariant join EquiJoin(x, y; z), which we define in Eq. (5).
For x and y, we use hidden states of the neural network after
the previous layer. The nature of z is different: it is a reference
multivector and only necessary to ensure that the function
correctly changes sign under mirrorings of the inputs. We find
it beneficial to choose this reference multivector z based on the
input data rather than the hidden representations, and choose
it as the mean of all inputs to the network.

b) Auxiliary scalars: In addition to multivector repre-
sentations, GATr supports auxiliary scalar representations, for
instance to describe non-geometric side information such as
positional encodings or diffusion time embeddings. In most
layers, these scalar variables are processed like in a standard
transformer, with two exceptions. In linear layers, we allow
for the scalar components of multivectors and the auxiliary
scalars to freely mix. In the attention operation, we compute
attention weights as

Softmaxi

(∑
c⟨qMV

i′c , kMV
ic ⟩+

∑
c q

s
i′ck

s
ic√

8nMV + ns

)
, (9)

where qMV and kMV are query and key multivector represen-
tations, qs and ks are query and key scalar representations,
nMV is the number of multivector channels, and ns is the
number of scalar channels.

C. n-body dynamics prediction

a) Dataset: We first demonstrate GATr on a n-body dy-
namics prediction problem. Given the masses, initial positions,
and velocities of a star and a few planets, the goal is to predict
the final position after the system has evolved under Newtonian
gravity for some time.

To be more precise, we generate data (for n objects) as
follows:

1) The masses of n objects are sampled from log-uniform
distributions. For one object (the star), we use m0 ∈
[1, 10]; for the remaining objects (the planets), we use
mi ∈ [0.01, 0.1]. (Following common practice in theoreti-
cal physics, we use dimensionless quantities such that the
gravitational constant is 1.)

2) The initial positions of all bodies are sampled. We first use
a heliocentric reference frame. Here the initial positions
of all bodies are sampled. The star is set to the origin,
while the planets are sampled uniformly on a plane within
a distance ri ∈ [0.1, 1.0] from the star.

3) The initial velocities are sampled. In the heliocentric
reference frame, the star is at rest. The planet velocities are
determined by computing the velocity of a stable circular
orbit corresponding to the initial positions and masses,

Parameter GATr Transformer MLP SEGNN

Layers 10 blocks 10 blocks 10 layers n/a
Channels 16 multivectors + 128 scalars 384 384 n/a
Attention heads 8 8 n/a n/a

Parameters [106] 1.9 11.8 1.3 0.1

TABLE III: Hyperparameters used in the n-body experiments.

and then adding isotropic Gaussian noise (with standard
deviation 0.01) to it.

4) We transform the positions and velocities from the
heliocentric reference frame to a global reference frame
by applying a random translation and rotation to it. The
translation is sampled from a multivariate Gaussian with
standard deviation 20 and zero mean (except for the
domain generalization evaluation set, where we use a
mean of (200, 0, 0)T). The rotation is sampled from the
Haar measure on SO(3). In addition, we apply a random
permutation of the bodies.

5) We compute the final state of the system by evolving it
under Newton’s equations of motion, using Euler’s method
and 100 time steps with a time interval of 10−4 each.

6) Finally, samples in which any bodies have traveled more
than a distance of 2 (the diamater of the solar system) are
rejected. (Otherwise, rare gravitational slingshot effects
dominate the regression loss and all methods become
unreliable.)

We generate training datasets with n = 4 and between
100 and 105 samples; a validation dataset with n = 4 and
5000 samples; a regular evaluation set with n = 4 and 5000
samples; a number-generalization evaluation set with n = 6
and 5000 samples; and a E(3) generalization set with n = 4,
an additional translation (see step 4 above), and 5000 samples.

All models are tasked with predicting the final object
positions given the initial positions, initial velocities, and
masses.

b) Models: Our GATr model is explained in III. We
embed object masses as scalars, positions as trivectors, and
velocities (like translation vectors) as bivectors.

GATr is compared to three baselines: the equivariant
SEGNN [4], a vanilla transformer, and an MLP. For SEGNN,
we use the code published by Brandstetter et al. [4] and the
hyperparameters that publication uses for n-body experiments.
We vary the number of nearest neighbours between 3 and the
number of objects in the scene (corresponding a fully connected
graph) and show the best result. For the Transformer baseline,
we follow a pre-layer normalization [1, 24] architecture with
GELU activations [12] in the MLP block. For the MLP, we
use GELU activations as well.

In Tbl. IV we show hyperparameter choices and parameter
counts.

c) Training: All models are trained by minimizing a L2

loss on the final position of all objects. We train for 50 000
steps with the Adam optimizer, using a batch size of 64 and
exponentially decaying the learning rate from 3·10−4 to 3·10−6.

d) Results: In the left panel of Fig. 3 we show the predic-
tion errors as a function of the number of training samples used.
The MLP, which has the least strong inductive bias and treats
the object positions and velocities as a single, structureless
feature vector, performs poorly on this task. The transformer
structures the data in terms of objects and is permutation-
equivariant, but not aware of the geometry; it achieves a
reasonable prediction accuracy when using the full training set.
SEGNN, which is E(3)-equivariant, achieves a substantially
better performance than the non-geometric baselines. Our GATr
architecture outperforms all three, achieving an asymptotic
performance on par with SEGNN while being clearly more
sample-efficient. It is able to predict final positions with high
accuracy even from just 100 training samples.

GATr also generalizes robustly out of domain, as we show
in the middle and right panels of Fig. 1. When evaluated on
a larger number of planets, the mean error becomes larger,
as non-trivial gravitational interactions become more frequent,
but GATr still outperforms the baselines. In particular, both
GATr and the baseline transformer generalizes better than
SEGNN, providing evidence that a softmax-based attention
mechanisms is more robust to object number generalization
than the message passing algorithm of SEGNN. Finally, the
performance of the E(3)-equivariant GATr and SEGNN does
not drop when evaluated on spatially translated data, while the
non-equivariant baselines fail in this setting.

D. Robotic planning through invariant diffusion

a) Environment: We use the block stacking environment
from Janner et al. [15]. It consists of a Kuka robotic arm
interacting with four blocks on a table, simulated with Py-
Bullet [8]. The state consists of seven robotic joint angles as
well as the positions and orientations of the four blocks. We
consider the task of stacking four blocks on top of each other
in any order. The reward is the stacking success probability
and is normalized such that 0 means that no blocks are ever
successfully stacked, while 100 denotes perfect block stacking.

b) Dataset and data parameterization: We train models
on the offline trajectory dataset published by Janner et al. [15].
It consists of 11 000 expert demonstrations.

To describe the problem in terms of geometric quantities,
we re-parameterize the environment state into the positions and
orientations of the robotic endeffector as well as the four blocks.
The orientations of all objects are given by two direction vectors.
In addition, there are attachment variables that characterize
whether the endeffector is in contact with either of the four

102 103 104 105
Training samples

10 2

10 1

100

101
Ro

ot
 m

ea
n

sq
ua

re
d

er
ro

r
n-body prediction, no domain shift

GATr (ours)
MLP
Transformer
SEGNN (Brandstetter '22)

102 103 104 105
Training samples

10 2

10 1

100

101

Ro
ot

 m
ea

n
sq

ua
re

d
er

ro
r

n-body pred., number generalization

102 103 104 105
Training samples

10 2

10 1

100

101

Ro
ot

 m
ea

n
sq

ua
re

d
er

ro
r

n-body prediction, E(3) generalization

Fig. 3: Results on a synthetic n-body dynamics dataset. We show the error in predicting future positions of planets as a function of the
training dataset size. Out of five independent training runs, the mean and standard error are shown. Left: Evaluating without distribution
shift. GATr () is more sample efficient than SEGNN [4] () and outperforms non-geometric baselines (,). Middle: Evaluating
on systems with more planets than trained on. Both GATr and the baseline transformer generalize well to different object counts. Right:
Evaluating on translated data. Because GATr is E(3) equivariant, it generalizes under this domain shift.

Parameter GATr-Diffuser Transformer-Diffuser Diffuser

Transformer blocks {10, 20, 30} {10, 20, 30} n/a
Channels 16 multivectors + 128 scalars {144, 384} n/a
Attention heads 8 8 n/a

Parameters [106] {2.1, 4.0, 5.9} {1.8, . . . , 3.5, . . . , 35.7} 65.1

TABLE IV: Hyperparameters used in the robotic planning experiments. For GATr-Diffuser and the Transformer-Diffuser, we experimented
with different depth and (for the Transformer-Diffuser) channel counts. For each model, we independently chose the best-performing setting,
shown here in bold. The Diffuser model uses a substantially different architecture based on a U-net, we refer the reader to Janner et al. [15]
for details.

blocks. In this parameterization, the environment state is 49-
dimensional.

We train models in this geometric parameterization of the
problem. To map back to the original parameterization in terms
of joint angles, we use a simple inverse kinematics model that
solves for the joint angles consistent with a given endeffector
pose.

c) Models: Our GATr model is explained in Sec. III. We
use the axial version, alternating between attending over time
steps and over objects. We embed object positions as trivectors,
object orientations as oriented planes, gripper attachment
variables as scalars, and the diffusion time as scalars.

For the Transformer baseline, we follow a pre-layer nor-
malization [1, 24] architecture with GELU activations [12]
in the MLP block and rotary positional embeddings [22].
For the Diffuser baseline, we follow the architecture and
hyperparameters described by Janner et al. [15].

For all models, we use the diffusion time embedding of
Ref. [15]. In Tbl. IV we show hyperparameter choices and
parameter counts.

All models are embedded in a diffusion pipeline as described
by Ho et al. [14], using the hyperparameter choices of Ref. [15].
In particular, we use univariate Gaussian base densities and
1000 diffusion steps.

d) Training: We train all models by minimizing the
simplified diffusion loss proposed by Ho et al. [14]. For our
GATr models and the Diffuser baselines we use an L2 loss and
train for 200 000 steps with the Adam optimizer, exponentially
decaying the learning rate from 3 ·10−4 to 3 ·10−6. This setup
did not work well for the Diffuser model, where (following
Janner et al. [15]) we use a L1 loss and a low constant learning
rate instead.

e) Evaluation: All models are evaluated by rolling out
at least 200 episodes in a block stacking environment and
reporting the mean task and the standard error. We use the
planning algorithm and parameter choices of Janner et al. [15]
(we do not optimize these, as our focus in this work is on
architectural improvements). It consists of sampling trajectories
of length 128 from the model, conditional on the current state;
then executing these in the environment using PyBullet’s PID
controller. Each rollout consists of three such phases.

	Introduction
	Geometric algebra in a nutshell
	The Geometric Algebra Transformer
	Architecture overview
	GATr primitives
	Extensions

	Robotic planning through invariant diffusion
	Appendix
	Theoretical results
	Linear maps
	Bilinear maps
	Expressivity

	Architecture
	n-body dynamics prediction
	Robotic planning through invariant diffusion

