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Abstract

Belief propagation is an iterative method for in-
ference in probabilistic graphical models. Its well-
known relationship to a classical concept from sta-
tistical physics, the Bethe free energy, puts it on
a solid theoretical foundation. If belief propaga-
tion fails to approximate the marginals, then this
is often due to a failure of the Bethe approxima-
tion. In this work, we show how modifications in a
graphical model can be a great remedy for fixing
the Bethe approximation. Specifically, we analyze
how the removal of edges influences and improves
belief propagation, and demonstrate that this posi-
tive effect is particularly distinct for dense graphs.

1 INTRODUCTION

Message passing algorithms are an effective method for
approximate inference in probabilistic graphical mod-
els [Koller and Friedman, 2009]. Although they often per-
form well in practice, there are only few guarantees about
their theoretical behavior. A remarkable milestone was the
discovery of a direct connection between message passing
algorithms and concepts of statistical mechanics [Yedidia
et al., 2001], perhaps the most famous being the relation-
ship between belief propagation (BP) [Pearl, 1988] and the
so-called Bethe free energy [Bethe, 1935, Peierls, 1936].

One favorable property of BP is its exactness on trees. On
loopy graphs, however, it frequently suffers from two major
issues: first, it may fail to converge to a fixed point and thus
to find reasonable estimates of the marginals. Second, the
fixed points themselves may induce bad estimates of the
marginals, in which case even convergence would not help.

To solve the first issue, various techniques have been devel-
oped that can improve the convergence behavior of BP; e.g.,
one can damp the message updates [Murphy et al., 1999]

or utilize elaborate scheduling schemes [Elidan et al., 2006,
Sutton and McCallum, 2007, Knoll et al., 2015, Aksenov
et al., 2020]. Moreover, it depends on the properties of the
graphical model [Tatikonda and Jordan, 2002, Ihler et al.,
2005, Mooij and Kappen, 2007] and on the initialization
of the messages [Koehler, 2019, Knoll et al., 2021, Leisen-
berger et al., 2021] if and to which fixed point BP converges.

The second issue might be even harder to overcome, as
it is inherently linked to a failure of the Bethe approxi-
mation [Weller et al., 2014]. The detrimental influence of
loops can make the Bethe free energy non-convex and cause
its local minima – and thus BP fixed points – to be far
away from the exact marginals. Enhanced variants of free
energy approximations [Yedidia et al., 2005] or loop cor-
rections [Mooij et al., 2007] are prudent alternatives, that
improve the accuracy but also increase the complexity.

In this work, we follow a different path: we aim to improve
the approximation quality of the Bethe free energy itself. To
address this problem, we modify the structure of the graph-
ical model and show how this transforms the Bethe free
energy in a way that moves its local minima closer to the
exact marginals. In particular, we analyze the effect of re-
moving individual edges from the graph. This loop-breaking
approach enforces a ’reconvexification’ of the Bethe free en-
ergy and therefore not only improves the accuracy of fixed
points, but also the convergence behavior of BP.

We make a series of interesting theoretical contributions that
arise from analyzing the behavior of the Bethe free energy
on a ’small scale’. More precisely, we introduce a measure
for the discrepancy between two different representations of
the Bethe free energy, each induced by a different graphical
model, and then utilize this tool to relate variations in the
Bethe free energy to the characteristics of the model and
the behavior of BP. Theoretically and experimentally, we
address the following questions: (i) How does edge removal
influence the estimated marginals? (ii) How does edge re-
moval influence the estimated partition function? (iii) Which
and how many edges – if at all – should we remove?
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The structure of this paper is as follows: Sec. 2 summarizes
all relevant background on graphical models, BP, and the
Bethe approximation. Sec. 3 contains a detailed theoretical
analysis and the main results. We experimentally validate
our findings in Sec. 4 and conclude the paper in Sec. 5.

2 BACKGROUND

This introductory section provides a compact overview of
the topics that we deal with: probabilistic graphical models,
belief propagation, and the Bethe approximation. We further
introduce the Ising model and discuss related work.

2.1 PROBABILISTIC GRAPHICAL MODELS

We consider an undirected graph G = (X,E), where X =
{1, . . . , N} is a set of nodes and E ⊆ {(i, j) : i, j ∈ X} is
a set of edges. An edge connects two nodes if (i, j) ∈ E.
Note that we assume all edges to be undirected and hence
(i, j) = (j, i) for all pairs of connected nodes; specifically
we do not count edges twice. Furthermore, N(i) denotes
the neighborhood of node i (i.e., the set of nodes that are
connected to i) and di := |N(i)| denotes the degree of i.

Let X1, . . . , XN be random variables (RVs) with state
spaces X1, . . . ,XN . A probabilistic graphical model (PGM)
represents a joint probability distribution PX(x) over the
RVs, where each node represents a RV1 and edges indicate
statistical dependencies between RVs. Formally, a PGM
is a pair (G,Φ) that associates a set of potential func-
tions (or potentials) Φ = {Φ1(x1), . . . ,ΦK(xK)} with
the graph G that are defined over joint realizations of subsets
X1, . . . ,XK ⊆ X. We shall focus on the class of binary
pairwise models2 that satisfy the following two assumptions:
first, each RV has two states, i.e., Xi = X = {+1,−1}. Sec-
ond, the potentials are defined over either one (singleton
potentials Φi(xi)) or two (pairwise potentials Φij(xi, xj))
RVs. Then the joint distribution factorizes as

PX(x) =
1

Z

∏
(i,j)∈E

Φij(xi, xj)

N∏
i=1

Φi(xi), (1)

where Z is the normalization constant or partition function.

We consider the Ising model, whose potentials have the
form Φij(xi, xj) = exp(Jijxixj) and Φi(xi) = exp(θixi)
with Jij ∈ R being the coupling strength of edge (i, j) and
θi ∈ R being the local field of node i. We further call an
edge (i, j) attractive if Jij > 0, and repulsive if Jij < 0.

1Due to the one-to-one correspondence between variables Xi

and nodes i, we shall not rigorously distinguish between them;
e.g., we often write Pi(xi) instead of PXi(xi).

2A wide range of models can be equivalently transformed into
binary pairwise models, although this may increase the state space
considerably [Weiss, 2000, Eaton and Ghahramani, 2013].

Then (1) takes the exponential form

PX(x) =
1

Z
exp(−E(x)) (2)

with E(x) :=
∑

(i,j)∈E Jijxixj +
∑N
i=1 θixi being the

state energy.3

Finally, following the terminology in Knoll et al. [2021], we
specify three types of models: unidirectional models do only
contain attractive edges and all variables are biased towards
the same state (i.e., either θi ≤ 0 or θi ≥ 0); attractive mod-
els do only contain attractive edges, but there may be local
fields that differ in sign; general models may contain both
attractive and repulsive edges. Note that, by definition, at-
tractive models include unidirectional models, while general
models include both unidirectional and attractive models.

2.2 BELIEF PROPAGATION

In this work, we consider two problems: first, the computa-
tion of marginal distributions where our specific interest lies
in singleton marginals PXi

(xi); and second, the computa-
tion of the partition function.4 It is well known that an exact
computation of these quantities is intractable [Valiant, 1979,
Cooper, 1990] and even the approximation of the marginals
to a certain precision is NP-hard [Dagum and Luby, 1993].

Belief propagation (BP) approximates the marginals by it-
eratively exchanging local statistical information between
nodes in form of ’messages’. This process is governed by
the recursive message update equations

µ
(n+1)
ij (xj) ∝

∑
xi∈X

Φij(xi, xj)Φi(xi)
∏

k∈N(i)\j

µ
(n)
ki (xk),

(3)
where the superscript (n) refers to the current iteration and
the subscript ij refers to the direction in which a message
is sent (e.g., node i sends µij to node j). In principle, one
can approximate the singleton marginals at any iteration, by
multiplying all incoming messages with the local potential:

P̃i
(n)

(xi) ∝
1

Zi
Φi(xi)

∏
k∈N(i)

µ
(n)
ki (xk) (4)

Generally, however, marginal estimates are considered to
be more accurate when they are obtained from a BP fixed
point [Murphy et al., 1999, Knoll et al., 2017]; more pre-
cisely, BP has converged to a fixed point µ◦ij , whenever an
update of the form (3) does not alter the message values
anymore (that is µ(n+1)

ij = µ
(n)
ij for all (i, j)).

3This parameterization does often facilitate the theoretical
analysis as it associates a unique parameter vector – consisting
of all Jij and θi – with each distribution (a so-called minimal
representation, Wainwright et al. [2008]).

4Actually, these two problems are closely related as marginals
can be expressed as a ratio of sub-partition functions [Weller and
Jebara, 2014b].



2.3 BETHE APPROXIMATION

It is often useful to formulate marginal inference in terms of
a variational problem. For this purpose, we consider some
trial distribution QX(x) and define the Gibbs free energy as

F(QX) = U(QX)− S(QX) (5)

with U = EQ [E(X)] being the average energy of the model
and S = −∑

x∈XN

QX(x) logQX(x) being the entropy of

QX(x). Let us further define the marginal polytope M as the
set of all valid probability distributions over X (i.e., that sat-
isfy all global and local marginalization and normalization
constraints). If one minimizes F over M, then one recovers
the true distribution PX(x) with the negative log-partition
function − log(Z) as the functional value at the global min-
imum, i.e., − log(Z) = minM F(QX) = F(PX).5

Two aspects, however, render the minimiziation of the Gibbs
free energy intractable: first, the definition of the marginal
polytope by exponentially many constraints; second, the
evaluation of the entropy that requires summing over expo-
nentially many terms. The Bethe free energy approximation
addresses these two issues as follows: first, it relaxes the
marginal polytope M to the local polytope L that involves
only local marginalization and normalization constraints of
the pairwise and singleton ’pseudo-marginals’ P̃ij and P̃i:

L = {P̃ij , P̃i :
∑
xj

P̃ij(xi, xj) = P̃i(xi),∑
xi,xj

P̃ij(xi, xj) = 1,
∑
xi

P̃i(xi) = 1;

(i, j) ∈ E, i ∈ X}.

(6)

Second, it replaces the entropy S by an accordingly weighted
sum of entropy contributions from edges and nodes. More
concretly, the Bethe free energy is defined as FB = UB−SB
where the Bethe average energy is

UB =−
∑

(i,j)∈E

∑
xi,xj∈X

P̃ij(xi, xj) log Φij(xi, xj)

−
n∑
i=1

∑
xi∈X

P̃i(xi) log Φi(xi),

(7)

and the Bethe entropy is

SB =−
∑

(i,j)∈E

∑
xi,xj∈X

P̃ij(xi, xj) log P̃ij(xi, xj)

+

n∑
i=1

(di − 1)
∑
xi∈X

P̃i(xi) log P̃i(xi).

(8)

5For more details on variational inference in graphical models
and the marginal polytope, we refer the reader to Wainwright et al.
[2008], Mezard and Montanari [2009].

While UB equals the true average energy U in the exact
marginals, SB is only an approximation to the true entropy
S – unless the graph is a tree [Yedidia et al., 2005]. To obtain
locally consistent approximations to the exact marginals,
one usually aims to minimize FB over L. Also, the so-called
Bethe partition function ZB, that is implicitely defined by
− log(ZB) = min

L
FB , provides an estimation of Z.

Binary variables allow for a particularly simple description
of the local polytope. Following the notation of Welling
and Teh [2001], Weller and Jebara [2013], we define the
pseudo-marginal distribution of Xi by P̃i(Xi = +1) =
qi (implying P̃i(Xi = −1) = 1 − qi) and, for any pair
of connected nodes, we denote the joint pseudo-marginal
probability P̃ij(Xi = +1, Xj = +1) by ξij . Then the local
marginalization and normalization constraints induce a full
specification of the joint probability table between Xi and
Xj in terms of the three parameters qi, qj , ξij (Tab. 1).

Table 1: Variational joint probability table for two binary
variables Xi and Xj .

P̃ij(Xi, Xj) Xj = +1 Xj = −1

Xi = +1 ξij qi − ξij qi
Xi = −1 qj − ξij 1 + ξij − qi − qj 1− qi

qj 1− qj

If we assume that all probabilities are strictly positive, then
ξij is bounded by

max(0, qi + qj − 1) < ξij < min(qi, qj). (9)

Inserting singleton and pairwise pseudo-marginals from
Table 1 together with the Ising potentials from Sec. 2.1
into (7) and (8), the Bethe free energy becomes

FB = −
∑

(i,j)∈E

(1 + 2 (2 ξij − qi − qj)) Jij

+

n∑
i=1

(1− 2qi) θi

−
∑

(i,j)∈E

Sij +

n∑
i=1

(di − 1) Si,

(10)

where the pairwise entropies are

Sij =− ξij log ξij

− (1 + ξij − qi − qj) log(1 + ξij − qi − qj)
− (qi − ξij) log(qi − ξij)
− (qj − ξij) log(qj − ξij)

(11)

and the local entropies are

Si = −qi log qi − (1− qi) log(1− qi). (12)



Then, with (q; ξ) being the vector that contains all qi and
ξij , the local polytope takes the simplified form

L = {(q; ξ) ∈ R|X|+|E| : 0 < qi < 1, i ∈ X;

max(0, qi + qj − 1) < ξij < min(qi, qj), (i, j) ∈ E}.
(13)

To further facilitate the task of minimizing FB over L,
Welling and Teh [2001] have derived necessary conditions
for points (q; ξ) of L to be located at local minima of FB .
By setting the partial derivative ∂

∂ξij
FB for an arbitrary edge

to zero, they proved that the resulting quadratic equation

αijξ
2
ij − (1 + αij(qi + qj))ξij + (1 + αij)qiqj = 0, (14)

where αij = e4Jij − 1, (15)

has a unique valid (i.e., inside the bounds (9)) solution

ξ∗ij(qi, qj) =
1

2αij

(
(1 + αij(qi + qj))

−
√

(1 + αij(qi + qj))2 − 4αij(1 + αij)qiqj

)
.

(16)

This means that for each edge (i, j), the only ξ∗ij(qi, qj), that
can be located at a stationary point of FB , depends directly
on qi and qj and may therefore be inserted in the definition
of FB (10). This is advantageous for two reasons: first, it
considerably reduces the number of independent variables
that are involved in optimizing FB (i.e., from |X|+ |E| to
|X|); second, it simplifies the shape of the domain, as FB is
now defined on a box-constrained domain, the Bethe box

B = {q ∈ R|X| : 0 < qi < 1, i ∈ X}. (17)

In this work, we do always refer to the Bethe free energy by
FB , be it defined over the local polytope or the Bethe box.

2.4 RELATED WORK

Belief propagation and the Bethe free energy. Since the
seminal work of Yedidia et al. [2001], it is well known
that fixed points of BP correspond one-to-one to station-
ary points of the Bethe free energy; moreover, stable fixed
points of BP must always be associated to local minima of
the Bethe free energy [Heskes, 2003].6 Consequently, one
can try to overcome the convergence issue of BP by minimiz-
ing the Bethe free directly. To solve the problem, Welling
and Teh [2001], Shin [2012] have derived gradient-based
algorithms; Yuille [2002], Heskes [2006] have proposed
provably convergent double-loop algorithms.

Variational free energy approximations. Yedidia et al.
[2005] have shown that BP is only a special case of a gen-
eral class of message passing algorithms, the generalized

6On the other hand, there may exist minima of the Bethe free
energy that are related to unstable BP fixed points [Mooij and
Kappen, 2005, Knoll et al., 2017].

belief propagation (GBP). Likewise, fixed points of these
algorithms correspond to stationary points of the so-called
Kikuchi free energies that try to approximate the true en-
tropy by a sum over entropy contributions from larger node
clusters [Kikuchi, 1951, Pelizzola, 2005]. In practice, many
of these methods can be prohibitively slow and may suffer
in the same way as BP from non-convexity of the partic-
ular free energy approximation; i.e., they may – if at all –
converge to suboptimal minima. This inspired various re-
searchers to design free energy approximations that are
convex [Wainwright et al., 2005, Globerson and Jaakkola,
2007b], some of which are related to convergent message
passing algorithms [Kolmogorov and Wainwright, 2006,
Globerson and Jaakkola, 2007a, Hazan and Shashua, 2008,
Meltzer et al., 2009, Jancsary and Matz, 2011].

Theoretical work on the Bethe approximation. The
Bethe approximation proves often to be superior to other
methods in terms of a tradeoff between efficiency and ac-
curacy [Meshi et al., 2009]. Its theoretical properties have
therefore been intensely studied: Heskes [2004], Pakzad and
Anantharam [2005] derived conditions for the convexity
of the Bethe free energy. Chertkov and Chernyak [2006]
formulated the so-called loop series expansion that directly
relates the Bethe partition function to the true partition func-
tion. Others have found interesting connections between the
Bethe approximation and classical graph theory [Watanabe
and Fukumizu, 2009, Vontobel, 2013]. Moreover, Weller
and Jebara [2014a] derived an FPTAS 7 to approximate the
Bethe partition function in attractive models.

Graphical model approximation. Another line of re-
search, that is in some sense complementary to variational
inference, tries to approximate the graphical model itself.
The classical Chow-Liu algorithm [Chow and Liu, 1968]
finds a spanning tree such that the Kullback-Leibler (KL)
divergence between the original distribution and the induced
tree distribution is minimal. Furthermore, two different tech-
niques have been applied to reduce the complexity of exact
inference in a graphical model: first, the ’annihilation’ of
small probabilities that are below a certain treshold [Jensen
and Andersen, 1990]; second, the deletion of one or more
edges from the model (not necessarily until a spanning tree
is reached). Due to its empirical success, the second method
deserves special attention: Kjaerulff [1994] carefully se-
lected edges whose removal decreases the treewidth of a
graph. van Engelen [1997] studied how the removal of edges
in a directed graph influences the KL divergence. Choi and
Darwiche [2006] showed that a particular class of GBP, the
so-called join graph propagation [Dechter et al., 2002], can
be equivalently cast in terms of a procedure that consecu-
tively deletes and recovers edges. In the past, these methods
were primarily applied to perform exact inference in the ap-
proximated model. For large graphs, this does often remain
a hard computational challenge.

7Fully polynomial-time approximation scheme.



3 THEORETICAL ANALYSIS

We shall now devote our attention to the central topic of
this work: how removing edges from a graphical model
influences the behavior of BP. While the accuracy of the
exact marginals degrades if one approximates a model by a
sparser one [van Engelen, 1997], one might expect a similar
behavior for the marginals estimated by BP. We show, that
the opposite is the case: sparsifying the graph does often
significantly improve the marginal accuracy of BP. The
quality of the estimated partition function, however, tends
to degrade by deviating from the original model.

In this section, we explain the second of these phenomena
theoretically. We further analyze the role of an ’optimal’
edge to be removed and relate this problem to the Bethe
free energy. In particular, we prove an inherent relationship
between global error measures on the Bethe free energy and
the coupling strength of the edges. Our detailed analysis of
the Bethe free energy on a ’small scale’ extends the work
of Welling and Teh [2001], Weller and Jebara [2013], Weller
et al. [2014] and leads to better understanding of BP and the
Bethe approximation in general.

3.1 PROBLEM SPECIFICATION

We briefly clarify the problem to be considered. Let (G,Φ)
be a PGM and let (G′,Φ′) be a second PGM that is obtained
by removing a set of edges Ẽ (and the associated pairwise
potentials) from the original model.8 Let P := {Pi : i ∈ X}
be the set of exact (singleton) marginals on (G,Φ) and Z

be the partition function. Assume that we run BP on both
models and obtain pseudo-marginals P̃ := {P̃i : i ∈ X}
on (G,Φ) resp. P̃′ := {P̃ ′i : i ∈ X} on (G′,Φ′), together
with partition function estimates Z̃ resp. Z̃′.9 Then we are
interested in comparing the following quantities: first, the
l1-errors ||PX− P̃X||l1 and ||PX− P̃′X||l1 ; and second, the
absolute errors |logZ− log Z̃| and |logZ− log Z̃′|.
Ideally, we would like to remove a (possibly empty) set
of edges, such that the induced errors ||PX − P̃ ′X||l1 and
|logZ − log Z̃′| become minimal over all subsets Ẽ ⊆ E.
That is, we want to find the model for which BP best ap-
proximates the marginals and the partition function of the
original model. If one premises that, for comparison, we
require the access to these exact quantities, the finding of
such an edge set is of course an intractable problem. Still, it
remains a crucial question whether and to what extent the
removal of edges has a positive impact on the estimates. To
identify edges to be deleted, we need to define an objective
that contains information about the discrepancy between

8Without loss of generality, we assume that the removal of
Ẽ does not make the graph disconnected (otherwise, individual
connected components can be treated separately).

9Note that P̃ ′
X and Z̃′ are approximations to the exact

marginals and partition function in the new model (G′,Φ′).

different graphical models. Note that a global comparison
via the KL divergence and its generalizations [Minka, 2005]
is prohibitive as this would involve a summation over ex-
ponentially many terms. Likewise, it is intractable to com-
pare between different representations of the Gibbs free
energy (5). To relax the problem, we focus on the analy-
sis of local discrepancies between two models. The Bethe
free energy (10) provides an ideal tool to explicitly measure
these local differences.

3.2 THE BETHE ENERGY DIFFERENCE

Our main idea to make model comparison tractable lies
in comparing between two different representations of the
Bethe free energy. We formalize this concept as follows:
assume for now that we remove a single edge (i, j) from a
model (G,Φ) and let (G \(i,j),Φ \(i,j) denote the resulting
model. Let further FB resp. F \(i,j)B be the representations
of the Bethe free energy that are associated with (G,Φ) resp.
(G \(i,j),Φ \(i,j). Specifically, F \(i,j)B does not contain the
pairwise energy and entropy contributions from edge (i, j),
while the local entropy contributions from nodes i and j are
counted once less than in the definition of FB (10). Then
we define the Bethe free energy difference ∆F

(i,j)
B as the

difference between FB and F
\(i,j)
B , i.e.,

∆F
(i,j)
B := FB − F

\(i,j)
B

=

:= ∆U
(i,j)
B︷ ︸︸ ︷

− (1 + 2 (2 ξij − qi − qj)) Jij

+

:= I
(i,j)
B︷ ︸︸ ︷

Si + Sj − Sij ,

(18)

where ∆U
(i,j)
B is the difference in the Bethe average energy

and I (i,j)
B is the mutual information between Xi and Xj .

Depending on whether we consider FB on the local polytope
L (13) or the Bethe box B (17), ∆F

(i,j)
B is defined on slices

of these objects, that is either on the sliced local polytope

L (i,j) := {(qi, qj ; ξij) ∈ R3 : 0 < qi, qj < 1;

max(0, qi + qj − 1) < ξij < min(qi, qj)}
(19)

or the sliced Bethe box

B(i,j) := {(qi, qj) ∈ R2 : 0 < qi, qj < 1}. (20)

It only depends on three resp. two variables and may there-
fore be considered as a function that contains variational
information about local changes in a model when removing
an edge. Moreover, it entails an effective way of measur-
ing the local discrepancy between two graphical models,
e.g., by computing an arbitrary norm of ∆F

(i,j)
B on L(i,j)

or B(i,j). In this work, we consider Lp-norms as the most



natural choice and analyze the special cases of p =∞ and
p = 2 in Sec. 3.3 (Theorem 1, Corollary 1, and Theorem 2).

In principle, one can generalize the above idea to compare
between models that result from removing multiple edges
Ẽ in one step, as the associated Bethe free energy differ-
ence ∆F Ẽ

B is then simply the sum over energy differences
∆F

(i,j)
B for all (i, j) in Ẽ. However, this increases both the

number of variables to be integrated over and the number of
edge sets to be taken into account for removal. To facilitate
the theoretical and experimental analysis of edge removal,
we shall therefore focus on removing edges one by one.

To make statements about the global effects of remov-
ing individual edges on the Bethe free energy and BP,
we must carefully analyze the functional behavior of the
Bethe free energy difference and its components on a small
scale. In the following, we derive a series of auxiliary theo-
rems where we consider the mathematical properties of ξ∗ij
from (16) (Lemma 1 and 2), the Bethe mutual information
I

(i,j)
B (Lemma 3), and the Bethe energy difference ∆F

(i,j)
B

(Lemma 4, 5, and 6) on their joint domain, the sliced Bethe
box B(i,j). These results – besides being interesting in them-
selves – are rather of technical nature and will help us in
proving our main results in Sec. 3.3. All proofs for Sec. 3.2
and 3.3 are contained in the Appendix A.

First, we compute values of ξ∗ij in the center point of the
sliced Bethe box:

Lemma 1. Let (i, j) be an edge. In the center point
(0.5, 0.5) of the sliced Bethe box B(i,j), the unique ξ∗ij that
can be located at a stationary point of FB has the form

ξ∗ij(0.5, 0.5) =
σ(2 Jij)

2
. (21)

We will also have to analyze the behavior of ξ∗ij if qi and qj
approach the boundary ∂B(i,j)10 of the sliced Bethe box:

Lemma 2. Let (i, j) be edge and let k ∈ [0, 1]. The limits
of ξ∗ij at the boundary ∂B(i,j) of the sliced Bethe box are

lim
qi→0
qj→k

ξ∗ij(qi, qj) = 0 = lim
qi→k
qj→0

ξ∗ij(qi, qj), (22)

lim
qi→1
qj→k

ξ∗ij(qi, qj) = k = lim
qi→k
qj→1

ξ∗ij(qi, qj). (23)

Moreover, we shall prepare bounds and compute the bound-
ary limits at ∂B(i,j) of the mutual information I (i,j)

B (18):

Lemma 3. Let (i, j) be an edge.

(a) In the interior of the sliced Bethe box B(i,j), the mutual

10That is, the four line segments connecting the points (0, 0)−
(0, 1), (0, 0)− (1, 0), (0, 1)− (1, 1), and (1, 0)− (1, 1).

information I (i,j)
B is bounded by

0 < 8(ξ∗ij − qiqj)2

< I
(i,j)
B (qi, qj)

≤
(ξ∗ij − qiqj)2

qi(1− qi)qj(1− qj)
.

(24)

(b) The limit of I (i,j)
B at the boundary ∂B(i,j) is

lim
(qi,qj)→∂B(i,j)

I
(i,j)
B (qi, qj) = 0. (25)

Next, we compute first-order and second-order derivatives
of ∆F

(i,j)
B on B(i,j). The proof utilizes results from Welling

and Teh [2001], Weller and Jebara [2013] (Appendix B).

Lemma 4. Let (i, j) be an edge.

(a) The first-order derivatives of ∆F
(i,j)
B on B(i,j) are

∂

∂qi
∆F

(i,j)
B = 2Jij+log

( (1− qi)(qi − ξ∗ij)
qi(1 + ξ∗ij − qi − qj)

)
. (26)

(b) The second-order derivatives of ∆F
(i,j)
B on B(i,j) are

∂2

∂q2
i

∆F
(i,j)
B =

qj(1− qj)
Tij

− 1

qi(1− qi)
, (27)

∂2

∂qiqj
∆F

(i,j)
B =

∂2

∂qjqi
∆F

(i,j)
B =

qiqj − ξ∗ij
Tij

, (28)

∂2

∂q2
j

∆F
(i,j)
B =

qi(1− qi)
Tij

− 1

qj(1− qj)
, (29)

where Tij := qiqj(1− qi)(1− qj)− (ξ∗ij − qiqj)2.

The following result formulates a useful property of the
Bethe free energy difference on the sliced Bethe box:

Lemma 5. Let (i, j) be an edge. ∆F
(i,j)
B has precisely one

stationary point on B(i,j), which is (q̄i, q̄j) = (0.5, 0.5) and
is neither a maximum nor a minimum (i.e., a saddle point).

Lemma 5 implies that ∆F
(i,j)
B cannot possess a maximum

nor a minimum in the interior of B(i,j). This implies that the
supremum and infimum of ∆F

(i,j)
B must lie at the boundary.

Finally, we characterize regions of B(i,j) on which ∆F
(i,j)
B

contributes always negatively to the Bethe free energy FB :

Lemma 6. Let (i, j) be an edge.

(a) For an attractive edge, ∆F
(i,j)
B (qi, qj) is negative if

either both qi, qi < 0.5 or both qi, qi > 0.5.

(b) For a repulsive edge, ∆F
(i,j)
B (qi, qj) is negative if ei-

ther qi < 0.5 and qj > 0.5 or qi < 0.5 and qj > 0.5.



3.3 MAIN RESULTS

After having prepared the technical framework in Sec. 3.2,
we now proceed by presenting our main results. First, we
directly relate the Bethe free energy difference to the local
properties of the graphical model (Theorem 1). Then, we
address the problem of an ’Bethe-optimal’ edge to be deleted
(Corollary 1 and Theorem 2). Finally, we conclude about
the approximation quality of BP regarding the estimated
partition function if edges are deleted (Theorems 3 and 4).

Theorem 1. Let (i, j) be an arbitrary edge. Then the L∞-
norm of the Bethe free energy difference is

||∆F
(i,j)
B ||L∞ = |Jij |, (30)

with

−|Jij | = inf
(qi,qj)∈B(i,j)

∆F
(i,j)
B (qi, qj), (31)

|Jij | = sup
(qi,qj)∈B(i,j)

∆F
(i,j)
B (qi, qj). (32)

The infimum and supremum are not taken by ∆F
(i,j)
B but

exist only as limits at the boundary of B(i,j). In particular,
we have for an attractive edge

−Jij = lim
qi→0
qj→0

∆F
(i,j)
B (qi, qj) = lim

qi→1
qj→1

∆F
(i,j)
B (qi, qj),

Jij = lim
qi→0
qj→1

∆F
(i,j)
B (qi, qj) = lim

qi→1
qj→0

∆F
(i,j)
B (qi, qj),

(33)

and, conversely, for a repulsive edge

−Jij = lim
qi→0
qj→1

∆F
(i,j)
B (qi, qj) = lim

qi→1
qj→0

∆F
(i,j)
B (qi, qj),

Jij = lim
qi→0
qj→0

∆F
(i,j)
B (qi, qj) = lim

qi→1
qj→1

∆F
(i,j)
B (qi, qj).

(34)

Theorem 1 reveals a monotonic dependence between the
strength of the couplings and absolute changes in the Bethe
free energy that are caused by local modifications in the
graphical structure. In terms of edge deletion, this implies
that the ’Bethe-optimal’ choice of an edge to be removed
from the graph is the one with the weakest coupling strength:

Corollary 1. Suppose we aim to remove an edge from the
graphical model such that the induced maximum error in the
Bethe free energy is minimal. Then this ’L∞-Bethe-optimal’
edge is the one with the lowest absolute coupling strength:

argmin
(i,j)∈E

||∆F
(i,j)
B ||L∞ = argmin

(i,j)∈E
|Jij | (35)

An analogous property holds for the L2-error of FB on L:

Theorem 2. Suppose we aim to remove an edge from the
graphical model such that the induced mean squared error
in the Bethe free energy on the local polytope L is minimal.
Then this ’L2-Bethe-optimal’ edge is the one with the lowest
absolute coupling strength:

argmin
(i,j)∈E

||∆F
(i,j)
B ||L2 = argmin

(i,j)∈E
|Jij | (36)

Next, we conclude about the quantitative change in the
Bethe partition function ZB if an edge is removed:

Theorem 3. Let ZB be the Bethe partition function asso-
ciated with some graphical model, i.e., the quanitity that
satisfies − log(ZB) = minB FB . Suppose we remove an
(attractive or repulsive) edge from the graph. Let F\(i,j)B be
the representation of the Bethe free energy associated with
the new model, together with the new Bethe partition func-
tion ZB

\(i,j) that is implicitly defined by− log(ZB
\(i,j)) =

minB F
\(i,j)
B . Then the following error estimate holds:∣∣∣∣ log

( ZB

ZB
\(i,j)

)∣∣∣∣ < |Jij | (37)

Finally, we conclude about the quality of the estimated par-
tition function if edges are removed. We consider unidirec-
tional models (Sec. 2.1) that allow for a precise statement:

Theorem 4. Consider a unidirectional model, i.e., where all
edges are attractive and all variables are biased towards the
same state. Let Z resp. ZB be the associated partition resp.
Bethe partition function. Suppose we remove an arbitrary
edge from the graph and let ZB

\(i,j) be the Bethe partition
function associated with the new model. Then the quality of
the estimated partition function degrades, i.e.,

|Z− ZB| < |Z− ZB
\(i,j)|. (38)

Theorem 4 does not formally extend to models that contain
both positive and negative local fields. Generally, however,
the error between the true and the BP-estimated partition
function tends to increase, the more edges we remove.

This negative result is contrasted by the positive effect of
edge removal on the estimated marginals. While existing
theoretical bounds on the marginal errors are often loose and
typically hard to compute [Wainwright et al., 2003, Taga
and Mase, 2006, Ihler, 2007, Mooij and Kappen, 2008], we
validate and explain our statement in Sec. 4.

4 EXPERIMENTS

We now demonstrate empirically how removing edges can
have an astonishingly positive impact on the approximation
accuracy of BP. We perform a range of experiments on a



fully connected graph on 10 vertices.11 Further experiments
including a 5× 5- grid graph are contained in Appendix C.

We consider both attractive and general models (Sec. 2.1).
In Sec. 4.1, we focus on attractive models and sample Jij
uniformly from [0, Ĵ ] for Ĵ ∈ {0.1, 0.2, . . . , 2}. In Sec. 4.2,
we focus on general models and sample Jij uniformly from
[−Ĵ , Ĵ ] for Ĵ ∈ {0.1, 0.2, . . . , 2}. For both settings, we cre-
ate two scenarios: first, models with weak local fields (each
θi is sampled uniformly from [−0.2, 0.2]); second, models
with strong local fields (each θi is sampled uniformly from
[−0.5, 0.5]). For each configuration, we create 200 models.

For each individual model, we remove edges one by one un-
til we reach a spanning tree. We do not remove edges, whose
deletion makes the graph disconnected.12 We compare two
criteria for selecting the next edge to be removed: first, the
Bethe-optimal criterion (Corollary 1, Theorem 2); second,
we remove edges that induce the lowest mutual informa-
tion between two connected variables in the original model.
More precisely: assume that we have already removed edge
set Ẽ from a model; then the next edge (i, j) to be removed
is the one that minimizes either of the following criteria:

BETHE-OPT : argmin
(i,j)∈E\Ẽ

|Jij |

CHOW-LIU : argmin
(i,j)∈E\Ẽ

I(Xi;Xj)

Note that by applying the second criterion, we end up in a
Chow-Liu tree [Chow and Liu, 1968], i.e., the spanning tree
with the lowest KL divergence from the original model.13

For each intermediate model during the edge deletion pro-
cess, we run BP 100 times with random message initializa-
tion to approximate the marginals. For each run, we perform
at most 1000 iterations. If BP has not converged, we es-
timate the marginals from the final iteration. We utilize a
randomized message scheduling to achieve better conver-
gence [Elidan et al., 2006]. For the error evaluation, we
compute the l1-distance between the exact and estimated
marginals. The results for each model are averaged over the
100 runs. Finally, the results are averaged over all 200 mod-
els, each based on a different configuration of the potentials.

4.1 ATTRACTIVE MODELS

For weak couplings, BP finds accurate marginal estimates in
the original model. If the strength of the couplings increases,

11This allows for a computation of the exact marginals via the
junction tree algorithm [Lauritzen and Spiegelhalter, 1988] and
enables us to compare the approximated marginals to them.

12This procedure corresponds to the so-called reverse-delete
algorithm [Kruskal, 1956] that constructs a maximum spanning
tree with respect to a given criterion.

13We cannot generally apply the second criterion, as the com-
putation of the mutual information between two variables requires
knowledge of the related exact singleton and pairwise marginals.

this favorable property suddenly disappears at some criti-
cal treshold and BP fails to approximate the marginals for
larger values of Ĵ (Fig. 1). This behavior is not due to worse
convergence properties of BP, but results from inaccurate
BP fixed points and thus inaccurate minima of the Bethe
free energy [Weller et al., 2014]. While the Bethe free en-
ergy is convex for weaker couplings and possesses a unique
global minimum, this minimum becomes an (unstable) sad-
dle point if Ĵ increases and cannot be reached by BP any
longer [Heskes, 2003, Mooij and Kappen, 2005, Knoll and
Pernkopf, 2017]. For even larger couplings, the landscape
of the Bethe free energy becomes increasingly complex and
the (possibly many14) Bethe minima approach the boundary
of the domain, thus moving away from the exact marginals.

If we remove edges from the graph, the marginal accuracy
of BP in the new model is often much better than in the orig-
inal model. This can be explained by a ’reconvexification’
of the Bethe free energy that makes unstable saddle points
or maxima stable minima again and allows BP to converge
to accurate fixed points. The question on how many edges
we should actually remove, is a difficult one. In Fig. 1, we
observe that there appears to be a ’channel’ that defines an
optimal number of edges to be removed. The stronger the
couplings become, the more preferable is it to rely on tree
approximations, while BP outperforms the edge removal
techniques for regimes with lower coupling strength (Fig. 2).
For stronger local potentials, the channel becomes narrower
and edge removal loses some of its benefit (although the
results are mostly superior in comparison to the original
model). Also, in Fig. 1 we observe that BETHE-OPT per-
forms slightly better than CHOW-LIU criterion, with an
increasing advantage for stronger local potentials.

4.2 GENERAL MODELS

The situation for general models is similar as in the attrac-
tice case. We can observe certain differences though (Fig. 3):
first, the critical treshold of the couplings, beyond which the
Bethe free energy becomes non-convex, is higher than for
attractive models. Second, for models with strong local po-
tentials, edge removal based on the BETHE-OPT criterion
improves the marginal accuracy only slightly. Interestingly,
the Chow-Liu tree induces strikingly accurate Bethe minima
for all models (Fig. 4). As in the attractive case, we observe
that the problem becomes more difficult if both the pairwise
and the local potentials become stronger at the same time.

5 CONCLUSION

We have proposed to approximate a graphical model as a
’preprocessing step’ for approximate inference. We focused

14The Bethe free energy may theoretically possess exponen-
tially many local minima [Watanabe and Fukumizu, 2009, Knoll
and Pernkopf, 2019].
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Figure 1: Attractive models. First row: θi ∈ [−0.2, 0.2]; sec-
ond row: θi ∈ [−0.5, 0.5]. (a) + (c): BETHE-OPT criterion;
(b) + (d): CHOW LIU criterion.
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Figure 2: Attractive models. Tree approximations with re-
spect to BETHE-OPT (blue) and CHOW-LIU (green) vs. BP
in the original model (red). Left-hand side: θi ∈ [−0.2, 0.2];
right-hand side: θi ∈ [−0.5, 0.5].

on the removal of single edges and showed that this can have
a beneficial impact on the behavior of belief propagation.

We have exploited the relationship between belief propa-
gation and the Bethe free energy to explain the success
of such an approach. Subsequently, we have validated our
findings in an experimental study. Most importantly, our
analysis contributes to an improved understanding of belief
propagation and the Bethe approximation in general.

We are convinced that our observations inspire the develop-
ment of further sophisticated methods that try to approxi-
mate a graphical model and improve the behavior of mes-
sage passing algorithms. We believe that one logical exten-
sion lies in the modification of the local potentials to com-
pensate for the lost information caused by edge removal.
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Figure 3: General models. First row: θi ∈ [−0.2, 0.2]; sec-
ond row: θi ∈ [−0.5, 0.5]. (a) + (c): BETHE-OPT criterion;
(b) + (d): CHOW LIU criterion.
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Figure 4: General models. Tree approximations with respect
to BETHE-OPT (blue) and CHOW-LIU (green) vs. BP in
the original model (red). Left-hand side: θi ∈ [−0.2, 0.2];
right-hand side: θi ∈ [−0.5, 0.5].
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